Science.gov

Sample records for arabidopsis shoot apical

  1. The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity.

    PubMed

    Mandel, Tali; Moreau, Fanny; Kutsher, Yaarit; Fletcher, Jennifer C; Carles, Cristel C; Eshed Williams, Leor

    2014-02-01

    In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) transcription factor specifying stem cell fate and the CLAVATA (CLV) ligand-receptor system limiting WUS expression. In this study, we identified the ERECTA (ER) pathway as a second receptor kinase signaling pathway that regulates WUS expression, and therefore shoot apical and floral meristem size, independently of the CLV pathway. We demonstrate that reduction in class III HD-ZIP and ER function together leads to a significant increase in WUS expression, resulting in extremely enlarged shoot meristems and a switch from spiral to whorled vegetative phyllotaxy. We further show that strong upregulation of WUS in the inflorescence meristem leads to ectopic expression of the AGAMOUS homeotic gene to a level that switches cell fate from floral meristem founder cell to carpel founder cell, suggesting an indirect role for ER in regulating floral meristem identity. This work illustrates the delicate balance between stem cell specification and differentiation in the meristem and shows that a shift in this balance leads to abnormal phyllotaxy and to altered reproductive cell fate.

  2. Sample Preparation of Arabidopsis thaliana Shoot Apices for Expression Studies of Photoperiod-Induced Genes.

    PubMed

    Andrés, Fernando; Torti, Stefano; Vincent, Coral; Coupland, George

    2016-01-01

    Plants produce new organs from a population of pluripotent cells which are located in specific tissues called meristems. One of these meristems, the shoot apical meristem (SAM), gives rise to leaves during the vegetative phase and flowers during the reproductive phase. The transition from vegetative SAM to an inflorescence meristem (IM) is a dramatic developmental switch, which has been particularly well studied in the model species Arabidopsis thaliana. This developmental switch is controlled by multiple environmental signals such as day length (or photoperiod), and it is accompanied by changes in expression of hundreds of genes. A major interest in plant biology is to identify and characterize those genes which are regulated in the stem cells of the SAM in response to the photoperiodic signals. In this sense, techniques such as RNA in situ hybridization (RNA ISH) have been very successfully employed to detect the temporal and spatial expression patterns of genes in the SAM. This method can be specifically optimized for photoperiodic-flowering studies. In this chapter, we describe improved methods to generate plant material and histological samples to be combined with RNA ISH in flowering-related studies.

  3. Mechanically, the Shoot Apical Meristem of Arabidopsis Behaves like a Shell Inflated by a Pressure of About 1 MPa

    PubMed Central

    Beauzamy, Léna; Louveaux, Marion; Hamant, Olivier; Boudaoud, Arezki

    2015-01-01

    In plants, the shoot apical meristem contains the stem cells and is responsible for the generation of all aerial organs. Mechanistically, organogenesis is associated with an auxin-dependent local softening of the epidermis. This has been proposed to be sufficient to trigger outgrowth, because the epidermis is thought to be under tension and stiffer than internal tissues in all the aerial part of the plant. However, this has not been directly demonstrated in the shoot apical meristem. Here we tested this hypothesis in Arabidopsis using indentation methods and modeling. We considered two possible scenarios: either the epidermis does not have unique properties and the meristem behaves as a homogeneous linearly-elastic tissue, or the epidermis is under tension and the meristem exhibits the response of a shell under pressure. Large indentation depths measurements with a large tip (~size of the meristem) were consistent with a shell-like behavior. This also allowed us to deduce a value of turgor pressure, estimated at 0.82±0.16 MPa. Indentation with atomic force microscopy provided local measurements of pressure in the epidermis, further confirming the range of values obtained from large deformations. Altogether, our data demonstrate that the Arabidopsis shoot apical meristem behaves like a shell under a MPa range pressure and support a key role for the epidermis in shaping the shoot apex. PMID:26635855

  4. The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At...

  5. Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana.

    PubMed

    Cole, Melanie; Nolte, Carolin; Werr, Wolfgang

    2006-01-01

    The gene SHOOT MERISTEMLESS (STM) is required for the initiation and the maintenance of the shoot apical meristem (SAM) in Arabidopsis and encodes a MEINOX/three amino acid loop extension (TALE)-HD-type transcription factor. Translational fusions with the green fluorescent protein showed that STM is not nuclear by default. In a yeast two-hybrid screen performed with a meristem-enriched cDNA library, three interacting BLH (Bel1-like homeodomain) transcription factors were identified. According to bimolecular fluorescence complementation, STM is targeted into the nuclear compartment through heterodimerization with BLH partner proteins, which are expressed in distinct SAM domains from the center to the periphery. On a functional level, overexpression experiments in transgenic Arabidopsis plants suggest that individual heterodimers provide distinct contributions. These results contribute to our understanding of the STM transcription factor function in the SAM and also shed new light on the evolution of the TALE-HD super gene family in animal and plant lineages.

  6. Kip-related protein 3 is required for control of endoreduplication in the shoot apical meristem and leaves of Arabidopsis.

    PubMed

    Jun, Sang Eun; Okushima, Yoko; Nam, Jaesung; Umeda, Masaaki; Kim, Gyung-Tae

    2013-01-01

    The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.

  7. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion.

    PubMed

    Seguí-Simarro, José M; Coronado, María José; Staehelin, L Andrew

    2008-11-01

    Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells.

  8. The Mitochondrial Cycle of Arabidopsis Shoot Apical Meristem and Leaf Primordium Meristematic Cells Is Defined by a Perinuclear Tentaculate/Cage-Like Mitochondrion1[W][OA

    PubMed Central

    Seguí-Simarro, José M.; Coronado, María José; Staehelin, L. Andrew

    2008-01-01

    Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells. PMID:18799659

  9. Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization

    PubMed Central

    Adibi, Milad; Yoshida, Saiko; Weijers, Dolf; Fleck, Christian

    2016-01-01

    Plants have the ability to continously generate new organs by maintaining populations of stem cells throught their lives. The shoot apical meristem (SAM) provides a stable environment for the maintenance of stem cells. All cells inside the SAM divide, yet boundaries and patterns are maintained. Experimental evidence indicates that patterning is independent of cell lineage, thus a dynamic self-regulatory mechanism is required. A pivotal role in the organization of the SAM is played by the WUSCHEL gene (WUS). An important question in this regard is that how WUS expression is positioned in the SAM via a cell-lineage independent signaling mechanism. In this study we demonstrate via mathematical modeling that a combination of an inhibitor of the Cytokinin (CK) receptor, Arabidopsis histidine kinase 4 (AHK4) and two morphogens originating from the top cell layer, can plausibly account for the cell lineage-independent centering of WUS expression within SAM. Furthermore, our laser ablation and microsurgical experiments support the hypothesis that patterning in SAM occurs at the level of CK reception and signaling. The model suggests that the interplay between CK signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression, and provides directions for further experimental investigation. PMID:26872130

  10. XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions.

    PubMed

    Pérez-Ruiz, Rigoberto V; García-Ponce, Berenice; Marsch-Martínez, Nayelli; Ugartechea-Chirino, Yamel; Villajuana-Bonequi, Mitzi; de Folter, Stefan; Azpeitia, Eugenio; Dávila-Velderrain, José; Cruz-Sánchez, David; Garay-Arroyo, Adriana; Sánchez, María de la Paz; Estévez-Palmas, Juan M; Álvarez-Buylla, Elena R

    2015-05-01

    In Arabidopsis thaliana, multiple genes involved in shoot apical meristem (SAM) transitions have been characterized, but the mechanisms required for the dynamic attainment of vegetative, inflorescence, and floral meristem (VM, IM, FM) cell fates during SAM transitions are not well understood. Here we show that a MADS-box gene, XAANTAL2 (XAL2/AGL14), is necessary and sufficient to induce flowering, and its regulation is important in FM maintenance and determinacy. xal2 mutants are late flowering, particularly under short-day (SD) condition, while XAL2 overexpressing plants are early flowering, but their flowers have vegetative traits. Interestingly, inflorescences of the latter plants have higher expression levels of LFY, AP1, and TFL1 than wild-type plants. In addition we found that XAL2 is able to bind the TFL1 regulatory regions. On the other hand, the basipetal carpels of the 35S::XAL2 lines lose determinacy and maintain high levels of WUS expression under SD condition. To provide a mechanistic explanation for the complex roles of XAL2 in SAM transitions and the apparently paradoxical phenotypes of XAL2 and other MADS-box (SOC1, AGL24) overexpressors, we conducted dynamic gene regulatory network (GRN) and epigenetic landscape modeling. We uncovered a GRN module that underlies VM, IM, and FM gene configurations and transition patterns in wild-type plants as well as loss and gain of function lines characterized here and previously. Our approach thus provides a novel mechanistic framework for understanding the complex basis of SAM development.

  11. Ontogeny of the maize shoot apical meristem.

    PubMed

    Takacs, Elizabeth M; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J; Schnable, Patrick S; Timmermans, Marja C P; Sun, Qi; Nettleton, Dan; Scanlon, Michael J

    2012-08-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize.

  12. Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α, contribute to maintenance of the shoot apical meristem under long-day photoperiod.

    PubMed

    Knuesting, Johannes; Riondet, Christophe; Maria, Carlos; Kruse, Inga; Bécuwe, Noëlle; König, Nicolas; Berndt, Carsten; Tourrette, Sébastien; Guilleminot-Montoya, Jocelyne; Herrero, Enrique; Gaymard, Frédéric; Balk, Janneke; Belli, Gemma; Scheibe, Renate; Reichheld, Jean-Philippe; Rouhier, Nicolas; Rey, Pascal

    2015-04-01

    Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker's yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function.

  13. Genetic and phenotypic analysis of shoot apical and floral meristem development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shoot apical and floral meristems (SAM and FM, respectively) of Arabidopsis thaliana contain reservoirs of self-renewing stem cells that function as sources of progenitor cells for organ formation during development. The primary SAM produces all of the aerial structures of the adult plant, where...

  14. Arabidopsis Glutaredoxin S17 and Its Partner, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α, Contribute to Maintenance of the Shoot Apical Meristem under Long-Day Photoperiod1

    PubMed Central

    Knuesting, Johannes; Riondet, Christophe; Kruse, Inga; Bécuwe, Noëlle; König, Nicolas; Berndt, Carsten; Tourrette, Sébastien; Guilleminot-Montoya, Jocelyne; Herrero, Enrique; Gaymard, Frédéric; Balk, Janneke; Belli, Gemma; Reichheld, Jean-Philippe; Rouhier, Nicolas; Rey, Pascal

    2015-01-01

    Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker’s yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function. PMID:25699589

  15. Giant Shoot Apical Meristems in Cacti Have Ordinary Leaf Primordia but Altered Phyllotaxy and Shoot Diameter

    PubMed Central

    MAUSETH, JAMES D.

    2004-01-01

    • Background and Aims Shoot apical meristems (SAMs) in most seed plants are quite uniform in size and zonation, and molecular genetic studies of Arabidopsis and other model plants are revealing details of SAM morphogenesis. Some cacti have SAMs much larger than those of A. thaliana and other seed plants. This study examined how SAM size affects leaf primordium (LP) size, phyllotaxy and shoot diameter. • Methods. Apices from 183 species of cacti were fixed, microtomed and studied by light microscopy. • Key Results Cactus SAM diameter varies from 93 to 2565 µm, the latter being 36 times wider than SAMs of A. thaliana and having a volume 45 thousand times larger. Phyllotaxy ranges from distichous to having 56 rows of leaves and is not restricted to Fibonacci numbers. Leaf primordium diameter ranges from 44 to 402 µm, each encompassing many more cells than do LP of other plants. Species with high phyllotaxy have smaller LP, although the correlation is weak. There is almost no correlation between SAM diameter and LP size, but SAM diameter is strongly correlated with shoot diameter, with shoots being about 189·5 times wider than SAMs. • Conclusions Presumably, genes such as SHOOT‐MERISTEMLESS, WUSCHEL and CLAVATA must control much larger volumes of SAM tissue in cacti than they do in A. thaliana, and genes such as PERIANTHIA might establish much more extensive fields of inhibition around LP. These giant SAMs should make it possible to more accurately map gene expression patterns relative to SAM zonation and LP sites. PMID:15145794

  16. Morphogenesis in Plants: Modeling the Shoot Apical Meristem, and Possible Applications

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric; Gor, Victoria; Meyerowitz, Elliot; Mann, Tobias

    1998-01-01

    A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem. We also discuss a space-engineering motivation for studying and controlling the morphogenesis of plants using such computational models.

  17. Chapter Four - Shoot apical meristem form and function. In:

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shoot apical meristem (SAM) generates above-ground aerial organs throughout the lifespan of higher plants. In order to fulfill this function, the meristem must maintain a balance between the self-renewal of a reservoir of central stem cells and organ initiation from peripheral cells. The activit...

  18. Ontogeny of the Maize Shoot Apical Meristem[W][OA

    PubMed Central

    Takacs, Elizabeth M.; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J.; Schnable, Patrick S.; Timmermans, Marja C.P.; Sun, Qi; Nettleton, Dan; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize. PMID:22911570

  19. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene.

    PubMed

    Ruonala, Raili; Rinne, Päivi L H; Baghour, Mourad; Moritz, Thomas; Tuominen, Hannele; Kangasjärvi, Jaakko

    2006-05-01

    In many trees, a short photoperiod (SD) triggers substantial physiological adjustments necessary for over-wintering. We have used transgenic ethylene-insensitive birches (Betula pendula), which express the Arabidopsis ethylene receptor gene ETR1 carrying the dominant mutation etr1-1, to investigate the role of ethylene in SD-induced responses in the shoot apical meristem (SAM). Under SD, the ethylene-insensitive trees ceased elongation growth comparably to the wild-type. In contrast, the formation of terminal buds, which in trees is typically induced by SD, was abolished. However, although delayed, endo-dormancy did eventually develop in the ethylene-insensitive trees. This, together with the rapid resumption of growth in the ethylene-insensitive trees after transfer from non-permissive to permissive conditions suggests that ethylene facilitates the SD-induced terminal bud formation, as well as growth arrest. In addition, apical buds of the ethylene-insensitive birch did not accumulate abscisic acid (ABA) under SD, suggesting interaction between ethylene and ABA signalling in the bud. Alterations in SAM functioning were further exemplified by reduced apical dominance and early flowering in ethylene-insensitive birches. Gene expression analysis of shoot apices revealed that the ethylene-insensitive birch lacked the marked increase in expression of a beta-xylosidase gene typical to the SD-exposed wild-type. The ethylene-dependent beta-xylosidase gene expression is hypothesized to relate to modification of cell walls in terminal buds during SD-induced growth cessation. Our results suggest that ethylene is involved in terminal bud formation and in the timely suppression of SAM activity, not only in the shoot apex, but also in axillary and reproductive meristems.

  20. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.).

    PubMed

    Ding, Lian; Yan, Shuangshuang; Jiang, Li; Liu, Meiling; Zhang, Juan; Zhao, Jianyu; Zhao, Wensheng; Han, Ying-Yan; Wang, Qian; Zhang, Xiaolan

    2015-12-01

    The shoot apical meristem (SAM) is essential for continuous organogenesis in higher plants, while the leaf is the primary source organ and the leaf shape directly affects the efficiency of photosynthesis. HANABA TARANU (HAN) encodes a GATA3-type transcription factor that functions in floral organ development, SAM organization, and embryo development in Arabidopsis, but is involved in suppressing bract outgrowth and promoting branching in grass species. Here the function of the HAN homologue CsHAN1 was characterized in cucumber, an important vegetable with great agricultural and economic value. CsHAN1 is predominantly expressed at the junction of the SAM and the stem, and can partially rescue the han-2 floral organ phenotype in Arabidopsis. Overexpression and RNAi of CsHAN1 transgenic cucumber resulted in retarded growth early after embryogenesis and produced highly lobed leaves. Further, it was found that CsHAN1 may regulate SAM development through regulating the WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) pathways, and mediate leaf development through a complicated gene regulatory network in cucumber.

  1. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling.

    PubMed

    Murray, James A H; Jones, Angharad; Godin, Christophe; Traas, Jan

    2012-10-01

    The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. This review covers our current understanding of organ initiation by the SAM in Arabidopsis thaliana. Meristem function and maintenance involves two major hormones, cytokinins and auxins. Cytokinins appear to play a major role in meristem maintenance and in controlling meristematic properties, such as cell proliferation. Self-organizing transport processes, which are still only partially understood, lead to the patterned accumulation of auxin at particular positions, where organs will grow out. A major downstream target of auxin-mediated growth regulation is the cell wall, which is a determinant for both growth rates and growth distribution, but feedbacks with metabolism and the synthetic capacity of the cytoplasm are crucial as well. Recent work has also pointed at a potential role of mechanical signals in growth coordination, but the precise mechanisms at work remain to be elucidated.

  2. The Mobile bypass Signal Arrests Shoot Growth by Disrupting Shoot Apical Meristem Maintenance, Cytokinin Signaling, and WUS Transcription Factor Expression1[OPEN

    PubMed Central

    Parrott, David L.; Adhikari, Emma; Fraser, Nisa

    2016-01-01

    The bypass1 (bps1) mutant of Arabidopsis (Arabidopsis thaliana) produces a root-sourced compound (the bps signal) that moves to the shoot and is sufficient to arrest growth of a wild-type shoot; however, the mechanism of growth arrest is not understood. Here, we show that the earliest shoot defect arises during germination and is a failure of bps1 mutants to maintain their shoot apical meristem (SAM). This finding suggested that the bps signal might affect expression or function of SAM regulatory genes, and we found WUSCHEL (WUS) expression to be repressed in bps1 mutants. Repression appears to arise from the mobile bps signal, as the bps1 root was sufficient to rapidly down-regulate WUS expression in wild-type shoots. Normally, WUS is regulated by a balance between positive regulation by cytokinin (CK) and negative regulation by CLAVATA (CLV). In bps1, repression of WUS was independent of CLV, and, instead, the bps signal down-regulates CK responses. Cytokinin treatment of bps1 mutants restored both WUS expression and activity, but only in the rib meristem. How the bps signal down-regulates CK remains unknown, though the bps signal was sufficient to repress expression of one CK receptor (AHK4) and one response regulator (AHP6). Together, these data suggest that the bps signal pathway has the potential for long-distance regulation through modification of CK signaling and altering gene expression. PMID:27208247

  3. Modeling the Morphometric Evolution of the Maize Shoot Apical Meristem

    PubMed Central

    Leiboff, Samuel; DeAllie, Christopher K.; Scanlon, Michael J.

    2016-01-01

    The maize (Zea mays subsp. mays L.) shoot apical meristem (SAM) is a self-replenishing pool of stem cells that produces all above-ground plant tissues. Improvements in image acquisition and processing techniques have allowed high-throughput, quantitative genetic analyses of SAM morphology. As with other large-scale phenotyping efforts, meaningful descriptions of genetic architecture depend on the collection of relevant measures. In this study, we tested two quantitative image processing methods to describe SAM morphology within the genus Zea, represented by 33 wild relatives of maize and 841 lines from a domesticated maize by wild teosinte progenitor (MxT) backcross population, along with previously reported data from several hundred diverse maize inbred lines. Approximating the MxT SAM as a paraboloid derived eight parabolic estimators of SAM morphology that identified highly overlapping quantitative trait loci (QTL) on eight chromosomes, which implicated previously identified SAM morphology candidate genes along with new QTL for SAM morphological variation. Using a Fourier-transform related method of comprehensive shape analysis, we detected cryptic SAM shape variation that identified QTL on six chromosomes. We found that Fourier transform shape descriptors and parabolic estimation measures are highly correlated and identified similar QTL. Analysis of shoot apex contours from 73 anciently diverged plant taxa further suggested that parabolic shape may be a universal feature of plant SAMs, regardless of evolutionary clade. Future high-throughput examinations of SAM morphology may benefit from the ease of acquisition and phenotypic fidelity of modeling the SAM as a paraboloid. PMID:27867389

  4. The control of apical dominance: localization of the growth region of the Pharbitis nil shoot

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1986-01-01

    The growing region of the upright Pharbitis nil shoot extends over a distance 13 cm basipetal to the shoot apex. When the shoot is inverted, ethylene production in this region is greatly enhanced whereas stem elongation is significantly inhibited. This growth region is ethylene-sensitive and the restriction of its growth by shoot inversion-induced ethylene may mediate the release of apical dominance.

  5. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices

    PubMed Central

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Sawchuk, Megan G.; Scarpella, Enrico; Ljung, Karin

    2016-01-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. PMID:27119525

  6. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    PubMed

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.

  7. The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process.

    PubMed

    Wong, Chui E; Singh, Mohan B; Bhalla, Prem L

    2013-01-01

    Flowering process governs seed set and thus affects agricultural productivity. Soybean, a major legume crop, requires short-day photoperiod conditions for flowering. While leaf-derived signal(s) are essential for the photoperiod-induced floral initiation process at the shoot apical meristem, molecular events associated with early floral transition stages in either leaves or shoot apical meristems are not well understood. To provide novel insights into the molecular basis of floral initiation, RNA-Seq was used to characterize the soybean transcriptome of leaf and micro-dissected shoot apical meristem at different time points after short-day treatment. Shoot apical meristem expressed a higher number of transcripts in comparison to that of leaf highlighting greater diversity and abundance of transcripts expressed in the shoot apical meristem. A total of 2951 shoot apical meristem and 13,609 leaf sequences with significant profile changes during the time course examined were identified. Most changes in mRNA level occurred after 1short-day treatment. Transcripts involved in mediating responses to stimulus including hormones or in various metabolic processes represent the top enriched GO functional category for the SAM and leaf dataset, respectively. Transcripts associated with protein degradation were also significantly changing in leaf and SAM implicating their involvement in triggering the developmental switch. RNA-Seq analysis of shoot apical meristem and leaf from soybean undergoing floral transition reveal major reprogramming events in leaves and the SAM that point toward hormones gibberellins (GA) and cytokinin as key regulators in the production of systemic flowering signal(s) in leaves. These hormones may form part of the systemic signals in addition to the established florigen, FLOWERING LOCUS T (FT). Further, evidence is emerging that the conversion of shoot apical meristem to inflorescence meristem is linked with the interplay of auxin, cytokinin and GA

  8. Gene expression in arabidopsis shoot tips after liquid nitrogen exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arabidopsis thaliana shoot tips can be successfully cryopreserved using either Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3) as the cryoprotectant. We used this model system to identify suites of genes that were either upregulated or downregulated as shoot tips recov...

  9. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  10. Shoot inversion-induced ethylene in Pharbitis nil induces the release of apical dominance by restricting shoot elongation

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Shoot inversion induces outgrowth of the highest lateral bud (HLB) adjacent to the bend in the stem in Pharbitis nil. In order to determine whether or not ethylene produced by shoot inversion plays a direct role in promoting or inhibiting bud outgrowth, comparisons were made of endogenous levels of ethylene in the HLB and HLB node of plants with and without inverted shoots. That no changes were found suggests that the control of apical dominance does not involve the direction action of ethylene. This conclusion is further supported by evidence that the direct application of ethylene inhibitors or ethrel to inactive or induced lateral buds has no significant effect on bud outgrowth. The hypothesis that ethylene evolved during shoot inversion indirectly promotes the outgrowth of the highest lateral bud (HLB) in restricting terminal bud (TB) growth is found to be supported by the following observations: (1) the restriction of TB growth appears to occur before the beginning of HLB outgrowth; (2) the treatment of the inverted portion of the shoot with AgNO3, an inhibitor of ethylene action, dramatically eliminates both the restriction of TB growth and the promotion of HLB outgrowth which usually accompany shoot inversion; and (3) the treatment of the upper shoot of an upright plant with ethrel mimics shoot inversion by retarding upper shoot growth and inducing outgrowth of the lateral bud basipetal to the treated region.

  11. Comparative evaluation of total RNA extraction methods in Theobroma cacao using shoot apical meristems.

    PubMed

    Silva, D V; Branco, S M J; Holanda, I S A; Royaert, S; Motamayor, J C; Marelli, J P; Corrêa, R X

    2016-03-04

    Theobroma cacao is a species of great economic importance with its beans used for chocolate production. The tree has been a target of various molecular studies. It contains many polyphenols, which complicate the extraction of nucleic acids with the extraction protocols requiring a large amount of plant material. These issues, therefore, necessitate the optimization of the protocols. The aim of the present study was to evaluate different methods for extraction of total RNA from shoot apical meristems of T. cacao 'CCN 51' and to assess the influence of storage conditions for the meristems on the extraction. The study also aimed to identify the most efficient protocol for RNA extraction using a small amount of plant material. Four different protocols were evaluated for RNA extraction using one shoot apical meristem per sample. Among these protocols, one that was more efficient was then tested to extract RNA using four different numbers of shoot apical meristems, subjected to three different storage conditions. The best protocol was tested for cDNA amplification using reverse transcription-polymerase chain reaction; the cDNA quality was determined to be satisfactory for molecular analyses. The study revealed that with the best RNA extraction protocol, one shoot apical meristem was sufficient for extraction of high-quality total RNA. The results obtained might enable advances in genetic analyses and molecular studies using reduced amount of plant material.

  12. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies).

    PubMed

    Larsson, Emma; Sitbon, Folke; von Arnold, Sara

    2012-06-01

    Establishment of the shoot apical meristem (SAM) in Arabidopsis embryos requires the KNOXI transcription factor SHOOT MERISTEMLESS. In Norway spruce (Picea abies), four KNOXI family members (HBK1, HBK2, HBK3 and HBK4) have been identified, but a corresponding role in SAM development has not been demonstrated. As a first step to differentiate between the functions of the four Norway spruce HBK genes, we have here analyzed their expression profiles during the process of somatic embryo development. This was made both under normal embryo development and under conditions of reduced SAM formation by treatment with the polar auxin transport inhibitor NPA. Concomitantly with the formation of an embryonic SAM, the HBK2 and HBK4 genes displayed a significant up-regulation that was delayed by NPA treatment. In contrast, HBK1 and HBK3 were up-regulated prior to SAM formation, and their temporal expression was not affected by NPA. Ectopic expression of the four HBK genes in transgenic Arabidopsis plants further supported similar functions of HBK2 and HBK4, distinct from those of HBK1 and HBK3. Together, the results suggest that HBK2 and HBK4 exert similar functions related to the SAM differentiation and somatic embryo development in Norway spruce, while HBK1 and HBK3 have more general functions during embryo development.

  13. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply.

    PubMed

    de Jong, Maaike; George, Gilu; Ongaro, Veronica; Williamson, Lisa; Willetts, Barbara; Ljung, Karin; McCulloch, Hayley; Leyser, Ottoline

    2014-09-01

    The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting.

  14. Ultrastructural changes in shoot apical meristem of canola (Brassica napus cv. Symbol) treated with sodium chloride.

    PubMed

    Mahmoodzadeh, Homa

    2008-04-15

    In the present research, structure and ultrastructure of shoot apical meristem of canola (Brassica napus cv. Symbol) under salinity conditions were investigated. The experiments were conducted in five groups (0, 3, 6, 9, 12 dS m(-1)) under greenhouse conditions. Sampling of apical meristem and TEM tissue preparation procedure were carried out. Semithin and ultrathin sections were prepared and viewed in light and electron microscopy, respectively. The results included reduction of meristem size, disorders in meristem structure. Also formation of autophagic vacuoles was observed that is probably one of the plant responses to salt stress for more water storage in these vacuoles and decreasing of cell water requirements.

  15. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems

    PubMed Central

    Landrein, Benoît; Kiss, Annamaria; Sassi, Massimiliano; Chauvet, Aurélie; Das, Pradeep; Cortizo, Millan; Laufs, Patrick; Takeda, Seiji; Aida, Mitsuhiro; Traas, Jan; Vernoux, Teva; Boudaoud, Arezki; Hamant, Olivier

    2015-01-01

    The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem. DOI: http://dx.doi.org/10.7554/eLife.07811.001 PMID:26623515

  16. Using Arabidopsis to study shoot branching in biomass willow.

    PubMed

    Ward, Sally P; Salmon, Jemma; Hanley, Steven J; Karp, Angela; Leyser, Ottoline

    2013-06-01

    The success of the short-rotation coppice system in biomass willow (Salix spp.) relies on the activity of the shoot-producing meristems found on the coppice stool. However, the regulation of the activity of these meristems is poorly understood. In contrast, our knowledge of the mechanisms behind axillary meristem regulation in Arabidopsis (Arabidopsis thaliana) has grown rapidly in the past few years through the exploitation of integrated physiological, genetic, and molecular assays. Here, we demonstrate that these assays can be directly transferred to study the control of bud activation in biomass willow and to assess similarities with the known hormone regulatory system in Arabidopsis. Bud hormone response was found to be qualitatively remarkably similar in Salix spp. and Arabidopsis. These similarities led us to test whether Arabidopsis hormone mutants could be used to assess allelic variation in the cognate Salix spp. hormone genes. Allelic differences in Salix spp. strigolactone genes were observed using this approach. These results demonstrate that both knowledge and assays from Arabidopsis axillary meristem biology can be successfully applied to Salix spp. and can increase our understanding of a fundamental aspect of short-rotation coppice biomass production, allowing more targeted breeding.

  17. Differentiating Arabidopsis Shoots from Leaves by Combined YABBY Activities[W][OA

    PubMed Central

    Sarojam, Rajani; Sappl, Pia G.; Goldshmidt, Alexander; Efroni, Idan; Floyd, Sandra K.; Eshed, Yuval; Bowman, John L.

    2010-01-01

    In seed plants, leaves are born on radial shoots, but unlike shoots, they are determinate dorsiventral organs made of flat lamina. YABBY genes are found only in seed plants and in all cases studied are expressed primarily in lateral organs and in a polar manner. Despite their simple expression, Arabidopsis thaliana plants lacking all YABBY gene activities have a wide range of morphological defects in all lateral organs as well as the shoot apical meristem (SAM). Here, we show that leaves lacking all YABBY activities are initiated as dorsiventral appendages but fail to properly activate lamina programs. In particular, the activation of most CINCINNATA-class TCP genes does not commence, SAM-specific programs are reactivated, and a marginal leaf domain is not established. Altered distribution of auxin signaling and the auxin efflux carrier PIN1, highly reduced venation, initiation of multiple cotyledons, and gradual loss of the SAM accompany these defects. We suggest that YABBY functions were recruited to mold modified shoot systems into flat plant appendages by translating organ polarity into lamina-specific programs that include marginal auxin flow and activation of a maturation schedule directing determinate growth. PMID:20628155

  18. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis.

    PubMed

    Wang, Yaping; Elhiti, Mohamed; Hebelstrup, Kim H; Hill, Robert D; Stasolla, Claudio

    2011-10-01

    Over the past few years non-symbiotic plant hemoglobins have been described in a variety of plant species where they fulfill several functions ranging from detoxification processes to basic aspects of plant growth and post-embryonic development. To date no information is available on the role of hemoglobins during in vitro morphogenesis. Shoot organogenesis was induced in Arabidopsis lines constitutively expressing class 1, 2 and 3 hemoglobins (GLB1, 2 and 3) and lines in which the respective genes were either downregulated by RNAi (GLB1) or knocked out (GLB2 and GLB3). The process was executed by culturing root explants on an initial auxin-rich callus induction medium (CIM) followed by a transfer onto a cytokinin-containing shoot induction medium (SIM). While the repression of GLB2 inhibited organogenesis the over-expression of GLB1 or GLB2 enhanced the number of shoots produced in culture, and altered the transcript levels of genes participating in cytokinin perception and signalling. The up-regulation of GLB1 or GLB2 activated CKI1 and AHK3, genes encoding cytokinin receptors and affected the transcript levels of cytokinin responsive regulators (ARRs). The expression of Type-A ARRs (ARR4, 5, 7, 15, and 16), feed-back repressors of the cytokinin pathway, was repressed in both hemoglobin over-expressors whereas that of several Type-B ARRs (ARR2, 12, and 13), transcription activators of cytokinin-responsive genes, was induced. Such changes enhanced the sensitivity of the root explants to cytokinin allowing the 35S::GLB1 and 35S::GLB2 lines to produce shoots at low cytokinin concentrations which did not promote organogenesis in the WT line. These results show that manipulation of hemoglobin can modify shoot organogenesis in Arabidopsis and possibly in those systems partially or completely unresponsive to applications of exogenous cytokinins.

  19. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis

    PubMed Central

    Schwarz, Stefan; Grande, Arne V.; Bujdoso, Nora; Saedler, Heinz

    2008-01-01

    Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral transition in dependence of miR156 and, accordingly, transgenics constitutively over-expressing this microRNA are delayed in flowering. To elaborate their roles in Arabidopsis shoot development, we analysed two of the 11 miR156 regulated Arabidopsis SBP-box genes, i.e. the likely paralogous genes SPL9 and SPL15. Single and double mutant phenotype analysis showed these genes to act redundantly in controlling the juvenile-to-adult phase transition. In addition, their loss-of-function results in a shortened plastochron during vegetative growth, altered inflorescence architecture and enhanced branching. In these aspects, the double mutant partly phenocopies constitutive MIR156b over-expressing transgenic plants and thus a major contribution to the phenotype of these transgenics as a result of the repression of SPL9 and SPL15 is strongly suggested. Electronic supplementary material The online version of this article (doi:10.1007/s11103-008-9310-z) contains supplementary material, which is available to authorized users. PMID:18278578

  20. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem

    PubMed Central

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-01-01

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. DOI: http://dx.doi.org/10.7554/eLife.17023.001 PMID:27400267

  1. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome p450.

    PubMed

    Yang, Weibing; Gao, Mingjun; Yin, Xin; Liu, Jiyun; Xu, Yonghan; Zeng, Longjun; Li, Qun; Zhang, Shubiao; Wang, Junmin; Zhang, Xiaoming; He, Zuhua

    2013-11-01

    Angiosperm seeds usually consist of two major parts: the embryo and the endosperm. However, the molecular mechanism(s) underlying embryo and endosperm development remains largely unknown, particularly in rice, the model cereal. Here, we report the identification and functional characterization of the rice GIANT EMBRYO (GE) gene. Mutation of GE resulted in a large embryo in the seed, which was caused by excessive expansion of scutellum cells. Post-embryonic growth of ge seedling was severely inhibited due to defective shoot apical meristem (SAM) maintenance. Map-based cloning revealed that GE encodes a CYP78A subfamily P450 monooxygenase that is localized to the endoplasmic reticulum. GE is expressed predominantly in the scutellar epithelium, the interface region between embryo and endosperm. Overexpression of GE promoted cell proliferation and enhanced rice plant growth and grain yield, but reduced embryo size, suggesting that GE is critical for coordinating rice embryo and endosperm development. Moreover, transgenic Arabidopsis plants overexpressing AtCYP78A10, a GE homolog, also produced bigger seeds, implying a conserved role for the CYP78A subfamily of P450s in regulating seed development. Taken together, our results indicate that GE plays critical roles in regulating embryo development and SAM maintenance.

  2. Auxin and Strigolactone Signaling Are Required for Modulation of Arabidopsis Shoot Branching by Nitrogen Supply1[W][OPEN

    PubMed Central

    de Jong, Maaike; George, Gilu; Ongaro, Veronica; Williamson, Lisa; Willetts, Barbara; Ljung, Karin; McCulloch, Hayley; Leyser, Ottoline

    2014-01-01

    The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting. PMID:25059707

  3. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development.

    PubMed

    Singh, Vikash K; Jain, Mukesh

    2014-12-01

    Flower development is one of the major developmental processes that governs seed setting in angiosperms. However, little is known about the molecular mechanisms underlying flower development in legumes. Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identified differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related to various biological processes and molecular functions during flower development. Here, we provide details of experimental methods, RNA-seq data (available at Gene Expression Omnibus database under GSE42679) and analysis pipeline published by Singh and colleagues in the Plant Biotechnology Journal (Singh et al., 2013), along with additional analysis for discovery of genes involved in shoot apical meristem (SAM) development. Our data provide a resource for exploring the complex molecular mechanisms underlying SAM and flower development and identification of gene targets for functional and applied genomics in legumes.

  4. Argonautes compete for miR165/166 to regulate shoot apical meristem development

    PubMed Central

    Zhang, Zhonghui; Zhang, Xiuren

    2012-01-01

    Summary Plant stem cells in the shoot apical meristem (SAM) possess the unique abilities of both self-renewal for SAM maintenance and providing undifferentiated daughter cells for initiation and subsequent development of aerial organs. The coordination between stem cell renewal and cell differentiation during organogenesis is regulated by elaborate genetic pathways involving numerous transcription factors and other molecules. In the past decade, microRNAs (miRNAs) have emerged as pivotal regulators in many biological processes including meristem homeostasis and differentiation in plants. In this review, we summarize current knowledge about the function and mechanism of a family of miRNAs (miR165/166), the miRNA-designated Argonautes (AGOs), and the miRNA-regulated targets in SAM development and maintenance. PMID:22727764

  5. Mechanisms that control knox gene expression in the Arabidopsis shoot.

    PubMed

    Ori, N; Eshed, Y; Chuck, G; Bowman, J L; Hake, S

    2000-12-01

    Knotted1-like homeobox (knox) genes are expressed in specific patterns within shoot meristems and play an important role in meristem maintenance. Misexpression of the knox genes, KNAT1 or KNAT2, in Arabidopsis produces a variety of phenotypes, including lobed leaves and ectopic stipules and meristems in the sinus, the region between lobes. We sought to determine the mechanisms that control knox gene expression in the shoot by examining recessive mutants that share phenotypic characteristics with 35S::KNAT1 plants. Double mutants of serrate (se) with either asymmetric1 (as1) or asymmetric2 (as2) showed lobed leaves, ectopic stipules in the sinuses and defects in the timely elongation of sepals, petals and stamens, similar to 35S::KNAT1 plants. Ectopic stipules and in rare cases, ectopic meristems, were detected in the sinuses on plants that were mutant for pickle and either as1 or as2. KNAT1 and KNAT2 were misexpressed in the leaves and flowers of single as1 and as2 mutants and in the sinuses of leaves of the different double mutants, but not in se or pickle single mutants. These results suggest that AS1 and AS2 promote leaf differentiation through repression of knox expression in leaves, and that SE and PKL globally restrict the competence to respond to genes that promote morphogenesis.

  6. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice.

    PubMed

    Chu, Huangwei; Qian, Qian; Liang, Wanqi; Yin, Changsong; Tan, Hexin; Yao, Xuan; Yuan, Zheng; Yang, Jun; Huang, Hai; Luo, Da; Ma, Hong; Zhang, Dabing

    2006-11-01

    To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely due to enlarged SAMs, fon4 mutants produced thick culms (stems) and increased numbers of both primary rachis branches and floral organs. We identified FON4 using a map-based cloning approach and found it encodes a small putatively secreted protein, which is the putative ortholog of the Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) gene. FON4 transcripts mainly accumulated in the small group of cells at the apex of the SAMs, whereas the rice ortholog of CLV1 (FON1) is expressed throughout the SAMs, suggesting that the putative FON4 ligand might be sequestered as a possible mechanism for rice meristem regulation. Exogenous application of the peptides FON4p and CLV3p corresponding to the CLV3/ESR-related (CLE) motifs of FON4 and CLV3, respectively, resulted in termination of SAMs in rice, and treatment with CLV3p caused consumption of both rice and Arabidopsis root meristems, suggesting that the CLV pathway in limiting meristem size is conserved in both rice and Arabidopsis. However, exogenous FON4p did not have an obvious effect on limiting both rice and Arabidopsis root meristems, suggesting that the CLE motifs of Arabidopsis CLV3 and FON4 are potentially functionally divergent.

  7. Invasion of shoot apical meristems by Chrysanthemum stunt viroid differs among Argyranthemum cultivars

    PubMed Central

    Zhang, Zhibo; Lee, YeonKyeong; Spetz, Carl; Clarke, Jihong Liu; Wang, Qiaochun; Blystad, Dag-Ragnar

    2014-01-01

    Chrysanthemum stunt viroid (CSVd) is a damaging pathogen attacking Argyranthemum plants. Our study attempted to reveal distribution patterns of CSVd in shoot apical meristems (SAM) and to explore reasons for differential ability of CSVd to invade SAM of selected Argyranthemum cultivars. Symptom development was also observed on greenhouse-grown Argyranthemum plants. Viroid localization using in situ hybridization revealed that the ability of CSVd to invade SAM differed among cultivars. In diseased ‘Yellow Empire’ and ‘Butterfly’, CSVd was found in all tissues including the uppermost cell layers in the apical dome (AD) and the youngest leaf primordia 1 and 2. In diseased ‘Border Dark Red’ and ‘Border Pink’, CSVd was detected in the lower part of the AD and elder leaf primordia, leaving the upper part of the AD, and leaf primordia 1 and 2 free of viroid. Histological observations and transmission electron microscopy showed similar developmental patterns of vascular tissues and plasmodesmata (PD) in the SAM of ‘Yellow Empire’ and ‘Border Dark Red’, while immunolocalization studies revealed a major difference in the number of callose (β-1, 3-glucan) particles deposited at PD in SAM. A lower number of callose particles were found deposited at PD of SAM of ‘Yellow Empire’ than ‘Border Dark Red’. This difference is most likely responsible for the differences in ability of CSVd to invade SAM among Argyranthemum cultivars. PMID:25763000

  8. Transcriptional, Posttranscriptional, and Posttranslational Regulation of SHOOT MERISTEMLESS Gene Expression in Arabidopsis Determines Gene Function in the Shoot Apex1[OPEN

    PubMed Central

    Aguilar-Martínez, José Antonio; Uchida, Naoyuki; Townsley, Brad; West, Donnelly Ann; Yanez, Andrea; Lynn, Nafeesa; Kimura, Seisuke

    2015-01-01

    The activity of SHOOT MERISTEMLESS (STM) is required for the functioning of the shoot apical meristem (SAM). STM is expressed in the SAM but is down-regulated at the site of leaf initiation. STM is also required for the formation of compound leaves. However, how the activity of STM is regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood. We previously found two conserved noncoding sequences in the promoters of STM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression of STM in leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrict STM expression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of the STM promoter identified a region required to repress the expression of STM in hypocotyls. Expression of STM in leaf primordia under the control of the JAGGED promoter produced plants with partially undifferentiated leaves. We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM. PMID:25524441

  9. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.)

    PubMed Central

    Ohtsu, Kazuhiro; Smith, Marianne B; Emrich, Scott J; Borsuk, Lisa A; Zhou, Ruilian; Chen, Tianle; Zhang, Xiaolan; Timmermans, Marja C P; Beck, Jon; Buckner, Brent; Janick-Buckner, Diane; Nettleton, Dan; Scanlon, Michael J; Schnable, Patrick S

    2007-01-01

    All above-ground plant organs are derived from shoot apical meristems (SAMs). Global analyses of gene expression were conducted on maize (Zea mays L.) SAMs to identify genes preferentially expressed in the SAM. The SAMs were collected from 14-day-old B73 seedlings via laser capture microdissection (LCM). The RNA samples extracted from LCM-collected SAMs and from seedlings were hybridized to microarrays spotted with 37 660 maize cDNAs. Approximately 30% (10 816) of these cDNAs were prepared as part of this study from manually dissected B73 maize apices. Over 5000 expressed sequence tags (ESTs) (about 13% of the total) were differentially expressed (P<0.0001) between SAMs and seedlings. Of these, 2783 and 2248 ESTs were up- and down-regulated in the SAM, respectively. The expression in the SAM of several of the differentially expressed ESTs was validated via quantitative RT-PCR and/or in situ hybridization. The up-regulated ESTs included many regulatory genes including transcription factors, chromatin remodeling factors and components of the gene-silencing machinery, as well as about 900 genes with unknown functions. Surprisingly, transcripts that hybridized to 62 retrotransposon-related cDNAs were also substantially up-regulated in the SAM. Complementary DNAs derived from the LCM-collected SAMs were sequenced to identify additional genes that are expressed in the SAM. This generated around 550 000 ESTs (454-SAM ESTs) from two genotypes. Consistent with the microarray results, approximately 14% of the 454-SAM ESTs from B73 were retrotransposon-related. Possible roles of genes that are preferentially expressed in the SAM are discussed. PMID:17764504

  10. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.).

    PubMed

    Ohtsu, Kazuhiro; Smith, Marianne B; Emrich, Scott J; Borsuk, Lisa A; Zhou, Ruilian; Chen, Tianle; Zhang, Xiaolan; Timmermans, Marja C P; Beck, Jon; Buckner, Brent; Janick-Buckner, Diane; Nettleton, Dan; Scanlon, Michael J; Schnable, Patrick S

    2007-11-01

    All above-ground plant organs are derived from shoot apical meristems (SAMs). Global analyses of gene expression were conducted on maize (Zea mays L.) SAMs to identify genes preferentially expressed in the SAM. The SAMs were collected from 14-day-old B73 seedlings via laser capture microdissection (LCM). The RNA samples extracted from LCM-collected SAMs and from seedlings were hybridized to microarrays spotted with 37 660 maize cDNAs. Approximately 30% (10 816) of these cDNAs were prepared as part of this study from manually dissected B73 maize apices. Over 5000 expressed sequence tags (ESTs) (about 13% of the total) were differentially expressed (P < 0.0001) between SAMs and seedlings. Of these, 2783 and 2248 ESTs were up- and down-regulated in the SAM, respectively. The expression in the SAM of several of the differentially expressed ESTs was validated via quantitative RT-PCR and/or in situ hybridization. The up-regulated ESTs included many regulatory genes including transcription factors, chromatin remodeling factors and components of the gene-silencing machinery, as well as about 900 genes with unknown functions. Surprisingly, transcripts that hybridized to 62 retrotransposon-related cDNAs were also substantially up-regulated in the SAM. Complementary DNAs derived from the LCM-collected SAMs were sequenced to identify additional genes that are expressed in the SAM. This generated around 550 000 ESTs (454-SAM ESTs) from two genotypes. Consistent with the microarray results, approximately 14% of the 454-SAM ESTs from B73 were retrotransposon-related. Possible roles of genes that are preferentially expressed in the SAM are discussed.

  11. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube

    PubMed Central

    Zhang, Meng; Zhang, Ruihui; Qu, Xiaolu; Huang, Shanjin

    2016-01-01

    The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here we showed that Arabidopsis fimbrin5 (FIM5) decorates filamentous structures throughout the entire tube but is apically concentrated. Apical actin structures are disorganized to different degrees in the pollen tubes of fim5 loss-of-function mutants. Further observations suggest that apical actin structures are not constructed properly because apical actin filaments cannot be maintained at the cortex of fim5 pollen tubes. Actin filaments appeared to be more curved in fim5 pollen tubes and this was confirmed by measurements showing that the convolutedness and the rate of change of convolutedness of actin filaments was significantly increased in fim5 pollen tubes. This suggests that the rigidity of the actin filaments may be compromised in fim5 pollen tubes. Further, the apical cell wall composition is altered, implying that tip-directed vesicle trafficking events are impaired in fim5 pollen tubes. Thus, we found that FIM5 decorates apical actin filaments and regulates their organization in order to drive polarized pollen tube growth. PMID:27117336

  12. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    PubMed Central

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  13. Studies of aberrant phyllotaxy1 Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem1[W][OA

    PubMed Central

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A.N.; Costa, Luciano da F.; Sakakibara, Hitoshi; Jackson, David

    2009-01-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants. PMID:19321707

  14. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem.

    PubMed

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A N; Costa, Luciano da F; Sakakibara, Hitoshi; Jackson, David

    2009-05-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.

  15. Genetic control of morphometric diversity in the maize shoot apical meristem

    PubMed Central

    Leiboff, Samuel; Li, Xianran; Hu, Heng-Cheng; Todt, Natalie; Yang, Jinliang; Li, Xiao; Yu, Xiaoqing; Muehlbauer, Gary J.; Timmermans, Marja C. P.; Yu, Jianming; Schnable, Patrick S.; Scanlon, Michael J.

    2015-01-01

    The maize shoot apical meristem (SAM) comprises a small pool of stem cells that generate all above-ground organs. Although mutational studies have identified genetic networks regulating SAM function, little is known about SAM morphological variation in natural populations. Here we report the use of high-throughput image processing to capture rich SAM size variation within a diverse maize inbred panel. We demonstrate correlations between seedling SAM size and agronomically important adult traits such as flowering time, stem size and leaf node number. Combining SAM phenotypes with 1.2 million single nucleotide polymorphisms (SNPs) via genome-wide association study reveals unexpected SAM morphology candidate genes. Analyses of candidate genes implicated in hormone transport, cell division and cell size confirm correlations between SAM morphology and trait-associated SNP alleles. Our data illustrate that the microscopic seedling SAM is predictive of adult phenotypes and that SAM morphometric variation is associated with genes not previously predicted to regulate SAM size. PMID:26584889

  16. Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem.

    PubMed

    Zhang, Xiaolan; Madi, Shahinez; Borsuk, Lisa; Nettleton, Dan; Elshire, Robert J; Buckner, Brent; Janick-Buckner, Diane; Beck, Jon; Timmermans, Marja; Schnable, Patrick S; Scanlon, Michael J

    2007-06-01

    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-microm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development.

  17. Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

    PubMed Central

    Zhang, Xiaolan; Madi, Shahinez; Borsuk, Lisa; Nettleton, Dan; Elshire, Robert J; Buckner, Brent; Janick-Buckner, Diane; Beck, Jon; Timmermans, Marja; Schnable, Patrick S; Scanlon, Michael J

    2007-01-01

    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-μm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development. PMID:17571927

  18. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis.

    PubMed

    Ghareeb, Hassan; Drechsler, Frank; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan

    2015-12-01

    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth.

  19. Transgenic plants from shoot apical meristems of Vitis vinifera L. "Thompson Seedless" via Agrobacterium-mediated transformation.

    PubMed

    Dutt, M; Li, Z T; Dhekney, S A; Gray, D J

    2007-12-01

    Shoot apical meristem explants of Vitis vinifera "Thompson Seedless" were used for Agrobacterium-mediated genetic transformation. It was determined that the meristems had to be subjected to a dark growth phase then wounded to obtain transgenic plants. Morphological and histological studies illustrated the role of wounding to expose apical meristem cells for transformation. A bifunctional egfp/nptII fusion gene was used to select kanamycin resistant plants that expressed green fluorescent protein (GFP). Kanamycin at a concentration of 16 mg L(-1) in selection medium resulted in recovery of non-chimeric transgenic plants that uniformly expressed GFP, whereas 8 mg L(-1) kanamycin allowed non-transgenic and/or chimeric plants to develop. Polymerase chain reaction (PCR) and Southern blot analyses confirmed the presence of transgenes and their stable integration into the genome of regenerated plants. Up to 1% of shoot tips produced stable transgenic cultures within 6 weeks of treatment, resulting in a total of 18 independent lines.

  20. Gene Expression patterns in cryogenically stored Arabidopsis thaliana shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genes expressed in response to cryostress in plant shoot tips are not known. In this project we compared the gene expression patterns in untreated, cryoprotectant-treated, and recovering shoot tips using differential display methods. This project identified two genes that appeared to be differ...

  1. WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[OPEN

    PubMed Central

    Ohnuma, Mariko; Kurata, Tetsuya; Nakata, Masaru; Ohme-Takagi, Masaru

    2017-01-01

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants. PMID:28011694

  2. Local auxin sources orient the apical-basal axis in Arabidopsis embryos.

    PubMed

    Robert, Hélène S; Grones, Peter; Stepanova, Anna N; Robles, Linda M; Lokerse, Annemarie S; Alonso, Jose M; Weijers, Dolf; Friml, Jiří

    2013-12-16

    Establishment of the embryonic axis foreshadows the main body axis of adults both in plants and in animals, but underlying mechanisms are considered distinct. Plants utilize directional, cell-to-cell transport of the growth hormone auxin to generate an asymmetric auxin response that specifies the embryonic apical-basal axis. The auxin flow directionality depends on the polarized subcellular localization of PIN-FORMED (PIN) auxin transporters. It remains unknown which mechanisms and spatial cues guide cell polarization and axis orientation in early embryos. Herein, we provide conceptually novel insights into the formation of embryonic axis in Arabidopsis by identifying a crucial role of localized tryptophan-dependent auxin biosynthesis. Local auxin production at the base of young embryos and the accompanying PIN7-mediated auxin flow toward the proembryo are required for the apical auxin response maximum and the specification of apical embryonic structures. Later in embryogenesis, the precisely timed onset of localized apical auxin biosynthesis mediates PIN1 polarization, basal auxin response maximum, and specification of the root pole. Thus, the tight spatiotemporal control of distinct local auxin sources provides a necessary, non-cell-autonomous trigger for the coordinated cell polarization and subsequent apical-basal axis orientation during embryogenesis and, presumably, also for other polarization events during postembryonic plant life.

  3. Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis.

    PubMed Central

    Lall, Sonia; Nettleton, Dan; DeCook, Rhonda; Che, Ping; Howell, Stephen H

    2004-01-01

    Arabidopsis ecotypes, Columbia (Col) and Landsberg erecta (Ler), differ in their capacity to regenerate shoots in culture, as do many other cultivars and varieties of the same plant species. Recombinant inbred (RI) lines derived from a cross of Col x Ler were scored for shoot regeneration, and the Arabidopsis genome was scanned using composite interval mapping for loci associated with shoot regeneration. Three QTL were identified--a major one on chromosome 5 in which the Col parent contributed the superior allele and two minor QTL on chromosomes 1 and 4 in which the Ler parent contributed the superior alleles. The RI lines were binned into genotypic pools to isolate the effects of the major QTL on chromosome 5 while holding the minor QTL constant. To identify genes with expression levels that are associated with the allelic state of the major QTL on chromosome 5, oligonucleotide array expression patterns for genes in the LLC pool (Ler alleles at the minor QTL and a Col allele at the major QTL) were compared to those in the LLL pool (Ler alleles at all QTL). The genes that were significantly differentially expressed between the two pools included several encoding transcription factors and signaling or transposon-related proteins. PMID:15342526

  4. The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signalling.

    PubMed

    Nameth, Blair; Dinka, Steven J; Chatfield, Steven P; Morris, Adam; English, Jenny; Lewis, Dorrett; Oro, Rosalinda; Raizada, Manish N

    2013-01-01

    Excised plant tissues (explants) can regenerate new shoot apical meristems in vitro, but regeneration rates can be inexplicably variable. Light affects rates of shoot regeneration, but the underlying mechanisms are poorly understood. Here, excised Arabidopsis cotyledons were dark-light shifted to define the timing of explant light sensitivity. Mutants and pharmacological agents were employed to uncover underlying physiological and genetic mechanisms. Unexpectedly, explants were most light sensitive during the initial hours post-excision with respect to shoot regeneration. Only ∼100 µmol m(-2 ) s(-1) of fluorescent light was sufficient to induce reactive oxygen species (ROS) accumulation in new explants. By 48 h post-excision, induction of ROS, or quenching of ROS by xanthophylls, increased or decreased shoot regeneration, respectively. Phytochrome A-mediated signalling suppressed light inhibition of regeneration. Early exposure to blue/UV-A wavelengths inhibited regeneration, involving photoreceptor CRY1. Downstream transcription factor HY5 mediated explant photoprotection, perhaps by promoting anthocyanin accumulation, a pigment also induced by cytokinin. Surprisingly, early light inhibition of shoot regeneration was dependent on polar auxin transport. Early exposure to ethylene stimulated dark-treated explants to regenerate, but inhibited light-treated explants. We propose that variability in long-term shoot regeneration may arise within the initial hours post-excision, from inadvertent, variable exposure of explants to light, modulated by hormones.

  5. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition.

    PubMed

    Pautler, Michael; Tanaka, Wakana; Hirano, Hiro-Yuki; Jackson, David

    2013-03-01

    The vegetative and reproductive shoot architectures displayed by members of the grass family are critical to reproductive success, and thus agronomic yield. Variation in shoot architecture is explained by the maintenance, activity and determinacy of meristems, pools of pluripotent stem cells responsible for post-embryonic plant growth. This review summarizes recent progress in understanding the major properties of grass shoot meristems, focusing on vegetative phase meristems and the floral transition, primarily in rice and maize. Major areas of interest include: the control of meristem homeostasis by the CLAVATA-WUSCHEL pathway and by hormones such as cytokinin; the initiation of axillary meristems and the control of axillary meristem dormancy; and the environmental and endogenous cues that regulate flowering time. In an accompanying paper, Tanaka et al. review subsequent stages of shoot development, including current knowledge of reproductive meristem determinacy and the fate transitions associated with these meristems.

  6. Cryopreservation of in vitro grown shoot tips and apical meristems of the forage legume Arachis pintoi.

    PubMed

    Rey, Hebe Y; Faloci, Mirta; Medina, Ricardo; Dolce, Natalia; Mroginski, Luis; Engelmann, Florent

    2009-01-01

    A cryopreservation protocol using the encapsulation-dehydration procedure was established for shoot tips (2-3 mm in length) and meristems (0.3-0.5 mm) sampled from in vitro plantlets of diploid and triploid cytotypes of Arachis pintoi. The optimal protocol was the following: after dissection, explants were precultured for 24 h on establishment medium (EM), encapsulated in calcium alginate beads and pretreated in liquid EM medium with daily increasing sucrose concentration (0.5, 0.75, 1.0 M) and desiccated to 22-23 percent moisture content (fresh weight basis). Explants were frozen using slow cooling (1 C per min from 25C to -30C followed by direct immersion in liquid nitrogen), thawed rapidly and post-cultured in liquid EM medium enriched with daily decreasing sucrose concentrations (0.75, 0.50, 0.1 M). Explants were then transferred to solid EM medium in order to achieve shoot regeneration, then on Murashige and Skoog medium supplemented with 0.05 microM naphthalene acetic acid to induce rooting of shoots. With this procedure, 53 percent and 56 percent of cryopreserved shoot tips of the diploid and triploid cytotypes, respectively, survived and formed plants. However, only 16 percent of cryopreserved meristems of both cytotypes regenerated plants. Using ten isozyme systems and seven RAPD profiles, no modification induced by cryopreservation could be detected in plantlets regenerated from cryopreserved material.

  7. Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine

    PubMed Central

    2013-01-01

    Background Grafting is widely used in the agriculture of fruit-bearing crops; rootstocks are known to confer differences in scion biomass in addition to improving other traits of agricultural interest. However, little is known about the effect of rootstocks on scion gene expression. The objective of this study was to determine whether hetero-grafting the grapevine variety Vitis vinifera cv. 'Cabernet Sauvignon N’ with two different rootstocks alters gene expression in the shoot apex in comparison to the auto-grafted control. Cabernet Sauvignon was hetero-grafted with two commercial rootstock genotypes and auto-grafted with itself. Vigor was quantified by measurements of root, stem, leaf and trunk biomass. Gene expression profiling was done using a whole genome grapevine microarray; four pools of five shoot apex samples were harvested 4 months after grafting for each scion/rootstock combination. Results The rootstocks increased stem biomass or conferred increased vigor by the end of the first growth cycle. Globally hetero-grafting two different genotypes together triggered an increase in shoot apex gene expression; however no genes were differentially expressed between the two hetero-grafts. The functional categories related to DNA, chromatin structure, histones, flavonoids and leucine rich repeat containing receptor kinases were the most enriched in the up-regulated genes in the shoot apex of hetero-grafted plants. Conclusions The choice of rootstock genotype had little effect on the gene expression in the shoot apex; this could suggest that auto- and hetero-grafting was the major factor regulating gene expression. PMID:24083813

  8. Using Arabidopsis to Study Shoot Branching in Biomass Willow1[C][W][OA

    PubMed Central

    Ward, Sally P.; Salmon, Jemma; Hanley, Steven J.; Karp, Angela; Leyser, Ottoline

    2013-01-01

    The success of the short-rotation coppice system in biomass willow (Salix spp.) relies on the activity of the shoot-producing meristems found on the coppice stool. However, the regulation of the activity of these meristems is poorly understood. In contrast, our knowledge of the mechanisms behind axillary meristem regulation in Arabidopsis (Arabidopsis thaliana) has grown rapidly in the past few years through the exploitation of integrated physiological, genetic, and molecular assays. Here, we demonstrate that these assays can be directly transferred to study the control of bud activation in biomass willow and to assess similarities with the known hormone regulatory system in Arabidopsis. Bud hormone response was found to be qualitatively remarkably similar in Salix spp. and Arabidopsis. These similarities led us to test whether Arabidopsis hormone mutants could be used to assess allelic variation in the cognate Salix spp. hormone genes. Allelic differences in Salix spp. strigolactone genes were observed using this approach. These results demonstrate that both knowledge and assays from Arabidopsis axillary meristem biology can be successfully applied to Salix spp. and can increase our understanding of a fundamental aspect of short-rotation coppice biomass production, allowing more targeted breeding. PMID:23610219

  9. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages.

    PubMed

    Frank, Margaret H; Edwards, Molly B; Schultz, Eric R; McKain, Michael R; Fei, Zhangjun; Sørensen, Iben; Rose, Jocelyn K C; Scanlon, Michael J

    2015-08-01

    Shoot apical meristem (SAM) structure varies markedly within the land plants. The SAMs of many seedless vascular plants contain a conspicuous inverted, pyramidal cell called the apical cell (AC), which is unidentified in angiosperms. In this study, we use transcriptomic sequencing with precise laser microdissections of meristem subdomains to define the molecular signatures of anatomically distinct zones from the AC-type SAMs of a lycophyte (Selaginella moellendorffii) and a monilophyte (Equisetum arvense). The two model species for this study represent vascular plant lineages that diverged > 400 million yr ago. Our data comprise comprehensive molecular signatures for the distinct subdomains within AC-type SAMs, an anatomical anomaly whose functional significance has been debated in the botanical literature for over two centuries. Moreover, our data provide molecular support for distinct gene expression programs between the AC-type SAMs of Selaginella and Equisetum, as compared with the SAM transcriptome of the angiosperm maize. The results are discussed in light of the functional significance and evolutionary success of the AC-type SAM within the embryophytes.

  10. Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope.

    PubMed

    Toyota, Masatsugu; Ikeda, Norifumi; Sawai-Toyota, Satoe; Kato, Takehide; Gilroy, Simon; Tasaka, Masao; Morita, Miyo Terao

    2013-11-01

    The starch-statolith hypothesis proposes that starch-filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so-called 'static' or 'settled' statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom-designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild-type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity-driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity-induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild-type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the 'bottom' of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.

  11. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation.

    PubMed

    Shemer, Or; Landau, Udi; Candela, Héctor; Zemach, Assaf; Eshed Williams, Leor

    2015-09-01

    Plants exhibit high capacity to regenerate in three alternative pathways: tissue repair, somatic embryogenesis and de novo organogenesis. For most plants, de novo organ initiation can be easily achieved in tissue culture by exposing explants to auxin and/or cytokinin, yet the competence to regenerate varies among species and within tissues from the same plant. In Arabidopsis, root explants incubated directly on cytokinin-rich shoot inducing medium (SIM-direct), are incapable of regenerating shoots, and a pre-incubation step on auxin-rich callus inducing medium (CIM) is required to acquire competency to regenerate on the SIM. However the mechanism underlying competency acquisition still remains elusive. Here we show that the chromomethylase 3 (cmt3) mutant which exhibits significant reduction in CHG methylation, shows high capacity to regenerate on SIM-direct and that regeneration occurs via direct organogenesis. In WT, WUSCHEL (WUS) promoter, an essential gene for shoot formation, is highly methylated, and its expression on SIM requires pre-incubation on CIM. However, in cmt3, WUS expression induced by SIM-direct. We propose that pre-incubation on CIM is required for the re-activation of cell division. Following the transfer of roots to SIM, the intensive cell division activity continues, and in the presence of cytokinin leads to a dilution in DNA methylation that allows certain genes required for shoot regeneration to respond to SIM, thereby advancing shoot formation.

  12. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis1[OPEN

    PubMed Central

    Ghareeb, Hassan; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan

    2015-01-01

    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. PMID:26511912

  13. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem.

    PubMed

    Gordon, Sean P; Chickarmane, Vijay S; Ohno, Carolyn; Meyerowitz, Elliot M

    2009-09-22

    A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormone cytokinin establishes a spatial domain in which cell fate is respecified through induction of the master regulator WUSCHEL as cells are displaced during growth. Cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways. Computational analysis shows that feedback between cytokinin response and genetic regulators predicts their relative patterning, which we confirm experimentally. Our results also may explain how increasing cytokinin concentration leads to the first steps in reestablishing the shoot stem cell niche in vitro.

  14. ALTERED MERISTEM PROGRAM1 Suppresses Ectopic Stem Cell Niche Formation in the Shoot Apical Meristem in a Largely Cytokinin-Independent Manner1[OPEN

    PubMed Central

    Huang, Wenwen; Pitorre, Delphine; Poretska, Olena; Marizzi, Christine; Winter, Nikola; Poppenberger, Brigitte; Sieberer, Tobias

    2015-01-01

    Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which contain a central SCN that consists of an apical stem cell pool and an underlying organizing center. Organ primordia are formed in the circular peripheral zone (PZ) from stem cell descendants in which differentiation programs are activated. One mechanism to keep this radial symmetry integrated is that the existing SCN actively suppresses stem cell identity in the PZ. However, how this lateral inhibition system works at the molecular level is far from understood. Here, we show that a defect in the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) causes the formation of extra SCNs in the presence of an intact primary shoot apical meristem, which at least partially contributes to the enhanced shoot meristem size and leaf initiation rate found in the mutant. This defect appears to be neither a specific consequence of the altered cytokinin levels in amp1 nor directly mediated by the WUSCHEL/CLAVATA feedback loop. De novo formation of supernumerary stem cell pools was further enhanced in plants mutated in both AMP1 and its paralog LIKE AMP1, indicating that they exhibit partially overlapping roles to suppress SCN respecification in the PZ. PMID:25673776

  15. Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis.

    PubMed

    Umehara, Mikihisa; Cao, Mengmeng; Akiyama, Kohki; Akatsu, Tomoki; Seto, Yoshiya; Hanada, Atsushi; Li, Weiqiang; Takeda-Kamiya, Noriko; Morimoto, Yu; Yamaguchi, Shinjiro

    2015-06-01

    The structural requirements of strigolactones (SLs) involved in germination induction of root parasitic plants and hyphal branching in arbuscular mycorrhizal (AM) fungi have been extensively studied. However, our knowledge of the requirements of SLs involved in shoot branching inhibition in plants is still limited. To address this question, we investigated the structure-activity relationships of SLs in shoot branching inhibition in rice and Arabidopsis. SLs possess a four-ring structure, with a tricyclic lactone (ABC-rings) connected to a methylbutenolide part (D-ring) via an enol ether bridge. Here, we show that the the (R) configuration at C-2', which determines the steric position of the D-ring relative to the enol ether olefin bond, is critical for the hormonal activity in rice. Replacement of the enol ether moiety by an alkoxy or imino ether resulted in a severe reduction in biological activity in rice. Moreover, yeast two-hybrid experiments using a possible SL receptor, DWARF14 (D14), and a repressor in the SL signaling pathway, DWARF53 (D53), showed that D14 can interact with D53 in the presence of (2'R) stereoisomers of SLs, but not (2'S) stereoisomers, suggesting that the stereostructure of SLs is crucial for the interaction of these proteins. When GR5, an AB-ring-truncated analog, was applied to the hydroponic culture medium, strong inhibition of shoot branching was observed both in rice and in Arabidopsis. However, GR5 was only weakly active when directly applied to the axillary buds of Arabidopsis. Our results indicate that the difference in plant species and application methods greatly influences the apparent SL biological activity.

  16. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro.

    PubMed

    Atta, Ramzy; Laurens, Lieve; Boucheron-Dubuisson, Elodie; Guivarc'h, Anne; Carnero, Eugénie; Giraudat-Pautot, Véronique; Rech, Philippe; Chriqui, Dominique

    2009-02-01

    We have established a detailed framework for the process of shoot regeneration from Arabidopsis root and hypocotyl explants grown in vitro. Using transgenic plant lines in which the GUS or GFP genes were fused to promoters of developmental genes (WUS, CLV1, CLV3, STM, CUC1, PLT1, RCH1, QC25), or to promoters of genes encoding indicators of the auxin response (DR5) or transport (PIN1), cytokinin (CK) response (ARR5) or synthesis (IPT5), or mitotic activity (CYCB1), we showed that regenerated shoots originated directly or indirectly from the pericycle cells adjacent to xylem poles. In addition, shoot regeneration appeared to be partly similar to the formation of lateral root meristems (LRMs). During pre-culture on a 2, 4-dichlorophenoxyacetic acid (2, 4-D)-rich callus-inducing medium (CIM), xylem pericycle reactivation established outgrowths that were not true calli but had many characteristics of LRMs. Transfer to a CK-rich shoot-inducing medium (SIM) resulted in early LRM-like primordia changing to shoot meristems. Direct origin of shoots from the xylem pericycle occurred upon direct culture on CK-containing media without prior growth on CIM. Thus, it appeared that the xylem pericycle is more pluripotent than previously thought. This pluripotency was accompanied by the ability of pericycle derivatives to retain diploidy, even after several rounds of cell division. In contrast, the phloem pericycle did not display such developmental plasticity, and responded to CKs with only periclinal divisions. Such observations reinforce the view that the pericycle is an 'extended meristem' that comprises two types of cell populations. They also suggest that the founder cells for LRM initiation are not initially fully specified for this developmental pathway.

  17. Plasmodesmata-Mediated Cell-to-Cell Communication in the Shoot Apical Meristem: How Stem Cells Talk

    PubMed Central

    Kitagawa, Munenori; Jackson, David

    2017-01-01

    Positional information is crucial for the determination of plant cell fates, and it is established based on coordinated cell-to-cell communication, which in turn is essential for plant growth and development. Plants have evolved a unique communication pathway, with tiny channels called plasmodesmata (PD) spanning the cell wall. PD interconnect most cells in the plant and generate a cytoplasmic continuum, to mediate short- and long-distance trafficking of various molecules. Cell-to-cell communication through PD plays a role in transmitting positional signals, however, the regulatory mechanisms of PD-mediated trafficking are still largely unknown. The induction and maintenance of stem cells in the shoot apical meristem (SAM) depends on PD-mediated cell-to-cell communication, hence, it is an optimal model for dissecting the regulatory mechanisms of PD-mediated cell-to-cell communication and its function in specifying cell fates. In this review, we summarize recent knowledge of PD-mediated cell-to-cell communication in the SAM, and discuss mechanisms underlying molecular trafficking through PD and its role in plant development. PMID:28257070

  18. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Xu, Huimin; Cao, Dechang; Chen, Yanmei; Wei, Dongmei; Wang, Yanwei; Stevenson, Rebecca Ann; Zhu, Yingfang; Lin, Jinxing

    2016-01-01

    In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species. PMID:26832850

  19. Unraveling the iron deficiency responsive proteome in Arabidopsis shoot by iTRAQ-OFFGEL approach.

    PubMed

    Zargar, Sajad Majeed; Kurata, Rie; Inaba, Shoko; Fukao, Yoichiro

    2013-10-01

    Iron (Fe) is required by plants for basic redox reactions in photosynthesis and respiration, and for many other key enzymatic reactions in biological processes. Fe homeostatic mechanisms have evolved in plants to enable the uptake and sequestration of Fe in cells. To elucidate the network of proteins that regulate Fe homeostasis and transport, we optimized the iTRAQ-OFFGEL method to identify and quantify the number of proteins that respond to Fe deficiency in the model plant Arabidopsis. In this study, Fe deficiency was created using Fe-deficient growth conditions, excess zinc (Zn), and use of the irt1-1 mutant in which the IRT1 Fe transporter is disrupted. Using the iTRAQ-OFFGEL approach, we identified 1139 proteins, including novel Fe deficiency-responsive proteins, in microsomal fractions isolated from 3 different types of Fe-deficient shoots compared with just 233 proteins identified using conventional iTRAQ-CEX. Further analysis showed that greater numbers of low-abundance proteins could be identified using the iTRAQ-OFFGEL method and that proteins could be identified from numerous cellular compartments. The improved iTRAQ-OFFGEL method used in this study provided an efficient means for identifying greater numbers of proteins from microsomal fractions of Arabidopsis shoots. The proteome identified in this study provides new insight into the regulatory cross talk between Fe-deficient and excess Zn conditions.

  20. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  1. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  2. Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis.

    PubMed

    Charuvi, Dana; Kiss, Vladimir; Nevo, Reinat; Shimoni, Eyal; Adam, Zach; Reich, Ziv

    2012-03-01

    Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell-harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.

  3. Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco[W

    PubMed Central

    Braun, Nils; Wyrzykowska, Joanna; Muller, Philippe; David, Karine; Couch, Daniel; Perrot-Rechenmann, Catherine; Fleming, Andrew J.

    2008-01-01

    AUXIN BINDING PROTEIN1 (ABP1) has long been characterized as a potentially important mediator of auxin action in plants. Analysis of the functional requirement for ABP1 during development was hampered because of embryo lethality of the null mutant in Arabidopsis thaliana. Here, we used conditional repression of ABP1 to investigate its function during vegetative shoot development. Using an inducible cellular immunization approach and an inducible antisense construct, we showed that decreased ABP1 activity leads to a severe retardation of leaf growth involving an alteration in cell division frequency, an altered pattern of endocycle induction, a decrease in cell expansion, and a change in expression of early auxin responsive genes. In addition, local repression of ABP1 activity in the shoot apical meristem revealed an additional role for ABP1 in cell plate formation and cell shape. Moreover, cells at the site of presumptive leaf initiation were more sensitive to ABP1 repression than other regions of the meristem. This spatial context-dependent response of the meristem to ABP1 inactivation and the other data presented here are consistent with a model in which ABP1 acts as a coordinator of cell division and expansion, with local auxin levels influencing ABP1 effectiveness. PMID:18952781

  4. Arabidopsis thaliana: A Model for the Study of Root and Shoot Gravitropism

    PubMed Central

    Masson, Patrick H.; Tasaka, Masao; Morita, Miyo T.; Guan, Changhui; Chen, Rujin; Boonsirichai, Kanokporn

    2002-01-01

    For most plants, shoots grow upward and roots grow downward. These growth patterns illustrate the ability for plant organs to guide their growth at a specified angle from the gravity vector (gravitropism). They allow shoots to grow upward toward light, where they can photosynthesize, and roots to grow downward into the soil, where they can anchor the plant as well as take up water and mineral ions. Gravitropism involves several steps organized in a specific response pathway. These include the perception of a gravistimulus (reorientation within the gravity field), the transduction of this mechanical stimulus into a physiological signal, the transmission of this signal from the site of sensing to the site of response, and a curvature-response which allows the organ tip to resume growth at a predefined set angle from the gravity vector. The primary sites for gravity sensing are located in the cap for roots, and in the endodermis for shoots. The curvature response occurs in the elongation zones for each organ. Upon gravistimulation, a gradient of auxin appears to be generated across the stimulated organ, and be transmitted to the site of response where it promotes a differential growth response. Therefore, while the gravity-induced auxin gradient has to be transmitted from the cap to the elongation zones in roots, there is no need for a longitudinal transport in shoots, as sites for gravity sensing and response overlap in this organ. A combination of molecular genetics, physiology, biochemistry and cell biology, coupled with the utilization of Arabidopsis thaliana as a model system, have recently allowed the identification of a number of molecules involved in the regulation of each phase of gravitropism in shoots and roots of higher plants. In this review, we attempt to summarize the results of these experiments, and we conclude by comparing the molecular and physiological mechanisms that underlie gravitropism in these organs. Abbreviations: GSPA: gravitational set

  5. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    PubMed

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-04-02

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation were biologically feasible, current knowledge about Na(+) effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na(+) uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na(+) into the xylem constitute the major pathway for the accumulation of Na(+) in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na(+) accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na(+) transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na(+) could not be accumulated. In contrast, in NaCl the plants accumulated Na(+) , lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na(+) uptake and tissue accumulation fulfill the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. This article is protected by copyright. All rights reserved.

  6. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress.

    PubMed

    Taochy, Christelle; Gaillard, Isabelle; Ipotesi, Emilie; Oomen, Ronald; Leonhardt, Nathalie; Zimmermann, Sabine; Peltier, Jean-Benoît; Szponarski, Wojciech; Simonneau, Thierry; Sentenac, Hervé; Gibrat, Rémy; Boyer, Jean-Christophe

    2015-08-01

    In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.

  7. A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche.

    PubMed

    Yadav, Ram Kishor; Tavakkoli, Montreh; Xie, Mingtang; Girke, Thomas; Reddy, G Venugopala

    2014-07-01

    The shoot apical meristem (SAM) acts as a reservoir for stem cells. The central zone (CZ) harbors stem cells. The stem cell progenitors differentiate in the adjacent peripheral zone and in the rib meristem located just beneath the CZ. The SAM is further divided into distinct clonal layers: the L1 epidermal, L2 sub-epidermal and L3 layers. Collectively, SAMs are complex structures that consist of cells of different clonal origins that are organized into functional domains. By employing fluorescence-activated cell sorting, we have generated gene expression profiles of ten cell populations that belong to different clonal layers as well as domains along the central and peripheral axis. Our work reveals that cells in distinct clonal layers exhibit greater diversity in gene expression and greater transcriptional complexity than clonally related cell types in the central and peripheral axis. Assessment of molecular functions and biological processes reveals that epidermal cells express genes involved in pathogen defense: the L2 layer cells express genes involved in DNA repair pathways and telomere maintenance, and the L3 layers express transcripts involved in ion balance and salt tolerance besides photosynthesis. Strikingly, the stem cell-enriched transcriptome comprises very few hormone-responsive transcripts. In addition to providing insights into the expression profiles of hundreds of transcripts, the data presented here will act as a resource for reverse genetic analysis and will be useful in deciphering molecular pathways involved in cell type specification and their functions.

  8. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels.

    PubMed

    Tanimoto, Mimi; Tremblay, Reynald; Colasanti, Joseph

    2008-05-01

    Plants have developed sophisticated gravity sensing mechanisms to interpret environmental signals that are vital for optimum plant growth. Loss of SHOOT GRAVITROPISM 5 (SGR5) gene function has been shown to affect the gravitropic response of Arabidopsis inflorescence stems. SGR5 is a member of the INDETERMINATE DOMAIN (IDD) zinc finger protein family of putative transcription factors. As part of an ongoing functional analysis of Arabidopsis IDD genes (AtIDD) we have extended the characterisation of SGR5, and show that gravity sensing amyloplasts in the shoot endodermis of sgr5 mutants sediment more slowly than wild type, suggesting a defect in gravity perception. This is correlated with lower amyloplast starch levels, which may account for the reduced gravitropic sensitivity in sgr5. Further, we find that sgr5 mutants have a severely attenuated stem circumnutation movement typified by a reduced amplitude and an decreased periodicity. adg1-1 and sex1-1 mutants, which contain no starch or increased starch, respectively, also show alterations in the amplitude and period of circumnutation. Together these results suggest that plant growth movement may depend on starch levels and/or gravity sensing. Overall, we propose that loss of SGR5 regulatory activity affects starch accumulation in Arabidopsis shoot tissues and causes decreased sensitivity to gravity and diminished circumnutational movements.

  9. Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity

    PubMed Central

    Werner, Tomáš; Motyka, Václav; Laucou, Valérie; Smets, Rafaël; Van Onckelen, Harry; Schmülling, Thomas

    2003-01-01

    Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (β-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions. PMID:14555694

  10. Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors

    PubMed Central

    Yang, Wu; Xia, Kuaifei; Ouyang, Jie; Zhang, Mingyong

    2015-01-01

    Phase change from vegetative to reproductive development is one of the critical developmental steps in plants, and it is regulated by both environmental and endogenous factors. The maintenance of shoot apical meristem (SAM) identity, miRNAs and flowering integrators are involved in this phase change process. Here, we report that the miRNA osa-miR171c targets four GRAS (GAI-RGA-SCR) plant-specific transcription factors (OsHAM1, OsHAM2, OsHAM3, and OsHAM4) to control the floral transition and maintenance of SAM indeterminacy in rice (Oryza sativa). We characterized a rice T-DNA insertion delayed heading (dh) mutant, where the expression of OsMIR171c gene is up-regulated. This mutant showed pleiotropic phenotypic defects, including especially prolonged vegetative phase, delayed heading date, and bigger shoot apex. Parallel expression analysis showed that osa-miR171c controlled the expression change of four OsHAMs in the shoot apex during floral transition, and responded to light. In the dh mutant, the expression of the juvenile-adult phase change negative regulator osa-miR156 was up-regulated, expression of the flowering integrators Hd3a and RFT1 was inhibited, and expression of FON4 negative regulators involved in the maintenance of SAM indeterminacy was also inhibited. From these data, we propose that the inhibition of osa-miR171c-mediated OsHAM transcription factors regulates the phase transition from vegetative to reproductive development by maintaining SAM indeterminacy and inhibiting flowering integrators. PMID:26023934

  11. Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors.

    PubMed

    Fan, Tian; Li, Xiumei; Yang, Wu; Xia, Kuaifei; Ouyang, Jie; Zhang, Mingyong

    2015-01-01

    Phase change from vegetative to reproductive development is one of the critical developmental steps in plants, and it is regulated by both environmental and endogenous factors. The maintenance of shoot apical meristem (SAM) identity, miRNAs and flowering integrators are involved in this phase change process. Here, we report that the miRNA osa-miR171c targets four GRAS (GAI-RGA-SCR) plant-specific transcription factors (OsHAM1, OsHAM2, OsHAM3, and OsHAM4) to control the floral transition and maintenance of SAM indeterminacy in rice (Oryza sativa). We characterized a rice T-DNA insertion delayed heading (dh) mutant, where the expression of OsMIR171c gene is up-regulated. This mutant showed pleiotropic phenotypic defects, including especially prolonged vegetative phase, delayed heading date, and bigger shoot apex. Parallel expression analysis showed that osa-miR171c controlled the expression change of four OsHAMs in the shoot apex during floral transition, and responded to light. In the dh mutant, the expression of the juvenile-adult phase change negative regulator osa-miR156 was up-regulated, expression of the flowering integrators Hd3a and RFT1 was inhibited, and expression of FON4 negative regulators involved in the maintenance of SAM indeterminacy was also inhibited. From these data, we propose that the inhibition of osa-miR171c-mediated OsHAM transcription factors regulates the phase transition from vegetative to reproductive development by maintaining SAM indeterminacy and inhibiting flowering integrators.

  12. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    PubMed Central

    Rasheed, Sultana; Bashir, Khurram; Matsui, Akihiro; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots vs. shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance. PMID:26941754

  13. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes.

    PubMed

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Xu, Lin; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-03-07

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root.

  14. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes

    PubMed Central

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-01-01

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. PMID:28223530

  15. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis.

    PubMed

    Li, Baohai; Li, Qing; Su, Yanhua; Chen, Hao; Xiong, Liming; Mi, Guohua; Kronzucker, Herbert J; Shi, Weiming

    2011-06-01

    Deposition of ammonium (NH₄+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH₄+ is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root.

  16. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation

    PubMed Central

    Sehr, Eva M; Agusti, Javier; Lehner, Reinhard; Farmer, Edward E; Schwarz, Martina; Greb, Thomas

    2010-01-01

    After primary growth, most dicotyledonous plants undergo secondary growth. Secondary growth involves an increase in the diameter of shoots and roots through formation of secondary vascular tissue. A hallmark of secondary growth initiation in shoots of dicotyledonous plants is the initiation of meristematic activity between primary vascular bundles, i.e. in the interfascicular regions. This results in establishment of a cylindrical meristem, namely the vascular cambium. Surprisingly, despite its major implications for plant growth and the accumulation of biomass, the molecular regulation of secondary growth is only poorly understood. Here, we combine histological, molecular and genetic approaches to characterize interfascicular cambium initiation in the Arabidopsis thaliana inflorescence shoot. Using genome-wide transcriptional profiling, we show that stress-related and touch-inducible genes are up-regulated in stem regions where secondary growth takes place. Furthermore, we show that the products of COI1, MYC2, JAZ7 and the touch-inducible gene JAZ10, which are components of the JA signalling pathway, are cambium regulators. The positive effect of JA application on cambium activity confirmed a stimulatory role of JA in secondary growth, and suggests that JA signalling triggers cell divisions in this particular context. PMID:20579310

  17. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation.

    PubMed

    Sehr, Eva M; Agusti, Javier; Lehner, Reinhard; Farmer, Edward E; Schwarz, Martina; Greb, Thomas

    2010-09-01

    After primary growth, most dicotyledonous plants undergo secondary growth. Secondary growth involves an increase in the diameter of shoots and roots through formation of secondary vascular tissue. A hallmark of secondary growth initiation in shoots of dicotyledonous plants is the initiation of meristematic activity between primary vascular bundles, i.e. in the interfascicular regions. This results in establishment of a cylindrical meristem, namely the vascular cambium. Surprisingly, despite its major implications for plant growth and the accumulation of biomass, the molecular regulation of secondary growth is only poorly understood. Here, we combine histological, molecular and genetic approaches to characterize interfascicular cambium initiation in the Arabidopsis thaliana inflorescence shoot. Using genome-wide transcriptional profiling, we show that stress-related and touch-inducible genes are up-regulated in stem regions where secondary growth takes place. Furthermore, we show that the products of COI1, MYC2, JAZ7 and the touch-inducible gene JAZ10, which are components of the JA signalling pathway, are cambium regulators. The positive effect of JA application on cambium activity confirmed a stimulatory role of JA in secondary growth, and suggests that JA signalling triggers cell divisions in this particular context.

  18. High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis.

    PubMed

    Kim, Joo-Young; Ryu, Jae Yong; Baek, Kon; Park, Chung-Mo

    2016-01-01

    In higher plants, gravitropism proceeds through three sequential steps in the responding organs: perception of gravity signals, signal transduction and asymmetric cell elongation. Light and temperature also influence the gravitropic orientation of plant organs. A series of Arabidopsis shoot gravitropism (sgr) mutants has been shown to exhibit disturbed shoot gravitropism. SGR5 is functionally distinct from other SGR members in that it mediates the early events of gravitropic responses in inflorescence stems. Here, we demonstrated that SGR5 alternative splicing produces two protein variants (SGR5α and SGR5β) in modulating the gravitropic response of inflorescence stems at high temperatures. SGR5β inhibits SGR5α function by forming non-DNA-binding heterodimers. Transgenic plants overexpressing SGR5β (35S:SGR5β) exhibit reduced gravitropic growth of inflorescence stems, as observed in the SGR5-deficient sgr5-5 mutant. Interestingly, SGR5 alternative splicing is accelerated at high temperatures, resulting in the high-level accumulation of SGR5β transcripts. When plants were exposed to high temperatures, whereas gravitropic curvature was reduced in Col-0 inflorescence stems, it was uninfluenced in the inflorescence stems of 35S:SGR5β transgenic plants and sgr5-5 mutant. We propose that the thermoresponsive alternative splicing of SGR5 provides an adaptation strategy by which plants protect the shoots from hot air under high temperature stress in natural habitats.

  19. Systemic above- and belowground cross talk: hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana

    PubMed Central

    Kammerhofer, Nina; Egger, Barbara; Dobrev, Petre; Vankova, Radomira; Hofmann, Julia; Schausberger, Peter; Wieczorek, Krzysztof

    2015-01-01

    Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes. PMID:26324462

  20. Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent

    PubMed Central

    Wu, Liuji; Wang, Xintao; Wang, Shunxi; Wu, Liancheng; Tian, Lei; Tian, Zhiqiang; Liu, Ping; Chen, Yanhui

    2016-01-01

    The ZmCCT, one of the most important genes affecting photoperiod response, delays flowering under long-day conditions in maize (Zea mays). In this study we used the isobaric tags for relative and absolute quantification (iTRAQ) technique-based proteomics approach to identify differentially expressed proteins between a near-isogenic line (NIL) and its recurrent parent, contrasting in alleles of ZmCCT. A total of 5,259 distinct proteins were identified. Among them, 386 proteins were differentially expressed between NIL-cml line (ZmCCT-positive) and H4 line (ZmCCT-negative). Functional categorization showed that the differentially proteins were mainly involved in energy production, photosynthesis, signal transduction, and cell organization and biogenesis. Our results showed that during shoot apical meristem (SAM) development cell division proteins, carbohydrate metabolism–related proteins, and flower inhibition-related proteins were more abundant in the ZmCCT-positive line than the ZmCCT-negative line. These results, taken together with morphological observations, showed that the effect of ZmCCT on flowering might be caused by its effect on one or all of these biological processes. Although the exact roles of these putative related proteins remain to be examined, our results obtained using the proteomics approach lead to a better understanding of the photoperiodicity mechanism in maize plants. PMID:27468931

  1. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley[OPEN

    PubMed Central

    2015-01-01

    Timing of the floral transition and inflorescence development strongly affect yield in barley (Hordeum vulgare). Therefore, we examined the effects of daylength and the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) on barley development and analyzed gene expression changes in the developing leaves and main shoot apices (MSAs) of barley by RNA sequencing. The daylength sensitivity of MSA development had two phases, floret primordia initiated under long and short days, whereas successful inflorescence development occurred only under long days. The transcripts associated with floral transition were largely regulated independently of photoperiod and allelic variation at Ppd-H1. The photoperiod- and Ppd-H1-dependent differences in inflorescence development and flower fertility were associated with the induction of barley FLOWERING LOCUS T orthologs: FT1 in leaves and FT2 in MSAs. FT1 expression was coregulated with transcripts involved in nutrient transport, carbohydrate metabolism, and cell cycle regulation, suggesting that FT1 might alter source-sink relationships. Successful inflorescence development correlated with upregulation of FT2 and transcripts related to floral organ development, phytohormones, and cell cycle regulation. Identification of photoperiod and stage-specific transcripts gives insights into the regulation of reproductive development in barley and provides a resource for investigation of the complexities of development and yield in temperate grasses. PMID:26307377

  2. Dysfunction of mitotic cell division at shoot apices triggered severe growth abortion in interspecific hybrids between tetraploid wheat and Aegilops tauschii.

    PubMed

    Hatano, Hitoshi; Mizuno, Nobuyuki; Matsuda, Ryusuke; Shitsukawa, Naoki; Park, Pyoyun; Takumi, Shigeo

    2012-06-01

    Common wheat is an allohexaploid species, derived through endoreduplication of an interspecific triploid hybrid produced from a cross between cultivated tetraploid wheat and the wild diploid relative Aegilops tauschii. Hybrid incompatibilities, including hybrid necrosis, have been observed in triploid wheat hybrids. A limited number of A. tauschii accessions show hybrid lethality in triploid hybrids crossed with tetraploid wheat as a result of developmental arrest at the early seedling stage, which is termed severe growth abortion (SGA). Despite the potential severity of this condition, the genetic mechanisms underlying SGA are not well understood. Here, we conducted comparative analyses of gene expression profiles in crown tissues to characterize developmental arrest in triploid hybrids displaying SGA. A number of defense-related genes were highly up-regulated, whereas many transcription factor genes, such as the KNOTTED1-type homeobox gene, which function in shoot apical meristem (SAM) and leaf primordia, were down-regulated in the crown tissues of SGA plants. Transcript accumulation levels of cell cycle-related genes were also markedly reduced in SGA plants, and no histone H4-expressing cells were observed in the SAM of SGA hybrid plants. Our findings demonstrate that SGA shows unique features among other types of abnormal growth phenotypes, such as type II and III necrosis.

  3. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley.

    PubMed

    Digel, Benedikt; Pankin, Artem; von Korff, Maria

    2015-09-01

    Timing of the floral transition and inflorescence development strongly affect yield in barley (Hordeum vulgare). Therefore, we examined the effects of daylength and the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) on barley development and analyzed gene expression changes in the developing leaves and main shoot apices (MSAs) of barley by RNA sequencing. The daylength sensitivity of MSA development had two phases, floret primordia initiated under long and short days, whereas successful inflorescence development occurred only under long days. The transcripts associated with floral transition were largely regulated independently of photoperiod and allelic variation at Ppd-H1. The photoperiod- and Ppd-H1-dependent differences in inflorescence development and flower fertility were associated with the induction of barley FLOWERING LOCUS T orthologs: FT1 in leaves and FT2 in MSAs. FT1 expression was coregulated with transcripts involved in nutrient transport, carbohydrate metabolism, and cell cycle regulation, suggesting that FT1 might alter source-sink relationships. Successful inflorescence development correlated with upregulation of FT2 and transcripts related to floral organ development, phytohormones, and cell cycle regulation. Identification of photoperiod and stage-specific transcripts gives insights into the regulation of reproductive development in barley and provides a resource for investigation of the complexities of development and yield in temperate grasses.

  4. Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting.

    PubMed

    Liu, Wan; Sun, Lizong; Zhong, Ming; Zhou, Qixing; Gong, Zongqiang; Li, Peijun; Tai, Peidong; Li, Xiaojun

    2012-11-01

    Random amplified polymorphic DNA (RAPD) test is a feasible method to evaluate the toxicity of environmental pollutants on vegetal organisms. Herein, Arabidopsis thaliana (Arabidopsis) plantlets following Cadmium (Cd) treatment for 26 d were screened for DNA genetic alterations by DNA fingerprinting. Four primers amplified 20-23 mutated RAPD fragments in 0.125-3.0 mg L(-1) Cd-treated Arabidopsis plantlets, respectively. Cloning and sequencing analysis of eight randomly selected mutated fragments revealed 99-100% homology with the genes of VARICOSE-Related, SLEEPY1 F-box, 40S ribosomal protein S3, phosphoglucomutase, and noncoding regions in Arabidopsis genome correspondingly. The results show the ability of RAPD analysis to detect significant genetic alterations in Cd-exposed seedlings. Although the exact functional importance of the other mutated bands is unknown, the presence of mutated loci in Cd-treated seedlings, prior to the onset of significant physiological effects, suggests that these altered loci are the early events in Cd-treated Arabidopsis seedlings and would greatly improve environmental risk assessment.

  5. Gain and Loss of Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of Arabidopsis[W

    PubMed Central

    Charuvi, Dana; Kiss, Vladimir; Nevo, Reinat; Shimoni, Eyal; Adam, Zach; Reich, Ziv

    2012-01-01

    Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell–harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation. PMID:22438022

  6. Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in Arabidopsis[W][OA

    PubMed Central

    Møller, Inge S.; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M.; Roy, Stuart J.; Coates, Juliet C.; Haseloff, Jim; Tester, Mark

    2009-01-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants. PMID:19584143

  7. Cytokinin Receptors Are Involved in Alkamide Regulation of Root and Shoot Development in Arabidopsis1[C][OA

    PubMed Central

    López-Bucio, José; Millán-Godínez, Mayra; Méndez-Bravo, Alfonso; Morquecho-Contreras, Alina; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Pérez-Torres, Anahí; Higuchi, Masayuki; Kakimoto, Tatsuo; Herrera-Estrella, Luis

    2007-01-01

    Alkamides and N-acilethanolamides are a class of lipid compounds related to animal endocannabinoids of wide distribution in plants. We investigated the structural features required for alkamides to regulate plant development by comparing the root responses of Arabidopsis (Arabidopsis thaliana) seedlings to a range of natural and synthetic compounds. The length of the acyl chain and the amide moiety were found to play a crucial role in their biological activity. From the different compounds tested, N-isobutyl decanamide, a small saturated alkamide, was found to be the most active in regulating primary root growth and lateral root formation. Proliferative-promoting activity of alkamide treatment was evidenced by formation of callus-like structures in primary roots, ectopic blades along petioles of rosette leaves, and disorganized tumorous tissue originating from the leaf lamina. Ectopic organ formation by N-isobutyl decanamide treatment was related to altered expression of the cell division marker CycB1:uidA and an enhanced expression of the cytokinin-inducible marker ARR5:uidA both in roots and in shoots. The involvement of cytokinins in mediating the observed activity of alkamides was tested using Arabidopsis mutants lacking one, two, or three of the putative cytokinin receptors CRE1, AHK2, and AHK3. The triple cytokinin receptor mutant was insensitive to N-isobutyl decanamide treatment, showing absence of callus-like structures in roots, the lack of lateral root proliferation, and absence of ectopic outgrowths in leaves under elevated levels of this alkamide. Taken together our results suggest that alkamides and N-acylethanolamides may belong to a class of endogenous signaling compounds that interact with a cytokinin-signaling pathway to control meristematic activity and differentiation processes during plant development. PMID:17965178

  8. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis.

    PubMed

    Kohlen, Wouter; Charnikhova, Tatsiana; Liu, Qing; Bours, Ralph; Domagalska, Malgorzata A; Beguerie, Sebastien; Verstappen, Francel; Leyser, Ottoline; Bouwmeester, Harro; Ruyter-Spira, Carolien

    2011-02-01

    The biosynthesis of the recently identified novel class of plant hormones, strigolactones, is up-regulated upon phosphate deficiency in many plant species. It is generally accepted that the evolutionary origin of strigolactone up-regulation is their function as a rhizosphere signal that stimulates hyphal branching of arbuscular mycorrhizal fungi. In this work, we demonstrate that this induction is conserved in Arabidopsis (Arabidopsis thaliana), although Arabidopsis is not a host for arbuscular mycorrhizal fungi. We demonstrate that the increase in strigolactone production contributes to the changes in shoot architecture observed in response to phosphate deficiency. Using high-performance liquid chromatography, column chromatography, and multiple reaction monitoring-liquid chromatography-tandem mass spectrometry analysis, we identified two strigolactones (orobanchol and orobanchyl acetate) in Arabidopsis and have evidence of the presence of a third (5-deoxystrigol). We show that at least one of them (orobanchol) is strongly reduced in the putative strigolactone biosynthetic mutants more axillary growth1 (max1) and max4 but not in the signal transduction mutant max2. Orobanchol was also detected in xylem sap and up-regulated under phosphate deficiency, which is consistent with the idea that root-derived strigolactones are transported to the shoot, where they regulate branching. Moreover, two additional putative strigolactone-like compounds were detected in xylem sap, one of which was not detected in root exudates. Together, these results show that xylem-transported strigolactones contribute to the regulation of shoot architectural response to phosphate-limiting conditions.

  9. Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis

    PubMed Central

    Tian, Caihuan; Wang, Jin; Xu, Tengfei; Xu, Yan; Ohno, Carolyn; Sablowski, Robert; Heisler, Marcus G.; Theres, Klaus; Wang, Ying

    2016-01-01

    Shoot branching requires the establishment of new meristems harboring stem cells; this phenomenon raises questions about the precise regulation of meristematic fate. In seed plants, these new meristems initiate in leaf axils to enable lateral shoot branching. Using live-cell imaging of leaf axil cells, we show that the initiation of axillary meristems requires a meristematic cell population continuously expressing the meristem marker SHOOT MERISTEMLESS (STM). The maintenance of STM expression depends on the leaf axil auxin minimum. Ectopic expression of STM is insufficient to activate axillary buds formation from plants that have lost leaf axil STM expressing cells. This suggests that some cells undergo irreversible commitment to a developmental fate. In more mature leaves, REVOLUTA (REV) directly up-regulates STM expression in leaf axil meristematic cells, but not in differentiated cells, to establish axillary meristems. Cell type-specific binding of REV to the STM region correlates with epigenetic modifications. Our data favor a threshold model for axillary meristem initiation, in which low levels of STM maintain meristematic competence and high levels of STM lead to meristem initiation. PMID:27398935

  10. Temporal Regulation of Shoot Development in Arabidopsis Thaliana By Mir156 and Its Target SPL3

    PubMed Central

    Wu, Gang; Poethig, R. Scott

    2006-01-01

    SPL3, SPL4 and SPL5 (SPL3/4/5) are closely related members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE family of transcription factors in Arabidopsis, and have a target site for the microRNA miR156 in their 3′ UTR. The phenotype of Arabidopsis plants constitutively expressing miR156-sensitive and miR156-insensitive forms of SPL3/4/5 revealed that all three genes promote vegetative phase change and flowering, and are strongly repressed by miR156. Constitutive expression of miR156a prolonged the expression of juvenile vegetative traits and delayed flowering. This phenotype was largely corrected by constitutive expression of a miR156-insensitive form of SPL3. The juvenile-to-adult transition is accompanied by a decrease in the level of miR156 and an increase in the abundance of SPL3 mRNA. The complementary effect of hasty on the miR156 and SPL3 transcripts, as well as the miR156-dependent temporal expression pattern of a 35S::GUS-SPL3 transgene, suggest that the decrease in miR156 is responsible for the increase in SPL3 expression during this transition. SPL3 mRNA is elevated by mutations in ZIPPY/AGO7, RNA DEPENDENT RNA POLYMERASE 6 (RDR6) and SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that it is directly or indirectly regulated by RNAi. However, our results indicate that RNAi does not contribute to the temporal expression pattern of this gene. We conclude that vegetative phase change in Arabidopsis is regulated by an increase in the expression of SPL3 and probably also SPL4 and SPL5, and that this increase is a consequence of a decrease in the level of miR156. PMID:16914499

  11. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis

    PubMed Central

    Sarasketa, Asier; González-Moro, M. Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source (NO3- and NH4+), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to NH4+ accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, NH4+ accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment. PMID:26870054

  12. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum changes inflorescence branching at early stages in di- and monocot plants and induces fruit abortion in Arabidopsis thaliana.

    PubMed

    Drechsler, Frank; Schwinges, Patrick; Schirawski, Jan

    2016-05-03

    sporisorium reilianum f. sp. zeae is a biotrophic smut fungus that infects maize (Zea mays). Among others, the fungus-plant interaction is governed by secreted fungal effector proteins. The effector SUPPRESSOR OF APICAL DOMINANCE1 (SAD1) changes the development of female inflorescences and induces outgrowth of subapical ears in S. reilianum-infected maize. When stably expressed in Arabidopsis thaliana as a GFP-SAD1 fusion protein, SAD1 induces earlier inflorescence branching and abortion of siliques. Absence of typical hormone-dependent phenotypes in other parts of the transgenic A. thaliana plants expressing GFP-SAD1 hint to a hormone-independent induction of bud outgrowth by SAD1. Silique abortion and bud outgrowth are also known to be controlled by carbon source concentration and by stress-induced molecules, making these factors interesting potential SAD1 targets.

  13. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis1[OPEN

    PubMed Central

    Li, Bo; Baumann, Ute; Hrmova, Maria; Evrard, Aurelie; Johnson, Alexander A.T.; Birnbaum, Kenneth D.; Mayo, Gwenda M.; Jha, Deepa

    2016-01-01

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress. PMID:26662602

  14. Measuring whole plant CO2 exchange with the environment reveals opposing effects of the gin2-1 mutation in shoots and roots of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Stutz, Simon; Paul, Martin; Heyer, Arnd G

    2015-01-01

    Using a cuvette for simultaneous measurement of net photosynthesis in above ground plant organs and root respiration we investigated the effect of reduced leaf glucokinase activity on plant carbon balance. The gin2-1 mutant of Arabidopsis thaliana is characterized by a 50% reduction of glucokinase activity in the shoot, while activity in roots is about fivefold higher and similar to wild type plants. High levels of sucrose accumulating in leaves during the light period correlated with elevated root respiration in gin2-1. Despite substantial respiratory losses in roots, growth retardation was moderate, probably because photosynthetic carbon fixation was simultaneously elevated in gin2-1. Our data indicate that futile cycling of sucrose in shoots exerts a reduction on net CO2 gain, but this is over-compensated by the prevention of exaggerated root respiration resulting from high sucrose concentration in leaf tissue.

  15. Live confocal imaging of Arabidopsis flower buds.

    PubMed

    Prunet, Nathanaël; Jack, Thomas P; Meyerowitz, Elliot M

    2016-11-01

    Recent advances in confocal microscopy, coupled with the development of numerous fluorescent reporters, provide us with a powerful tool to study the development of plants. Live confocal imaging has been used extensively to further our understanding of the mechanisms underlying the formation of roots, shoots and leaves. However, it has not been widely applied to flowers, partly because of specific challenges associated with the imaging of flower buds. Here, we describe how to prepare and grow shoot apices of Arabidopsis in vitro, to perform both single-point and time-lapse imaging of live, developing flower buds with either an upright or an inverted confocal microscope.

  16. Microfilament Depolymerization Is a Pre-requisite for Stem Cell Formation During In vitro Shoot Regeneration in Arabidopsis

    PubMed Central

    Tang, Li Ping; Li, Xiao Ming; Dong, Yu Xiu; Zhang, Xian Sheng; Su, Ying Hua

    2017-01-01

    De novo shoot regeneration is widely used in fundamental studies and agricultural applications. Actin microfilaments are involved in many aspects of plant cell division, cell morphogenesis and cell signal transduction. However, the function of actin microfilaments during de novo shoot regeneration is poorly understood. Here, we investigated the organization of actin microfilaments during this process and found that stem cell formation was associated with microfilament depolymerization. Furthermore, inhibition of microfilament depolymerization by phalloidin treatment or downregulation of actin depolymerizing factors (ADFs) restrained stem cell initiation and shoot regeneration. Inhibition of ADF expression affected the architecture of microfilaments during stem cell formation, and the polar transport and distribution of auxin were also disrupted. Together, our results demonstrate that organization of the microfilament cytoskeleton play important roles in stem cell formation and shoot meristem induction during shoot regeneration. PMID:28261231

  17. The concept of the eudicot shoot apical meristem as it applies to four Spiraea (Rosaceae), one Mentha (Lamiaceae) and one Euonymus (Celastraceae) cultivars based on chimeric analysis

    PubMed Central

    Korn, Robert W.

    2013-01-01

    Background and Aims Eversporting eudicots were sought to see if they behave like gymnosperms. Behaviour of eversporting gymnosperm chimeras indicates a single apical cell is present in SAM and it would be of interest to see if eudicot chimeras have the same behaviour. Methods Four eversporting spireas, the pineapple mint and the Silver King euonymus were inspected for the fate of the yellow (mutant)–green (wild type) chimeras. Key Results As with gymnosperms, unstable eudicot chimeras in the four spireas, the pineapple mint and the Silver King euonymus became stable yellow about 80 % or more of the time and 20 % or less became stable green. Conclusions The statistically significant preponderance of chimeric fates becoming all yellow suggests that a single apical cell resides in the yellow tunica. As with gymnosperms, descendent cells of the yellow replacement corpus cell eventually take over the corpus. Here is the first chimeric set of data to support the hypothesis of a one-celled meristem in eudicots rather than the traditional view of a muticellular meristem. PMID:23482330

  18. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots.

    PubMed

    Yoon, Eun Kyung; Dhar, Souvik; Lee, Mi-Hyun; Song, Jae Hyo; Lee, Shin Ae; Kim, Gyuree; Jang, Sejeong; Choi, Ji Won; Choe, Jeong-Eun; Kim, Jeong Hoe; Lee, Myeong Min; Lim, Jun

    2016-08-01

    Development of the functional endodermis of Arabidopsis thaliana roots is controlled, in part, by GRAS transcription factors, namely SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE 23 (SCL23). Recently, it has been shown that the SHR-SCR-SCL23 regulatory module is also essential for specification of the endodermis (known as the bundle sheath) in leaves. Nevertheless, compared with what is known about the role of the SHR-SCR-SCL23 regulatory network in roots, the molecular interactions of SHR, SCR, and SCL23 are much less understood in shoots. Here, we show that SHR forms protein complexes with SCL23 to regulate transcription of SCL23 in shoots, similar to the regulation mode of SCR expression. Our results indicate that SHR acts as master regulator to directly activate the expression of SCR and SCL23. In the SHR-SCR-SCL23 network, we found a previously uncharacterized negative feedback loop whereby SCL23 modulates SHR levels. Through molecular, genetic, physiological, and morphological analyses, we also reveal that the SHR-SCR-SCL23 module plays a key role in the formation of the endodermis (known as the starch sheath) in hypocotyls. Taken together, our results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.

  19. SMAX1-LIKE7 Signals from the Nucleus to Regulate Shoot Development in Arabidopsis via Partially EAR Motif-Independent Mechanisms[OPEN

    PubMed Central

    Li, Ping

    2016-01-01

    Strigolactones (SLs) are hormonal signals that regulate multiple aspects of shoot architecture, including shoot branching. Like many plant hormonal signaling systems, SLs act by promoting ubiquitination of target proteins and their subsequent proteasome-mediated degradation. Recently, SMXL6, SMXL7, and SMXL8, members of the SMAX1-LIKE (SMXL) family of chaperonin-like proteins, have been identified as proteolytic targets of SL signaling in Arabidopsis thaliana. However, the mechanisms by which these proteins regulate downstream events remain largely unclear. Here, we show that SMXL7 functions in the nucleus, as does the SL receptor, DWARF14 (D14). We show that nucleus-localized D14 can physically interact with both SMXL7 and the MAX2 F-box protein in a SL-dependent manner and that disruption of specific conserved domains in SMXL7 affects its localization, SL-induced degradation, and activity. By expressing and overexpressing these SMXL7 protein variants, we show that shoot tissues are broadly sensitive to SMXL7 activity, but degradation normally buffers the effect of increasing SMXL7 expression. SMXL7 contains a well-conserved EAR (ETHYLENE-RESPONSE FACTOR Amphiphilic Repression) motif, which contributes to, but is not essential for, SMXL7 functionality. Intriguingly, different developmental processes show differential sensitivity to the loss of the EAR motif, raising the possibility that there may be several distinct mechanisms at play downstream of SMXL7. PMID:27317673

  20. SMAX1-LIKE7 Signals from the Nucleus to Regulate Shoot Development in Arabidopsis via Partially EAR Motif-Independent Mechanisms.

    PubMed

    Liang, Yueyang; Ward, Sally; Li, Ping; Bennett, Tom; Leyser, Ottoline

    2016-07-01

    Strigolactones (SLs) are hormonal signals that regulate multiple aspects of shoot architecture, including shoot branching. Like many plant hormonal signaling systems, SLs act by promoting ubiquitination of target proteins and their subsequent proteasome-mediated degradation. Recently, SMXL6, SMXL7, and SMXL8, members of the SMAX1-LIKE (SMXL) family of chaperonin-like proteins, have been identified as proteolytic targets of SL signaling in Arabidopsis thaliana However, the mechanisms by which these proteins regulate downstream events remain largely unclear. Here, we show that SMXL7 functions in the nucleus, as does the SL receptor, DWARF14 (D14). We show that nucleus-localized D14 can physically interact with both SMXL7 and the MAX2 F-box protein in a SL-dependent manner and that disruption of specific conserved domains in SMXL7 affects its localization, SL-induced degradation, and activity. By expressing and overexpressing these SMXL7 protein variants, we show that shoot tissues are broadly sensitive to SMXL7 activity, but degradation normally buffers the effect of increasing SMXL7 expression. SMXL7 contains a well-conserved EAR (ETHYLENE-RESPONSE FACTOR Amphiphilic Repression) motif, which contributes to, but is not essential for, SMXL7 functionality. Intriguingly, different developmental processes show differential sensitivity to the loss of the EAR motif, raising the possibility that there may be several distinct mechanisms at play downstream of SMXL7.

  1. Microdissection of Shoot Meristem Functional Domains

    PubMed Central

    Zhang, Xiaolan; Ohtsu, Kazuhiro; Zhou, Ruilian; Sarkar, Ananda; Hargreaves, Sarah; Elshire, Robert J.; Eudy, Douglas; Pawlowska, Teresa; Ware, Doreen; Janick-Buckner, Diane; Buckner, Brent; Timmermans, Marja C. P.; Schnable, Patrick S.; Nettleton, Dan; Scanlon, Michael J.

    2009-01-01

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize. PMID:19424435

  2. Microdissection of shoot meristem functional domains.

    PubMed

    Brooks, Lionel; Strable, Josh; Zhang, Xiaolan; Ohtsu, Kazuhiro; Zhou, Ruilian; Sarkar, Ananda; Hargreaves, Sarah; Elshire, Robert J; Eudy, Douglas; Pawlowska, Teresa; Ware, Doreen; Janick-Buckner, Diane; Buckner, Brent; Timmermans, Marja C P; Schnable, Patrick S; Nettleton, Dan; Scanlon, Michael J

    2009-05-01

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.

  3. Arabidopsis YL1/BPG2 Is Involved in Seedling Shoot Response to Salt Stress through ABI4

    PubMed Central

    Li, Peng-Cheng; Huang, Jin-Guang; Yu, Shao-Wei; Li, Yuan-Yuan; Sun, Peng; Wu, Chang-Ai; Zheng, Cheng-Chao

    2016-01-01

    The chloroplast-localized proteins play roles in plant salt stress response, but their mechanisms remain largely unknown. In this study, we screened a yellow leaf mutant, yl1-1, whose shoots exhibited hypersensitivity to salt stress. We mapped YL1 to AT3G57180, which encodes a YqeH-type GTPase. YL1, as a chloroplast stroma-localized protein, could be markedly reduced by high salinity. Upon exposure to high salinity, seedling shoots of yl1-1 and yl1-2 accumulated significantly higher levels of Na+ than wild type. Expression analysis of factors involved in plant salt stress response showed that the expression of ABI4 was increased and HKT1 was evidently suppressed in mutant shoots compared with the wild type under normal growth conditions. Moreover, salinity effects on ABI4 and HKT1 were clearly weakened in the mutant shoots, suggesting that the loss of YL1 function impairs ABI4 and HKT1 expression. Notably, the shoots of yl1-2 abi4 double mutant exhibited stronger resistance to salt stress and accumulated less Na+ levels after salt treatment compared with the yl1-2 single mutant, suggesting the salt-sensitive phenotype of yl1-2 seedlings could be rescued via loss of ABI4 function. These results reveal that YL1 is involved in the salt stress response of seedling shoots through ABI4. PMID:27444988

  4. Expression of the Arabidopsis vacuolar H⁺-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field.

    PubMed

    Schilling, Rhiannon K; Marschner, Petra; Shavrukov, Yuri; Berger, Bettina; Tester, Mark; Roy, Stuart J; Plett, Darren C

    2014-04-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H⁺-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mM NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.

  5. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis

    PubMed Central

    Guo, Dongshu; Zhang, Jinzhe; Wang, Xinlei; Han, Xiang; Wei, Baoye; Yu, Hao; Huang, Qingpei

    2015-01-01

    Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways. PMID:26578700

  6. Measurement of Differential Na+ Efflux from Apical and Bulk Root Zones of Intact Barley and Arabidopsis Plants

    PubMed Central

    Hamam, Ahmed M.; Britto, Dev T.; Flam-Shepherd, Rubens; Kronzucker, Herbert J.

    2016-01-01

    Rapid sodium cycling across the plasma membrane of root cells is widely thought to be associated with Na+ toxicity in plants. However, the efflux component of this cycling is not well understood. Efflux of Na+ from root cells is believed to be mediated by Salt Overly-Sensitive-1, although expression of this Na+/H+ antiporter has been localized to the vascular tissue and root meristem. Here, we used a chambered cuvette system in which the distal root of intact salinized barley and Arabidopsis thaliana plants (wild-type and sos1) were isolated from the bulk of the root by a silicone-acrylic barrier, so that we could compare patterns of 24Na+ efflux in these two regions of root. In barley, steady-state release of 24Na+ was about four times higher from the distal root than from the bulk roots. In the distal root, 24Na+ release was pronouncedly decreased by elevated pH (9.2), while the bulk-root release was not significantly affected. In A. thaliana, tracer efflux was about three times higher from the wild-type distal root than from the wild-type bulk root and also three to four times higher than both distal- and bulk-root fluxes of Atsos1 mutants. Elevated pH also greatly reduced the efflux from wild-type roots. These findings support a significant role of SOS1-mediated Na+ efflux in the distal root, but not in the bulk root. PMID:27014297

  7. Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism.

    PubMed

    Mustroph, Angelika; Barding, Gregory A; Kaiser, Kayla A; Larive, Cynthia K; Bailey-Serres, Julia

    2014-10-01

    Oxygen deficiency, caused by flooding of all or a portion of a plant, leads to significant gene regulatory and metabolic responses associated with survival. When oxygen-deprived in light, aerial organs and root systems respond in distinct manners because of their respective autotrophy and heterotrophy, as well as intrinsic differences in cell biology and organ function. To better understand organ-specific responses to oxygen deficiency, we monitored changes in the metabolome of roots and shoots of Arabidopsis thaliana seedlings using gas chromatography-mass spectrometry and (1) H-nuclear magnetic resonance spectroscopy. Only roots accumulated high amounts of γ-aminobutyrate (GABA) and lactate, whereas both organs accumulated alanine (Ala) upon hypoxia. Meta-analysis of gene regulation data revealed higher induction of mRNAs coding for fermentative enzymes in roots as compared with shoots. However, the elevation in GABA level was not correlated with changes in transcript abundance, supporting the proposal that post-translational mechanisms are important in metabolic acclimation to hypoxia. The biosynthesis, degradation and function of GABA and Ala during oxygen deprivation and re-aeration is discussed. Finally, a systematic survey of low-oxygen mediated regulation of genes associated with primary metabolism across organs and cell types reveals exciting new avenues for future studies.

  8. Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis

    PubMed Central

    Liang, Yan; Wu, Xiaowei; Cai, Yueyue; Zhang, Yuanya; Wang, Yingchun; Li, Jiayang; Wang, Yonghong

    2016-01-01

    Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development. PMID:27618482

  9. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots1[OPEN

    PubMed Central

    Durand, Mickaël; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2016-01-01

    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. 14CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  10. Structure–Function Relationships in Highly Modified Shoots of Cactaceae

    PubMed Central

    MAUSETH, JAMES D.

    2006-01-01

    • Background and Aims Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. • Scope Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus ‘flower’ is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels. PMID:16820405

  11. Cytokinin is required for escape but not release from auxin mediated apical dominance

    PubMed Central

    Müller, Dörte; Waldie, Tanya; Miyawaki, Kaori; To, Jennifer PC; Melnyk, Charles W; Kieber, Joseph J; Kakimoto, Tatsuo; Leyser, Ottoline

    2015-01-01

    Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability. Significance Statement It has been proposed that the release of buds from auxin-mediated apical dominance following decapitation requires increased cytokinin biosynthesis and consequent increases in cytokinin supply to buds. Here we show that in Arabidopsis, increases in cytokinin appear to be unnecessary for the release of buds from apical dominance, but rather allow buds to escape the inhibitory effect of apical auxin, thereby promoting bud activation in favourable growth conditions. PMID:25904120

  12. A Model of Differential Growth-Guided Apical Hook Formation in Plants.

    PubMed

    Žádníková, Petra; Wabnik, Krzysztof; Abuzeineh, Anas; Gallemi, Marçal; Van Der Straeten, Dominique; Smith, Richard S; Inzé, Dirk; Friml, Jiří; Prusinkiewicz, Przemysław; Benková, Eva

    2016-10-01

    Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana Computer simulation models based on experimental data demonstrate that asymmetric expression of the PIN-FORMED auxin efflux carrier at the concave (inner) versus convex (outer) side of the hook suffices to establish an auxin maximum in the epidermis at the concave side of the apical hook. Furthermore, we propose a mechanism that translates this maximum into differential growth, and thus curvature, of the apical hook. Through a combination of experimental and in silico computational approaches, we have identified the individual contributions of differential cell elongation and proliferation to defining the apical hook and reveal the role of auxin-ethylene crosstalk in balancing these two processes.

  13. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis1[OPEN

    PubMed Central

    Drechsler, Navina; Zheng, Yue; Nobmann, Barbara; Rausch, Christine

    2015-01-01

    Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K+ in the roots relies on the concomitant loading of counteranions, like nitrate (NO3−). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3−-dependent K+ translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3− nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K+ under low NO3− supply. Because the depolarization-activated Stelar K+ Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K+ in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3− translocation might affect xylem loading and root-to-shoot K+ translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3− regimes revealed that both proteins contribute to K+ translocation from root to shoot. SKOR activity dominates under high NO3− and low K+ supply, whereas NPF7.3/NRT1.5 is required under low NO3− availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis. PMID:26508776

  14. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction

    PubMed Central

    Zhao, Shuai; Wei, Hui; Lin, Chien-Yuan; Zeng, Yining; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi-You

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources. PMID:26858740

  15. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction.

    PubMed

    Zhao, Shuai; Wei, Hui; Lin, Chien-Yuan; Zeng, Yining; Tucker, Melvin P; Himmel, Michael E; Ding, Shi-You

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.

  16. Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction

    DOE PAGES

    Zhao, Shuai; Wei, Hui; Lin, Chien -Yuan; ...

    2016-01-29

    In this study, it is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes inmore » the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.« less

  17. Apical cap

    SciTech Connect

    McLoud, T.C.; Isler, R.J.; Novelline, R.A.; Putman, C.E.; Simeone, J.; Stark, P.

    1981-08-01

    Apical caps, either unilateral or bilateral, are a common feature of advancing age and are usually the result of subpleural scarring unassociated with other diseases. Pancoast (superior sulcus) tumors are a well recognized cause of unilateral asymmetric apical density. Other lesions arising in the lung, pleura, or extrapleural space may produce unilateral or bilateral apical caps. These include: (1) inflammatory: tuberculosis and extrapleural abscesses extending from the neck; (2) post radiation fibrosis after mantle therapy for Hodgkin disease or supraclavicular radiation in the treatment of breast carcinoma; (3) neoplasm: lymphoma extending from the neck or mediastinum, superior sulcus bronchogenic carcinoma, and metastases; (4) traumatic: extrapleural dissection of blood from a ruptured aorta, fractures of the ribs or spine, or hemorrhage due to subclavian line placement; (5) vascular: coarctation of the aorta with dilated collaterals over the apex, fistula between the subclavian artery and vein; and (6) miscellaneous: mediastinal lipomatosis with subcostal fat extending over the apices.

  18. Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.

    PubMed

    Smith, Harley M S; Ung, Nolan; Lal, Shruti; Courtier, Jennifer

    2011-01-01

    In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and PNF interact with a subset of KNOTTED1-LIKE homeobox proteins including SHOOT MERISTEMLESS (STM). Genetic analyses show that these BLH proteins function with STM to specify flowers and internodes during inflorescence development. In this study, experimental evidence demonstrates that the specification of flower and coflorescence meristems requires the combined activities of FT-FD and STM. FT and FD also regulate meristem maintenance during inflorescence development. In plants with reduced STM function, ectopic FT and FD promote the formation of axillary meristems during inflorescence development. Lastly, gene expression studies indicate that STM functions with FT-FD and AGAMOUS-LIKE 24 (AGL24)-SUPPRESSOR OF OVEREXPRESSION OF CONTANS1 (SOC1) complexes to up-regulate flower meristem identity genes during inflorescence development.

  19. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot

    PubMed Central

    Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke

    2016-01-01

    The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana. PMID:27910895

  20. An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis.

    PubMed

    Sassi, Massimiliano; Ali, Olivier; Boudon, Frédéric; Cloarec, Gladys; Abad, Ursula; Cellier, Coralie; Chen, Xu; Gilles, Benjamin; Milani, Pascale; Friml, Jiří; Vernoux, Teva; Godin, Christophe; Hamant, Olivier; Traas, Jan

    2014-10-06

    To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner.

  1. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  2. Strigolactone inhibition of shoot branching.

    PubMed

    Gomez-Roldan, Victoria; Fermas, Soraya; Brewer, Philip B; Puech-Pagès, Virginie; Dun, Elizabeth A; Pillot, Jean-Paul; Letisse, Fabien; Matusova, Radoslava; Danoun, Saida; Portais, Jean-Charles; Bouwmeester, Harro; Bécard, Guillaume; Beveridge, Christine A; Rameau, Catherine; Rochange, Soizic F

    2008-09-11

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.

  3. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl− accumulation and salt tolerance in Arabidopsis thaliana

    PubMed Central

    Qiu, Jiaen; Henderson, Sam W; Tester, Mark; Roy, Stuart J; Gilliham, Mathew

    2016-01-01

    Salinity tolerance is correlated with shoot chloride (Cl–) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl– transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl–, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl– supply, but not low Cl– supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl– transport. PMID:27340232

  4. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  5. Auxin Acts in Xylem-Associated or Medullary Cells to Mediate Apical Dominance

    PubMed Central

    Booker, Jonathan; Chatfield, Steven; Leyser, Ottoline

    2003-01-01

    A role for auxin in the regulation of shoot branching was described originally in the Thimann and Skoog model, which proposes that apically derived auxin is transported basipetally directly into the axillary buds, where it inhibits their growth. Subsequent observations in several species have shown that auxin does not enter axillary buds directly. We have found similar results in Arabidopsis. Grafting studies indicated that auxin acts in the aerial tissue; hence, the principal site of auxin action is the shoot. To delineate the site of auxin action, the wild-type AXR1 coding sequence, which is required for normal auxin sensitivity, was expressed under the control of several tissue-specific promoters in the auxin-resistant, highly branched axr1-12 mutant background. AXR1 expression in the xylem and interfascicular schlerenchyma was found to restore the mutant branching to wild-type levels in both intact plants and isolated nodes, whereas expression in the phloem did not. Therefore, apically derived auxin can suppress branching by acting in the xylem and interfascicular schlerenchyma, or in a subset of these cells. PMID:12566587

  6. Peering into the separate roles of root and shoot cytosolic glutamine synthetase 1;2 by use of grafting experiments in Arabidopsis.

    PubMed

    Guan, Miao; Schjoerring, Jan K

    2016-11-01

    Cytosolic glutamine synthetase 1;2 plays an important role in the primary nitrogen assimilation in roots. Based on characterization of the knockout mutant gln1;2 we have recently demonstrated that Gln1;2 is also essential for ammonium handling in shoots. Here we built reciprocally grafted plants between wild type (Wt) and gln1;2 in order to separate the root and shoot roles of Gln1;2. Significant reduction in silique number and seed yield were observed in the grafted plants 1;2shoot/Wtroot relative to Wtshoot/1;2root and Wtshoot/Wtroot. Shoot Gln1;2 thus played a crucial role for seed production. Tracing experiments with (15)N showed that the relative nitrogen remobilization from vegetative organs to seeds in gln1;2 was just as efficient as in the Wt plants. This was the case although the total quantity of nitrogen in gln1;2 was significantly lower compared to that in the Wt. We conclude that the functions of shoot Gln1;2 are primarily associated with internal N signaling for establishment of seed yield capacity rather than with nitrogen remobilization.

  7. Live-imaging of the Arabidopsis inflorescence meristem.

    PubMed

    Heisler, Marcus G; Ohno, Carolyn

    2014-01-01

    The aboveground tissues of higher plants are derived from a small population of stem cells located at the shoot apex within a structure called the shoot apical meristem (SAM). The SAM not only includes the stem cells but also incorporates a region from which lateral organs arise. The SAM is therefore of prime interest for understanding plant growth and development. In this chapter we outline methods for using confocal microscopy to image the Arabidopsis inflorescence SAM. This method enables detailed examination of cell division and growth patterns (Reddy et al., Development 131:4225-4237, 2004) as well as gene expression and protein localization patterns over time (Heisler et al. Curr Biol 15:1899-1911, 2005). When combined with perturbation approaches, the method offers an extremely powerful system for investigating SAM function in great detail.

  8. Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development.

    PubMed

    Rosspopoff, Olga; Chelysheva, Liudmila; Saffar, Julie; Lecorgne, Lena; Gey, Delphine; Caillieux, Erwann; Colot, Vincent; Roudier, François; Hilson, Pierre; Berthomé, Richard; Da Costa, Marco; Rech, Philippe

    2017-04-01

    To understand how the identity of an organ can be switched, we studied the transformation of lateral root primordia (LRP) into shoot meristems in Arabidopsis root segments. In this system, the cytokinin-induced conversion does not involve the formation of callus-like structures. Detailed analysis showed that the conversion sequence starts with a mitotic pause and is concomitant with the differential expression of regulators of root and shoot development. The conversion requires the presence of apical stem cells, and only LRP at stages VI or VII can be switched. It is engaged as soon as cell divisions resume because their position and orientation differ in the converting organ compared with the undisturbed emerging LRP. By alternating auxin and cytokinin treatments, we showed that the root and shoot organogenetic programs are remarkably plastic, as the status of the same plant stem cell niche can be reversed repeatedly within a set developmental window. Thus, the networks at play in the meristem of a root can morph in the span of a couple of cell division cycles into those of a shoot, and back, through transdifferentiation.

  9. Phenotypic alterations in Arabidopsis thaliana plants caused by Rhodococcus fascians infection.

    PubMed

    de O Manes, Carmem-Lara; Beeckman, Tom; Ritsema, Tita; Van Montagu, Marc; Goethals, Koen; Holsters, Marcelle

    2004-04-01

    Arabidopsis thaliana (L.) Heynh. plants were challenged with Rhodococcus fascians at several developmental stages and using different inoculation procedures. A variety of morphological alterations was scored on the infected plants; some of them resembled phenotypes of A. thaliana mutants in their shoot apical meristem (SAM) organization. Infection with R. fascians did not affect SAM organization in wild type nor in SAM mutants. Anatomical studies on the new organs formed after infection with R. fascians demonstrated extensive bacterial colonization. Colonization and concomitant production of specific signals are the likely cause of malformations.

  10. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height.

    PubMed

    Davière, Jean-Michel; Wild, Michael; Regnault, Thomas; Baumberger, Nicolas; Eisler, Herfried; Genschik, Pascal; Achard, Patrick

    2014-08-18

    Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging. Here, we show that DELLAs directly regulate the activity of the plant-specific class I TCP transcription factor family, key regulators of cell proliferation. Our results demonstrate that class I TCP factors directly bind the promoters of core cell-cycle genes in Arabidopsis inflorescence shoot apices while DELLAs block TCP function by binding to their DNA-recognition domain. GAs antagonize such repression by promoting DELLA destruction and therefore cause a concomitant accumulation of TCP factors on promoters of cell-cycle genes. Consistent with this model, the quadruple mutant tcp8 tcp14 tcp15 tcp22 exhibits severe dwarfism and reduced responsiveness to GA action. Altogether, we conclude that GA-regulated DELLA-TCP interactions in inflorescence shoot apex provide a novel mechanism to control plant height.

  11. Independent Control of Organogenesis and Shoot Tip Abortion are Key Factors to Developmental Plasticity in Kiwifruit (Actinidia)

    PubMed Central

    Foster, Toshi M.; Seleznyova, Alla N.; Barnett, Andrew M.

    2007-01-01

    Background and Aims In kiwifruit (Actinidia), the number of nodes per shoot is highly variable and is influenced by genotype and environmental conditions. To understand this developmental plasticity, three key processes were studied: organogenesis by the shoot apical meristem during shoot growth; expansion of phytomers; and shoot tip abortion. Methods Studies were made of organogenesis and shoot tip abortion using light and scanning electron microscopy. The effect of temperature on shoot growth cessation was investigated using temperature indices over the budbreak period, and patterns of shoot tip abortion were quantified using stochastic modelling. Key Results All growing buds began organogenesis before budbreak. During shoot development, the number of phytomers initiated by the shoot apical meristem is correlated with the number of expanding phytomers and the mean internode length. Shoot tip abortion is preceded by growth cessation and is not brought about by the death of the shoot apical meristem, but occurs by tissue necrosis in the sub-apical zone. For most genotypes studied, the probability of shoot tip abortion is higher during expansion of the preformed part of the shoot. Lower temperatures during early growth result in a higher probability of shoot tip abortion. Conclusions Organogenesis and shoot tip abortion are controlled independently. All buds have the potential to become long shoots. Conditions that increase early growth rate postpone shoot tip abortion. PMID:17650513

  12. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis.

    PubMed

    Bollman, Krista M; Aukerman, Milo J; Park, Mee-Yeon; Hunter, Christine; Berardini, Tanya Z; Poethig, R Scott

    2003-04-01

    Loss-of-function mutations of HASTY (HST) affect many different processes in Arabidopsis development. In addition to reducing the size of both roots and lateral organs of the shoot, hst mutations affect the size of the shoot apical meristem, accelerate vegetative phase change, delay floral induction under short days, adaxialize leaves and carpels, disrupt the phyllotaxis of the inflorescence, and reduce fertility. Double mutant analysis suggests that HST acts in parallel to SQUINT in the regulation of phase change and in parallel to KANADI in the regulation of leaf polarity. Positional cloning demonstrated that HST is the Arabidopsis ortholog of the importin beta-like nucleocytoplasmic transport receptors exportin 5 in mammals and MSN5 in yeast. Consistent with a potential role in nucleocytoplasmic transport, we found that HST interacts with RAN1 in a yeast two-hybrid assay and that a HST-GUS fusion protein is located at the periphery of the nucleus. HST is one of at least 17 members of the importin-beta family in Arabidopsis and is the first member of this family shown to have an essential function in plants. The hst loss-of-function phenotype suggests that this protein regulates the nucleocytoplasmic transport of molecules involved in several different morphogenetic pathways, as well as molecules generally required for root and shoot growth.

  13. Microdissection of Shoot Meristem Functional Domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes th...

  14. Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction

    SciTech Connect

    Zhao, Shuai; Wei, Hui; Lin, Chien -Yuan; Zeng, Yining; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi -You

    2016-01-29

    In this study, it is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.

  15. A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in Arabidopsis thaliana

    PubMed Central

    Vanhaeren, Hannes; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    In Arabidopsis, leaves contribute to the largest part of the aboveground biomass. In these organs, light is captured and converted into chemical energy, which plants use to grow and complete their life cycle. Leaves emerge as a small pool of cells at the vegetative shoot apical meristem and develop into planar, complex organs through different interconnected cellular events. Over the last decade, numerous phenotyping techniques have been developed to visualize and quantify leaf size and growth, leading to the identification of numerous genes that contribute to the final size of leaves. In this review, we will start at the Arabidopsis rosette level and gradually zoom in from a macroscopic view on leaf growth to a microscopic and molecular view. Along this journey, we describe different techniques that have been key to identify important events during leaf development and discuss approaches that will further help unraveling the complex cellular and molecular mechanisms that underlie leaf growth. PMID:26217168

  16. The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis

    PubMed Central

    Burian, Agata; Raczyńska-Szajgin, Magdalena; Borowska-Wykręt, Dorota; Piatek, Agnieszka; Aida, Mitsuhiro; Kwiatkowska, Dorota

    2015-01-01

    Background and Aims The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved. Methods The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity. Key Results Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel–stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices. Conclusions The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel–stem fusions

  17. Pericycle cell proliferation and lateral root initiation in Arabidopsis.

    PubMed

    Dubrovsky, J G; Doerner, P W; Colón-Carmona, A; Rost, T L

    2000-12-01

    In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.

  18. PAUSED Encodes the Arabidopsis Exportin-t Ortholog1

    PubMed Central

    Hunter, Christine A.; Aukerman, Milo J.; Sun, Hui; Fokina, Maria; Poethig, R. Scott

    2003-01-01

    Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one—and perhaps several—additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3′-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export. PMID:12913168

  19. PAUSED encodes the Arabidopsis exportin-t ortholog.

    PubMed

    Hunter, Christine A; Aukerman, Milo J; Sun, Hui; Fokina, Maria; Poethig, R Scott

    2003-08-01

    Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one-and perhaps several-additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3'-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export.

  20. The role of mechanical forces in the shoot apical meristem

    NASA Astrophysics Data System (ADS)

    Steele, Charles

    2003-03-01

    The past work on the possible relation of mechanical instability of a shell surface to the patterns that develop in plants will be summarized. It is found that there is a linear relation between the epidermis (tunica) thickness and the wave length between new leaves (primordia). This relation is near the buckling wave length calculated from the geometry of the tunica and interior (corpus) cells. In recent work, the focus has been on the tip growth of root hairs, which is basic and deceptively simple. A single cell has a wall that is cylindrical with a prolate spheroid as an end cap. The growth takes place in the end cap. The measurements by S. Shaw provide detail of the shape of the end cap, and it is known that the mechanical loading which drives the growth consists of turgor pressure of magnitude 5 -10 atmospheres. However, the prolate spheroid has minumum stress at the apex where the growth is maximum. Recent work with J. Dumais toward understanding this paradox will be reported.

  1. Altered Expression of PERK Receptor Kinases in Arabidopsis Leads to Changes in Growth and Floral Organ Formation

    PubMed Central

    Haffani, Yosr Z; Silva-Gagliardi, Nancy F; Sewter, Sarah K; Grace Aldea, May; Zhao, Zhiying; Nakhamchik, Alina; Cameron, Robin K

    2006-01-01

    The proline-rich, extensin-like receptor kinase (PERK) family is characterized by a putative extracellular domain related to cell wall proteins, followed by a transmembrane domain and kinase domain. The original member, PERK1, was isolated from Brassica napus (BnPERK1) and 15 PERK1-related members were subsequently identified in the Arabidopsis thaliana genome. Ectopic expression and antisense suppression studies were performed using the BnPERK1 cDNA under the control of the 35S CaMV constitutive promoter and introduced into Arabidopsis. In the case of antisense suppression, the BnPERK1 cDNA shared sufficient sequence similarity to suppress several members of the At PERK family. In both sets of transgenic Arabidopsis, several heritable changes in growth and development were observed. Antisense BnPERK1 transgenic Arabidopsis showed various growth defects including loss of apical dominance, increased secondary branching, and floral organ defects. In contrast, Arabidopsis plants ectopically expressing BnPERK1 displayed a prolonged lifespan with increased lateral shoot production and seed set. Along with these phenotypic changes, aberrant deposits of callose and cellulose were also observed, suggestive of cell wall changes as a consequence of altered PERK expression. PMID:19516986

  2. MOL1 is required for cambium homeostasis in Arabidopsis.

    PubMed

    Gursanscky, Nial Rau; Jouannet, Virginie; Grünwald, Karin; Sanchez, Pablo; Laaber-Schwarz, Martina; Greb, Thomas

    2016-05-01

    Plants maintain pools of pluripotent stem cells which allow them to constantly produce new tissues and organs. Stem cell homeostasis in shoot and root tips depends on negative regulation by ligand-receptor pairs of the CLE peptide and leucine-rich repeat receptor-like kinase (LRR-RLK) families. However, regulation of the cambium, the stem cell niche required for lateral growth of shoots and roots, is poorly characterized. Here we show that the LRR-RLK MOL1 is necessary for cambium homeostasis in Arabidopsis thaliana. By employing promoter reporter lines, we reveal that MOL1 is active in a domain that is distinct from the domain of the positively acting CLE41/PXY signaling module. In particular, we show that MOL1 acts in an opposing manner to the CLE41/PXY module and that changing the domain or level of MOL1 expression both result in disturbed cambium organization. Underlining discrete roles of MOL1 and PXY, both LRR-RLKs are not able to replace each other when their expression domains are interchanged. Furthermore, MOL1 but not PXY is able to rescue CLV1 deficiency in the shoot apical meristem. By identifying genes mis-expressed in mol1 mutants, we demonstrate that MOL1 represses genes associated with stress-related ethylene and jasmonic acid hormone signaling pathways which have known roles in coordinating lateral growth of the Arabidopsis stem. Our findings provide evidence that common regulatory mechanisms in different plant stem cell niches are adapted to specific niche anatomies and emphasize the importance of a complex spatial organization of intercellular signaling cascades for a strictly bidirectional tissue production.

  3. Identification of marneral synthase, which is critical for growth and development in Arabidopsis.

    PubMed

    Go, Young S; Lee, Saet B; Kim, Hae J; Kim, Jungmook; Park, Hyo-Young; Kim, Jeong-Kook; Shibata, Kyomi; Yokota, Takao; Ohyama, Kiyoshi; Muranaka, Toshiya; Arseniyadis, Siméon; Suh, Mi C

    2012-12-01

    Plants produce structurally diverse triterpenoids, which are important for their life and survival. Most triterpenoids and sterols share a common biosynthetic intermediate, 2,3-oxidosqualene (OS), which is cyclized by 2,3-oxidosqualene cyclase (OSC). To investigate the role of an OSC, marneral synthase 1 (MRN1), in planta, we characterized a Arabidopsis mrn1 knock-out mutant displaying round-shaped leaves, late flowering, and delayed embryogenesis. Reduced growth of mrn1 was caused by inhibition of cell expansion and elongation. Marnerol, a reduced form of marneral, was detected in Arabidopsis overexpressing MRN1, but not in the wild type or mrn1. Alterations in the levels of sterols and triterpenols and defects in membrane integrity and permeability were observed in the mrn1. In addition, GUS expression, under the control of the MRN1 gene promoter, was specifically detected in shoot and root apical meristems, which are responsible for primary growth, and the mRNA expression of Arabidopsis clade II OSCs was preferentially observed in roots and siliques containing developing seeds. The eGFP:MRN1 was localized to the endoplasmic reticulum in tobacco protoplasts. Taken together, this report provides evidence that the unusual triterpenoid pathway via marneral synthase is important for the growth and development of Arabidopsis.

  4. Left ventricular apical diseases.

    PubMed

    Cisneros, Silvia; Duarte, Ricardo; Fernandez-Perez, Gabriel C; Castellon, Daniel; Calatayud, Julia; Lecumberri, Iñigo; Larrazabal, Eneritz; Ruiz, Berta Irene

    2011-08-01

    There are many disorders that may involve the left ventricular (LV) apex; however, they are sometimes difficult to differentiate. In this setting cardiac imaging methods can provide the clue to obtaining the diagnosis. The purpose of this review is to illustrate the spectrum of diseases that most frequently affect the apex of the LV including Tako-Tsubo cardiomyopathy, LV aneurysms and pseudoaneurysms, apical diverticula, apical ventricular remodelling, apical hypertrophic cardiomyopathy, LV non-compaction, arrhythmogenic right ventricular dysplasia with LV involvement and LV false tendons, with an emphasis on the diagnostic criteria and imaging features. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13244-011-0091-6) contains supplementary material, which is available to authorized users.

  5. Ferns: the missing link in shoot evolution and development

    PubMed Central

    Plackett, Andrew R. G.; Di Stilio, Verónica S.; Langdale, Jane A.

    2015-01-01

    Shoot development in land plants is a remarkably complex process that gives rise to an extreme diversity of forms. Our current understanding of shoot developmental mechanisms comes almost entirely from studies of angiosperms (flowering plants), the most recently diverged plant lineage. Shoot development in angiosperms is based around a layered multicellular apical meristem that produces lateral organs and/or secondary meristems from populations of founder cells at its periphery. In contrast, non-seed plant shoots develop from either single apical initials or from a small population of morphologically distinct apical cells. Although developmental and molecular information is becoming available for non-flowering plants, such as the model moss Physcomitrella patens, making valid comparisons between highly divergent lineages is extremely challenging. As sister group to the seed plants, the monilophytes (ferns and relatives) represent an excellent phylogenetic midpoint of comparison for unlocking the evolution of shoot developmental mechanisms, and recent technical advances have finally made transgenic analysis possible in the emerging model fern Ceratopteris richardii. This review compares and contrasts our current understanding of shoot development in different land plant lineages with the aim of highlighting the potential role that the fern C. richardii could play in shedding light on the evolution of underlying genetic regulatory mechanisms. PMID:26594222

  6. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.

    PubMed

    Cui, Yuchao; Rao, Shaofei; Chang, Beibei; Wang, Xiaoshuang; Zhang, Kaidian; Hou, Xueliang; Zhu, Xueyi; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong; Yang, Chengwei; Huang, Tao

    2015-10-01

    Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein.

  7. Developmental anatomy of blueberry (Vaccinium corymbosum L. ‘Aurora’) shoot regeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The culture of Vaccinium corymbosum L. ’Aurora’ leaves on regeneration medium results in the regeneration of adventitious shoots. We present anatomical evidence that these new shoot apices are directly regenerated from the cultured blades. Mounds of densely staining cells, which formed from epidermi...

  8. Aseptic multiplication of banana from excised floral apices.

    PubMed

    Cronauer, S S; Krikorian, A D

    1985-08-01

    Most economically important bananas and plantains are large triploid seedless herbs that must be propagated vegetatively by removing small side shoots or "suckers" from the parent plant or by planting seed pieces of larger corms. Consequently, multiplication of stock material is time consuming, Recently, the rapid production of young banana plantlets suitable for use as "seed" material has been described. Vegetative shoot apices were isolated and multiplied using aseptic tissue culture techniques. Although these multiplication systems, once established, can produce thousands of plants in a relatively short period of time, their establishment necessitates the initial sacrifice of an individual specimen, which may not always be desirable or prudent should a limited parent stock be available. We describe here the production and multiplication of rooted banana plantlets from the isolation and culture of terminal floral apices.

  9. Molecule mechanism of stem cells in Arabidopsis thaliana.

    PubMed

    Zhang, Wenjin; Yu, Rongming

    2014-07-01

    Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  10. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis.

    PubMed

    Chen, Hongyu; Zou, Wenxuan; Zhao, Jie

    2015-04-01

    Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development.

  11. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana.

    PubMed

    Vankova, Radomira; Landa, Premysl; Podlipna, Radka; Dobrev, Petre I; Prerostova, Sylva; Langhansova, Lenka; Gaudinova, Alena; Motkova, Katerina; Knirsch, Vojtech; Vanek, Tomas

    2017-03-27

    At present, nanoparticles have been more and more used in a wide range of areas. However, very little is known about the mechanisms of their impact on plants, as both positive and negative effects have been reported. As plant interactions with the environment are mediated by plant hormones, complex phytohormone analysis has been performed in order to characterize the effect of ZnO nanoparticles (mean size 30nm, concentration range 0.16-100mgL(-1)) on Arabidopsis thaliana plants. Taking into account that plant hormones exhibit high tissue-specificity as well as an intensive cross-talk in the regulation of growth and development as well as defense, plant responses were followed by determination of the content of five main phytohormones (cytokinins, auxins, abscisic acid, salicylic acid and jasmonic acid) in apices, leaves and roots. Increasing nanoparticle concentration was associated with gradually suppressed biosynthesis of the growth promoting hormones cytokinins and auxins in shoot apical meristems (apices). In contrast, cis-zeatin, a cytokinin associated with stress responses, was elevated by 280% and 590% upon exposure to nanoparticle concentrations 20 and 100mgL(-1), respectively, in roots. Higher ZnO nanoparticle doses resulted in up-regulation of the stress hormone abscisic acid, mainly in apices and leaves. In case of salicylic acid, stimulation was found in leaves and roots. The other stress hormone jasmonic acid (as well as its active metabolite jasmonate isoleucine) was suppressed at the presence of nanoparticles. The earliest response to nanoparticles, associated with down-regulation of growth as well as of cytokinins and auxins, was observed in apices. At higher dose, up-regulation of abscisic acid, was detected. This increase, together with elevation of the other stress hormone - salicylic acid, indicates that plants sense nanoparticles as severe stress. Gradual accumulation of cis-zeatin in roots may contribute to relatively higher stress resistance

  12. Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases.

    PubMed

    Forner, Joachim; Pfeiffer, Anne; Langenecker, Tobias; Manavella, Pablo A; Manavella, Pablo; Lohmann, Jan U

    2015-01-01

    Transcription activator-like effector nucleases (TALENs) are custom-made bi-partite endonucleases that have recently been developed and applied for genome engineering in a wide variety of organisms. However, they have been only scarcely used in plants, especially for germline-modification. Here we report the efficient creation of small, germline-transmitted deletions in Arabidopsis thaliana via TALENs that were delivered by stably integrated transgenes. Using meristem specific promoters to drive expression of two TALEN arms directed at the CLV3 coding sequence, we observed very high phenotype frequencies in the T2 generation. In some instances, full CLV3 loss-of-function was already observed in the T1 generation, suggesting that transgenic delivery of TALENs can cause highly efficient genome modification. In contrast, constitutive TALEN expression in the shoot apical meristem (SAM) did not cause additional phenotypes and genome re-sequencing confirmed little off-target effects, demonstrating exquisite target specificity.

  13. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    PubMed

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  14. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  15. Identification of MAIN, a factor involved in genome stability in the meristems of Arabidopsis thaliana.

    PubMed

    Wenig, Ulrich; Meyer, Stefan; Stadler, Ruth; Fischer, Simon; Werner, Dagmar; Lauter, Anja; Melzer, Michael; Hoth, Stefan; Weingartner, Magdalena; Sauer, Norbert

    2013-08-01

    Stem cells in the root and shoot apical meristem provide the descendant cells required for growth and development throughout the lifecycle of a plant. We found that mutations in the Arabidopsis MAINTENANCE OF MERISTEMS (MAIN) gene led to plants with distorted stem cell niches in which stem cells are not maintained and undergo premature differentiation or cell death. The malfunction of main meristems leads to short roots, mis-shaped leaves, reduced fertility and partial fasciation of stems. MAIN encodes a nuclear-localized protein and is a member of a so far uncharacterized plant-specific gene family. As main mutant plants are hypersensitive to DNA-damaging agents, expression of genes involved in DNA repair is induced and dead cells with damaged DNA accumulate in the mutant meristems, we propose that MAIN is required for meristem maintenance by sustaining genome integrity in stem cells and their descendants cells.

  16. The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression.

    PubMed

    Aukerman, M J; Lee, I; Weigel, D; Amasino, R M

    1999-04-01

    Mutations in the LUMINIDEPENDENS (LD) gene of Arabidopsis thaliana (L.) Heynh. (Arabidopsis) confer a late-flowering phenotype, indicating that LD normally functions to promote the floral transition. RNA and protein blot analyses, along with the analysis of transgenic plants containing a fusion between a genomic fragment of LD and the reporter gene uidA (GUS), indicate that LD is expressed primarily ipical proliferative regions of the shoot and root, including the shoot apical meristem and leaf primordia. Subcellular localization studies indicate that LD is a nuclear protein, consistent with its previously proposed transcriptional regulatory role. We have also found that in an apetala1 cauliflower (ap1 cal) background the ld mutation converts the reproductive shoot apex to a more vegetative state, a phenotype that is similar to that seen for the leafy (lfy) mutant. Furthermore, in situ hybridization analysis indicates that LFY levels are drastically reduced at the apex of ld ap1 cal plants after bolting. These data are consistent with the idea that at least one function of LD is to participate in the regulation of LFY.

  17. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  18. Global Regulation of Embryonic Patterning in Arabidopsis by MicroRNAs1[W][OPEN

    PubMed Central

    Seefried, William F.; Willmann, Matthew R.; Clausen, Rachel L.; Jenik, Pablo D.

    2014-01-01

    The development of the embryo in Arabidopsis (Arabidopsis thaliana) involves a carefully controlled set of cell divisions and cell fate decisions that lead to a mature embryo containing shoot and root meristems and all basic tissue types. Over the last 20 years, a number of transcriptional regulators of embryonic patterning have been described, but little is known about the role of posttranscriptional regulators such as microRNAs (miRNAs). Previous work has centered on the study of null or very weak alleles of miRNA biosynthetic genes, but these mutants either arrest early in embryogenesis or have wild-type-looking embryos. Here, we significantly extend those analyses by characterizing embryos mutant for a strong hypomorphic allele of DICER-LIKE1 (dcl1-15). Our data demonstrate that miRNAs are required for the patterning of most regions of the embryo, with the exception of the protoderm. In mutant embryos with the most severe morphological defects, the majority of tissue identities are lost. Different levels of miRNAs appear to be required to specify cell fates in various regions of the embryo. The suspensor needs the lowest levels, followed by the root apical meristem and hypocotyl, cotyledons, and shoot apical meristem. Furthermore, we show that erecta acts as a suppressor of dcl1-15, a novel role for this signaling pathway in embryos. Our results also indicate that the regulation of the messenger RNA levels of miRNA targets involves not just the action of miRNAs but has a significant transcriptional component as well. PMID:24784759

  19. The ULT trxG factors play a role in arabidopsis fertilization

    PubMed Central

    Monfared, Mona M; Fletcher, Jennifer C

    2014-01-01

    Trithorax group (trxG) and Polycomb group (PcG) proteins are epigenetic modifiers that play key roles in eukaryotic development by promoting active or repressive gene expression states, respectively. Although PcG proteins have well-defined roles in controlling developmental transitions, cell fate decisions and cellular differentiation in plants, relatively little is known about the functions of plant trxG factors. We recently determined the biological roles for the ULT1 and ULT2 trxG genes during Arabidopsis vegetative and reproductive development. Our study revealed that ULT1 and ULT2 genes have overlapping activities in regulating Arabidopsis shoot and floral stem cell activity, and that they have a redundant function in establishing the apical-basal polarity axis of the gynoecium. Here we present data that ult1 and ult1 ult2 siliques contain a significant proportion of aborted ovules, supporting an additional role for ULT1 in Arabidopsis fertility. Our results add to the number of plant developmental processes that are regulated by trxG activity. PMID:25531183

  20. Two Cases of Apical Ballooning Syndrome Masking Apical Hypertrophic Cardiomyopathy

    PubMed Central

    Roy, Ranjini Raina; Hakim, Fayaz A.; Hurst, R. Todd; Simper, David; Appleton, Christopher P.

    2014-01-01

    Apical akinesis and dilation in the absence of obstructive coronary artery disease is a typical feature of stress-induced (takotsubo) cardiomyopathy, whereas apical hypertrophy is seen in apical-variant hypertrophic cardiomyopathy. We report the cases of 2 patients who presented with takotsubo cardiomyopathy and were subsequently found to have apical-variant hypertrophic cardiomyopathy, after the apical ballooning from the takotsubo cardiomyopathy had resolved. The first patient, a 43-year-old woman with a history of alcohol abuse, presented with shortness of breath, electrocardiographic and echocardiographic features consistent with takotsubo cardiomyopathy, and no significant coronary artery disease. An echocardiogram 2 weeks later revealed a normal left ventricular ejection fraction and newly apparent apical hypertrophy. The 2nd patient, a 70-year-old woman with pancreatitis, presented with chest pain, apical akinesis, and a left ventricular ejection fraction of 0.39, consistent with takotsubo cardiomyopathy. One month later, her left ventricular ejection fraction was normal; however, hypertrophy of the left ventricular apex was newly noted. To our knowledge, these are the first reported cases in which apical-variant hypertrophic cardiomyopathy was masked by apical ballooning from stress-induced cardiomyopathy. PMID:24808780

  1. UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.

    PubMed

    Wilkinson, M. D.; Haughn, G. W.

    1995-09-01

    A novel gene that is involved in regulating flower initiation and development has been identified in Arabidopsis. This gene has been designated UNUSUAL FLORAL ORGANS (UFO), with five corresponding nuclear recessive alleles designated ufo[middot]1 to ufo[middot]5. Under short day-length conditions, ufo homozygotes generate more coflorescences than do the wild type, and coflorescences often appear apical to the first floral shoot, resulting in a period of inflorescence development in which regions of floral and coflorescence shoots are produced alternately. ufo enhances the phenotype of weak leafy alleles, and the double mutant Ufo-1 Apetala1-1 produces only coflorescence-like shoots, suggesting that these two genes control different aspects of floral initiation. Floral development was also altered in Ufo plants. Ufo flowers have an altered organ number in all whorls, and organs in the first, second, and third whorls exhibit variable homeotic transformations. Ufo single and double mutant phenotypes suggest that the floral changes result from reduction in class B floral homeotic gene expression and fluctuations in the expression boundaries of class C function and FLO10. Surprisingly, in situ hybridization analysis revealed no obvious differences in expression pattern or level in developing Ufo flowers compared with that of the wild type for any class B or C gene studied. We propose that UFO acts in concert with known floral initiation genes and regulates the domains of floral homeotic gene function.

  2. N-Myristoylation Regulates the SnRK1 Pathway in Arabidopsis[W

    PubMed Central

    Pierre, Michèle; Traverso, José A.; Boisson, Bertrand; Domenichini, Séverine; Bouchez, David; Giglione, Carmela; Meinnel, Thierry

    2007-01-01

    Cotranslational and posttranslational modifications are increasingly recognized as important in the regulation of numerous essential cellular functions. N-myristoylation is a lipid modification ensuring the proper function and intracellular trafficking of proteins involved in many signaling pathways. Arabidopsis thaliana, like human, has two tightly regulated N-myristoyltransferase (NMT) genes, NMT1 and NMT2. Characterization of knockout mutants showed that NMT1 was strictly required for plant viability, whereas NMT2 accelerated flowering. NMT1 impairment induced extremely severe defects in the shoot apical meristem during embryonic development, causing growth arrest after germination. A transgenic plant line with an inducible NMT1 gene demonstrated that NMT1 expression had further effects at later stages. NMT2 did not compensate for NMT1 in the nmt1-1 mutant, but NMT2 overexpression resulted in shoot and root meristem abnormalities. Various data from complementation experiments in the nmt1-1 background, using either yeast or human NMTs, demonstrated a functional link between the developmental arrest of nmt1-1 mutants and the myristoylation state of an extremely small set of protein targets. We show here that protein N-myristoylation is systematically associated with shoot meristem development and that SnRK1 (for SNF1-related kinase) is one of its essential primary targets. PMID:17827350

  3. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana.

    PubMed

    White, P J; Bowen, H C; Parmaguru, P; Fritz, M; Spracklen, W P; Spiby, R E; Meacham, M C; Mead, A; Harriman, M; Trueman, L J; Smith, B M; Thomas, B; Broadley, M R

    2004-08-01

    Selenium (Se) is an essential plant micronutrient, but is toxic at high tissue concentrations. It is chemically similar to sulphur (S), an essential plant macronutrient. The interactions between Se and S nutrition were investigated in the model plant Arabidopsis thaliana (L.) Heynh. Arabidopsis plants were grown on agar containing a complete mineral complement and various concentrations of selenate and sulphate. The Se/S concentration ratio in the shoot ([Se](shoot)/[S](shoot)) showed a complex dependence on the ratio of selenate to sulphate concentration in the agar ([Se](agar)/[S](agar)). Increasing [S](agar) increased shoot fresh weight (FW) and [S](shoot), but decreased [Se](shoot). Increasing [Se](agar) increased both [Se](shoot) and [S](shoot), but reduced shoot FW. The reduction in shoot FW in the presence of Se was linearly related to the shoot Se/S concentration ratio. These data suggest (i) that Se and S enter Arabidopsis through multiple transport pathways with contrasting sulphate/selenate selectivities, whose activities vary between plants of contrasting nutritional status, (ii) that rhizosphere sulphate inhibits selenate uptake, (iii) that rhizosphere selenate promotes sulphate uptake, possibly by preventing the reduction in the abundance and/or activity of sulphate transporters by sulphate and/or its metabolites, and (iv) that Se toxicity occurs because Se and S compete for a biochemical process, such as assimilation into amino acids of essential proteins.

  4. SUPPRESSOR OF FRIGIDA3 Encodes a Nuclear ACTIN-RELATED PROTEIN6 Required for Floral Repression in ArabidopsisW⃞

    PubMed Central

    Choi, Kyuha; Kim, Sanghee; Kim, Sang Yeol; Kim, Minsoo; Hyun, Youbong; Lee, Horim; Choe, Sunghwa; Kim, Sang-Gu; Michaels, Scott; Lee, Ilha

    2005-01-01

    Flowering traits in winter annual Arabidopsis thaliana are conferred mainly by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a flowering repressor and is regulated by multiple flowering pathways. We isolated an early-flowering mutant, suppressor of FRIGIDA3 (suf3), which also shows leaf serration, weak apical dominance, and infrequent conversion of the inflorescence shoot to a terminal flower. The suf3 mutation caused a decrease in the transcript level of FLC in both a FRI-containing line and autonomous pathway mutants. However, suf3 showed only a partial reduction of FLC transcript level, although it largely suppressed the late-flowering phenotype. In addition, the suf3 mutation caused acceleration of flowering in both 35S-FLC and a flc null mutant, indicating that SUF3 regulates additional factor(s) for the repression of flowering. SUF3 is highly expressed in the shoot apex, but the expression is not regulated by FRI, autonomous pathway genes, or vernalization. SUF3 encodes the nuclear ACTIN-RELATED PROTEIN6 (ARP6), the homolog of which in yeast is a component of an ATP-dependent chromatin-remodeling SWR1 complex. Our analyses showed that SUF3 regulates FLC expression independent of vernalization, FRI, and an autonomous pathway gene, all of which affect the histone modification of FLC chromatin. Subcellular localization using a green fluorescent protein fusion showed that Arabidopsis ARP6 is located at distinct regions of the nuclear periphery. PMID:16155178

  5. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution.

    PubMed

    Giehl, Ricardo F H; Lima, Joni E; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.

  6. The phytopathogen Rhodococcus fascians breaks apical dominance and activates axillary meristems by inducing plant genes involved in hormone metabolism.

    PubMed

    Simón-Mateo, Carmen; Depuydt, Stephen; DE Oliveira Manes, Carmem Lara; Cnudde, Filip; Holsters, Marcelle; Goethals, Koen; Vereecke, Danny

    2006-03-01

    SUMMARY Rhodococcus fascians is a Gram-positive bacterium that interacts with many plant species and induces multiple shoots through a combination of activation of dormant axillary meristems and de novo meristem formation. Although phenotypic analysis of the symptoms of infected plants clearly demonstrates a disturbance of the phytohormonal balance and an activation of the cell cycle, the actual mechanism of symptom development and the targets of the bacterial signals are unknown. To elucidate the molecular pathways that are responsive to R. fascians infection, differential display was performed on Nicotiana tabacum as a host. Four differentially expressed genes could be identified that putatively encode a senescence-associated protein, a gibberellin 2-oxidase, a P450 monooxygenase and a proline dehydrogenase. The differential expression of the three latter genes was confirmed on infected Arabidopsis thaliana plants by quantitative reverse transcription polymerase chain reactions, supporting their general function in R. fascians-induced symptom development. The role of these genes in hormone metabolism, especially of gibberellin and abscisic acid, in breaking apical dominance and in activating axillary meristems, which are processes associated with symptom development, is discussed.

  7. Violence and school shootings.

    PubMed

    Flannery, Daniel J; Modzeleski, William; Kretschmar, Jeff M

    2013-01-01

    Multiple-homicide school shootings are rare events, but when they happen they significantly impact individuals, the school and the community. We focus on multiple-homicide incidents and identified mental health issues of shooters. To date, studies of school shootings have concluded that no reliable profile of a shooter exists, so risk should be assessed using comprehensive threat assessment protocols. Existing studies primarily utilize retrospective case histories or media accounts. The field requires more empirical and systematic research on all types of school shootings including single victim incidents, those that result in injury but not death and those that are successfully averted. We discuss current policies and practices related to school shootings and the role of mental health professionals in assessing risk and supporting surviving victims.

  8. Close Quarters Combat Shooting

    DTIC Science & Technology

    2010-04-14

    1994.at the Palm Beach Community College Criminal Justice Institute ofLakeworth, Florida to the more dynamic force-on-force, realistic scenario...Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC...Shooting is the Superior Method for Close Quarters Combat 5b. GRANT NUMBER Shooting" N/A Sc. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR( S ) Sd. PROJECT

  9. Water availability limits tolerance of apical damage in the Chilean tarweed Madia sativa

    NASA Astrophysics Data System (ADS)

    Gonzáles, Wilfredo L.; Suárez, Lorena H.; Molina-Montenegro, Marco A.; Gianoli, Ernesto

    2008-07-01

    Plant tolerance is the ability to reduce the negative impact of herbivory on plant fitness. Numerous studies have shown that plant tolerance is affected by nutrient availability, but the effect of soil moisture has received less attention. We evaluated tolerance of apical damage (clipping that mimicked insect damage) under two watering regimes (control watering and drought) in the tarweed Madia sativa (Asteraceae). We recorded number of heads with seeds and total number of heads as traits related to fitness. Net photosynthetic rate, water use efficiency, number of branches, shoot biomass, and the root:shoot biomass ratio were measured as traits potentially related to tolerance via compensatory responses to damage. In the drought treatment, damaged plants showed ≈43% reduction in reproductive fitness components in comparison with undamaged plants. In contrast, there was no significant difference in reproductive fitness between undamaged and damaged plants in the control watering treatment. Shoot biomass was not affected by apical damage. The number of branches increased after damage in both water treatments but this increase was limited by drought stress. Net photosynthetic rate increased in damaged plants only in the control watering treatment. Water use efficiency increased with drought stress and, in plants regularly watered, also increased after damage. Root:shoot ratio was higher in the low water treatment and damaged plants tended to reduce root:shoot ratio only in this water treatment. It is concluded that water availability limits tolerance to apical damage in M. sativa, and that putative compensatory mechanisms are differentially affected by water availability.

  10. Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization

    PubMed Central

    Zermiani, Monica; Begheldo, Maura; Nonis, Alessandro; Palme, Klaus; Mizzi, Luca; Morandini, Piero; Nonis, Alberto; Ruperti, Benedetto

    2015-01-01

    Background and Aims The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. Methods Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. Key Results Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. Conclusions The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity. PMID:26078466

  11. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    PubMed Central

    Coelho, Carla P.; Minow, Mark A. A.; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members. PMID:24904616

  12. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    PubMed

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.

  13. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana.

    PubMed

    Lu, Chaofu Lu; de Noyer, Shen Bayon; Hobbs, Douglas H; Kang, Jinling; Wen, Yancheng; Krachtus, Dieter; Hills, Matthew J

    2003-05-01

    Triacylglycerol (TAG) is the major carbon storage reserve in oilseeds such as Arabidopsis. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyses the final step of the TAG synthesis pathway. Although TAG is mainly accumulated during seed development, and DGAT has presumably the highest activity in developing seeds, we show here that TAG synthesis is also actively taking place during germination and seedling development in Arabidopsis. The expression pattern of the DGAT1 gene was studied in transgenic plants containing the reporter gene beta-glucuronidase (GUS) fused with DNA sequences flanking the DGAT1 coding region. GUS activity was not only detected in developing seeds and pollen, which normally accumulate storage TAG, but also in germinating seeds and seedlings. Western blots showed that DGAT1 protein is present in several tissues, though is most abundant in developing seeds. In seedlings, DGAT1 is expressed in shoot and root apical regions, correlating with rapid cell division and growth. The expression of GUS in seedlings was consistent with the results of RNA gel blot analyses, precursor feeding and DGAT assay. In addition, DGAT1 gene expression is up-regulated by glucose and associated with glucose-induced changes in seedling development.

  14. Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs.

    PubMed

    David, Rakesh; Burgess, Alice; Parker, Brian; Li, Jun; Pulsford, Kalinya; Sibbritt, Tennille; Preiss, Thomas; Searle, Iain Robert

    2017-03-01

    Posttranscriptional methylation of RNA cytosine residues to 5-methylcytosine (m(5)C) is an important modification with diverse roles, such as regulating stress responses, stem cell proliferation, and RNA metabolism. Here, we used RNA bisulfite sequencing for transcriptome-wide quantitative mapping of m(5)C in the model plant Arabidopsis thaliana We discovered more than a thousand m(5)C sites in Arabidopsis mRNAs, long noncoding RNAs, and other noncoding RNAs across three tissue types (siliques, seedling shoots, and roots) and validated a number of these sites. Quantitative differences in methylated sites between these three tissues suggest tissue-specific regulation of m(5)C. Perturbing the RNA m(5)C methyltransferase TRM4B resulted in the loss of m(5)C sites on mRNAs and noncoding RNAs and reduced the stability of tRNA(Asp(GTC)) We also demonstrate the importance of m(5)C in plant development, as trm4b mutants have shorter primary roots than the wild type due to reduced cell division in the root apical meristem. In addition, trm4b mutants show increased sensitivity to oxidative stress. Finally, we provide insights into the targeting mechanism of TRM4B by demonstrating that a 50-nucleotide sequence flanking m(5)C C3349 in MAIGO5 mRNA is sufficient to confer methylation of a transgene reporter in Nicotiana benthamiana.

  15. NADH-dependent glutamate synthase participated in ammonium assimilation in Arabidopsis root

    PubMed Central

    Kojima, Soichi; Konishi, Noriyuki; Beier, Marcel Pascal; Ishiyama, Keiki; Maru, Ikumi; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2014-01-01

    Higher plants have 2 GOGAT species, Fd-GOGAT and NADH-GOGAT. While Fd-GOGAT mainly assimilates ammonium in leaves, which is derived from photorespiration, the function of NADH-GOGAT, which is highly expressed in roots,1 needs to be elucidated. The aim of this study was to clarify the role of NADH-GOGAT in Arabidopsis roots. The supply of ammonium to the roots caused an accumulation of NADH-GOGAT, while Fd-GOGAT 1 and Fd-GOGAT 2 showed no response. A promoter–GUS fusion analysis and immunohistochemistry showed that NADH-GOGAT was located in non-green tissues like vascular bundles, shoot apical meristem, pollen, stigma, and roots. The localization of NADH-GOGAT and Fd-GOGAT was not overlapped. NADH-GOGAT T-DNA insertion lines showed a reduction of glutamate and biomass under normal CO2 conditions. These data emphasizes the importance of NADH-GOGAT in the ammonium assimilation of Arabidopsis roots. PMID:25763622

  16. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  17. Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls

    PubMed Central

    Alvarez, Ashley Ann; Han, Sang Won; Toyota, Masatsugu; Brillada, Carla; Zheng, Jiameng; Gilroy, Simon

    2016-01-01

    Gravitropism in Arabidopsis shoots depends on the sedimentation of amyloplasts in the endodermis, and a complex interplay between the vacuole and F-actin. Gravity response is inhibited in zigzag-1 (zig-1), a mutant allele of VTI11, which encodes a SNARE protein involved in vacuole fusion. zig-1 seedlings have fragmented vacuoles that fuse after treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and underscore a role of phosphoinositides in vacuole fusion. Using live-cell imaging with a vertical stage microscope, we determined that young endodermal cells below the apical hook that are smaller than 70 μm in length are the graviperceptive cells in dark-grown hypocotyls. This result was confirmed by local wortmannin application to the top of zig-1 hypocotyls, which enhanced shoot gravitropism in zig-1 mutants. Live-cell imaging of zig-1 hypocotyl endodermal cells indicated that amyloplasts are trapped between juxtaposed vacuoles and their movement is severely restricted. Wortmannin-induced fusion of vacuoles in zig-1 seedlings increased the formation of transvacuolar strands, enhanced amyloplast sedimentation and partially suppressed the agravitropic phenotype of zig-1 seedlings. Hypergravity conditions at 10 g were not sufficient to displace amyloplasts in zig-1, suggesting the existence of a physical tether between the vacuole and amyloplasts. Our results overall suggest that vacuole membrane remodeling may be involved in regulating the association of vacuoles and amyloplasts during graviperception. PMID:27816929

  18. Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock.

    PubMed

    Pereira-Netto, Adaucto B; Roessner, Ute; Fujioka, Shozo; Bacic, Antony; Asami, Tadao; Yoshida, Shigeo; Clouse, Steven D

    2009-04-01

    To help unravel the role of brassinosteroids (BRs) in the control of shooting, we treated the shoots of Marubakaido apple rootstock (Malus prunifolia (Willd.) Borkh cv. Marubakaido) with brassinolide and Brz 220, an inhibitor of BR biosynthesis. Brassinolide differentially affected elongation and formation of main and primary lateral shoots, which resulted in reduced apical dominance. Treatment of shoots with increasing doses of Brz 220 led to a progressive inhibition of main shoot elongation. Eight different BRs were also identified in the shoots of M. prunifolia. Progressive decline in 6-deoxocathasterone, 6-deoxotyphasterol and castasterone was related to increased doses of Brz 220. Analysis of the metabolic profiles between a fluoro-containing derivative of 28-homocastasterone (5F-HCS) using treated and untreated shoots demonstrated that no 5F-HCS-specific metabolite was identified. However, 4 weeks after the treatment, fructose, glucose and the putatively identified gulonic acid were higher in 5F-HCS-treated shoots, compared to untreated shoots. These results indicate that the previously reported 5F-HCS-induced stimulation of shoot elongation and formation of new shoots in the Marubakaido shoots is under the control of changes in the endogenous BR pool. In addition, the results presented in this report also indicate that the 5F-HCS-induced shooting likely involves a variety of different mechanisms and consequently does not result from changes in the endogenous levels of any single metabolite.

  19. Point and Shoot Astronomy

    NASA Astrophysics Data System (ADS)

    Hoot, John E.

    2011-05-01

    A new generation of point and shoot digital cameras, when combined with open source firmware enhancements can operate as astrographs. This paper explores the research and astro-photographic opportunities and capabilities offered by this pairing of mass production optics and open source functional extensions that retail for as little as $200.

  20. School Shootings Stun Reservation

    ERIC Educational Resources Information Center

    Borja, Rhea R.; Cavanagh, Sean

    2005-01-01

    This article deals with the impact brought by the school shootings at Red Lake Indian Reservation in Minnesota to the school community. A deeply troubled 16-year-old student shot and killed seven other people and himself at a high school. The nation's deadliest school attack since the 1999 slayings at Colorado's suburban Columbine High School took…

  1. Herbicide safener-inducible gene expression in Arabidopsis thaliana.

    PubMed

    De Veylder, L; Van Montagu, M; Inzé, D

    1997-05-01

    The potential use of a new chemical-inducible gene expression system in Arabidopsis thaliana has been examined. The system is based on the maize In2-2 promoter which is activated by benzenesulfonamide herbicide safeners. Plants transformed with the beta-glucuronidase (gus) reporter gene under the control of the In2-2 promoter were grown in the presence of different safeners and the induced GUS activity pattern was studied histochemically. In the absence of safeners, the In2-2 promoter was not active. Application of different safeners induced distinct gus expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. Plants maintained continuously on inducing concentrations of the safeners were retarded in growth. The growth inhibition effects of the Sa5 safener could be overcome in a sulfonylurea-resistant background. In2-2 promoter activity could also be induced by the sulfonylurea herbicide chlorsulfuron. In the sulfonylurea-resistant background, which derives from herbicide-resistant acetolactate synthase activity, induction of the In2-2 promoter by chlorsulfuron was lower. Furthermore, branched-chain amino acids, known to inhibit acetolactate synthase activity, also induced In2-2 promoter activity. Our data suggest a strong correlation between In2-2 expression and inhibition of the acetolactate synthase activity.

  2. Meristem size contributes to the robustness of phyllotaxis in Arabidopsis

    PubMed Central

    Landrein, Benoit; Refahi, Yassin; Besnard, Fabrice; Hervieux, Nathan; Mirabet, Vincent; Boudaoud, Arezki; Vernoux, Teva; Hamant, Olivier

    2015-01-01

    Using the plant model Arabidopsis, the relationship between day length, the size of the shoot apical meristem, and the robustness of phyllotactic patterns were analysed. First, it was found that reducing day length leads to an increased meristem size and an increased number of alterations in the final positions of organs along the stem. Most of the phyllotactic defects could be related to an altered tempo of organ emergence, while not affecting the spatial positions of organ initiations at the meristem. A correlation was also found between meristem size and the robustness of phyllotaxis in two accessions (Col-0 and WS-4) and a mutant (clasp-1), independent of growth conditions. A reduced meristem size in clasp-1 was even associated with an increased robustness of the phyllotactic pattern, beyond what is observed in the wild type. Interestingly it was also possible to modulate the robustness of phyllotaxis in these different genotypes by changing day length. To conclude, it is shown first that robustness of the phyllotactic pattern is not maximal in the wild type, suggesting that, beyond its apparent stereotypical order, the robustness of phyllotaxis is regulated. Secondly, a role for day length in the robustness of the phyllotaxis was also identified, thus providing a new example of a link between patterning and environment in plants. Thirdly, the experimental results validate previous model predictions suggesting a contribution of meristem size in the robustness of phyllotaxis via the coupling between the temporal sequence and spatial pattern of organ initiations. PMID:25504644

  3. The Binomial Distribution in Shooting

    ERIC Educational Resources Information Center

    Chalikias, Miltiadis S.

    2009-01-01

    The binomial distribution is used to predict the winner of the 49th International Shooting Sport Federation World Championship in double trap shooting held in 2006 in Zagreb, Croatia. The outcome of the competition was definitely unexpected.

  4. Pollen-expressed transcription factor 2 encodes a novel plant-specific TFIIB-related protein that is required for pollen germination and embryogenesis in Arabidopsis.

    PubMed

    Niu, Qian-Kun; Liang, Yan; Zhou, Jing-Jing; Dou, Xiao-Ying; Gao, Shu-Chen; Chen, Li-Qun; Zhang, Xue-Qin; Ye, De

    2013-07-01

    Pollen germination and embryogenesis are important to sexual plant reproduction. The processes require a large number of genes to be expressed. Transcription of eukaryotic nuclear genes is accomplished by three conserved RNA polymerases acting in association with a set of auxiliary general transcription factors (GTFs), including B-type GTFs. The roles of B-type GTFs in plant reproduction remain poorly understood. Here we report functional characterization of a novel plant-specific TFIIB-related gene PTF2 in Arabidopsis. Mutation in PTF2 caused failure of pollen germination. Pollen-rescue revealed that the mutation also disrupted embryogenesis and resulted in seed abortion. PTF2 is expressed prolifically in developing pollen and the other tissues with active cell division and differentiation, including embryo and shoot apical meristem. The PTF2 protein shares a lower amino acid sequence similarity with other known TFIIB and TFIIB-related proteins in Arabidopsis. It can interact with TATA-box binding protein 2 (TBP2) and bind to the double-stranded DNA (dsDNA) as the other known TFIIB and TFIIB-related proteins do. In addition, PTF2 can form a homodimer and interact with the subunits of RNA polymerases (RNAPs), implying that it may be involved in the RNAPs transcription. These results suggest that PTF2 plays crucial roles in pollen germination and embryogenesis in Arabidopsis, possibly by regulating gene expression through interaction with TBP2 and the subunits of RNAPs.

  5. TYPE-ONE PROTEIN PHOSPHATASE4 Regulates Pavement Cell Interdigitation by Modulating PIN-FORMED1 Polarity and Trafficking in Arabidopsis1

    PubMed Central

    Guo, Xiaola; Qin, Qianqian; Yan, Jia; Niu, Yali; Huang, Bingyao; Guan, Liping; Li, Yuan; Ren, Dongtao; Li, Jia; Hou, Suiwen

    2015-01-01

    In plants, cell morphogenesis is dependent on intercellular auxin accumulation. The polar subcellular localization of the PIN-FORMED (PIN) protein is crucial for this process. Previous studies have shown that the protein kinase PINOID (PID) and protein phosphatase6-type phosphatase holoenzyme regulate the phosphorylation status of PIN1 in root tips and shoot apices. Here, we show that a type-one protein phosphatase, TOPP4, is essential for the formation of interdigitated pavement cell (PC) pattern in Arabidopsis (Arabidopsis thaliana) leaf. The dominant-negative mutant topp4-1 showed severely inhibited interdigitated PC growth. Expression of topp4-1 gene in wild-type plants recapitulated the PC defects in the mutant. Genetic analyses suggested that TOPP4 and PIN1 likely function in the same pathway to regulate PC morphogenesis. Furthermore, colocalization, in vitro and in vivo protein interaction studies, and dephosphorylation assays revealed that TOPP4 mediated PIN1 polar localization and endocytic trafficking in PCs by acting antagonistically with PID to modulate the phosphorylation status of PIN1. In addition, TOPP4 affects the cytoskeleton pattern through the Rho of Plant GTPase-dependent auxin-signaling pathway. Therefore, we conclude that TOPP4-regulated PIN1 polar targeting through direct dephosphorylation is crucial for PC morphogenesis in the Arabidopsis leaf. PMID:25560878

  6. Cellular localization of the Ca2+ binding TCH3 protein of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Antosiewicz, D. M.; Polisensky, D. H.; Braam, J.

    1995-01-01

    TCH3 is an Arabidopsis touch (TCH) gene isolated as a result of its strong and rapid upregulation in response to mechanical stimuli, such as touch and wind. TCH3 encodes an unusual calcium ion-binding protein that is closely related to calmodulin but has the potential to bind six calcium ions. Here it is shown that TCH3 shows a restricted pattern of accumulation during Arabidopsis vegetative development. These data provide insight into the endogenous signals that may regulate TCH3 expression and the sites of TCH3 action. TCH3 is abundant in the shoot apical meristem, vascular tissue, the root columella and pericycle cells that give rise to lateral roots. In addition, TCH3 accumulation in cells of developing shoots and roots closely correlates with the process of cellular expansion. Following wind stimulation, TCH3 becomes more abundant in specific regions including the branchpoints of leaf primordia and stipules, pith parenchyma, and the vascular tissue. The consequences of TCH3 upregulation by wind are therefore spatially restricted and TCH3 may function at these sites to modify cell or tissue characteristics following mechanical stimulation. Because TCH3 accumulates specifically in cells and tissues that are thought to be under the influence of auxin, auxin levels may regulate TCH3 expression during development. TCH3 is upregulated in response to low levels of exogenous indole-3-acetic acid (IAA), but not by inactive auxin-related compounds. These results suggest that TCH3 protein may play roles in mediating physiological responses to auxin and mechanical environmental stimuli.

  7. Expression of almond KNOTTED1 homologue (PdKn1) anticipates adventitious shoot initiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims: The transcription factor encoded by the gene Knotted1 is a nuclear homeodomain protein, regulating meristematic cells at the shoot apical meristem. It has been proven that Knotted1 (KN1) has a role in the switch from an indeterminate to determinate cell fate and as such this gen...

  8. Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  9. Ship and Shoot

    NASA Technical Reports Server (NTRS)

    Woods, Ron

    2012-01-01

    Ron Woods shared incredibly valuable insights gained during his 28 years at the Kennedy Space Center (KSC) packaging Flight Crew Equipment for shuttle and ISS missions. In particular, Woods shared anecdotes and photos from various processing events. The moral of these stories and the main focus of this discussion were the additional processing efforts and effects related to a "ship-and-shoot" philosophy toward flight hardware.

  10. Ectopic expression of CsCTR1, a cucumber CTR-like gene, attenuates constitutive ethylene signaling in an Arabidopsis ctr1-1 mutant and expression pattern analysis of CsCTR1 in cucumber (Cucumis sativus).

    PubMed

    Bie, Beibei; Sun, Jin; Pan, Junsong; He, Huanle; Cai, Run

    2014-09-15

    The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1) is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1) was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.

  11. Ectopic Expression of CsCTR1, a Cucumber CTR-Like Gene, Attenuates Constitutive Ethylene Signaling in an Arabidopsis ctr1-1 Mutant and Expression Pattern Analysis of CsCTR1 in Cucumber (Cucumis sativus)

    PubMed Central

    Bie, Beibei; Sun, Jin; Pan, Junsong; He, Huanle; Cai, Run

    2014-01-01

    The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1) is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1) was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway. PMID:25226540

  12. Overexpression of EVE1, a novel ubiquitin family protein, arrests inflorescence stem development in Arabidopsis.

    PubMed

    Hwang, Hyun-Ju; Kim, Hoyeun; Jeong, Young-Min; Choi, Monica Y; Lee, So-Young; Kim, Sang-Gu

    2011-08-01

    In Arabidopsis, inflorescence stem formation is a critical process in phase transition from the vegetative to the reproductive state. Although inflorescence stem development has been reported to depend on the expression of a variety of genes during floral induction and repression, little is known about the molecular mechanisms involved in the control of inflorescence stem formation. By activation T-DNA tagging mutagenesis of Arabidopsis, a dominant gain-of-function mutation, eve1-D (eternally vegetative phase1-Dominant), which has lost the ability to form an inflorescence stem, was isolated. The eve1-D mutation exhibited a dome-shaped primary shoot apical meristem (SAM) in the early vegetative stage, similar to that seen in the wild-type SAM. However, the SAM in the eve1-D mutation failed to transition into an inflorescence meristem (IM) and eventually reached senescence without ever leaving the vegetative phase. The eve1-D mutation also displayed pleiotropic phenotypes, including lobed and wavy rosette leaves, short petioles, and an increased number of rosette leaves. Genetic analysis indicated that the genomic location of the EVE1 gene in Arabidopsis thaliana corresponded to a bacterial artificial chromosome (BAC) F4C21 from chromosome IV at ∼17cM which encoded a novel ubiquitin family protein (At4g03350), consisting of a single exon. The EVE1 protein is composed of 263 amino acids, contains a 52 amino acid ubiquitin domain, and has no glycine residue related to ubiquitin activity at the C-terminus. The eve1-D mutation provides a way to study the regulatory mechanisms that control phase transition from the vegetative to the reproductive state.

  13. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis.

    PubMed

    Wang, Xiaomin; Xie, Bo; Zhu, Maosheng; Zhang, Zhongming; Hong, Zonglie

    2012-01-01

    Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+ plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.

  14. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.

    PubMed

    Porri, Aimone; Torti, Stefano; Romera-Branchat, Maida; Coupland, George

    2012-06-01

    The plant growth regulator gibberellin (GA) contributes to many developmental processes, including the transition to flowering. In Arabidopsis, GA promotes this transition most strongly under environmental conditions such as short days (SDs) when other regulatory pathways that promote flowering are not active. Under SDs, GAs activate transcription of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY) at the shoot meristem, two genes encoding transcription factors involved in flowering. Here, the tissues in which GAs act to promote flowering were tested under different environmental conditions. The enzyme GIBBERELLIN 2 OXIDASE 7 (GA2ox7), which catabolizes active GAs, was overexpressed in most tissues from the viral CaMV 35S promoter, specifically in the vascular tissue from the SUCROSE TRANSPORTER 2 (SUC2) promoter or in the shoot apical meristem from the KNAT1 promoter. We find that under inductive long days (LDs), GAs are required in the vascular tissue to increase the levels of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) mRNAs, which encode a systemic signal transported from the leaves to the meristem during floral induction. Similarly, impairing GA signalling in the vascular tissue reduces FT and TSF mRNA levels and delays flowering. In the meristem under inductive LDs, GAs are not required to activate SOC1, as reported under SDs, but for subsequent steps in floral induction, including transcription of genes encoding SQUAMOSA PROMOTER BINDING PROMOTER LIKE (SPL) transcription factors. Thus, GA has important roles in promoting transcription of FT, TSF and SPL genes during floral induction in response to LDs, and these functions are spatially separated between the leaves and shoot meristem.

  15. Formation of polarity convergences underlying shoot outgrowths

    PubMed Central

    Abley, Katie; Sauret-Güeto, Susanna; Marée, Athanasius FM; Coen, Enrico

    2016-01-01

    The development of outgrowths from plant shoots depends on formation of epidermal sites of cell polarity convergence with high intracellular auxin at their centre. A parsimonious model for generation of convergence sites is that cell polarity for the auxin transporter PIN1 orients up auxin gradients, as this spontaneously generates convergent alignments. Here we test predictions of this and other models for the patterns of auxin biosynthesis and import. Live imaging of outgrowths from kanadi1 kanadi2 Arabidopsis mutant leaves shows that they arise by formation of PIN1 convergence sites within a proximodistal polarity field. PIN1 polarities are oriented away from regions of high auxin biosynthesis enzyme expression, and towards regions of high auxin importer expression. Both expression patterns are required for normal outgrowth emergence, and may form part of a common module underlying shoot outgrowths. These findings are more consistent with models that spontaneously generate tandem rather than convergent alignments. DOI: http://dx.doi.org/10.7554/eLife.18165.001 PMID:27478985

  16. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition.

    PubMed

    Ma, Zhiying; Liu, Jianfeng; Wang, Xingfen

    2013-01-01

    Cotton is an important world economic crop plant. It is considered that cotton is recalcitrant to in vitro proliferation. Somatic embryogenesis and plant regeneration has been successful by using hypocotyl, whereas it is highly genotype dependent. Here, a genotype-independent cotton regeneration protocol from shoot apices is presented. Shoot apices from 3- to 5-day-old seedlings of cotton are infected with an Agrobacterium strain, EHA105, carrying the binary vector pC-KSA contained phytase gene (phyA) and the marker gene neomycin phosphotransferase (NPTII), and directly regenerated as shoots in vitro. Rooted shoots can be obtained within 6-8 weeks. Plants that survived by leaf painting kanamycin (kan) were -further analyzed by DNA and RNA blottings. The transgenic plants with increased the phosphorus (P) acquisition efficiency were obtained following the transformation method.

  17. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana.

    PubMed

    Lozano-Sotomayor, Paulina; Chávez Montes, Ricardo A; Silvestre-Vañó, Marina; Herrera-Ubaldo, Humberto; Greco, Raffaella; Pablo-Villa, Jeanneth; Galliani, Bianca M; Diaz-Ramirez, David; Weemen, Mieke; Boutilier, Kim; Pereira, Andy; Colombo, Lucia; Madueño, Francisco; Marsch-Martínez, Nayelli; de Folter, Stefan

    2016-11-01

    Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.

  18. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana.

    PubMed

    Poulios, Stylianos; Vlachonasios, Konstantinos E

    2016-02-01

    GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling.

  19. Multiplication and growth of hybrid poplar (Populus alba × P. tremula) shoots on a hormone-free medium.

    PubMed

    Ziauka, J; Kuusienė, Sigutė

    2014-09-01

    The present study explored an alternative approach for poplar micropropagation, based on the restriction of gas exchange between inside and outside environments of culture vessel, rather than on the application of exogenous hormones. Apical and nodal stem segments (explants) excised from in vitro-developed shoots of hybrid white poplar (Populus alba L. × P. tremula L.) were incubated in either sealed (with Parafilm) or unsealed capped glass culture tubes (150 × 20 mm) on a hormone-free Woody Plant Medium. Shoot proliferation on apical explants was observed in sealed culture tubes but not in the unsealed ones; the difference between these two samples in respect of shoot number increased in the course of time and became threefold after three months of culture, with 3.2 ± 0.4 (mean ± SE) shoots per explant in the sealed tubes versus 1.1 ± 0.1 in the unsealed ones (for comparison, the mean shoot numbers on nodal explants were 2.4 ± 0.3 and 3.4 ± 0.4 in the unsealed and sealed culture tubes, respectively). Moreover, the shoots taken from the sealed culture tubes could be distinguished by superior shoot length, if compared to the shoots from the unsealed tubes, during the subsequent culture stage under uniform conditions.

  20. Limited elimination of two viruses by cryotherapy of pelargonium apices related to virus distribution.

    PubMed

    Gallard, A; Mallet, R; Chevalier, M; Grapin, A

    2011-01-01

    The possibility of eradicating the pelargonium flower break virus (PFBV) and pelargonium line pattern virus (PLPV) by cryotherapy of axillary shoot apices was investigated using five Pelargonium cultivars. Viruses were detected by DAS-ELISA and their location was determined by immunolocalization. Apex culture did not permit elimination of PFBV and only 15 percent regenerated plants of 'Stellar Artic' cultivar were ELISA PLPV-negative. Plants regenerated from cryotherapy-treated apices were tested by DAS-ELISA after a 3-month in vitro culture period. Viruses were not detected in 25 percent and 50 percent of the plants tested for PFBV and PLPV, respectively. However, immunolocalization carried out on apices originating from cryopreserved shoot tips sampled from DAS-ELISA negative plants showed that they were still virus-infected. Using immunolocalization, PFBV and PLPV could be detected in Pelargonium apices, even in the meristematic dome. However, viral particles were more numerous in basal zone cells than in meristematic cells. Our results demonstrate that PFBV and PLPV are present within meristematic cells and that cryopreservation can partly reduce the quantity of these viruses in Pelargonium plants but not eliminate them totally. Additional knowledge on localization and behaviour of viruses during cryopreservation is essential to optimize cryotherapy and plant genetic resource management.

  1. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    PubMed

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism.

  2. Radiocesium Distribution in Bamboo Shoots after the Fukushima Nuclear Accident

    PubMed Central

    Higaki, Takumi; Higaki, Shogo; Hirota, Masahiro; Hasezawa, Seiichiro

    2014-01-01

    The distribution of radiocesium was examined in bamboo shoots, Phyllostachys pubescens, collected from 10 sites located some 41 to 1140 km from the Fukushima Daiichi nuclear power plant, Japan, in the Spring of 2012, 1 year after the Fukushima nuclear accident. Maximum activity concentrations for radiocesium 134Cs and 137Cs in the edible bamboo shoot parts, 41 km away from the Fukushima Daiichi plant, were in excess of 15.3 and 21.8 kBq/kg (dry weight basis; 1.34 and 1.92 kBq/kg, fresh weight), respectively. In the radiocesium-contaminated samples, the radiocesium activities were higher in the inner tip parts, including the upper edible parts and the apical culm sheath, than in the hardened culm sheath and underground basal parts. The radiocesium/potassium ratios also tended to be higher in the inner tip parts. The radiocesium activities increased with bamboo shoot length in another bamboo species, Phyllostachys bambusoides, suggesting that radiocesium accumulated in the inner tip parts during growth of the shoots. PMID:24831096

  3. Developmental anatomy of the reproductive shoot in Hydrobryum japonicum (Podostemaceae).

    PubMed

    Katayama, Natsu; Koi, Satoshi; Kato, Masahiro

    2008-07-01

    Podostemaceae are unusual aquatic angiosperms adapting to extreme habitats, i.e., rapids and waterfalls, and have unique morphologies. We investigated the developmental anatomy of reproductive shoots scattered on crustose roots of Hydrobryum japonicum by scanning electron microscopy and using semi-thin serial sections. Two developmental patterns were observed: bracts arise either continuously from an area of meristematic cells that has produced leaves, or within differentiated root ground tissue beneath, and internal to, leaf base scars after an interruption. In both patterns, the bract primordia arise endogenously at the base of youngest bracts in the absence of shoot apical meristem, involving vacuolated-cell detachment to each bract separately. The different transition patterns of reproductive shoot development may be caused by different stages of parental vegetative shoots. The floral meristem arises between the two youngest bracts, and is similarly accompanied by cell degeneration. In contrast, the floral organs, including the spathella, arise exogenously from the meristem. Bract development, like vegetative leaf development, is unique to this podostemad, while floral-organ development is conserved.

  4. Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the Sun's energy and use the energy for inexpensive space propulsion research. Pictured is an engineering model (Pathfinder III) of SSE and its thermal vacuum test to simulate in-orbit conditions at the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflection of the engineering model under extreme condition, such as the coldness of deep space and the hotness of the Sun, as well as vacuum.

  5. Growth and development of the root apical meristem.

    PubMed

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development.

  6. Shooting and Hunting: Instructor's Guide.

    ERIC Educational Resources Information Center

    Smith, Julian W., Comp.

    The shooting and hunting manual, part of a series of books and pamphlets on outdoor education, explains shooting skills, hunting, and proper gun handling on the range and in the field. This manual should be supplemented and enriched by available references, facilities, and resources. It may be included in the community's educational and…

  7. A School Shooting Plot Foiled

    ERIC Educational Resources Information Center

    Swezey, James A.; Thorp, Kimberly A.

    2010-01-01

    Dinkes, Cataldi, and Lin-Kelly (2007) claims that 78% of public schools reported one or more violent incidents during the 2005/2006 school year. School shootings are a rare but real threat on school campuses. Shootings at private schools are even less frequent with only a few recorded examples in the United States. This case study examines how a…

  8. The EXS Domain of PHO1 Participates in the Response of Shoots to Phosphate Deficiency via a Root-to-Shoot Signal1[OPEN

    PubMed Central

    Jung, Ji-Yul; Pradervand, Sylvain

    2016-01-01

    The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots. PMID:26546667

  9. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis.

    PubMed

    Sang, Dajun; Chen, Dongqin; Liu, Guifu; Liang, Yan; Huang, Linzhou; Meng, Xiangbing; Chu, Jinfang; Sun, Xiaohong; Dong, Guojun; Yuan, Yundong; Qian, Qian; Li, Jiayang; Wang, Yonghong

    2014-07-29

    Tiller angle, a key agronomic trait for achieving ideal plant architecture and increasing grain yield, is regulated mainly by shoot gravitropism. Strigolactones (SLs) are a group of newly identified plant hormones that are essential for shoot branching/rice tillering and have further biological functions as yet undetermined. Through screening for suppressors of lazy1 (sols), a classic rice mutant exhibiting large tiller angle and defective shoot gravitropism, we identified multiple SOLS that are involved in the SL biosynthetic or signaling pathway. We show that SL biosynthetic or signaling mutants can rescue the spreading phenotype of lazy1 (la1) and that SLs can inhibit auxin biosynthesis and attenuate rice shoot gravitropism, mainly by decreasing the local indoleacetic acid content. Although both SLs and LA1 are negative regulators of polar auxin transport, SLs do not alter the lateral auxin transport of shoot base, unlike LA1, which is a positive regulator of lateral auxin transport in rice. Genetic evidence demonstrates that SLs and LA1 participate in regulating shoot gravitropism and tiller angle in distinct genetic pathways. In addition, the SL-mediated shoot gravitropism is conserved in Arabidopsis. Our results disclose a new role of SLs and shed light on a previously unidentified mechanism underlying shoot gravitropism. Our study indicates that SLs could be considered as an important tool to achieve ideal plant architecture in the future.

  10. Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In flowering plants, knotted1-like homeobox (KNOX) transcription factors play crucial roles in establishment and maintenance of the shoot apical meristem (SAM), from which aerial organs such as leaves, stems, and flowers initiate. We report that a rice (Oryza sativa) KNOX gene Oryza sativa homeobox1...

  11. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays.

    PubMed

    Liu, Yisen; Yang, Shaohui; Song, Yingjin; Men, Shuzhen; Wang, Jiehua

    2016-04-01

    Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development.

  12. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    SciTech Connect

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections.

  13. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  14. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Kotoda, Nobuhiro

    2007-09-01

    Fruit trees, such as apple (Malus x domestica Borkh.), are woody perennial plants with a long juvenile phase. The biological analysis for the regulation of flowering time provides insights into the reduction of juvenile phase and the acceleration of breeding in fruit trees. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is involved in epigenetic silencing of the target genes such as flowering genes. We isolated and characterized twin apple LHP1 homolog genes, MdLHP1a and MdLHP1b. These genes may have been generated as a result of ancient genome duplication. Although the putative MdLHP1 proteins showed lower similarity to any other known plant LHP1 homologs, a chromo domain, a chromo shadow domain, and the nuclear localization signal motifs were highly conserved among them. RT-PCR analysis showed that MdLHP1a and MdLHP1b were expressed constantly in developing shoot apices of apple trees throughout the growing season. Constitutive expression of MdLHP1a or MdLHP1b could compensate for the pleiotropic phenotype of lhp1/tfl2 mutant, suggesting that apple LHP1 homolog genes are involved in the regulation of flowering time and whole-plant growth. Based on these results, LHP1 homolog genes might have rapidly evolved among plant species, but the protein functions were conserved, at least between Arabidopsis and apple.

  15. Constitutive apical membrane recycling in Aplysia enterocytes.

    PubMed

    Keeton, Robert Aaron; Runge, Steven William; Moran, William Michael

    2004-11-01

    In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.

  16. Neurophysiological responses to gun-shooting errors.

    PubMed

    Xu, Xiaowen; Inzlicht, Michael

    2015-03-01

    The present study investigated the neural responses to errors in a shooting game - and how these neural responses may relate to behavioral performance - by examining the ERP components related to error detection (error-related negativity; ERN) and error awareness (error-related positivity; Pe). The participants completed a Shooter go/no-go task, which required them to shoot at armed targets using a gaming gun, and avoid shooting innocent non-targets. The amplitude of the ERN and Pe was greater for shooting errors than correct shooting responses. The ERN and Pe amplitudes elicited by incorrect shooting appeared to have good internal reliability. The ERN and Pe amplitudes elicited by shooting behaviors also predicted better behavioral sensitivity towards shoot/don't-shoot stimuli. These results suggest that it is possible to obtain online brain response measures to shooting responses and that neural responses to shooting are predictive of behavioral responses.

  17. Uncoupling apical constriction from tissue invagination.

    PubMed

    Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J

    2017-03-06

    Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG.

  18. Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana.

    PubMed

    Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo

    2009-08-28

    In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also functions as an RNA chaperone. Promoter-GUS transgenic plants revealed tissue-specific expression of AtCSP3 in shoot and root apical regions. When exposed to low temperature, GUS activity was extensively induced in a broader region of the roots. In transgenic plants expressing an AtCSP3-GFP fusion, GFP signals were detected in both the nucleus and cytoplasm. An AtCSP3 knock-out mutant (atcsp3-2) was sensitive to freezing compared with wild-type plants under non-acclimated and cold-acclimated conditions, whereas expression of C-repeat-binding factors and their downstream genes during cold acclimation was not altered in the atcsp3-2 mutant. Overexpression of AtCSP3 in transgenic plants conferred enhanced freezing tolerance over wild-type plants. Together, the data demonstrated an essential role of RNA chaperones for cold adaptation in higher plants.

  19. Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in Arabidopsis[W][OA

    PubMed Central

    Jaeger, Katja E.; Pullen, Nick; Lamzin, Sergey; Morris, Richard J.; Wigge, Philip A.

    2013-01-01

    During flowering, primordia on the flanks of the shoot apical meristem are specified to form flowers instead of leaves. Like many plants, Arabidopsis thaliana integrates environmental and endogenous signals to control the timing of reproduction. To study the underlying regulatory logic of the floral transition, we used a combination of modeling and experiments to define a core gene regulatory network. We show that FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) act through FD and FD PARALOG to regulate the transition. The major floral meristem identity gene LEAFY (LFY) directly activates FD, creating a positive feedback loop. This network predicts flowering behavior for different genotypes and displays key properties of the floral transition, such as signal integration and irreversibility. Furthermore, modeling suggests that the control of TFL1 is important to flexibly counterbalance incoming FT signals, allowing a pool of undifferentiated cells to be maintained despite strong differentiation signals in nearby cells. This regulatory system requires TFL1 expression to rise in proportion to the strength of the floral inductive signal. In this network, low initial levels of LFY or TFL1 expression are sufficient to tip the system into either a stable flowering or vegetative state upon floral induction. PMID:23543784

  20. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    PubMed

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.

  1. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger.

    PubMed

    Chou, Hsuan; Zhu, Yingfang; Ma, Yi; Berkowitz, Gerald A

    2016-02-01

    CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non-cell-autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca(2+) elevations, cyclic nucleotide (cGMP)-activated Ca(2+) channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca(2+) elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca(2+) and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP-activated Ca(2+) channel. In wild-type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca(2+) channel blocker or a guanylyl cyclase inhibitor. When CLV3-dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca(2+) channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca(2+), and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM.

  2. A Real Shooting Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star

    This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light.

    The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years.

    As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake.

    Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence.

    Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer

    Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira

  3. Localized auxin peaks in concentration-based transport models of the shoot apical meristem.

    PubMed

    Draelants, Delphine; Avitabile, Daniele; Vanroose, Wim

    2015-05-06

    We study the formation of auxin peaks in a generic class of concentration-based auxin transport models, posed on static plant tissues. Using standard asymptotic analysis, we prove that, on bounded domains, auxin peaks are not formed via a Turing instability in the active transport parameter, but via simple corrections to the homogeneous steady state. When the active transport is small, the geometry of the tissue encodes the peaks' amplitude and location: peaks arise where cells have fewer neighbours, that is, at the boundary of the domain. We test our theory and perform numerical bifurcation analysis on two models that are known to generate auxin patterns for biologically plausible parameter values. In the same parameter regimes, we find that realistic tissues are capable of generating a multitude of stationary patterns, with a variable number of auxin peaks, that can be selected by different initial conditions or by quasi-static changes in the active transport parameter. The competition between active transport and production rate determines whether peaks remain localized or cover the entire domain. In particular, changes in the auxin production that are fast with respect to the cellular life cycle affect the auxin peak distribution, switching from localized spots to fully patterned states. We relate the occurrence of localized patterns to a snaking bifurcation structure, which is known to arise in a wide variety of nonlinear media, but has not yet been reported in plant models.

  4. Factors affecting apical leakage assessment.

    PubMed

    Karagöz-Küçükay, I; Küçükay, S; Bayirli, G

    1993-07-01

    This study was conducted to evaluate the influence of immediate versus delayed immersion time, and passive dye immersion versus centrifuged dye on apical leakage measurements. Eighty-four extracted human teeth with single straight canals were instrumented and divided into four experimental groups of 20 teeth each plus 2 negative and 2 positive controls. Low-temperature injection thermoplasticized gutta-percha and sealer were used to obturate the root canals. In groups A and B the filling materials were allowed to set for 72 h before the teeth were placed in India ink. In groups C and D the teeth were placed in India ink immediately after obturation. Also, in groups B and D the teeth were centrifuged in India ink for 20 min at 3,000 rpm before being immersed in ink. After 72 h in India ink, the teeth were cleared, and the linear extent of ink penetration was measured with a stereomicroscope. Statistical analysis of the data revealed no significant difference in leakage among the experimental groups whether the teeth were immersed in ink immediately after obturation or after setting of the filling materials for 72 h, and whether or not the teeth were centrifuged in ink prior to immersion.

  5. Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae).

    PubMed

    Sun, Qiang; Rost, Thomas L; Matthews, Mark A

    2006-11-01

    Tyloses form in xylem vessels in response to various environmental stimuli, but little is known of the kinetics or regulation of their development. Preliminary investigations indicated that wounds seal quickly with tyloses after pruning of grapevine shoots. In this study, tylose development was analyzed qualitatively and quantitatively at different depths and times from pruning cuts along current-year shoots of grapevines at basal, middle, and apical stem regions. Tyloses developed simultaneously within a single vessel but much separated in time among vessels. Pruning caused prodigious tylosis in vessels of grape stems, extending to approximately 1 cm deep and to 7 d after wounding, but about half of the vessels did not become completely occluded. The fraction of vessels forming tyloses was greatest in basal (85%) and least in apical (50%) regions. The depth of maximum density of tyloses was 4 mm from the cut in the basal region and 2 mm from the cut in the middle and apical regions. Tylose development was faster in the basal and middle than in the apical region. The pattern of tylose development is discussed in the context of wound repair and pathogen movement in grapevines.

  6. Modeling framework for the establishment of the apical-basal embryonic axis in plants.

    PubMed

    Wabnik, Krzysztof; Robert, Hélène S; Smith, Richard S; Friml, Jiří

    2013-12-16

    The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters, whose polar subcellular localization determines the flow directionality. PIN-mediated auxin transport mediates the spatial and temporal activity of the auxin response machinery that contributes to embryo patterning processes, including establishment of the apical (shoot) and basal (root) embryo poles. However, little is known of upstream mechanisms guiding the (re)polarization of auxin fluxes during embryogenesis. Here, we developed a model of plant embryogenesis that correctly generates emergent cell polarities and auxin-mediated sequential initiation of apical-basal axis of plant embryo. The model relies on two precisely localized auxin sources and a feedback between auxin and the polar, subcellular PIN transporter localization. Simulations reproduced PIN polarity and auxin distribution, as well as previously unknown polarization events during early embryogenesis. The spectrum of validated model predictions suggests that our model corresponds to a minimal mechanistic framework for initiation and orientation of the apical-basal axis to guide both embryonic and postembryonic plant development.

  7. A current perspective on the role of AGCVIII kinases in PIN-mediated apical hook development

    PubMed Central

    Willige, Björn C.; Chory, Joanne

    2015-01-01

    Despite their sessile lifestyle, seed plants are able to utilize differential growth rates to move their organs in response to their environment. Asymmetrical growth is the cause for the formation and maintenance of the apical hook—a structure of dicotyledonous plants shaped by the bended hypocotyl that eases the penetration through the covering soil. As predicted by the Cholodny–Went theory, the cause for differential growth is the unequal distribution of the phytohormone auxin. The PIN-FORMED proteins transport auxin from cell-to-cell and control the distribution of auxin in the plant. Their localization and activity are regulated by two subfamilies of AGCVIII protein kinases: the D6 PROTEIN KINASEs as well as PINOID and its two closely related WAG kinases. This mini-review focuses on the regulatory mechanism of these AGCVIII kinases as well as their role in apical hook development of Arabidopsis thaliana. PMID:26500658

  8. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation

    PubMed Central

    Gola, Edyta M.

    2014-01-01

    The division of the apical meristem into two independently functioning axes is defined as dichotomous branching. This type of branching typically occurs in non-vascular and non-seed vascular plants, whereas in seed plants it presents a primary growth form only in several taxa. Dichotomy is a complex process, which requires a re-organization of the meristem structure and causes changes in the apex geometry and activity. However, the mechanisms governing the repetitive apex divisions are hardly known. Here, an overview of dichotomous branching is presented, occurring in structurally different apices of phylogenetically distant plants, and in various organs (e.g., shoots, roots, rhizophores). Additionally, morphogenetic effects of dichotomy are reviewed, including its impact on organogenesis and mechanical constraints. At the end, the hormonal and genetic regulation of the dichotomous branching is discussed. PMID:24936206

  9. Characterization of the Light Reaction in Promoting the Mobilizing Ability of Rose Shoot Tips 1

    PubMed Central

    Mor, Yoram; Halevy, Abraham H.; Porath, Dan

    1980-01-01

    Mixed fluorescent and incandescent light increased growth and sink strength of the uppermost young shoot of rose plants (Rosa hybrida cv. Marimba) in comparison to pure fluorescent light. This was manifested by increased apical dominance. Monochromatic low-energy red light, given by means of optic fibers for 24 hours to shoot tips that had been previously darkened for 5 days, increased the transport of 14C-labeled assimilates to the intact tips and the uptake of [14C]sucrose by detached tips. Far-red had little or no effect, and blue was not effective at all in these reactions. Red light given directly to detached shoot tips, in vitro, increased the uptake of [14C]sucrose by the isolated tips. Adding far-red to the red greatly promoted the uptake, whereas blue and blue plus far-red were not active. The main character of the light reaction promoting sink activity in the shoot is that it is perceived by the shoot tip itself. It is operated by red light; far-red promotes the red effect but has little or no effect when alone. Light apparently promotes shoot sink activity by increasing the unloading process. Images PMID:16661567

  10. Characterization of the light reaction in promoting the mobilizing ability of rose shoot tips.

    PubMed

    Mor, Y; Halevy, A H

    1980-11-01

    Mixed fluorescent and incandescent light increased growth and sink strength of the uppermost young shoot of rose plants (Rosa hybrida cv. Marimba) in comparison to pure fluorescent light. This was manifested by increased apical dominance. Monochromatic low-energy red light, given by means of optic fibers for 24 hours to shoot tips that had been previously darkened for 5 days, increased the transport of (14)C-labeled assimilates to the intact tips and the uptake of [(14)C]sucrose by detached tips. Far-red had little or no effect, and blue was not effective at all in these reactions. Red light given directly to detached shoot tips, in vitro, increased the uptake of [(14)C]sucrose by the isolated tips. Adding far-red to the red greatly promoted the uptake, whereas blue and blue plus far-red were not active. The main character of the light reaction promoting sink activity in the shoot is that it is perceived by the shoot tip itself. It is operated by red light; far-red promotes the red effect but has little or no effect when alone. Light apparently promotes shoot sink activity by increasing the unloading process.

  11. APIC: A generic interface for sequencing projects

    SciTech Connect

    Bisson, G.; Garreau, A.

    1995-12-31

    In this paper, we describe the APIC graphical interface that aims at displaying the results produced by the genomic sequence analysis methods and at helping a comparison of these results. The major feature of APIC lies in its genericity. As a matter of fact, this interface can obviously be used to visualize genetic or physical maps but it also able to display other kinds of information such as curves or pictures. On the one hand, APIC provides the biologist who builds a new sequence analysis method with a standard interface allowing to display his results. Thus, he can avoid implementing a specific visualization tool. On the other hand, even when the methods already have their own interfaces, using APIC has the advantage of giving a homogeneous way to compare several results coming from different analysis tools. Moreover, it provides some powerful functions for navigating and browsing into the results.

  12. Advanced Pointing Imaging Camera (APIC) Concept

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Bills, B. G.; Jorgensen, J.; Jun, I.; Maki, J. N.; McEwen, A. S.; Riedel, E.; Walch, M.; Watkins, M. M.

    2016-10-01

    The Advanced Pointing Imaging Camera (APIC) concept is envisioned as an integrated system, with optical bench and flight-proven components, designed for deep-space planetary missions with 2-DOF control capability.

  13. Auxin flow-mediated competition between axillary buds to restore apical dominance

    PubMed Central

    Balla, Jozef; Medveďová, Zuzana; Kalousek, Petr; Matiješčuková, Natálie; Friml, Jiří; Reinöhl, Vilém; Procházka, Stanislav

    2016-01-01

    Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud. PMID:27824063

  14. Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development.

    PubMed Central

    Sentoku, N; Sato, Y; Kurata, N; Ito, Y; Kitano, H; Matsuoka, M

    1999-01-01

    We report the isolation, sequence, and pattern of gene expression of members of the KNOTTED1 (KN1)-type class 1 homeobox gene family from rice. Phylogenetic analysis and mapping of the rice genome revealed that all of the rice homeobox genes that we have isolated have one or two direct homologs in maize. Of the homeobox genes that we tested, all exhibited expression in a restricted region of the embryo that defines the position at which the shoot apical meristem (SAM) would eventually develop, prior to visible organ formation. Several distinct spatial and temporal expression patterns were observed for the different genes in this region. After shoot formation, the expression patterns of these homeobox genes were variable in the region of the SAM. These results suggest that the rice KN1-type class 1 homeobox genes function cooperatively to establish the SAM before shoot formation and that after shoot formation, their functions differ. PMID:10488233

  15. School Shootings and Critical Pedagogy

    ERIC Educational Resources Information Center

    Schiller, Juliet

    2013-01-01

    What has been left out of studying school violence and shootings is a comprehensive look at the culture that creates violence and the lack of support for those deemed "different" in an educational setting that promotes and rewards competition. If parents, teachers, and other adults associated with children were teaching the values of…

  16. School Shootings in Policy Spotlight

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2006-01-01

    The three school shootings that left a principal and six students dead in less than a week have sparked a barrage of pledges from national and state political leaders to tighten campus security. School safety experts urged caution against overreacting to the horrific, but rare, incidents in rural schools in Colorado, Pennsylvania, and Wisconsin.…

  17. Shootings Revive Debates on Security

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2013-01-01

    By nearly all accounts, the staff and students at Sandy Hook Elementary School did everything right on Dec. 14--and with the security measures they took before that day--when a young man armed with powerful weapons blasted his way into the school. But the deadliest K-12 school shooting in American history, a day that President Barack Obama has…

  18. Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition.

    PubMed

    Chen, Xiangbin; Yao, Qinfang; Gao, Xiuhua; Jiang, Caifu; Harberd, Nicholas P; Fu, Xiangdong

    2016-03-07

    Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate uptake. Shoot-derived HY5 auto-activates root HY5 and also promotes root nitrate uptake by activating NRT2.1, a gene encoding a high-affinity nitrate transporter [4]. In the shoot, HY5 promotes carbon assimilation and translocation, whereas in the root, HY5 activation of NRT2.1 expression and nitrate uptake is potentiated by increased carbon photoassimilate (sucrose) levels. We further show that HY5 function is fluence-rate modulated and enables homeostatic maintenance of carbon-nitrogen balance in different light environments. Thus, mobile HY5 coordinates light-responsive carbon and nitrogen metabolism, and hence shoot and root growth, in a whole-organismal response to ambient light fluctuations.

  19. Genetic analysis of the role of amyloplasts in shoot gravisensing

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Morita, M.

    Plant can change the growth direction after sensing the gravity orientation This response calls gravitropism and the initial step is the gravisensing We have isolated many Arabidopsis mutants shoot gravitropism sgr with reduced or no gravitropic response in inflorescence stems The analysis of sgr1 and sgr7 revealed that endoderm cells in the inflorescence stems were gravisensing sites zig zigzag sgr4 and sgr3 showed no or reduced gravitropism in shoot respectively and their amyloplasts thought to be statoliths did not sedimented to the orientation of gravity in the endoderm cells ZIG encoded a SNARE AtVTI11 and SGR3 encoded other SNARE AtVAM3 These two SNAREs made a complex in the shoot endoderm cells suggesting that the vesicle transport from trans-Golgi network TGN to prevacuolar compartment PVC and or vacuole was involved in the amyloplasts localization and movement The analysis to visualize amyloplasts and vacuolar membrane in living endoderm cells supported that the vacuole function was important for the amyloplasts movement Recently we have isolated many suppressor mutants of zig One of them named zig suppressor zip 1 had a point mutation in the gene encoded other SNARE of AtVTI12 This protein is a homologous to ZIG AtVTI11 and these two proteins have partially redundant functions Although wild type At VTI 12 could not rescued zig mutated AtVTI12 protein ZIP1 could almost completely play the part of ZIG In zigzip1 amyloplasts in endoderm cells sedimented normally and the shoots showed normal gravitropic response The other

  20. Three ancient hormonal cues co-ordinate shoot branching in a moss.

    PubMed

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-03-25

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.

  1. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    SciTech Connect

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-12-21

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets.

  2. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    PubMed

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  3. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  4. Microbiology and treatment of acute apical abscesses.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2013-04-01

    Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease.

  5. Microbiology and Treatment of Acute Apical Abscesses

    PubMed Central

    Rôças, Isabela N.

    2013-01-01

    SUMMARY Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease. PMID:23554416

  6. Uncoupling apical constriction from tissue invagination

    PubMed Central

    Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J

    2017-01-01

    Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI: http://dx.doi.org/10.7554/eLife.22235.001 PMID:28263180

  7. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    PubMed

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  8. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  9. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  10. Training Visual Control in Wheelchair Basketball Shooting

    ERIC Educational Resources Information Center

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  11. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  12. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  13. Apical aneurysm of Chagas's heart disease.

    PubMed Central

    Oliveira, J S; Mello De Oliveira, J A; Frederigue, U; Lima Filho, E C

    1981-01-01

    A retrospective study of Chagas's heart disease was carried out by a review of necropsy reports with special reference to the lesion known as the apical aneurysm. It was concluded that this lesion was more frequent in men, was unrelated to age, and was unrelated to heart weight. Patients dying of the cardiac consequences of Chagas's cardiomyopathy were more likely to have an apical aneurysm than those whose death was unrelated to the disease but the mode of death (sudden, or with heart failure) was unconnected with its presence. Transillumination from within the ventricle at necropsy was not only useful in demonstrating the aneurysm but also showed areas of myocardial thinning elsewhere. Thrombosis within the lesion was frequent. The aetiology of the apical aneurysm is discussed and it is concluded that while ischaemia, inflammation, thrombosis, and mechanical factors may produce and localise this lesion, the underlying cause is the basic pathogenetic process-parasympathetic nerve cell destruction. Images PMID:7295439

  14. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    SciTech Connect

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  15. Shoot regeneration and embryogenesis in lily shoot tips cryopreserved by droplet vitrification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shoot regeneration and embryogenesis were, for the first time, achieved directly in shoot tips of Lilium Oriental hybrid ‘Siberia’ following cryopreservation by droplet-vitrification. Shoot tips (2 mm in length) including 2-3 leaf primordia were excised from 4-week-old adventitious shoots directly r...

  16. Sodium Influx and Accumulation in Arabidopsis1

    PubMed Central

    Essah, Pauline A.; Davenport, Romola; Tester, Mark

    2003-01-01

    Arabidopsis is frequently used as a genetic model in plant salt tolerance studies, however, its physiological responses to salinity remain poorly characterized. This study presents a characterization of initial Na+ entry and the effects of Ca2+ on plant growth and net Na+ accumulation in saline conditions. Unidirectional Na+ influx was measured carefully using very short influx times in roots of 12-d-old seedlings. Influx showed three components with distinct sensitivities to Ca2+, diethylpyrocarbonate, and osmotic pretreatment. Pharmacological agents and known mutants were used to test the contribution of different transport pathways to Na+ uptake. Influx was stimulated by 4-aminobutyric acid and glutamic acid; was inhibited by flufenamate, quinine, and cGMP; and was insensitive to modulators of K+ and Ca2+ channels. Influx did not differ from wild type in akt1 and hkt1 insertional mutants. These data suggested that influx was mediated by several different types of nonselective cation channels. Na+ accumulation in plants grown in 50 mm NaCl was strongly reduced by increasing Ca2+ activity (from 0.05-3.0 mm), and plant survival was improved. However, plant biomass was not affected by shoot Na+ concentration, suggesting that in Arabidopsis Na+ toxicity is not dependent on shoot Na+ accumulation. These data suggest that Arabidopsis is a good model for investigation of Na+ transport, but may be of limited utility as a model for the study of Na+ toxicity. PMID:12970496

  17. Multiple pathways regulate shoot branching

    PubMed Central

    Rameau, Catherine; Bertheloot, Jessica; Leduc, Nathalie; Andrieu, Bruno; Foucher, Fabrice; Sakr, Soulaiman

    2015-01-01

    Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TEOSINTE BRANCHED1, CYCLOIDEA, PCF transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply. PMID:25628627

  18. Nitrate assimilation in plant shoots depends on photorespiration.

    PubMed

    Rachmilevitch, Shimon; Cousins, Asaph B; Bloom, Arnold J

    2004-08-03

    Photorespiration, a process that diminishes net photosynthesis by approximately 25% in most plants, has been viewed as the unfavorable consequence of plants having evolved when the atmosphere contained much higher levels of carbon dioxide than it does today. Here we used two independent methods to show that exposure of Arabidopsis and wheat shoots to conditions that inhibited photorespiration also strongly inhibited nitrate assimilation. Thus, nitrate assimilation in both dicotyledonous and monocotyledonous species depends on photorespiration. This previously undescribed role for photorespiration (i) explains several responses of plants to rising carbon dioxide concentrations, including the inability of many plants to sustain rapid growth under elevated levels of carbon dioxide; and (ii) raises concerns about genetic manipulations to diminish photorespiration in crops.

  19. Clonal analysis of corn plant development. I. The development of the tassel and the ear shoot

    SciTech Connect

    Johri, M.M.; Coe, E.H. Jr.

    1983-05-01

    The development of the tassel and the ear shoot has been investigated in corn (Zea mays L.). X irradiation of dry kernels and seedlings heterozygous for anthocyanin markers or for factors altering tassel and ear morphology results in the formation of clones (sectors) from cells of the apical meristem. Most tassels develop from 4 +/- 1 cells of the mature embryo. The expression of ramosa-1, tunicate, tassel seed-6, and vestigial is cell autonomous in the tassel. These genes act late in development and modify the developmental fate or decision of an individual clone and not of the whole group of cells producing a tassel. The ear shoot develops from lineages of one to three cells derived each from the L-I (outmost cell layer) and L-II (second cell layer) of the apical meristem. Typically the clones start in the ear shoot (in the husks and possibly in the cob), extend upward in an internode, continue along the margin of the leaf sheath or leaf blade at the node above, and terminate in this or the next higher leaf. The separation of lineages for ear shoot and internode occurs in the period around 13 days after sowing. The analysis of clonal boundaries shows that a small number of embryonic cells become isolated in their developmental capacity. This commitment process appears to be analogous to the process of compartmentation in the imaginal disks of fruit flies. The extent of proliferation of individual cells within a group of highly flexible and any particular clone does not generate a specific part of a tassel or an ear shoot. There must be cellular communication between various clones so that the overall size and morphology of an organ remain normal and more or less fixed. Thus the process of development in plants is also highly regulative in nature and shares many features in common with development in fruit flies.

  20. Shoot growth in aseptically cultivated daylily and haplopappus plantlets after a 5-day spaceflight

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1992-01-01

    Plantlets of daylily (Hemerocallis cv. Autumn Blaze) regenerated from cell suspensions, and 4 clonal populations of Haplopappus gracilis were aseptically cultivated aboard the Shuttle "Discovery" during a 5-day mission within NASA's Plant Growth Unit (PGU) apparatus. Daylily was selected as a representative herbaceous perennial monocotyledon and the haplopappus clones represented an annual dicotyledon. The latter included 4 strains with different physiological and morphological characteristics: two aseptic seedling clones (each generated from a single seedling) and two tissue culture-derived lines. Mean daily growth rates for the primary shoots of all plantlets averaged 4.13 mm day-1 (SD = 2.20) for the flight experiment and 4.68 mm day-1 (SD = 2.59) for the ground control. Comparable growth rates calculated by summing both the primary and secondary shoots for all plantlets were 5.94 mm day-1 (SD = 2.89) for the flight experiment and 6.38 mm day-1 (SD = 3.71) for the control. Statistically significant differences existed between: (1) flight vs control primary shoot growth (the controls growing more than plantlets subjected to spaceflight conditions), (2) the different populations (the daylily gaining more shoot material than any of the haplopappus populations and the haplopappus seedling clones outperforming the tissue culture-derived haplopappus lines), and (3) the individual Plant Growth Chambers contained within the PGU. The data suggest that some spaceflight-associated factor(s) increased the tendency for primary shoot apices to degrade or senesce, resulting in the release of apical dominance and permitting the emergence of axillary branches, which subsequently partially compensated for the reduced primary axis growth. In addition to spaceflight-associated factors, the physiologically diverse nature of the experimental material as well as environmental heterogeneities within the culture apparatus contributed to the variation in growth results. The findings

  1. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  2. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The patterning of initiating organs along specific axes of polarity is critical for the proper development of all higher organisms. Plant lateral organs, such as leaves, are derived from the shoot apical meristems located at the growing tips. After initiation, the leaf primordia of species such as A...

  3. Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks.

    PubMed

    Bordage, Simon; Sullivan, Stuart; Laird, Janet; Millar, Andrew J; Nimmo, Hugh G

    2016-10-01

    Circadian clocks allow the temporal compartmentalization of biological processes. In Arabidopsis, circadian rhythms display organ specificity but the underlying molecular causes have not been identified. We investigated the mechanisms responsible for the similarities and differences between the clocks of mature shoots and roots in constant conditions and in light : dark cycles. We developed an imaging system to monitor clock gene expression in shoots and light- or dark-grown roots, modified a recent mathematical model of the Arabidopsis clock and used this to simulate our new data. We showed that the shoot and root circadian clocks have different rhythmic properties (period and amplitude) and respond differently to light quality. The root clock was entrained by direct exposure to low-intensity light, even in antiphase to the illumination of shoots. Differences between the clocks were more pronounced in conditions where light was present than in constant darkness, and persisted in the presence of sucrose. We simulated the data successfully by modifying those parameters of a clock model that are related to light inputs. We conclude that differences and similarities between the shoot and root clocks can largely be explained by organ-specific light inputs. This provides mechanistic insight into the developing field of organ-specific clocks.

  4. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    PubMed

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  5. Microbiome in the Apical Root Canal System of Teeth with Post-Treatment Apical Periodontitis

    PubMed Central

    Siqueira, José F.; Antunes, Henrique S.; Rôças, Isabela N.; Rachid, Caio T. C. C.

    2016-01-01

    Introduction Bacteria present in the apical root canal system are directly involved with the pathogenesis of post-treatment apical periodontitis. This study used a next-generation sequencing approach to identify the bacterial taxa occurring in cryopulverized apical root samples from root canal-treated teeth with post-treatment disease. Methods Apical root specimens obtained during periradicular surgery of ten adequately treated teeth with persistent apical periodontitis were cryogenically ground. DNA was extracted from the powder and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Results All samples were positive for the presence of bacterial DNA. Bacterial taxa were mapped to 11 phyla and 103 genera composed by 538 distinct operational taxonomic units (OTUs) at 3% of dissimilarity. Over 85% of the sequences belonged to 4 phyla: Proteobacteria, Firmicutes, Fusobacteria and Actinobacteria. In general, these 4 phyla accounted for approximately 80% of the distinct OTUs found in the apical root samples. Proteobacteria was the most abundant phylum in 6/10 samples. Fourteen genera had representatives identified in all cases. Overall, the genera Fusobacterium and Pseudomonas were the most dominant. Enterococcus was found in 4 cases, always in relatively low abundance. Conclusions This study showed a highly complex bacterial community in the apical root canal system of adequately treated teeth with persistent apical periodontitis. This suggests that this disease is characterized by multispecies bacterial communities and has a heterogeneous etiology, because the community composition largely varied from case to case. PMID:27689802

  6. Establishing Apical Patency and its Effect on Endodontic Outcomes

    DTIC Science & Technology

    2012-06-01

    canal space and periodontal ligament. Establishing apical patency is controversial with only 50% of dental programs in the United States teaching the... periodontal ligament (PDL) (1) where a small file can passively continue through the apical foramen (2). Establishing apical patency is...teeth with apical periodontitis that will eventually heal demonstrate signs of healing at 1 year follow-up, and almost 50% are completely healed

  7. Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology?

    PubMed

    Floyd, Sandra K; Bowman, John L

    2010-01-01

    The fossil record reveals that seed plant leaves evolved from ancestral lateral branch systems. Over time, the lateral branch systems evolved to become determinate, planar and eventually laminar. Considering their evolutionary histories, it is instructive to compare the developmental genetics of shoot apical meristems (SAMs) and leaves in extant seed plants. Genetic experiments in model angiosperm species have assigned functions of meristem maintenance, specification of stem cell identity, boundary formation, polarity establishment and primordium initiation to specific genes. Investigation of roles of the same or homologous genes during leaf development has revealed strikingly similar functions in leaves compared to SAMs. Specifically, the marginal blastozone that characterizes many angiosperm leaves appears to function in a manner mechanistically similar to the SAM. We argue here that the similarities may be homologous due to descent from ancestral roles in an ancestral shoot system. Molecular aspects of SAM and leaf development in gymnosperms is largely neglected and could provide insight into seed plant leaf evolution.

  8. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    PubMed

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.

  9. Evaluation of three instrumentation techniques at the precision of apical stop and apical sealing of obturation

    PubMed Central

    GENÇ, Özgür; ALAÇAM, Tayfun; KAYAOGLU, Guven

    2011-01-01

    Objective The aim of this study was to investigate the ability of two NiTi rotary apical preparation techniques used with an electronic apex locator-integrated endodontic motor and a manual technique to create an apical stop at a predetermined level (0.5 mm short of the apical foramen) in teeth with disrupted apical constriction, and to evaluate microleakage following obturation in such prepared teeth. Material and Methods: 85 intact human mandibular permanent incisors with single root canal were accessed and the apical constriction was disrupted using a #25 K-file. The teeth were embedded in alginate and instrumented to #40 using rotary Lightspeed or S-Apex techniques or stainless-steel K-files. Distance between the apical foramen and the created apical stop was measured to an accuracy of 0.01 mm. In another set of instrumented teeth, root canals were obturated using gutta-percha and sealer, and leakage was tested at 1 week and 3 months using a fluid filtration device. Results All techniques performed slightly short of the predetermined level. Closest preparation to the predetermined level was with the manual technique and the farthest was with S-Apex. A significant difference was found between the performances of these two techniques (p<0.05). Lightspeed ranked in between. Leakage was similar for all techniques at either period. However, all groups leaked significantly more at 3 months compared to 1 week (p<0.05). Conclusions Despite statistically significant differences found among the techniques, deviations from the predetermined level were small and clinically acceptable for all techniques. Leakage following obturation was comparable in all groups. PMID:21655774

  10. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  11. Inflammatory Myofibroblastic Tumor Mimicking Apical Periodontitis.

    PubMed

    Adachi, Makoto; Kiho, Kazuki; Sekine, Genta; Ohta, Takahisa; Matsubara, Makoto; Yoshida, Takakazu; Katsumata, Akitoshi; Tanuma, Jun-ichi; Sumitomo, Shinichiro

    2015-12-01

    Inflammatory myofibroblastic tumors (IMTs) are rare. IMTs of the head and neck occur in all age groups, from neonates to old age, with the highest incidence occurring in childhood and early adulthood. An IMT has been defined as a histologically distinctive lesion of uncertain behavior. This article describes an unusual case of IMT mimicking apical periodontitis in the mandible of a 42-year-old man. At first presentation, the patient showed spontaneous pain and percussion pain at teeth #28 to 30, which continued after initial endodontic treatment. Panoramic radiography revealed a radiolucent lesion at the site. Cone-beam computed tomographic imaging showed osteolytic lesions, suggesting an aggressive neoplasm requiring incisional biopsy. Histopathological examination indicated an IMT. The lesion was removed en bloc under general anesthesia, and the patient manifested no clinical evidence of recurrence for 24 months. Lesions of nonendodontic origin should be included in the differential diagnosis of apical periodontitis. Every available diagnostic tool should be used to confirm the diagnosis. Cone-beam computed tomographic imaging is very helpful for differential diagnosis in IMTs mimicking apical periodontitis.

  12. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    PubMed Central

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko

    2016-01-01

    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  13. The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth[W][OA

    PubMed Central

    Fleury, Delphine; Himanen, Kristiina; Cnops, Gerda; Nelissen, Hilde; Boccardi, Tommaso Matteo; Maere, Steven; Beemster, Gerrit T.S.; Neyt, Pia; Anami, Sylvester; Robles, Pedro; Micol, José Luis; Inzé, Dirk; Van Lijsebettens, Mieke

    2007-01-01

    Chromatin modification and transcriptional activation are novel roles for E3 ubiquitin ligase proteins that have been mainly associated with ubiquitin-dependent proteolysis. We identified HISTONE MONOUBIQUITINATION1 (HUB1) (and its homolog HUB2) in Arabidopsis thaliana as RING E3 ligase proteins with a function in organ growth. We show that HUB1 is a functional homolog of the human and yeast BRE1 proteins because it monoubiquitinated histone H2B in an in vitro assay. Hub knockdown mutants had pale leaf coloration, modified leaf shape, reduced rosette biomass, and inhibited primary root growth. One of the alleles had been designated previously as ang4-1. Kinematic analysis of leaf and root growth together with flow cytometry revealed defects in cell cycle activities. The hub1-1 (ang4-1) mutation increased cell cycle duration in young leaves and caused an early entry into the endocycles. Transcript profiling of shoot apical tissues of hub1-1 (ang4-1) indicated that key regulators of the G2-to-M transition were misexpressed. Based on the mutant characterization, we postulate that HUB1 mediates gene activation and cell cycle regulation probably through chromatin modifications. PMID:17329565

  14. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    NASA Technical Reports Server (NTRS)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  15. BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology.

    PubMed

    Perroud, Pierre-François; Quatrano, Ralph S

    2008-02-01

    When BRK1, a member of the Wave/SCAR complex, is deleted in Physcomitrella patens (Deltabrk1), we report a striking reduction of filament growth resulting in smaller and fewer cells with misplaced cross walls compared with the normal protonemal cells. Using an inducible green fluorescent protein-talin to detect actin in living tissue, a characteristic broad accumulation of actin is observed at the tip of wild-type apical cells, whereas in Deltabrk1, smaller, more distinct foci of actin are present. Insertion of brk1-yfp into Deltabrk1 rescues the mutant phenotype and results in BRK1 being localized only in the tip of apical cells, the exclusive site of cell extension and division in the filament. Like BRK1, ARPC4 and At RABA4d are normally localized at the tip of apical cells and their localization is correlated with rapid tip growth in filaments. However, neither marker accumulates in apical cells of Deltabrk1 filaments. Although the Deltabrk1 phenotypes in protonema are severe, the leafy shoots or gametophores are normally shaped but stunted. These and other results suggest that BRK1 functions directly or indirectly in the selective accumulation/stabilization of actin and other proteins required for polar cell growth of filaments but not for the basic structure of the gametophore.

  16. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy.

    PubMed

    Wang, Q C; Valkonen, J P T

    2008-12-01

    Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae) and Sweet potato feathery mottle virus (SPFMV; Potyviridae) interact synergistically and cause severe diseases in co-infected sweetpotato plants (Ipomoea batatas). Sweetpotato is propagated vegetatively and virus-free planting materials are pivotal for sustainable production. Using cryotherapy, SPCSV and SPCSV were eliminated from all treated single-virus-infected and co-infected shoot tips irrespective of size (0.5-1.5mm including 2-4 leaf primordia). While shoot tip culture also eliminated SPCSV, elimination of SPFMV failed in 90-93% of the largest shoot tips (1.5mm) using this technique. Virus distribution to different leaf primordia and tissues within leaf primordia in the shoot apex and petioles was not altered by co-infection of the viruses in the fully virus-susceptible sweetpotato genotype used. SPFMV was immunolocalized to all types of tissues and up to the fourth-youngest leaf primordium. In contrast, SPCSV was detected only in the phloem and up to the fifth leaf primordium. Because only cells in the apical dome of the meristem and the two first leaf primordia survived cryotherapy, all data taken together could explain the results of virus elimination. The simple and efficient cryotherapy protocol developed for virus elimination can also be used for preparation of sweetpotato materials for long-term preservation.

  17. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  18. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots.

    PubMed

    Fujita, Tomomichi; Sakaguchi, Hisako; Hiwatashi, Yuji; Wagstaff, Steven J; Ito, Motomi; Deguchi, Hironori; Sato, Toshiyuki; Hasebe, Mitsuyasu

    2008-01-01

    The shoot is a repeated structure made up of stems and leaves and is the basic body plan in land plants. Vascular plants form a shoot in the diploid generation, whereas nonvascular plants such as mosses form a shoot in the haploid generation. It is not clear whether all land plants use similar molecular mechanisms in shoot development or how the genetic networks for shoot development evolved. The control of auxin distribution, especially by polar auxin transport, is essential for shoot development in flowering plants. We did not detect polar auxin transport in the gametophytic shoots of several mosses, but did detect it in the sporophytes of mosses without shoot structure. Treatment with auxin transport inhibitors resulted in abnormal embryo development, as in flowering plants, but did not cause any morphological changes in the haploid shoots. We fused the soybean auxin-inducible promoter GH3 with a GUS reporter gene and used it to indirectly detect auxin distribution in the moss Physcomitrella patens. An auxin transport inhibitor NPA did not cause any changes in the putative distribution of auxin in the haploid shoot. These results indicate that polar auxin transport is not involved in haploid shoot development in mosses and that shoots in vascular plants and mosses are most likely regulated differently during development.

  19. Experimental fluid dynamics of transventricular apical aortic cannulation.

    PubMed

    Fukuda, Ikuo; Yanaoka, Hideki; Inamura, Takao; Minakawa, Masahito; Daitoku, Kazuyuki; Suzuki, Yasuyuki

    2010-03-01

    To clarify the flow pattern from a transventricular apical aortic cannula, hydrodynamic analysis of transventricular apical aortic cannulation (apical cannulation) was performed using particle-image velocimetry in a glass aortic model. Simulated apical cannulation using a 7-mm Sarns Soft-Flow cannula and the newly developed 7-mm apical aortic cannula was compared with standard aortic cannulation. The flow-velocity, streamline, and distribution of magnitude of the strain rate tensor (function of shear stress) were analyzed. Streamline analysis revealed a steady and organized flow profile in apical cannulation as compared with that in standard aortic cannulation. The magnitude of the strain rate tensor decreased within a few centimeters from the exit of the apical cannula.

  20. Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains

    PubMed Central

    Wattelet-Boyer, Valérie; Brocard, Lysiane; Jonsson, Kristoffer; Esnay, Nicolas; Joubès, Jérôme; Domergue, Frédéric; Mongrand, Sébastien; Raikhel, Natasha; Bhalerao, Rishikesh P.; Moreau, Patrick; Boutté, Yohann

    2016-01-01

    The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. PMID:27681606

  1. Tragedy and the Meaning of School Shootings

    ERIC Educational Resources Information Center

    Warnick, Bryan R.; Johnson, Benjamin A.; Rocha, Samuel

    2010-01-01

    School shootings are traumatic events that cause a community to question itself, its values, and its educational systems. In this article Bryan Warnick, Benjamin Johnson, and Samuel Rocha explore the meanings of school shootings by examining three recent books on school violence. Topics that grow out of these books include (1) how school shootings…

  2. Lockheed P-80A Shooting Star

    NASA Technical Reports Server (NTRS)

    1946-01-01

    Lockheed P-80A Shooting Star: The Lockheed P-80A Shooting Star was America's first fully operation jet fighter. This all-yellow example arrived at Langley in November 1946. The P-80 was used for air speed calibration and development of a tuned vibration damper.

  3. A shooting approach to suboptimal control

    NASA Technical Reports Server (NTRS)

    Hull, David G.; Sheen, Jyh-Jong

    1991-01-01

    The shooting method is used to solve the suboptimal control problem where the control history is assumed to be piecewise linear. Suboptimal solutions can be obtained without difficulty and can lead to accurate approximate controls and good starting multipliers for the regular shooting method by increasing the number of nodes. Optimal planar launch trajectories are presented for the advanced launch system.

  4. Cryopreservation of in vitro grown shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter in Plant Cell Culture, Development and Biotechnology describes student laboratory exercises for cryopreservation of the growing shoot tips of plants in liquid nitrogen. It includes two exercises involving step by step protocols for use with shoot tips. Vitrification (fast freezing) an...

  5. The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin is the sole iron efflux transporter in animals, and there are two closely related orthologs in Arabidopsis, FPN1 and FPN2. FPN1 localizes to the pl...

  6. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures.

    PubMed

    Li, Bai-Quan; Feng, Chao-Hong; Wang, Min-Rui; Hu, Ling-Yun; Volk, Gayle; Wang, Qiao-Chun

    2015-11-20

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration procedure that was previously reported by us. In both procedures, three types of shoot tip recovery were observed following cryopreservation: callus formation without shoot regrowth, leaf formation without shoot regrowth, and shoot regrowth. Three categories of histological observations were also identified in cross-sections of shoot tips recovered after cryopreservation using the two cryogenic procedures. In category 1, almost all of the cells (94-95%) in the apical dome (AD) were damaged or killed and only some cells (30-32%) in the leaf primordia (LPs) survived. In category 2, only a few cells (18-20%) in the AD and some cells (30-31%) in the LPs survived. In category 3, majority of the cells (60-62%) in the AD and some cells (30-33%) in the LPs survived. These data suggest that shoot regrowth is correlated to the presence of a majority of surviving cells in the AD after liquid nitrogen exposure. No polymorphic bands were detected by inter-simple sequence repeats or by random amplified polymorphic DNA assessments, and ploidy levels analyzed by flow cytometry were unchanged when plants recovered after cryoexposure were compared to controls. The droplet-vitrification procedure appears to be robust since seven genotypes representing four Malus species and one hybrid recovered shoots following cryopreservation. Mean shoot regrowth levels of these seven genotypes were 48% in the droplet-vitrification method, which were lower than those (61%) in the encapsulation-dehydration procedure reported in our previous study, suggesting the latter may be preferred for routine cryobanking applications for Malus shoot tips.

  7. Training visual control in wheelchair basketball shooting.

    PubMed

    Oudejans, Raôul R D; Heubers, Sjoerd; Ruitenbeek, Jean-René J A C; Janssen, Thomas W J

    2012-09-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible. Participants drove under a large screen that initially blocked the basket. As soon as they saw the basket they shot. When training with the screen, shooting percentages increased. We conclude that visual control training is an effective method to improve wheelchair basketball shooting. The findings support the idea that perceptual-motor learning can be enhanced by manipulating relevant constraints in the training environment, even for expert athletes.

  8. Amyloplast movement and gravityperception in Arabidopsis endoderm

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Saito, T.; Morita, M. T.

    Gravitropism of higher plant is a growth response regulating the orientation of organs elongation, which includes four sequential steps, the perception of gravistimulus, transduction of the physical stimulus to chemical signal, transmission of the signal, and differential cell elongation depending on the signal. To elucidate the molecular mechanism of these steps, we have isolated a number of Arabidopsis mutants with abnormal shoot gravitropic response. zig (zigzag)/sgr4(shoot gravitropism 4) shows little gravitropism in their shoots. Besides, their inflorescence stems elongate in a zigzag-fashion to bend at each node. ZIG encodes a SNARE, AtVTI11. sgr3 with reduced gravitropic response in inflorescence stems had a missense mutation in other SNARE, AtVAM3. These two SNAREs make a complex in the shoot endoderm cells that are gravity-sensing cells, suggesting that the vesicle transport from trans-Golgi network (TGN) to prevacuolar compartment (PVC) and/or vacuole is involved in gravitropism. Abnormal vesicular/vacuolar structures were observed in several tissues of both mutants. Moreover, SGR2 encodes phospholipase A1-like protein that resides in the vacuolar membrane. Endodermis-specific expression of these genes could complement gravitropism in each mutant. In addition, amyloplasts thought to be statoliths localized abnormally in their endoderm cells. These results strongly suggest that formation and function of vacuole in the endoderm cells are important for amyloplasts sedimentation, which is involved in the early process of shoot gravitropism. To reveal this, we constructed vertical stage microscope system to visualize the behavior of amyloplasts and vacuolar membrane in living endodermal cells. We hope to discuss the mechanism of gravity perception after showing their movements.

  9. Final Scientific/Technical Report for DOE Award No. DE-FG02-03ER15426: Role of Arabidopsis PINHEAD gene in meristem function

    SciTech Connect

    Dr. M. Kathryn Barton

    2011-11-29

    The shoot apical meristems of land plants are small mounds of hundreds of cells located at the tips of branches. It is from these small clusters of cells that essentially all above ground plant biomass and therefore much of our energy supply originates. Several key genes have been discovered that are necessary for cells in the shoot apical meristem to take on stem cell properties. The goal of this project is to understand how the synthesis and accumulation of the mRNAs and proteins encoded by these genes is controlled. A thorough understanding of the molecules that control the growth of shoot apical meristems in plants will help us to manipulate food, fiber and biofuel crops to better feed, clothe and provide energy for humans.

  10. A Trihelix DNA Binding Protein Counterbalances Hypoxia-Responsive Transcriptional Activation in Arabidopsis

    PubMed Central

    Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T.; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-01-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule–insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein–protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  11. Distribution of chlorophyll-bearing organelles in the shoot apex of a range of dicotyledonous plants.

    PubMed

    Spencer, D; White, R G; Wildman, S G

    2005-10-01

    Confocal laser scanning microscopy was used to study the distribution of the smallest detectable autofluorescing, chlorophyll-bearing structures in fresh, 40 microm thick longitudinal sections of the shoot apex of four dicotyledonous plants (Arabidopsis thaliana, Nicotiana glauca, Lupinus alba, and Spinacia oleracea). In all species, the smallest chlorophyll-bearing particles were found in the outermost cell layers (L1 and L2) of the shoot apex. Their distribution between these layers differed in each species. The smallest such particles were about 0.5-1.0 microm in maximum dimension, approximating the size of a single granum in the developing leaf. Their size and abundance increased with increasing cell age and distance from the peak of the apex. Immediately beneath the L1 and L2 layers was a zone largely devoid of these particles. Below this nonfluorescing zone, in the region where the derivatives of the meristematic zone differentiate into cells of the central pith region, the size and abundance of the chlorophyll-bearing particles increased progressively with increasing distance from the nonfluorescing zone. The presence of these small autofluorescing particles in the L1 and L2 cell layers of the shoot apex places the development of photosystem II fluorescence at an earlier stage of leaf development than previously observed. The use of confocal laser scanning microscopy to study unfixed sections provides another useful metabolic marker for mapping patterns of differentiation and development in the cells of the shoot apex.

  12. Value addition to bamboo shoots: a review.

    PubMed

    Choudhury, Debangana; Sahu, Jatindra K; Sharma, G D

    2012-08-01

    Bamboo shoot forms a traditional delicacy in many countries. Being low in fat content and high in potassium, carbohydrate, dietary fibres, Vitamins and active materials, bamboo shoots are consumed in raw, canned, boiled, marinated, fermented, frozen, liquid and medicinal forms. Although the fresh bamboo shoots of species like Dendraocalamus giganteus are healthier and nutritionally rich, the young shoots, after fortification, can be consumed by processing into a wide range of food products with longer shelf-life and better organoleptic qualities. However, the consumption pattern of bamboo shoots in most of the countries is traditional, non-standardized, seasonal and region-specific with little value addition. Therefore, there exists a great opportunity, especially for the organized food processing sectors to take up the processing of bamboo shoot-based food products in an organized manner. The present article gives an insight into the global scenario of bamboo shoot-based food products and their consumption pattern, the quality attributes, and the opportunities for value addition along with future prospects in view of international food safety, security and nutrition.

  13. New Clothes for the Jasmonic Acid Receptor COI1: Delayed Abscission, Meristem Arrest and Apical Dominance

    PubMed Central

    Kim, Joonyup; Dotson, Bradley; Rey, Camila; Lindsey, Joshua; Bleecker, Anthony B.; Binder, Brad M.; Patterson, Sara E.

    2013-01-01

    In a screen for delayed floral organ abscission in Arabidopsis, we have identified a novel mutant of CORONATINE INSENSITIVE 1 (COI1), the F-box protein that has been shown to be the jasmonic acid (JA) co-receptor. While JA has been shown to have an important role in senescence, root development, pollen dehiscence and defense responses, there has been little focus on its critical role in floral organ abscission. Abscission, or the detachment of organs from the main body of a plant, is an essential process during plant development and a unique type of cell separation regulated by endogenous and exogenous signals. Previous studies have indicated that auxin and ethylene are major plant hormones regulating abscission; and here we show that regulation of floral organ abscission is also controlled by jasmonic acid in Arabidopsis thaliana. Our characterization of coi1-1 and a novel allele (coi1-37) has also revealed an essential role in apical dominance and floral meristem arrest. In this study we provide genetic evidence indicating that delayed abscission 4 (dab4-1) is allelic to coi1-1 and that meristem arrest and apical dominance appear to be evolutionarily divergent functions for COI1 that are governed in an ecotype-dependent manner. Further characterizations of ethylene and JA responses of dab4-1/coi1-37 also provide new information suggesting separate pathways for ethylene and JA that control both floral organ abscission and hypocotyl growth in young seedlings. Our study opens the door revealing new roles for JA and its interaction with other hormones during plant development. PMID:23573263

  14. Unevenness of the apical constriction in human maxillary central incisors.

    PubMed

    Olson, David G; Roberts, Steven; Joyce, Anthony P; Collins, D Edward; McPherson, James C

    2008-02-01

    This study examined the incisoapical extent of the apical constriction in 45 human maxillary central incisors. The null hypothesis was that the apical constriction is a flat ring. Our working hypothesis was that the constriction is actually uneven or "skewed" as it traces a path around the circumference of the canal. Teeth were split and imaged with 25x magnification, and the most apical and coronal limits of the apical constriction were identified and measured. Analysis of the data indicates that a majority (>70%) of maxillary central incisors exhibit an unevenness or "skew" of the apical constriction of greater than 100 microm in the incisoapical dimension, with a maximum measured skew of 385 microm. On the basis of the results of this study, a statistically significant (P < .05) variation in the longitudinal position of the apical constriction around its circumference was confirmed in maxillary central incisors.

  15. Duck shooting injuries in Southland, New Zealand.

    PubMed

    Watts, Martin; Densie, Ian

    2013-05-10

    Duck shooting is a common sport in New Zealand. The opening weekend is anticipated and celebrated, often with significant alcohol intake which is cause for concern, and potentially very dangerous. Hunters are annually warned about the dangers. There have been few duck shooting incidents which lead to injury or death. In the last decade two duck shooters in New Zealand have been killed, while 16 suffered non fatal gunshot injuries. We present a series of injuries identified during the 2012 duck shooting season in Southland Province.

  16. Trouble shooting system for an electric vehicle

    SciTech Connect

    Horiuchi, M.

    1986-01-14

    This patent describes a trouble shooting system for an electric vehicle. The electric vehicle contains a driving mechanism, a driving operation part and a control device. The driving mechanism includes a power source, an electric motor and a modality for controlling output level from the power supply to the electric motor in response to the driving operation part. The control device includes a microprocessor which receives commands from the driving operation part and supplies a control signal to the driving mechanism in response to a stored drive control program. The trouble shooting system consists of control device storage mechanisms for storing trouble shooting programs for various parts of the vehicle which are executed by the microprocessor. This system also includes a command generating modality responsive to manual operation for supplying a command to the microprocessor to initiate the execution and read out of a selected trouble shooting program and a method by which the microprocessor may display the program being processed.

  17. The growth and form of plant shoots

    NASA Astrophysics Data System (ADS)

    Chelakkot, Raghunath; Mahadevan, L.

    2015-03-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. We provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the passive elastic deflection of the shoot due to its own weight, and (ii) the active controllable growth response of the shoot in response to its orientation relative to gravity, and (iii) proprioception, the shoot's growth response to its own observable shape, which is itself determined by its elasticity and weight. A morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag shows how a variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviors arise in a sentient growing filament naturally, without the need for ad-hoc complex spatio-temporal control strategies.

  18. Early events in geotropism of seedling shoots

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.

    1985-01-01

    Developments during the first ten minutes of geotropic stimulation in plant seedling shoots are reviewed. Topics include induction and curvature; early processes; the relationship between auxin, electric field, calcium, and differential growth; gravity reception leading to Went-Cholodny transport; and comparison of root and shoot. Early processes reviewed are sedimentation of amyloplasts, release of ethylene, rise of electrical and auxin asymmetry, redistribution of calcium, asymmetric vascular transport, increase in tendency to deposit callose, and simulation of putative exocytotic voltage transients.

  19. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  20. AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana

    PubMed Central

    Li, Bo; Qiu, Jiaen; Jayakannan, Maheswari; Xu, Bo; Li, Yuan; Mayo, Gwenda M.; Tester, Mark; Gilliham, Matthew; Roy, Stuart J.

    2017-01-01

    The accumulation of high concentrations of chloride (Cl−) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl− sensitive plant species those that exclude relatively more Cl− from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl− remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl− into the root xylem, which affects the accumulation of Cl− in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl− permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl− efflux from roots, and a greater Cl− accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, NO3− content in the shoot remained unaffected. Accumulation of Cl− in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl− transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl− efflux from the root, contributing to exclusion of Cl− from the shoot of Arabidopsis. PMID:28111585

  1. Impact of early season apical meristem injury by gall inducing tipworm (Diptera: Cecidomyiidae) on reproductive and vegetative growth of cranberry.

    PubMed

    Tewari, S; Buonaccorsi, J P; Averill, A L

    2013-06-01

    Larvae of cranberry tipworm, Dasineura oxycoccana Johnson, disrupt early season growth of cranberry (Vaccinium macrocarpon Aiton) uprights or shoots by feeding on apical meristem tissue. A 2-yr field study was carried out at three different locations to determine the impact of tipworm feeding injury on the reproductive and vegetative growth of two cranberry cultivars ('Howes' and 'Stevens') in Massachusetts. In addition to tipworm-injured and intact control uprights, an artificial injury treatment simulating tipworm feeding was also included. Individual uprights of cranberry exhibited tolerance to natural (tipworm) and simulated apical meristem injury in the current growing season (fruit production) and results were corroborated by a greenhouse study. In the field study, weight of fruit was higher in tipworm-injured uprights as compared with intact control uprights at the sites with Howes. However, majority of injured uprights (tipworm and simulated) did not produce new growth from lateral buds (side-shoots) before the onset of dormancy. In the next growing season, fewer injured uprights resumed growth and produced flowers as compared with intact uprights at two of the three sites. We suggest that multiple-year studies focusing on whole plant response to tipworm herbivory will be required to determine the costs of chronic feeding injury over time.

  2. Apical phosphatidylserine externalization in auditory hair cells.

    PubMed

    Shi, Xiaorui; Gillespie, Peter G; Nuttall, Alfred L

    2007-01-01

    In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.

  3. Easy transition path sampling methods: flexible-length aimless shooting and permutation shooting.

    PubMed

    Mullen, Ryan Gotchy; Shea, Joan-Emma; Peters, Baron

    2015-06-09

    We present new algorithms for conducting transition path sampling (TPS). Permutation shooting rigorously preserves the total energy and momentum of the initial trajectory and is simple to implement even for rigid water molecules. Versions of aimless shooting and permutation shooting that use flexible-length trajectories have simple acceptance criteria and are more computationally efficient than fixed-length versions. Flexible-length permutation shooting and inertial likelihood maximization are used to identify the reaction coordinate for vacancy migration in a two-dimensional trigonal crystal of Lennard-Jones particles. The optimized reaction coordinate eliminates nearly all recrossing of the transition state dividing surface.

  4. Arabidopsis ERECTA-family receptor kinases mediate morphological alterations stimulated by activation of NB-LRR-type UNI proteins.

    PubMed

    Uchida, Naoyuki; Igari, Kadunari; Bogenschutz, Naomi L; Torii, Keiko U; Tasaka, Masao

    2011-05-01

    Shoot apical meristems (SAMs), which maintain stem cells at the tips of stems, and axillary meristems (AMs), which arise at leaf axils for branch formation, play significant roles in the establishment of plant architecture. Previously, we showed that, in Arabidopsis thaliana, activation of NB-LRR (nucleotide-binding site-leucine-rich repeat)-type UNI proteins affects plant morphology through modulation of the regulation of meristems. However, information about genes involved in the processes was still lacking. Here, we report that ERECTA (ER) receptor kinase family members cooperatively mediate the morphological alterations that are stimulated by activation of UNI proteins. uni-1D is a gain-of-function mutation in the UNI gene and uni-1D mutants exhibit early termination of inflorescence stem growth and also formation of extra AMs at leaf axils. The former defect involves modulation of the SAM activity and is suppressed by er mutation. Though the AM phenotype is not affected by a single er mutation, it is suppressed by simultaneous mutations of ER-family members. It was previously shown that trans-zeatin (tZ)-type cytokinins were involved in the morphological phenotypes of uni-1D mutants and that expression of CYP735A2, which is essential for biosynthesis of tZ-type cytokinins, was modulated in uni-1D mutants. We show that this modulation of CYP735A2 expression requires activities of ER-family members. Moreover, the ER activity in UNI-expressing cells contributes to all morphological phenotypes of uni-1D mutants, suggesting that a cross-talk between ER-family-dependent and UNI-triggered signaling pathways plays a significant role in the morphological alterations observed in uni-1D mutants.

  5. Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Wang, Hua; Luo, Dexian; Zeng, Minhuan; Huang, Hai; Cui, Xiaofeng

    2011-01-01

    The 26S proteasome is a large multisubunit proteolytic complex, regulating growth and development in eukaryotes by selective removal of short-lived regulatory proteins. Here, it is shown that the 26S proteasome and the transcription factor gene REVOLUTA (REV) act together in maintaining inflorescence and floral meristem (IM and FM) functions. The characterization of a newly identified Arabidopsis mutant, designated ae4 (asymmetric leaves1/2 enhancer4), which carries a mutation in the gene encoding the 26S proteasome subunit, RPN2a, is reported. ae4 and rev have minor defects in phyllotaxy structure and meristem initiation, respectively, whereas ae4 rev demonstrated strong developmental defects. Compared with the rev single mutant, an increased percentage of ae4 rev plants exhibited abnormal vegetative shoot apical and axillary meristems. After flowering, ae4 rev first gave rise to a few normal-looking flowers, and then flowers with reduced numbers of all types of floral organs. In late reproductive development, instead of flowers, the ae4 rev IM produced numerous filamentous structures, which contained cells seen only in the floral organs, and then carpelloid organs. In situ hybridization revealed that expression of the WUSCHEL and CLAVATA3 genes was severely down-regulated or absent in the late appearing ae4 rev primordia, but the genes were strongly expressed in top-layer cells of inflorescence tips. Double mutant plants combining rev with other 26S proteasome subunit mutants, rpn1a and rpn9a, resembled ae4 rev, suggesting that the 26S proteasome might act as a whole in regulating IM and FM functions.

  6. Cryopreservation of chayote (Sechium edule JACQ. SW.) zygotic embryos and shoot-tips from in vitro plantlets.

    PubMed

    Abdelnour-Esquivel, Ana; Engelmann, Florent

    2002-01-01

    This paper presents the development of cryopreservation protocols for zygotic embryos and apices of chayote (Sechium edule Jacq. Sw.), a tropical plant species with recalcitrant seeds. Zygotic embryos of two cultivars, Ccocro negro (CN) and Claudio (Cl) could withstand cryopreservation, with survival percentages of 10 and 30 %, after desiccation to 23 and 19 % moisture content (fresh weight basis), respectively. Apices sampled on in vitro plantlets of cultivars Cl, 13 and JM were successfully cryopreserved using a vitrification technique. Optimal conditions included the culture of mother-plants for 22 days on medium containing 0.3 M sucrose, culture of excised apices on the same medium for 1 day, loading of apices for 20 min with 2M glycerol + 0.4M glycerol, treatment with a series of diluted PVS2 solution (60 % PVS2 followed by 80 % PVS2 solution for 15 min (cultivar Cocoro Blanco [CB]) or 30 min (cultivars CN and Cl) at each concentration), rapid freezing and thawing, washing of shoot-tips with a 1.2 M sucrose solution, followed by recovery on media with progressively decreasing sucrose concentrations until the standard concentration of 0.1 M was reached. The highest survival percentages achieved ranged between 17 and 38 %, depending on the cultivar.

  7. Tomato Yield Heterosis Is Triggered by a Dosage Sensitivity of the Florigen Pathway That Fine-Tunes Shoot Architecture

    PubMed Central

    Jiang, Ke; Liberatore, Katie L.; Park, Soon Ju; Alvarez, John P.; Lippman, Zachary B.

    2013-01-01

    The superiority of hybrids has long been exploited in agriculture, and although many models explaining “heterosis” have been put forth, direct empirical support is limited. Particularly elusive have been cases of heterozygosity for single gene mutations causing heterosis under a genetic model known as overdominance. In tomato (Solanum lycopersicum), plants carrying mutations in SINGLE FLOWER TRUSS (SFT) encoding the flowering hormone florigen are severely delayed in flowering, become extremely large, and produce few flowers and fruits, but when heterozygous, yields are dramatically increased. Curiously, this overdominance is evident only in the background of “determinate” plants, in which the continuous production of side shoots and inflorescences gradually halts due to a defect in the flowering repressor SELF PRUNING (SP). How sp facilitates sft overdominance is unclear, but is thought to relate to the opposing functions these genes have on flowering time and shoot architecture. We show that sft mutant heterozygosity (sft/+) causes weak semi-dominant delays in flowering of both primary and side shoots. Using transcriptome sequencing of shoot meristems, we demonstrate that this delay begins before seedling meristems become reproductive, followed by delays in subsequent side shoot meristems that, in turn, postpone the arrest of shoot and inflorescence production. Reducing SFT levels in sp plants by artificial microRNAs recapitulates the dose-dependent modification of shoot and inflorescence production of sft/+ heterozygotes, confirming that fine-tuning levels of functional SFT transcripts provides a foundation for higher yields. Finally, we show that although flowering delays by florigen mutant heterozygosity are conserved in Arabidopsis, increased yield is not, likely because cyclical flowering is absent. We suggest sft heterozygosity triggers a yield improvement by optimizing plant architecture via its dosage response in the florigen pathway. Exploiting

  8. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study

    PubMed Central

    Bani, Mehmet; Sungurtekin-Ekçi, Elif; Odabaş, Mesut Enes

    2015-01-01

    The aim of this study was to evaluate the apical microleakage of Biodentine and MTA orthograde apical plugs and to compare the effect of thickness of these biomaterials on their sealing ability. A total of eighty maxillary anterior teeth were used. The apices were removed by cutting with a diamond disc (Jota, Germany) 2 mm from the apical root end in an attempt to standardize the working length of all specimens to 15 ± 1 mm. Both materials were placed in 1–4 mm thickness as apical plugs root canal. Root canal leakage was evaluated by the fluid filtration technique. One-way ANOVA was used in order to determine normality of dispersal distribution of parameters; thereafter, results were analyzed by Kolmogorov-Smirnov test. Overall, between microleakage values of MTA and Biodentine regardless of apical plug thickness, no difference was observed. In terms of plug thickness, a statistically significant difference was observed between the subgroups of MTA and Biodentine (p < 0.05). The apical sealing ability of Biodentine was comparable to MTA at any apical plug thickness. PMID:26436090

  9. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots.

    PubMed

    Santi, Simonetta; Schmidt, Wolfgang

    2009-01-01

    Here, we have analysed the H(+)-ATPase-mediated extrusion of protons across the plasma membrane (PM) of rhizodermic cells, a process that is inducible by iron (Fe) deficiency and thought to serve in the mobilization of sparingly soluble Fe sources. The induction and function of Fe-responsive PM H(+)-ATPases in Arabidopsis roots was investigated by gene expression analysis and by using mutants defective in the expression or function of one of the isogenes. In addition, the expression of the most responsive isogenes was investigated in natural Arabidopsis accessions that have been selected for their in vivo proton extrusion activity. Our data suggest that the rhizosphere acidification in response to Fe deficiency is chiefly mediated by AHA2, while AHA1 functions as a housekeeping isoform. The aha7 knock-out mutant plants showed a reduced frequency of root hairs, suggesting an involvement of AHA7 in the differentiation of rhizodermic cells. Acidification capacity varied among Arabidopsis accessions and was associated with a high induction of AHA2 and IRT1, a high relative growth rate and a shoot-root ratio that was unaffected by the external Fe supply. An effective regulation of the Fe-responsive genes and a stable shoot-root ratio may represent important characteristics for the Fe uptake efficiency.

  10. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  11. Shooting Mechanisms in Nature: A Systematic Review

    PubMed Central

    Sakes, Aimée; van der Wiel, Marleen; Henselmans, Paul W. J.; van Leeuwen, Johan L.; Dodou, Dimitra; Breedveld, Paul

    2016-01-01

    Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill. Methods We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting. Results Shooting mechanisms were identified with projectile masses ranging from 1·10−9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi), or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals), or water evaporation from the system (reaching up to −197 atmospheres; observed in plants and fungi). The generated energy is stored as elastic (potential) energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1) in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum) by compression of the spore and droplets and (2) in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5

  12. Caffeine and performance in clay target shooting.

    PubMed

    Share, Bianca; Sanders, Nick; Kemp, Justin

    2009-04-01

    Controversy surrounds the influence that caffeine has on accuracy and cognitive performance in precision activities such as shooting and archery. The aim of this study was to assess the effects of two doses of caffeine on shooting performance, reaction time, and target tracking times in the sport of clay target shooting. A randomized, double-blind, placebo-controlled design was undertaken by seven elite male shooters from the double-trap discipline. Three intervention trials (2 mg caffeine . kg(-1) body mass (BM); 4 mg caffeine . kg(-1) BM; placebo) were undertaken, in which shooters completed four rounds per trial of 50 targets per round. Performance accuracy (score) and digital video footage (for determination of reaction time and target tracking times) were gathered during competition. Data were analysed using repeated-measures analysis of variance. No differences in shooting accuracy, reaction time or target tracking times among the three intervention trials or across the four rounds within each intervention were observed (P > 0.05). The results indicate that ingestion of < or =4 mg caffeine . kg(-1) BM does not provide performance benefits to elite performers of clay target shooting in the double-trap discipline.

  13. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response.

    PubMed

    Dong, Zhaobin; Jiang, Chuan; Chen, Xiaoyang; Zhang, Tao; Ding, Lian; Song, Weibin; Luo, Hongbing; Lai, Jinsheng; Chen, Huabang; Liu, Renyi; Zhang, Xiaolan; Jin, Weiwei

    2013-11-01

    Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize.

  14. Organ fusion and defective shoot development in oni3 mutants of rice

    PubMed Central

    Akiba, Takafumi; Hibara, Ken-Ichiro; Kimura, Fumiko; Tsuda, Katsutoshi; Shibata, Kiko; Ishibashi, Mayu; Moriya, Chihiro; Nakagawa, Kiyotaka; Kurata, Nori; Itoh, Jun-Ichi; Ito, Yukihiro

    2014-01-01

    Maintenance of organ separation is one of the essential phenomena for normal plant development. We have identified and analyzed ONION3 (ONI3), which is required for avoiding organ fusions in rice. Loss-of-function mutations of ONI3, which were identified as mutants with ectopic expression of KNOX genes in leaves and morphologically resembling KNOX overexpressors, showed abnormal organ fusions in developing shoots. The mutant seedlings showed fusions between neighboring organs and also within an organ; they stopped growing soon after germination and subsequently died. ONI3 was shown to encode an enzyme that is most similar to Arabidopsis HOTHEAD and is involved in biosynthesis of long-chain fatty acids. Expression analyses showed that ONI3 was specifically expressed in the outermost cell layer in the shoot apex throughout life cycle, and the oni3 mutants had an aberrant outermost cell layer. Our results together with previous studies suggest that long-chain fatty acids are required for avoiding organ fusions and promoting normal shoot development in rice. PMID:24192297

  15. Three ancient hormonal cues co-ordinate shoot branching in a moss

    PubMed Central

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-01-01

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI: http://dx.doi.org/10.7554/eLife.06808.001 PMID:25806686

  16. Shoot Branching and Leaf Dissection in Tomato Are Regulated by Homologous Gene Modules[W

    PubMed Central

    Busch, Bernhard L.; Schmitz, Gregor; Rossmann, Susanne; Piron, Florence; Ding, Jia; Bendahmane, Abdelhafid; Theres, Klaus

    2011-01-01

    Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems. PMID:22039213

  17. The auxin signalling network translates dynamic input into robust patterning at the shoot apex

    PubMed Central

    Vernoux, Teva; Brunoud, Géraldine; Farcot, Etienne; Morin, Valérie; Van den Daele, Hilde; Legrand, Jonathan; Oliva, Marina; Das, Pradeep; Larrieu, Antoine; Wells, Darren; Guédon, Yann; Armitage, Lynne; Picard, Franck; Guyomarc'h, Soazig; Cellier, Coralie; Parry, Geraint; Koumproglou, Rachil; Doonan, John H; Estelle, Mark; Godin, Christophe; Kepinski, Stefan; Bennett, Malcolm; De Veylder, Lieven; Traas, Jan

    2011-01-01

    The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex. PMID:21734647

  18. Quantitative Analysis of Shoot Development and Branching Patterns in Actinidia

    PubMed Central

    SELEZNYOVA, ALLA N.; THORP, T. GRANT; BARNETT, ANDREW M.; COSTES, EVELYNE

    2002-01-01

    We developed a framework for the quantitative description of Actinidia vine architecture, classifying shoots into three types (short, medium and long) corresponding to the modes of node number distribution and the presence/absence of neoformed nodes. Short and medium shoots were self‐terminated and had only preformed nodes. Based on the cut‐off point between their two modes of node number distribution, short shoots were defined as having nine or less nodes, and medium shoots as having more than nine nodes. Long shoots were non‐terminated and had a number of neoformed nodes; the total number of nodes per shoot was up to 90. Branching patterns for each parent shoot type were represented by a succession of branching zones. Probabilities of different types of axillary production (latent bud, short, medium or long shoot) and the distributions of length for each branching zone were estimated from experimental data using hidden semi‐Markov chain stochastic models. Branching was acrotonic on short and medium parent shoots, with most axillary shoots being located near the shoot tip. For long parent shoots, branching was mesotonic, with most long axillary shoots being located in the transition zone between the preformed and neoformed part of the parent shoot. Although the shoot classification is based on node number distribution there was a marked difference in average (per shoot) internode length between the shoot types, with mean values of 9, 27 and 47 mm for short, medium and long shoots, respectively. Bud and shoot development is discussed in terms of environmental controls. PMID:12096808

  19. BOREAS TE-12 SSA Shoot Geometry Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Walter-Shea, Elizabeth A.; Mesarch, Mark A.; Cheng, L.; Yang, Litao

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-12 (Terrestrial Ecology) team collected shoot geometry data in 1993 and 1994 from aspen, jack pine, and black spruce trees. Collections were made at the Southern Study Area Nipawin Fen Site (SSA FEN), Young Jack Pine (YJP), Old Jack Pine (OJP), Old Aspen (OA), Young Aspen (YA), Mixed Site (MIX), and Old Black Spruce (OBS) sites. A caliper was used to measure shoot and needle lengths and widths. A volume displacement procedure was used to measure the weight of the shoot or twig submerged in water. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Virus interaction with the apical junctional complex.

    PubMed

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  1. Apical surgery: A review of current techniques and outcome

    PubMed Central

    von Arx, Thomas

    2010-01-01

    Apical surgery is considered a standard oral surgical procedure. It is often a last resort to surgically maintain a tooth with a periapical lesion that cannot be managed with conventional endodontic (re-)treatment. The main goal of apical surgery is to prevent bacterial leakage from the root-canal system into the periradicular tissues by placing a tight root-end filling following root-end resection. Clinicians are advised to utilize a surgical microscope to perform apical surgery to benefit from magnification and illumination. In addition, the application of microsurgical techniques in apical surgery, i.e., gentle incision and flap elevation, production of a small osteotomy, and the use of sonic- or ultrasonic driven microtips, will result in less trauma to the patient and faster postsurgical healing. A major step in apical surgery is to identify possible leakage areas at the cut root face and subsequently to ensure adequate root-end filling. Only a tight and persistent apical obturation will allow periapical healing with good long-term prognosis. The present paper describes current indications, techniques and outcome of apical surgery. PMID:24151412

  2. Contagion in Mass Killings and School Shootings

    PubMed Central

    Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos

    2015-01-01

    Background Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Methods Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event. Conclusions We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings. PMID:26135941

  3. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica

    PubMed Central

    Oñate, Marta; Munné-Bosch, Sergi

    2009-01-01

    Background and Aims Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots. Methods Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer. Key Results Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females. Conclusions It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants. PMID:19633309

  4. A Case of Persistent Apical Ballooning Complicated by Apical Thrombus in Takotsubo Cardiomyopathy of Systemic Lupus Erythematosus Patient

    PubMed Central

    Shim, In Kyoung; Kim, Bong-Joon; Kim, Hyunsu; Lee, Jae-Woo; Cha, Tae-Joon

    2013-01-01

    Takotsubo cardiomyopathy, which is also known as "transient apical ballooning", is a cardiac syndrome associated with emotional and physical stress that occurs in postmenopausal women. It may mimic acute coronary syndrome but coronary angiography reveals normal epicardial coronary arteries. The prognosis is favorable with the normalization of wall motion abnormalities within weeks. We report a case of persistent apical ballooning complicated by an apical thrombus in Takotsubo cardiomyopathy of systemic lupus erythematous patient. Takotsubo cardiomyopathy may not be always transient and left ventricular thrombus can occur in the disease course as our patient. PMID:24198920

  5. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  6. Physiological Disorders of Pear Shoot Cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological disorders are some of the most difficult challenges in micropropagation. Little is known of the causes of plant growth disorders which include callus formation, hyperhydricity, shoot tip necrosis, leaf lesions, epinasty, fasciation and hypertrophy. During our study of mineral nutritio...

  7. Shooting Gallery Notes. Working Paper #22. Preliminary.

    ERIC Educational Resources Information Center

    Bourgois, Philippe

    This paper contains ethnographic participant-observation field notes taken on a one-night visit to a "shooting gallery" in East Harlem (New York City) along with background information and commentary. East Harlem, also referred to as "El Barrio" or Spanish Harlem, is a 200-square block neighborhood on the upper East Side of…

  8. Auditory risk estimates for youth target shooting

    PubMed Central

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  9. School Shootings; Standards Kill Students and Society

    ERIC Educational Resources Information Center

    Angert, Betsy L.

    2008-01-01

    School shootings have been in the news of late. People ponder what occurs in classrooms today. Why would a young person wish to take a life? Within educational institutions, the killings are a concern. In our dire attempt to teach the children and ensure student success, it seems many of our offspring are lost. Some students feel separate from…

  10. Evaluation of Apical Microleakage in Open Apex Teeth Using MTA Apical Plug in Different Sessions

    PubMed Central

    Yazdizadeh, Mohammad; Bouzarjomehri, Zeinab; Khalighinejad, Navid; Sadri, Leyli

    2013-01-01

    Aim. To compare microleakage of apexification using MTA in one or two sessions. Materials and Methods. 88 single rooted teeth were prepared and divided into two groups then received MTA apical plug. In the first group, the teeth were immersed in normal saline for 24 hours and then backfilled with guttapercha and AH26 sealer. In the second group, the teeth were obturated immediately after receiving apical plug. Four positive and four negative controls were selected. All specimens were placed in 1% methylene blue and decalcified in 5% nitric acid and finally were placed in methyl salicylate until getting transparent. All teeth were visualized for assessment of dye penetration under stereo dissecting microscope. Results. 36 and 35 teeth showed dye leakage in the first and second groups. Dye penetration into the entire canal length was confirmed in the positive control group, and in the negative control group no dye penetration was seen. Mean dye penetration in the first and second group was 5813 and 9152 μm. t-test revealed a significant difference between dye penetrations of two groups (P < 0.05). Conclusion. MTA requires adequate time for setting in the presence of the moisture, and final obturation should be delayed until final setting of MTA. PMID:24282642

  11. A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals.

    PubMed

    Schuster, Christoph; Gaillochet, Christophe; Medzihradszky, Anna; Busch, Wolfgang; Daum, Gabor; Krebs, Melanie; Kehle, Andreas; Lohmann, Jan U

    2014-02-24

    Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated.

  12. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination.

    PubMed

    Toh, Shigeo; Kamiya, Yuji; Kawakami, Naoto; Nambara, Eiji; McCourt, Peter; Tsuchiya, Yuichiro

    2012-01-01

    Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes under limited growth condition. To understand the roles of strigolactones in seed germination, it is necessary to develop a tractable experimental system using model plants such as Arabidopsis. Here, we report that thermoinhibition, which involves exposing seeds to high temperatures, uncovers a clear role for strigolactones in promoting Arabidopsis seed germination. Both strigolactone biosynthetic and signaling mutants showed increased sensitivity to seed thermoinhibition. The synthetic strigolactone GR24 rescued germination of thermoinbibited biosynthetic mutant seeds but not a signaling mutant. Hormone analysis revealed that strigolactones alleviate thermoinhibition by modulating levels of the two plant hormones, GA and ABA. We also showed that GR24 was able to counteract secondary dormancy in Arabidopsis ecotype Columbia (Col) and Cape Verde island (Cvi). Systematic hormone analysis of germinating Striga helmonthica seeds suggested a common mechanism between the parasitic and non-parasitic seeds with respect to how hormones regulate germination. Thus, our simple assay system using Arabidopsis thermoinhibition allows comparisons to determine similarities and differences between parasitic plants and model experimental systems for the use of strigolactones.

  13. Plant chip for high-throughput phenotyping of Arabidopsis.

    PubMed

    Jiang, Huawei; Xu, Zhen; Aluru, Maneesha R; Dong, Liang

    2014-04-07

    We report on the development of a vertical and transparent microfluidic chip for high-throughput phenotyping of Arabidopsis thaliana plants. Multiple Arabidopsis seeds can be germinated and grown hydroponically over more than two weeks in the chip, thus enabling large-scale and quantitative monitoring of plant phenotypes. The novel vertical arrangement of this microfluidic device not only allows for normal gravitropic growth of the plants but also, more importantly, makes it convenient to continuously monitor phenotypic changes in plants at the whole organismal level, including seed germination and root and shoot growth (hypocotyls, cotyledons, and leaves), as well as at the cellular level. We also developed a hydrodynamic trapping method to automatically place single seeds into seed holding sites of the device and to avoid potential damage to seeds that might occur during manual loading. We demonstrated general utility of this microfluidic device by showing clear visible phenotypes of the immutans mutant of Arabidopsis, and we also showed changes occurring during plant-pathogen interactions at different developmental stages. Arabidopsis plants grown in the device maintained normal morphological and physiological behaviour, and distinct phenotypic variations consistent with a priori data were observed via high-resolution images taken in real time. Moreover, the timeline for different developmental stages for plants grown in this device was highly comparable to growth using a conventional agar plate method. This prototype plant chip technology is expected to lead to the establishment of a powerful experimental and cost-effective framework for high-throughput and precise plant phenotyping.

  14. Function of Arabidopsis CPL1 in cadmium responses.

    PubMed

    Aksoy, Emre; Koiwa, Hisashi

    2013-05-01

    Transcriptional and post-transcriptional responses to external iron (Fe) availability are essential for the cellular Fe homeostasis. Fe deficiency strongly induces Fe utilization-related gene expression; however, little is known about the early Fe signaling that regulates expression of a central transcription factor FIT. In Arabidopsis, mutations in RNA polymerase II CTD-phosphatase-like 1 (CPL1) enhance the expression of Fe utilization-related genes including FIT under Fe deficiency. Fe content is significantly increased in the roots and decreased in the shoots of cpl1-2 plants, and root growth of the cpl1-2 mutant shows higher tolerance to Fe deficiency and to toxicity of cadmium (Cd). The cpl1-2 plants accumulate more Cd in the shoots, suggesting that Cd toxicity in the cpl1-2 roots is circumvented by the transport of excess Cd to the shoots. Here we show data suggesting that the root-to-shoot translocation of Cd in cpl1-2 is mediated by yet uncharacterized Cd transport mechanisms.

  15. Function of Arabidopsis CPL1 in cadmium responses

    PubMed Central

    Aksoy, Emre; Koiwa, Hisashi

    2013-01-01

    Transcriptional and post-transcriptional responses to external iron (Fe) availability are essential for the cellular Fe homeostasis. Fe deficiency strongly induces Fe utilization-related gene expression; however, little is known about the early Fe signaling that regulates expression of a central transcription factor FIT. In Arabidopsis, mutations in RNA polymerase II CTD-phosphatase-like 1 (CPL1) enhance the expression of Fe utilization-related genes including FIT under Fe deficiency. Fe content is significantly increased in the roots and decreased in the shoots of cpl1-2 plants, and root growth of the cpl1-2 mutant shows higher tolerance to Fe deficiency and to toxicity of cadmium (Cd). The cpl1-2 plants accumulate more Cd in the shoots, suggesting that Cd toxicity in the cpl1-2 roots is circumvented by the transport of excess Cd to the shoots. Here we show data suggesting that the root-to-shoot translocation of Cd in cpl1-2 is mediated by yet uncharacterized Cd transport mechanisms. PMID:23455022

  16. Photoperiodic flowering regulation in Arabidopsis thaliana

    PubMed Central

    Golembeski, Greg S.; Kinmonth-Schultz, Hannah A.; Song, Young Hun; Imaizumi, Takato

    2015-01-01

    Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction. PMID:25684830

  17. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

    PubMed

    Krishna Reddy, Srirama; Finlayson, Scott A

    2014-03-01

    Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud's ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.

  18. Haemostatic agents in apical surgery. A systematic review

    PubMed Central

    Clé-Ovejero, Adrià

    2016-01-01

    Background Blood presence in apical surgery can prevent the correct vision of the surgical field, change the physical properties of filling materials and reduce their sealing ability. Objetive To describe which are the most effective and safest haemostatic agents to control bleeding in patients undergoing apical surgery. Material and Methods TWe carried out a systematic review, using Medline and Cochrane Library databases, of human clinical studies published in the last 10 years. Results The agents that proved more effective in bleeding control were calcium sulphate (100%) and collagen plus epinephrine (92.9%) followed by ferric sulphate (60%), gauze packing (30%) and collagen (16.7%). When using aluminium chloride (Expasyl®), over 90% of the apical lesions improved, but this agent seemed to increase swelling. Epinephrine with collagen did not significantly raise either blood pressure or heart rate. Conclusions Despite the use of several haemostatic materials in apical surgery, there is little evidence on their effectiveness and safety. The most effective haemostatic agents were calcium sulphate and epinephrine plus collagen. Epinephrine plus collagen did not seem to significantly raise blood pressure or heart rate during surgery. Aluminium chloride did not increase postoperative pain but could slightly increase postoperative swelling. Randomized clinical trials are needed to assess the haemostatic effectiveness and adverse effects of haemostatic materials in apical surgery. Key words:Haemostasis, apical surgery. PMID:27475689

  19. Shooting under cardiovascular load: Electroencephalographic activity in preparation for biathlon shooting.

    PubMed

    Gallicchio, Germano; Finkenzeller, Thomas; Sattlecker, Gerold; Lindinger, Stefan; Hoedlmoser, Kerstin

    2016-11-01

    This study explored the influence of sub-maximal cardiovascular load on electroencephalographic (EEG) activity preceding biathlon shooting. Frontal-midline theta and alpha power were examined to assess monitoring processes and cortical inhibition, respectively. Thirteen experienced biathletes (mean age: 17years; 5 males, 8 females) fired sets of five consecutive shots from the standing position at a 50-meter-distant target, under two fixed-order conditions: (i) at rest and (ii) immediately after 3-minute exercise on a bicycle ergometer at 90% of maximum heart rate (HR). HR and rate of physical exertion (RPE) were measured as manipulation checks. Shooting accuracy was assessed in target rings for each shot. Frontal-midline theta and alpha power were computed in the last second preceding each shot from average-reference 61-channel EEG and inter-individual differences were minimized through a median-scaled log transformation (Appendix). HR and RPE increased under cardiovascular load, however, shooting accuracy did not change. Pre-shooting frontal-midline theta power decreased, whereas alpha power increased over temporal and occipital - but not central - regions. These changes were larger for greater HR values. Additionally, higher frontal-midline theta, lower left-central alpha, and higher left-temporal alpha power were associated with more accurate shooting. These findings suggest that monitoring processes are beneficial to shooting performance but can be impaired by sub-maximal cardiovascular load. Greater inhibition of movement-irrelevant regions (temporal, occipital) and concomitant activation of movement-related regions (central) indicate that greater neural efficiency is beneficial to shooting performance and can allow trained biathletes to shoot accurately despite physically demanding conditions.

  20. Healing of apical rarefaction of three nonvital open apex anterior teeth using a white portland cement apical plug

    PubMed Central

    Chakraborty, Amitabha; Dey, Bibhas; Dhar, Reema; Sardar, Prabir

    2012-01-01

    The major challenge of performing root canal treatment in an open apex pulp-less tooth is to obtain a good apical seal. MTA has been successfully used to achieve a good apical seal, wherein the root canal obturation can be done immediately. MTA and White Portland Cement has been shown similarity in their physical, chemical and biological properties and has also shown similar outcome when used in animal studies and human trials. In our study, open apex of three non vital upper central incisors has been plugged using modified white Portland cement. 3 to 6 months follow up revealed absence of clinical symptoms and disappearance of peri-apical rarefactions. The positive clinical outcome may encourage the future use of white Portland cement as an apical plug material in case of non vital open apex tooth as much cheaper substitute of MTA. PMID:23230357

  1. Healing of apical rarefaction of three nonvital open apex anterior teeth using a white portland cement apical plug.

    PubMed

    Chakraborty, Amitabha; Dey, Bibhas; Dhar, Reema; Sardar, Prabir

    2012-09-01

    The major challenge of performing root canal treatment in an open apex pulp-less tooth is to obtain a good apical seal. MTA has been successfully used to achieve a good apical seal, wherein the root canal obturation can be done immediately. MTA and White Portland Cement has been shown similarity in their physical, chemical and biological properties and has also shown similar outcome when used in animal studies and human trials. In our study, open apex of three non vital upper central incisors has been plugged using modified white Portland cement. 3 to 6 months follow up revealed absence of clinical symptoms and disappearance of peri-apical rarefactions. The positive clinical outcome may encourage the future use of white Portland cement as an apical plug material in case of non vital open apex tooth as much cheaper substitute of MTA.

  2. Auxin transport in an auxin-resistant mutant of arabidopsis thaliana

    SciTech Connect

    Lincoln, C.; Benning, C.; Estelle, M.

    1987-04-01

    The authors are studying a group of allelic recessive mutations in Arabidopsis called axr-1. Homozygous axr-1 plants are resistant to exogenously applied auxin. In addition, axr-1 mutations all confer a number of development abnormalities including an apparent reduction in apical dominance, loss of normal geotropic response, and a failure to self-fertilize due to a decrease in stamen elongation. In order to determine whether this pleiotropic phenotype is due to an alteration in auxin transport they have adapted the agar block transport assay for use in Arabidopsis stem segments. Their results indicate that as in other plant species, auxin transport is strongly polar in Arabidopsis stem segments. In addition transport is inhibited by the well characterized auxin transport inhibitor N-1-naphthylphthalamic acid and the artificial auxin 2,4-D. These results as well as the characterization of transport in axr-1 plants will be presented.

  3. ClRTL1 Encodes a Chinese Fir RNase III–Like Protein Involved in Regulating Shoot Branching

    PubMed Central

    Li, Xia; Su, Qian; Zheng, Renhua; Liu, Guangxin; Lu, Ye; Bian, Liming; Chen, Jinhui; Shi, Jisen

    2015-01-01

    Identification of genes controlling shoot branching is crucial for improving plant architecture and increasing crop yield or biomass. A branching mutant of Chinese fir named “Dugansha” (Cunninghamia lanceolata var. dugan.) has been isolated in our laboratory. We chose the cDNA-AFLP technique and an effective strategy to screen genes that potentially regulate shoot branching in Chinese fir using this mutant. An RNase III-like1 cDNA fragment named ClRTL1 was identified as a potential positive regulator. To investigate the function of ClRTL1 in regulating shoot branching, we cloned the full-length cDNA sequence from C. lanceolata (Lamb.) Hook, deduced its secondary structure and function, and overexpressed the coding sequence in Arabidopsis. The ClRTL1 cDNA is 1045 bp and comprises an open reading frame of 705 bp. It encodes a protein of 235 amino acids. The deduced secondary structure of the ClRTL1 indicates that it is a mini-RNase III-like protein. The expression analysis and phenotypes of 35S: ClRTL1 in A. thaliana implies that ClRTL1 plays a role in promoting shoot branching in Chinese fir. PMID:26516842

  4. Effect of apical clearing technique on the treatment outcome of teeth with asymptomatic apical periodontitis: A randomized clinical trial

    PubMed Central

    Mittal, Priya; Logani, Ajay; Shah, Naseem; Pandey, R. M.

    2016-01-01

    Aim: This study aims to compare the periapical healing of teeth with asymptomatic apical periodontitis treated either by conventional apical preparation (CAP) or apical clearing technique (ACT). Materials and Methods: Twenty subjects with bilateral nonvital similar teeth exhibiting comparable periapical index (PAI) score were enrolled and randomly allocated. Group I (CAP, n = 20): Apical preparation three sizes greater (master apical file [MAF]) than the first binding file at the established working length. Group II (ACT, n = 20): Apical preparation three sizes greater than the MAF that was followed by dry reaming. Root canal therapy was accomplished in single-visit for all the teeth. They were pursued radiographically at 3, 6, 9 and 12 months. Pre- and post-treatment PAI scores were compared. To ascertain the proportion of healed teeth between the two groups, McNemar Chi-square test was applied. Results: At 3, 6, and 9 months’ time interval the proportion of healed teeth for Group II (ACT) was greater in comparison to Group I (CAP) (P < 0.05). However, at 12 months follow-up period this difference was not significant (P = 0.08). Conclusion: ACT enhanced the healing kinetics. However, the long-term (12 months) radiographic outcome was similar for either technique. PMID:27656054

  5. Differentiation of Apical Bud Cells in a Newly Developed Apical Bud Transplantation Model Using GFP Transgenic Mice as Donor

    PubMed Central

    Sakagami, Ryuji; Yoshinaga, Yasunori; Okamura, Kazuhiko

    2016-01-01

    Rodent mandibular incisors have a unique anatomical structure that allows teeth to grow throughout the lifetime of the rodent. This report presents a novel transplantation technique for studying the apical bud differentiation of rodent mandibular incisors. Incisal apical end tissue with green fluorescent protein from transgenic mouse was transplanted to wild type mice, and the development of the transplanted cells were immunohistologically observed for 12 weeks after the transplantation. Results indicate that the green fluorescent apical end tissue replaced the original tissue, and cells from the apical bud differentiated and extended toward the incisal edge direction. The immunostaining with podoplanin also showed that the characteristics of the green fluorescent tissue were identical to those of the original. The green fluorescent cells were only found in the labial side of the incisor up to 4 weeks. After 12 weeks, however, they were also found in the lingual side. Here the green fluorescent cementocyte-like cells were only present in the cementum close to the dentin surface. This study suggests that some of the cells that form the cellular cementum come from the apical tissue including the apical bud in rodent incisors. PMID:26978064

  6. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  7. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant.

    PubMed

    Ogas, J; Cheng, J C; Sung, Z R; Somerville, C

    1997-07-04

    The plant growth regulator gibberellin (GA) has a profound effect on shoot development and promotes developmental transitions such as flowering. Little is known about any analogous effect GA might have on root development. In a screen for mutants, Arabidopsis plants carrying a mutation designated pickle (pkl) were isolated in which the primary root meristem retained characteristics of embryonic tissue. Expression of this aberrant differentiation state was suppressed by GA. Root tissue from plants carrying the pkl mutation spontaneously regenerated new embryos and plants.

  8. GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes

    PubMed Central

    Ait-Omar, Amal; Monteiro-Sepulveda, Milena; Poitou, Christine; Le Gall, Maude; Cotillard, Aurélie; Gilet, Jules; Garbin, Kevin; Houllier, Anne; Château, Danièle; Lacombe, Amélie; Veyrie, Nicolas; Hugol, Danielle; Tordjman, Joan; Magnan, Christophe; Serradas, Patricia; Clément, Karine; Leturque, Armelle; Brot-Laroche, Edith

    2011-01-01

    OBJECTIVE In healthy rodents, intestinal sugar absorption in response to sugar-rich meals and insulin is regulated by GLUT2 in enterocyte plasma membranes. Loss of insulin action maintains apical GLUT2 location. In human enterocytes, apical GLUT2 location has not been reported but may be revealed under conditions of insulin resistance. RESEARCH DESIGN AND METHODS Subcellular location of GLUT2 in jejunal enterocytes was analyzed by confocal and electron microscopy imaging and Western blot in 62 well-phenotyped morbidly obese subjects and 7 lean human subjects. GLUT2 locations were assayed in ob/ob and ob/+ mice receiving oral metformin or in high-fat low-carbohydrate diet–fed C57Bl/6 mice. Glucose absorption and secretion were respectively estimated by oral glucose tolerance test and secretion of [U-14C]-3-O-methyl glucose into lumen. RESULTS In human enterocytes, GLUT2 was consistently located in basolateral membranes. Apical GLUT2 location was absent in lean subjects but was observed in 76% of obese subjects and correlated with insulin resistance and glycemia. In addition, intracellular accumulation of GLUT2 with early endosome antigen 1 (EEA1) was associated with reduced MGAT4a activity (glycosylation) in 39% of obese subjects on a low-carbohydrate/high-fat diet. Mice on a low-carbohydrate/high-fat diet for 12 months also exhibited endosomal GLUT2 accumulation and reduced glucose absorption. In ob/ob mice, metformin promoted apical GLUT2 and improved glucose homeostasis. Apical GLUT2 in fasting hyperglycemic ob/ob mice tripled glucose release into intestinal lumen. CONCLUSIONS In morbidly obese insulin-resistant subjects, GLUT2 was accumulated in apical and/or endosomal membranes of enterocytes. Functionally, apical GLUT2 favored and endosomal GLUT2 reduced glucose transepithelial exchanges. Thus, altered GLUT2 locations in enterocytes are a sign of intestinal adaptations to human metabolic pathology. PMID:21852673

  9. BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis.

    PubMed

    Yoo, Seong Jeon; Chung, Kyung Sook; Jung, Seung Hye; Yoo, So Yeon; Lee, Jong Seob; Ahn, Ji Hoon

    2010-07-01

    The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family is a small gene family that encodes important regulators that control flower development in Arabidopsis. Here, we investigated the biological role of the product of BROTHER OF FT AND TFL1 (BFT), a member of this family, whose function remains unknown. Comparison of the critical residues that play a role in distinguishing FT- or TFL1-like activity revealed that BFT is more similar to FT. Similar to FT expression, BFT expression showed a diurnal oscillation pattern, peaking in the evening. In situ hybridization revealed BFT expression in the shoot apical meristem, young leaf and axillary inflorescence meristem. Transgenic plants over-expressing BFT exhibited delayed flowering and severe floral defects (floral indeterminacy and compact inflorescences surrounded by serrate leaves), similar to 35S::TFL1 plants. LEAFY (LFY) and APETALA1 (AP1) expression was significantly reduced in 35S::BFT plants. BFT over-expression failed to rescue the terminal flower phenotype of tfl1 mutants; however, it delayed both terminal flower formation in the primary inflorescence and axillary inflorescence development in the tfl1 mutant background. Consistent with this, the loss-of-function BFT alleles, bft-2 and an BFT RNAi line, accelerated termination of the primary inflorescence and formation of axillary inflorescences in the tfl1 mutant background. Taken together, our results suggest that, despite similarities in the critical residues of BFT and FT, BFT possesses a TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development, and possibly contributes to the regulation of plant architecture.

  10. Burn disasters in shooting range areas.

    PubMed

    Uygur, Fatih; Oksüz, Sinan; Yüksel, Fuat

    2008-08-06

    Shooting range injuries are generally caused by ballistic accidents, and so far no burn disaster has been reported. In this article we reported a disaster caused by a gunpowder explosion in an indoor shooting range area in Istanbul, Turkey. Fourteen injured people were evacuated from the scene. Our burn center accepted 7 of them. Of the 7 injured people, 2 who were accepted by our burn center, and 3 people who were admitted by another center died. It is clearly identified how this mechanism of injury differs from that of usual burn injuries, due to both the high temperature generated, and the combination of hot and toxic gases produced by the explosion. We described the features of burn injury, and possible reasons of burn disasters.

  11. Root : shoot ratios, optimization and nitrogen productivity.

    PubMed

    Agren, Göran I; Franklin, Oskar

    2003-12-01

    Plants respond to nitrogen availability by changing their root : shoot ratios. One hypothesis used to explain this allocation is that plants optimize their behaviour by maximizing their relative growth rate. The consequences of this hypothesis were investigated by formulating two models for root : shoot allocation, with and without explicit inclusion of maintenance respiration. The models also took into account that relative growth rate is a linear function of plant nitrogen concentration. The model without respiration gave qualitatively reasonable results when predictions were compared with observed results from growth experiments with birch and tomato. The explicit inclusion of maintenance respiration improved considerably the agreement between prediction and observation, and for birch was within the experimental accuracy. Further improvements will require additional details in the description of respiratory processes and the nitrogen uptake function. Plants growing under extreme nutrient stress may also optimize their behaviour with respect to other variables in addition to relative growth rate.

  12. Shooting direction and crosswell seismic data acquisition

    SciTech Connect

    Liner, C.L.; Bozkurt, G.; Cox, V.D.

    1994-12-31

    At the Glenn Pool field in Northeastern Oklahoma, a series of crosswell seismic surveys have been acquired. The acquisition parameters and shooting geometry were careful developed using a test survey. The first full survey resulted in high quality data, but the second encountered high ambient noise. The noise levels were high enough to prohibit first-arrival picking over in much of the data. Analysis of the data from the second survey shows that tube waves are emanating from the perforated interval in the receiver well. This is interpreted to be fluid flow or circulation noise through the perforations, even though the well was not flowing fluid at the surface. Since this image plane was important for characterization of the reservoir, the survey was re-shot by reversing sources and receivers in the two wells. The resulting high-quality data indicates that shooting direction can be an important acquisition factor.

  13. The Effects of Different Media on Shoot Proliferation From the Shoot Tip of Aloe vera L.

    PubMed Central

    Daneshvar, Mohammad Hosein; Moallemi, Noorolah; Abdolah Zadeh, Nazanin

    2013-01-01

    Background Aloe vera L. is an important pharmaceutical plant from which several medicinal and cosmetic compounds are extracted. Aloe is naturally propagated through offset, which is a slow and expensive labor cost method with low economical income. Objectives In this study, the effect of different media on shoot proliferation of the shoot tip of Aloe vera L. was investigated. Materials and Methods In vitro techniques are some of the suggested methods for rapid propagation of Aloe. In this experiment, the shoot tips of mother plants were grown in a greenhouse. After surface sterilization of the explants, they were cultured on Murashige and Skoog (1962) (MS) medium containing different concentrations of kinetin and naphthaleneacetic acid (NAA). The experiment was carried out in the form of a randomized complete design with three replications. Results The results showed that MS media containing 1.5 mg/L kinetin along with 0.15 or 0.3 mg/L NAA produced the highest percentage of proliferated shoots. In addition, the percentage of proliferated shoots in MS medium containing 2.0 or 2.5 mg/L benzylaminopurine (BAP) + 0.15 mg/L NAA was significantly higher than the other treatments. Conclusions Analysis of the interactive effects of NAA, kinetin and BAP on shoot proliferation showed that most of the proliferated shoots produced in MS medium containing 1.0 mg/L BAP + 1.0 mg/L kinetin + 0.15 mg/L NAA were significantly different from other treatments. Rooting quality was greater in MS media containing 1.0 mg/L IBA than a 1.0 mg/L NAA treatment. PMID:24624195

  14. Annoyance caused by shooting range noise

    NASA Astrophysics Data System (ADS)

    Levein, B.; Åhrlin, U.

    1988-12-01

    Noise from shooting ranges is characterized by high levels of impulse noise with a large contribution of low frequencies. The knowledge of human reactions to this kind of noise is as yet incomplete. A questionnaire study was performed around one civilian and three military artillery ranges in order to elucidate the annoyance reactions among nearby residents. The extent of annoyance was determined through postal questionnaires. In a first questionnaire, containing general questions about the residential area, persons "annoyed" by "noise from shooting ranges" were identified. A second questionnaire, distributed only to those annoyed by the noise, contained more detailed questions concerning the annoyance reaction. A total of 299 persons participated in the study. Among the residents in the vicinity of the three artillery ranges, 31-35% reported that they were "very annoyed" by the noise. Corresponding data for the civilian shooting range was 15%. The characteristics of the exposure most frequently reported as the main source of annoyance was "heavy weapons" and "vibrations" in all areas. Furthermore, the annoyance reactions were most frequently experienced in the evening and night hours. Establishment of dose-response relationships was not considered relevant due to the small number of areas studied and the similarity in exposure levels (around 85 dB(A) FAST expressed as peak levels). The results of the study demonstrate that noise from shooting ranges, especially such with a large contribution of heavy weapons, is a potential source of great annoyance. Further studies have been initiated in order to obtain a wider distribution of peak levels which will enable the establishment of dose-response relationships.

  15. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  16. Timing of growth inhibition following shoot inversion in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Abdel-Rahman, A. M.; Cline, M. G.

    1989-01-01

    Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.

  17. Apical Revascularization after Delayed Tooth Replantation: An Unusual Case

    PubMed Central

    Nelson-Filho, Paulo; Silva, Lea Assed Bezerra; Silva, Raquel Assed Bezerra; de Carvalho, Fabricio Kitazono; de Queiroz, Alexandra Mussolino

    2016-01-01

    The aim of this paper is to present the clinical and radiological outcome of the treatment involving a delayed tooth replantation after an avulsed immature permanent incisor, with a follow-up of 1 year and 6 months. An 8-year-old boy was referred after dental trauma that occurred on the previous day. The permanent maxillary right central incisor (tooth 11) had been avulsed. The tooth was hand-held during endodontic therapy and an intracanal medication application with calcium hydroxide-based paste was performed. An apical plug with mineral trioxide aggregate (MTA) was introduced into the apical portion of the canal. When the avulsed tooth was replanted with digital pressure, a blood clot had formed within the socket, which moved the MTA apical plug about 2 mm inside of the root canal. These procedures developed apical revascularization, which promoted a successful endodontic outcome, evidenced by apical closure, slight increase in root length, and absence of signs of external root resorption, during a follow-up of 1 year and 6 months. PMID:27882250

  18. [Mineral trioxide aggregate (MTA) a success story in apical surgery].

    PubMed

    von Arx, Thomas

    2016-01-01

    The objective of apical surgery is to retain teeth with persistent apical pathosis following orthograde root canal treatment if endodontic non-surgical revision is difficult or associated with risks, or is even declined by the patient. Since the most frequent cause of recurrent apical disease is bacterial reinfection from the (remaining) root canal system, the bacteria-tight root-end filling is the most important step in apical surgery. In the early 1990s, mineral trioxide aggregate (MTA) was developed at the Loma Linda University in California/USA. Preclinical studies clearly showed that MTA has a high sealing capability, a good material stability and an excellent biocompatbility. Multiple experimental studies in animals highlighted the mild tissue reactions observed adjacent to this material. Furthermore, histological analysis of the periapical regions demonstrated a frequent deposition of new cementum not only onto the resection plane (cut dentinal surface), but also directly onto MTA. For these reasons, MTA is considered a bioactive material. In 1997 MTA was cleared for clinical use in patients. Multiple prospective clinical and randomized studies have documented high and constant success rates of MTA-treated teeth in apical surgery. A recently published longitudinal study showed that MTA-treated teeth remained stable over five years; hence the high healed rates documented after one year are maintained during long-term observation.

  19. Somatic hybrids between Arabidopsis thaliana and cytoplasmic male-sterile radish (Raphanus sativus).

    PubMed

    Yamagishi, H; Glimelius, K

    2003-08-01

    Somatic hybrids were produced by protoplast fusion between Arabidopsis thaliana ecotype Columbia and a male-sterile radish line MS-Gensuke ( Raphanus sativus) with the Ogura cytoplasm. Forty-one shoots were differentiated from the regenerated calli and established as shoot cultures in vitro. About 20 of these shoots were judged to be hybrids based on growth characteristics and morphology. Molecular analyses of 11 shoots were performed, confirming the hybrid features. Of these 11 shoots, eight were established as rooted plants in the greenhouse. Polymerase chain reaction and randomly amplified polymorphic DNA analyses of the nuclear genomes of all analyzed shoots and plants confirmed that they contained hybrid DNA patterns. Their chromosome numbers also supported the hybrid nature of the plants. Investigations of the organelles in the hybrids revealed that the chloroplast (cp) genome was exclusively represented by radish cpDNA, while the mitochondrial DNA configuration showed a combination of both parental genomes as well as fragments unique to the hybrids. Hybrid plants that flowered were male-sterile independent of the presence of the Ogura CMS-gene orf138.

  20. Genetical and Comparative Genomics of Brassica under Altered Ca Supply Identifies Arabidopsis Ca-Transporter Orthologs[W][OPEN

    PubMed Central

    Graham, Neil S.; Hammond, John P.; Lysenko, Artem; Mayes, Sean; Ó Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C.; Rawlings, Chris J.; Rios, Juan J.; Welham, Susan; Carion, Pierre W.C.; Dupuy, Lionel X.; King, Graham J.; White, Philip J.; Broadley, Martin R.

    2014-01-01

    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca2+ transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca2+ transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

  1. The origin of the sporophyte shoot in land plants: a bryological perspective

    PubMed Central

    Ligrone, Roberto; Duckett, Jeffrey G.; Renzaglia, Karen S.

    2012-01-01

    Background Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity. Scope This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort–polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth. Conclusions The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the

  2. Development of secretory cells and crystal cells in Eichhornia crassipes ramet shoot apex.

    PubMed

    Xu, Guo Xin; Tan, Chao; Wei, Xiao Jing; Gao, Xiao Yan; Zheng, Hui Qiong

    2011-04-01

    The distribution and development of secretory cells and crystal cells in young shoot apexes of water hyacinth were investigated through morphological and cytological analysis. The density of secretory cells and crystal cells were high in parenchyma tissues around the vascular bundles of shoot apexes. Three developmental stages of the secretory cells can be distinguished under transmission electron microscopy. Firstly, a large number of electron-dense vesicles formed in the cytoplasm, then fused with the tonoplast and released into the vacuole in the form of electron-dense droplets. As these droplets fused together, a large mass of dark material completely filled the vacuole. To this end, a secretion storage vacuole (SSV) formed. Secondly, an active secretion stage accompanied with degradation of the large electron-dense masses through an ill-defined autophagic process at periphery and in the limited internal regions of the SSV. Finally, after most storage substances were withdrawn, the materials remaining in the spent SSV consisted of an electron-dense network structure. The distribution and development of crystal cells in shoot apical tissue of water hyacinth were also studied by light and electron microscopy. Crystals initially formed at one site in the vacuole, where tube-like membrane structures formed crystal chambers. The chamber enlarged as the crystal grew in bidirectional manner and formed needle-shaped raphides. Most of these crystals finally occurred as raphide bundles, and the others appeared as block-like rhombohedral crystals in the vacuole. These results suggest that the formation of both secretory cells and crystal cells are involved in the metamorphosis of vacuoles and a role for vacuoles in water hyacinth rapid growth and tolerance.

  3. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  4. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  5. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8.

    PubMed

    Meng, Lai-Sheng; Wang, Yi-Bo; Yao, Shun-Qiao; Liu, Aizhong

    2015-08-01

    The Arabidopsis AINTEGUMENTA (ANT) gene, which encodes an APETALA2 (AP2)-like transcription factor, controls plant organ cell number and organ size throughout shoot development. ANT is thus a key factor in the development of plant shoots. Here, we have found that ANT plays an essential role in conferring salt tolerance in Arabidopsis. ant-knockout mutants presented a salt-tolerant phenotype, whereas transgenic plants expressing ANT under the 35S promoter (35S:ANT) exhibited more sensitive phenotypes under high salt stress. Further analysis indicated that ANT functions mainly in the shoot response to salt toxicity. Target gene analysis revealed that ANT bound to the promoter of SOS3-LIKE CALCIUM BINDING PROTEIN 8 (SCABP8), which encodes a putative Ca(2+) sensor, thereby inhibiting expression of SCABP8 (also known as CBL10). It has been reported that the salt sensitivity of scabp8 is more prominent in shoot tissues. Genetic experiments indicated that the mutation of SCABP8 suppresses the ant-knockout salt-tolerant phenotype, implying that ANT functions as a negative transcriptional regulator of SCABP8 upon salt stress. Taken together, the above results reveal that ANT is a novel regulator of salt stress and that ANT binds to the SCABP8 promoter, mediating salt tolerance.

  6. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean

    PubMed Central

    Roychoudhry, Suruchi; Kieffer, Martin; Del Bianco, Marta; Liao, Che-Yang; Weijers, Dolf; Kepinski, Stefan

    2017-01-01

    Root and shoot branches are major determinants of plant form and critical for the effective capture of resources below and above ground. These branches are often maintained at specific angles with respect to gravity, known as gravitropic set point angles (GSAs). We have previously shown that the mechanism permitting the maintenance of non-vertical GSAs is highly auxin-dependent and here we investigate the developmental and environmental regulation of root and shoot branch GSA. We show that nitrogen and phosphorous deficiency have opposing, auxin signalling-dependent effects on lateral root GSA in Arabidopsis: while low nitrate induces less vertical lateral root GSA, phosphate deficiency results in a more vertical lateral root growth angle, a finding that contrasts with the previously reported growth angle response of bean adventitious roots. We find that this root-class-specific discrepancy in GSA response to low phosphorus is mirrored by similar differences in growth angle response to auxin treatment between these root types. Finally we show that both shaded, low red/far-red light conditions and high temperature induce more vertical growth in Arabidopsis shoot branches. We discuss the significance of these findings in the context of efforts to improve crop performance via the manipulation of root and shoot branch growth angle. PMID:28256503

  7. Apical oscillations in amnioserosa cells: basolateral coupling and mechanical autonomy.

    PubMed

    Jayasinghe, Aroshan K; Crews, Sarah M; Mashburn, David N; Hutson, M Shane

    2013-07-02

    Holographic laser microsurgery is used to isolate single amnioserosa cells in vivo during early dorsal closure. During this stage of Drosophila embryogenesis, amnioserosa cells undergo oscillations in apical surface area. The postisolation behavior of individual cells depends on their preisolation phase in these contraction/expansion cycles: cells that were contracting tend to collapse quickly after isolation; cells that were expanding do not immediately collapse, but instead pause or even continue to expand for ∼40 s. In either case, the postisolation apical collapse can be prevented by prior anesthetization of the embryos with CO2. These results suggest that although the amnioserosa is under tension, its cells are subjected to only small elastic strains. Furthermore, their postisolation apical collapse is not a passive elastic relaxation, and both the contraction and expansion phases of their oscillations are driven by intracellular forces. All of the above require significant changes to existing computational models.

  8. Apical Oscillations in Amnioserosa Cells: Basolateral Coupling and Mechanical Autonomy

    PubMed Central

    Jayasinghe, Aroshan K.; Crews, Sarah M.; Mashburn, David N.; Hutson, M. Shane

    2013-01-01

    Holographic laser microsurgery is used to isolate single amnioserosa cells in vivo during early dorsal closure. During this stage of Drosophila embryogenesis, amnioserosa cells undergo oscillations in apical surface area. The postisolation behavior of individual cells depends on their preisolation phase in these contraction/expansion cycles: cells that were contracting tend to collapse quickly after isolation; cells that were expanding do not immediately collapse, but instead pause or even continue to expand for ∼40 s. In either case, the postisolation apical collapse can be prevented by prior anesthetization of the embryos with CO2. These results suggest that although the amnioserosa is under tension, its cells are subjected to only small elastic strains. Furthermore, their postisolation apical collapse is not a passive elastic relaxation, and both the contraction and expansion phases of their oscillations are driven by intracellular forces. All of the above require significant changes to existing computational models. PMID:23823245

  9. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce.

  10. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Nishijima, Takaaki; Moriguchi, Takaya

    2014-05-01

    To investigate the effects of light quality (wavelength) on shoot elongation and flower-bud formation in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai), we treated 1-year-old trees with the following: (i) 8 h sunlight + 16 h dark (SD); (ii) 8 h sunlight + 16 h red light (LD(SD + R)); or (iii) 8 h sunlight + 16 h far-red (FR) light (LD(SD + FR)) daily for 4 months from early April (before the spring flush) until early August in 2009 and 2010. In both years, shoot elongation stopped earlier in the LD(SD + FR) treatment than in the SD and LD(SD + R) treatments. After 4 months of treatments, 21% (2009) or 40% (2010) of LD(SD + FR)-treated trees formed flower buds in the shoot apices, whereas all the shoot apices from SD or LD(SD + R)-treated plants remained vegetative. With an additional experiment conducted in 2012, we confirmed that FR light at 730 nm was the most efficacious wavelength to induce flower-bud formation. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of two floral meristem identity gene orthologues, LEAFY (PpLFY2a) and APETALA1 (PpMADS2-1a), were up-regulated in the shoot apex of LD(SD + FR). In contrast, the expression of a flowering repressor gene, TERMINAL FLOWER 1 (PpTFL1-1a, PpTFL1-2a), was down-regulated. In addition, expression of an orthologue of the flower-promoting gene FLOWERING LOCUS T (PpFT1a) was positively correlated with flower-bud formation, although the expression of another orthologue, PpFT2a, was negatively correlated with shoot growth. Biologically active cytokinin and gibberellic acid concentrations in shoot apices were reduced with LD(SD + FR) treatment. Taken together, our results indicate that pear plants are able to regulate flowering in response to the R : FR ratio. Furthermore, LD(SD + FR) treatment terminated shoot elongation and subsequent flower-bud formation in the shoot apex at an earlier time, possibly by influencing the expression of flowering-related genes and modifying

  11. Dental Apical Papilla as Therapy for Spinal Cord Injury.

    PubMed

    De Berdt, P; Vanacker, J; Ucakar, B; Elens, L; Diogenes, A; Leprince, J G; Deumens, R; des Rieux, A

    2015-11-01

    Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel.

  12. Multiple idiopathic external apical root resorption: A rare case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Kapur, Sonali

    2015-01-01

    Multiple idiopathic external apical root resorption (MIEARR) is a relatively rare condition affecting multiple teeth in a dentition. As the condition is nonsymptomatic, a case is usually detected as an incidental radiographic finding. However, it may cause pain and mobility in severe cases. It is sometimes self-limiting or sometimes may progress to tooth loss. This paper presents a case of external apical root resorption involving multiple teeth in which etiology was not identified, so idiopathic root resorption was considered as a diagnosis of exclusion. PMID:25657532

  13. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic.

    PubMed

    Román-Fernández, Alvaro; Bryant, David M

    2016-12-01

    The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.

  14. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice.

    PubMed

    Wu, Xinru; Tang, Ding; Li, Ming; Wang, Kejian; Cheng, Zhukuan

    2013-01-01

    Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding.

  15. Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination

    PubMed Central

    Hermand, Victor; Julio, Emilie; Dorlhac de Borne, François; Punshon, Tracy; Ricachenevsky, Felipe K; Bellec, Arnaud; Gosti, Françoise; Berthomieu, Pierre

    2015-01-01

    Cadmium (Cd) is a non-essential heavy metal, which is classified as a “known human carcinogen” by the International Agency for Research on Cancer (IARC). Understanding the mechanisms controlling Cd distribution in planta is essential to develop phytoremediation approaches as well as for food safety. Unlike most other plants, tobacco (Nicotiana tabacum) plants translocate most of the Cd taken up from the soil, out of the roots and into the shoots, leading to high Cd accumulation in tobacco shoots. Two orthologs to the Arabidopsis thaliana HMA2 and HMA4 Zn and Cd ATPases that are responsible for zinc (Zn) and Cd translocation from roots to shoots were identified in tobacco and sequenced. These genes, named NtHMAα and NtHMAβ, were more highly expressed in roots than in shoots. NtHMAα was expressed in the vascular tissues of both roots and leaves as well as in anthers. No visual difference was observed between wild-type plants and plants in which the NtHMAα and NtHMAβ genes were either mutated or silenced. These mutants showed reduced Zn and Cd accumulation in shoots as well as increased Cd tolerance. When both NtHMA genes were silenced, plant development was altered and pollen germination was severely impaired due to Zn deficiency. Interestingly, seeds from these lines also showed decreased Zn concentration but increased iron (Fe) concentration. PMID:24760325

  16. Characterization of a Selenate-Resistant Arabidopsis Mutant. Root Growth as a Potential Target for Selenate Toxicity1[OA

    PubMed Central

    El Kassis, Elie; Cathala, Nicole; Rouached, Hatem; Fourcroy, Pierre; Berthomieu, Pierre; Terry, Norman; Davidian, Jean-Claude

    2007-01-01

    Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced 35S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis. PMID:17208959

  17. Responses of Arabidopsis and Wheat to Rising CO2 Depend on Nitrogen Source and Nighttime CO2 Levels1[OPEN

    PubMed Central

    Rachmilevitch, Shimon

    2015-01-01

    A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3−) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3− assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3− assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3− or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3−, shoot organic N, 15N isotope fractionation, 15NO3− assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3− assimilation and thus decreased dark respiration in the plants reliant on NO3−. These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. PMID:25755253

  18. Bamboo shoots: a novel source of nutrition and medicine.

    PubMed

    Singhal, Poonam; Bal, Lalit Mohan; Satya, Santosh; Sudhakar, P; Naik, S N

    2013-01-01

    Bamboos, a group of large woody grasses belonging to the family Poaceae and subfamily Bambusoideae, are much talked about for their contribution to the environment. However, the food potential of Bamboo shoot per se remains unexploited. Literature on the nutritional and medicinal potential of bamboo shoots is scarce. This paper therefore provides insight on bamboo shoot as a food resource. Various edible species and exotic food products (fermented shoots, pickle, etc.) and recipes of bamboo shoots (bamboo beer, bamboo cookies) are consumed worldwide. Change in nutritional composition of different species of bamboo shoots with processing has also been reviewed. Bamboo shoots possess high protein, moderate fiber, and less fat content. They are also endowed for having essential amino acids, selenium, a potent antioxidant, and potassium, a healthy heart mineral. Occurrence of taxiphyllin, a cyanogenic glycoside in raw shoots, and its side effect on human health calls for the demand to innovate processing ways using scientific input to eliminate the toxic compound without disturbing the nutrient reserve. Lastly, the paper also reviews the utilization of medicinal properties acquired by bamboo shoot. Using the traditional knowledge, pharmaceutical preparations of bamboo shoots like bamboo salt, bamboo vinegar, bamboo extracts for diabetes and cholesterol control, etc. are now gaining importance. Further investigation is required by the researchers to make novel nutraceutical products and benefit the society.

  19. Gene Transposition Causing Natural Variation for Growth in Arabidopsis thaliana

    PubMed Central

    Vlad, Daniela; Rappaport, Fabrice; Simon, Matthieu; Loudet, Olivier

    2010-01-01

    A major challenge in biology is to identify molecular polymorphisms responsible for variation in complex traits of evolutionary and agricultural interest. Using the advantages of Arabidopsis thaliana as a model species, we sought to identify new genes and genetic mechanisms underlying natural variation for shoot growth using quantitative genetic strategies. More quantitative trait loci (QTL) still need be resolved to draw a general picture as to how and where in the pathways adaptation is shaping natural variation and the type of molecular variation involved. Phenotypic variation for shoot growth in the Bur-0 × Col-0 recombinant inbred line set was decomposed into several QTLs. Nearly-isogenic lines generated from the residual heterozygosity segregating among lines revealed an even more complex picture, with major variation controlled by opposite linked loci and masked by the segregation bias due to the defective phenotype of SG3 (Shoot Growth-3), as well as epistasis with SG3i (SG3-interactor). Using principally a fine-mapping strategy, we have identified the underlying gene causing phenotypic variation at SG3: At4g30720 codes for a new chloroplast-located protein essential to ensure a correct electron flow through the photosynthetic chain and, hence, photosynthesis efficiency and normal growth. The SG3/SG3i interaction is the result of a structural polymorphism originating from the duplication of the gene followed by divergent paralogue's loss between parental accessions. Species-wide, our results illustrate the very dynamic rate of duplication/transposition, even over short periods of time, resulting in several divergent—but still functional—combinations of alleles fixed in different backgrounds. In predominantly selfing species like Arabidopsis, this variation remains hidden in wild populations but is potentially revealed when divergent individuals outcross. This work highlights the need for improved tools and algorithms to resolve structural variation

  20. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  1. The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans.

    PubMed

    Silady, Rebecca A; Kato, Takehide; Lukowitz, Wolfgang; Sieber, Patrick; Tasaka, Masao; Somerville, Chris R

    2004-10-01

    The gravitropism defective 2 (grv2) mutants of Arabidopsis show reduced shoot phototropism and gravitropism. Amyloplasts in the shoot endodermal cells of grv2 do not sediment to the same degree as in wild type. The GRV2 gene encodes a 277-kD polypeptide that is 42% similar to the Caenorhabditis elegans RME-8 protein, which is required for endocytosis. We hypothesize that a defect in endocytosis may affect both the initial gravity sensing via amyloplasts sedimentation and the subsequent more general tropic growth response.

  2. Theory of Electric Resonance in the Neocortical Apical Dendrite

    PubMed Central

    Kasevich, Ray S.; LaBerge, David

    2011-01-01

    Pyramidal neurons of the neocortex display a wide range of synchronous EEG rhythms, which arise from electric activity along the apical dendrites of neocortical pyramidal neurons. Here we present a theoretical description of oscillation frequency profiles along apical dendrites which exhibit resonance frequencies in the range of 10 to 100 Hz. The apical dendrite is modeled as a leaky coaxial cable coated with a dielectric, in which a series of compartments act as coupled electric circuits that gradually narrow the resonance profile. The tuning of the peak frequency is assumed to be controlled by the average amplitude of voltage-gated outward currents, which in turn are regulated by the subthreshold noise in the thousands of synaptic spines that are continuously bombarded by local circuits. The results of simulations confirmed the ability of the model both to tune the peak frequency in the 10–100 Hz range and to gradually narrow the resonance profile. Considerable additional narrowing of the resonance profile is provided by repeated looping through the apical dendrite via the corticothalamocortical circuit, which reduced the width of each resonance curve (at half-maximum) to approximately 1 Hz. Synaptic noise in the neural circuit is discussed in relation to the ways it can influence the narrowing process. PMID:21853129

  3. Unilateral apical infiltrate as an initial presentation of pulmonary sarcoidosis.

    PubMed

    Tice, A W

    1981-11-01

    A unilateral, apical, pulmonary infiltrate was seen in an Air Force weapon systems officer stationed in the Philippines as an initial presentation of pulmonary sarcoidosis. The most obvious diagnosis for that geographic area is tuberculosis. Diagnosis must be pursued to evaluate all differential possibilities, with resort to open-lung or bronchoscopic biopsy, if necessary.

  4. [Nonsurgical retreatment in a case of a radiolucent apical lesion].

    PubMed

    Vicente Gómez, A; Rodríguez Ponce, A

    1989-01-01

    We present a case of failure that was helpful solved without surgical endodontic treatment. We don't achieve clinical success besides endodontic treatment was twice remade. Finally we decided to put a temporary filling with calcium hydroxide and wait until apical radiolucency disappear and complete our treatment with gutta-percha, sealer and lateral condensation.

  5. Theory of electric resonance in the neocortical apical dendrite.

    PubMed

    Kasevich, Ray S; LaBerge, David

    2011-01-01

    Pyramidal neurons of the neocortex display a wide range of synchronous EEG rhythms, which arise from electric activity along the apical dendrites of neocortical pyramidal neurons. Here we present a theoretical description of oscillation frequency profiles along apical dendrites which exhibit resonance frequencies in the range of 10 to 100 Hz. The apical dendrite is modeled as a leaky coaxial cable coated with a dielectric, in which a series of compartments act as coupled electric circuits that gradually narrow the resonance profile. The tuning of the peak frequency is assumed to be controlled by the average amplitude of voltage-gated outward currents, which in turn are regulated by the subthreshold noise in the thousands of synaptic spines that are continuously bombarded by local circuits. The results of simulations confirmed the ability of the model both to tune the peak frequency in the 10-100 Hz range and to gradually narrow the resonance profile. Considerable additional narrowing of the resonance profile is provided by repeated looping through the apical dendrite via the corticothalamocortical circuit, which reduced the width of each resonance curve (at half-maximum) to approximately 1 Hz. Synaptic noise in the neural circuit is discussed in relation to the ways it can influence the narrowing process.

  6. Immunolocalization of integrin-like proteins in Arabidopsis and Chara

    NASA Technical Reports Server (NTRS)

    Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.

    1997-01-01

    Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.

  7. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings.

    PubMed

    Hu, Yan Feng; Zhou, Guoying; Na, Xiao Fan; Yang, Lijing; Nan, Wen Bin; Liu, Xu; Zhang, Yong Qiang; Li, Jiao Long; Bi, Yu Rong

    2013-07-15

    Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.

  8. Responses of the Mediterranean pine shoot beetle Tomicus destruens (Wollaston) to pine shoot and bark volatiles.

    PubMed

    Faccoli, Massimo; Anfora, Gianfranco; Tasin, Marco

    2008-09-01

    The pine shoot beetle Tomicus destruens has two dispersal phases per generation. In the first, mature adults move toward trunks of dying pines to lay eggs; in the second, callow adults move toward the shoots of healthy pines for maturation feeding. However, there is no information on the chemical stimuli that govern host selection by T. destruens adults. The aims of this study were: (1) to identify the volatiles released by shoots and bark of stone pine that are behaviorally and electrophysiologically active on T. destruens; (2) to verify which blends and concentrations of such volatiles are differently active on males and females, as well as on callow and mature adults, during the two host search phases (breeding and feeding). A four-arm olfactometer was used to test the behavior of walking T. destruens adults toward various sources of volatiles including fresh shoots and bark, their collected volatiles, and two synthetic blends. For each odor, the behavior of both callow and mature males and females was recorded individually. Shoot and bark extracts were analyzed by coupled gas chromatography and mass spectrometry (GC-MS), and tested by gas chromatography coupled with electroantennography (GC-EAD) on T. destruens males and females. Two blends of two (alpha-pinene and beta-myrcene; blend A) and three (alpha-pinene, beta- myrcene, and alpha-terpinolene; blend B) synthetic compounds, chosen among those that induce EAD responses and known to be attractive for other bark beetle species, were tested in the olfactometer at five concentrations. Insect behavior was affected by the degree of sexual maturation but not by sex. Callow insects were attracted by shoots and their extracts, while mature individuals by bark and its extracts. Six extracted compounds were active on T. destruens antennae: limonene, (Z)-3-hexen-1-ol and beta-caryophyllene, alpha-pinene, beta-myrcene, and alpha-terpinolene. alpha-Terpinolene, released only by bark, was active only on mature insects

  9. Shooting direction and crosswell seismic data acquisition

    SciTech Connect

    Liner, C.L.; Bozkurt, G.; Cox, V.D.

    1996-09-01

    Four crosswell seismic surveys were acquired in the Glenn Pool Field of northeastern Oklahoma as part of a multidisciplinary reservoir characterization project. The acquisition goal was to generate data suitable for tomographic traveltime inversion. Acquisition parameters and shooting geometry were selected by conducting a parameter test at the site. Following the parameter test, the first survey resulted in high quality data showing clear first arrivals, low ambient noise, some reflection events, and strong source-generated tube waves. The second survey involved a different receiver well and encountered high ambient noise levels. The noise was strong enough to prohibit first-arrival picking for much of the data. On-site analysis of the second survey revealed tube waves emanating from a perforated interval in the receiver well. This well was shut in and was not flowing fluid or gas at the surface. They interpret the source of ambient tube waves as borehole-to-formation fluid flow (circulation) associated with the perforations. Since this image plane was important for characterization of the reservoir, the survey was reshot (third survey) by reversing sources and receivers in the two wells. The resulting high-quality data indicates that shooting direction can be an important factor in crosswell seismic acquisition. This experience influenced acquisition of a previously planned fourth survey so that the ambient noise problem would be avoided.

  10. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.

    PubMed

    Frank, Margaret H; Scanlon, Michael J

    2015-02-01

    Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed.

  11. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  12. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.

    PubMed

    Shanmugam, Varanavasiappan; Lo, Jing-Chi; Wu, Chia-Lin; Wang, Shan-Li; Lai, Chong-Cheong; Connolly, Erin L; Huang, Jing-Ling; Yeh, Kuo-Chen

    2011-04-01

    To avoid zinc (Zn) toxicity, plants have developed a Zn homeostasis mechanism to cope with Zn excess in the surrounding soil. In this report, we uncovered the difference of a cross-homeostasis system between iron (Fe) and Zn in dealing with Zn excess in the Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera and nonhyperaccumulator Arabidopsis thaliana. Arabidopsis halleri shows low expression of the Fe acquisition and deficiency response-related genes IRT1 and IRT2 compared with A. thaliana. In A. thaliana, lowering the expression of IRT1 and IRT2 through the addition of excess Fe to the medium increases Zn tolerance. Excess Zn induces significant Fe deficiency in A. thaliana and reduces Fe accumulation in shoots. By contrast, the accumulation of Fe in shoots of A. halleri was stable under various Zn treatments. Root ferric chelate reductase (FRO) activity and expression of FIT are low in A. halleri compared with A. thaliana. Overexpressing a ZIP family member IRT3 in irt1-1, rescues the Fe-deficient phenotype. A fine-tuned Fe homeostasis mechanism in A. halleri maintains optimum Fe level by Zn-regulated ZIP transporters and prevents high Zn uptake through Fe-regulated metal transporters, and in part be responsible for Zn tolerance.

  13. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  14. The role of small RNAs in vegetative shoot development

    PubMed Central

    Fouracre, Jim P.; Poethig, R. Scott

    2016-01-01

    Shoot development consists of the production of lateral organs in predictable spatial and temporal patterns at the shoot apex. To properly integrate such programs of growth across different cell and tissue types, plants require highly complex and robust genetic networks. Over the last twenty years, the roles of small, non-coding RNAs (sRNAs) in these networks have become increasingly apparent, not least in vegetative shoot growth. In this review, we describe recent progress in understanding the contribution of sRNAs to the regulation of vegetative shoot growth, and outline persisting experimental limitations in the field. PMID:26745378

  15. Promotion of sink activity of developing rose shoots by light.

    PubMed

    Mor, Y; Halevy, A H

    1980-11-01

    Holding young rose shoots (Rosa hybrida cv. Marimba) in darkness while the rest of the plant was in light reduced the amount of (14)C assimilates recovered from the darkened shoot by half. Relative specific activity of the shoot tip grown in light was 13.5 times greater than that of the darkened one. The flower bud at the shoot tip degenerated in darkness and died. Shoots 2 to 3 centimeters long, after flower initiation, were most sensitive to the dark treatment. The degeneration is a gradual and reversible process in the first 8 days of darkness, followed by irreversible damage and atrophy. Darkening enhanced the ability of the young leaves to compete for the available assimilates over that of the darkened shoot tip. The enhancement of the mobilizing ability of the shoot tip by light is independent of photosynthesis since spraying with 3-(3,4-dichlorophenyl)-1,1-dimethylurea or holding shoots in a CO(2)-free atmosphere did not diminish the promoting effect of light on flower bud development or assimilate import. The possibility that light exerts its effect by photoproduction of ATP was also excluded inasmuch as no differences were found in ATP levels of shoot tips held in darkness and those held in light.

  16. An unusual ST-segment elevation: apical hypertrophic cardiomyopathy shows the ace up its sleeve.

    PubMed

    de Santis, Francesco; Pergolini, Amedeo; Zampi, Giordano; Pero, Gaetano; Pino, Paolo Giuseppe; Minardi, Giovanni

    2013-01-01

    Apical hypertrophic cardiomyopathy is part of the broad clinical and morphologic spectrum of hypertrophic cardiomyopathy. We report a patient with electrocardiographic abnormalities in whom acute coronary syndrome was excluded and apical hypertrophic cardiomyopathy was demonstrated by careful differential diagnosis.

  17. Multiple shoot regeneration and effect of sugars on growth and nitidine accumulation in shoot cultures of Toddalia asiatica

    PubMed Central

    Praveena, Chinthala; Veeresham, Ciddi

    2014-01-01

    Background: Toddalia asiatica (Rutaceae) is an important medicinal plant in traditional medicinal system of India and China. Nitidine production from callus cultures of the plant had been investigated, but in vitro multiplication and secondary metabolite production from shoot cultures is not reported. Objective: The aim of the present work is to establish protocol for in vitro multiple shoot regeneration of T. asiatica and to investigate the secondary metabolite, nitidine production from the shoot cultures. Materials and Methods: Different explants were used for shoot regeneration on MS supplemented with benzyl adenine (BA) either alone or in combination with naphthalene acetic acid (NAA) in different combinations. Effect of different sugars and different concentrations of sucrose on biomass accumulation in shoot cultures in liquid medium was investigated. For in vitro rooting, shoots culture were inoculated to half strength MS medium supplemented with different concentrations of indole butyric acid. Quantitative analysis of shoot culture extracts was done for estimation of nitidine by HPTLC. Results: Shoot cultures were successfully initiated and established from nodal and shoot tip explants on MS medium supplemented with benzyl adenine and sucrose (3% w/v). Sucrose at a concentration of 3 % w/v was found to be optimum for growth and biomass accumulation. In vitro rooting of shoots was achieved on half strength MS medium supplemented with indole butyric acid 3 mg/l. Investigation of secondary metabolite production ability of the in vitro regenerated shoot cultures revealed their ability to biosynthesize nitidine. Conclusion: Shoot cultures were established and nitidine production has been observed. PMID:25298663

  18. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome

    PubMed Central

    1994-01-01

    We have used temperature and nocodazole blocks in an in vivo basolateral to apical transcytosis assay to dissociate the early transcytotic steps occurring during the formation of transcytotic vesicles and their microtubule-dependent translocation into the apical region, from the late steps when transcytotic cargo is delivered into the apical media. We found that polarized MDCK cells transfected with rabbit polymeric IgA receptor (pIgA-R) internalize basolaterally added pIgA-R ligand ([Fab]2 fragment of IgG against the receptor's ectodomain) at 17 degrees C but do not deliver it to the apical PM. Instead, the ligand accumulates in an apically localized transcytotic compartment, distal to the basolateral endosome and the microtubule- requiring translocation step. We have characterized this compartment and show that it is distinct from basolateral transferrin recycling endosomes, basolateral early endosomes or late endosomes or lysosomes. The apical transcytotic compartment colocalizes with the compartment containing apically recycling membrane markers (ricin and apically internalized pIgA-R ligand) but is distinct from the compartment receiving apically internalized fluid phase marker (BSA). This compartment is an intermediate station of the overall pathway since transcytotic ligand can exit the compartment and be released into the apical medium when cells preloaded at 17 degrees C are subsequently incubated at 37 degrees C. We have used this system to examine the effect of Brefeldin A (BFA) and the involvement of trimeric GTPases in the late (post apical transcytotic compartment) steps of the transcytotic pathway. We found that addition of BFA or cholera toxin, a known activator of Gs alpha, to cells preloaded with transcytotic ligand at 17 degrees C significantly inhibits the exit of ligand from the apical transcytotic compartment. General structure and function of the apical endosome are not affected since neither BFA nor cholera toxin inhibit the recycling of

  19. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development

    PubMed Central

    Kamiuchi, Yuri; Yamamoto, Kayo; Furutani, Masahiko; Tasaka, Masao; Aida, Mitsuhiro

    2014-01-01

    Carpel margin meristems (CMMs), a pair of meristematic tissues present along the margins of two fused carpel primordia of Arabidopsis thaliana, are essential for the formation of ovules and the septum, two major internal structures of the gynoecium. Although a number of regulatory factors involved in shoot meristem activity are known to be required for the formation of these gynoecial structures, their direct roles in CMM development have yet to be addressed. Here we show that the CUP-SHAPED COTYLEDON genes CUC1 and CUC2, which are essential for shoot meristem initiation, are also required for formation and stable positioning of the CMMs. Early in CMM formation, CUC1 and CUC2 are also required for expression of the SHOOT MERISTEMLESS gene, a central regulator for stem cell maintenance in the shoot meristem. Moreover, plants carrying miR164-resistant forms of CUC1 and CUC2 resulted in extra CMM activity with altered positioning. Our results thus demonstrate that the two regulatory proteins controlling shoot meristem activity also play critical roles in elaboration of the female reproductive organ through the control of meristematic activity. PMID:24817871

  20. Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria.

    PubMed

    Byrne, Maria; Nakajima, Yoko; Chee, Francis C; Burke, Robert D

    2007-01-01

    The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.

  1. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    SciTech Connect

    Campell, B.R.; Persinger, S.M.; Town, C.D. )

    1989-04-01

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines.

  2. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.

    PubMed

    Takahashi, Hiro; Iwakawa, Hidekazu; Ishibashi, Nanako; Kojima, Shoko; Matsumura, Yoko; Prananingrum, Pratiwi; Iwasaki, Mayumi; Takahashi, Anna; Ikezaki, Masaya; Luo, Lilan; Kobayashi, Takeshi; Machida, Yasunori; Machida, Chiyoko

    2013-03-01

    It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.

  3. Transient apical dyskinesia with a pacemaker: Electrocardiographic features.

    PubMed

    Núñez-Gil, Iván J; Feltes, Gisela I; Mejía-Rentería, Hernán D; Biagioni, Corina; De Agustín, J Alberto; Vivas, David; Fernández-Ortiz, Antonio

    2015-04-01

    Transient apical dyskinesia syndromes present features similar to acute coronary syndromes, but with normal coronary arteries and rapid complete resolution of wall motion alterations. We report the case of a 73-year-old woman who was admitted to hospital because of typical chest pain at rest after her brother's death. She had had a pacemaker implanted in 2001. Troponin levels were elevated and apical hypokinesia was shown by ventriculography and echocardiography, with normal coronary arteries. Evolving ECG alterations were observed in spite of the continued pacing rhythm. All these alterations were fully resolved after discharge. This case shows that, even in the presence of a pacemaker, evolving ECG alterations can be observed in Takotsubo syndrome.

  4. The Sandy Hook Elementary School shooting as tipping point

    PubMed Central

    Shultz, James M; Muschert, Glenn W; Dingwall, Alison; Cohen, Alyssa M

    2013-01-01

    Among rampage shooting massacres, the Sandy Hook Elementary School shooting on December 14, 2012 galvanized public attention. In this Commentary we examine the features of this episode of gun violence that has sparked strong reactions and energized discourse that may ultimately lead toward constructive solutions to diminish high rates of firearm deaths and injuries in the United States. PMID:28228989

  5. Determinants of elite-level air rifle shooting performance.

    PubMed

    Ihalainen, S; Kuitunen, S; Mononen, K; Linnamo, V

    2016-03-01

    This study focused on identifying the most important factors determining performance in elite-level air rifle shooting technique. Forty international- and national-level shooters completed a simulated air rifle shooting competition series. From a total of 13 795 shots in 319 tests, shooting score and 17 aiming point trajectory variables were measured with an optoelectronic device and six postural balance variables were measured with force platform. Principal component analysis revealed six components in the air rifle shooting technique: aiming time, stability of hold, measurement time, cleanness of triggering, aiming accuracy, and timing of triggering. Multiple regression analysis identified four of those, namely stability of hold, cleanness of triggering, aiming accuracy, and timing of triggering as the most important predictors of shooting performance, accounting for 81% of the variance in shooting score. The direct effect of postural balance on performance was small, accounting for less than 1% of the variance in shooting score. Indirectly, the effect can be greater through a more stable holding ability, to which postural balance was correlated significantly (R = 0.55, P < 0.001). The results of the present study can be used in assessing athletes' technical strengths and weaknesses and in directing training programs on distinct shooting technical components.

  6. Revisiting the Virginia Tech Shootings: An Ecological Systems Analysis

    ERIC Educational Resources Information Center

    Hong, Jun Sung; Cho, Hyunkag; Lee, Alvin Shiulain

    2010-01-01

    School shooting cases since the late 1990s have prompted school officials and legislators to develop and implement programs and measures that would prevent violence in school. Despite the number of explanations by the media, politicians, organizations, and researchers about the etiology of school shootings, we are not united in our understanding…

  7. Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley 1

    PubMed Central

    Termaat, Annie; Passioura, John B.; Munns, Rana

    1985-01-01

    The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot. PMID:16664152

  8. Arabidopsis Villins Promote Actin Turnover at Pollen Tube Tips and Facilitate the Construction of Actin Collars[W

    PubMed Central

    Qu, Xiaolu; Zhang, Hua; Xie, Yurong; Wang, Juan; Chen, Naizhi; Huang, Shanjin

    2013-01-01

    Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin filaments in the apical region remain largely unknown. Here, we have investigated the quantitative dynamic parameters that underlie actin filament growth and disappearance in the apical regions of pollen tubes and identified villin as the major player that drives rapid turnover of actin filaments in this region. Downregulation of Arabidopsis thaliana VILLIN2 (VLN2) and VLN5 led to accumulation of actin filaments at the pollen tube apex. Careful analysis of single filament dynamics showed that the severing frequency significantly decreased, and the lifetime significantly increased in vln2 vln5 pollen tubes. These results indicate that villin-mediated severing is critical for turnover and departure of actin filaments originating in the apical region. Consequently, the construction of actin collars was affected in vln2 vln5 pollen tubes. In addition to the decrease in severing frequency, actin filaments also became wavy and buckled in the apical cytoplasm of vln2 vln5 pollen tubes. These results suggest that villin confers rigidity upon actin filaments. Furthermore, an observed decrease in skewness of actin filaments in the subapical region of vln2 vln5 pollen tubes suggests that villin-mediated bundling activity may also play a role in the construction of actin collars. Thus, our data suggest that villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. PMID:23715472

  9. Mental illness, mass shootings, and the politics of American firearms.

    PubMed

    Metzl, Jonathan M; MacLeish, Kenneth T

    2015-02-01

    Four assumptions frequently arise in the aftermath of mass shootings in the United States: (1) that mental illness causes gun violence, (2) that psychiatric diagnosis can predict gun crime, (3) that shootings represent the deranged acts of mentally ill loners, and (4) that gun control "won't prevent" another Newtown (Connecticut school mass shooting). Each of these statements is certainly true in particular instances. Yet, as we show, notions of mental illness that emerge in relation to mass shootings frequently reflect larger cultural stereotypes and anxieties about matters such as race/ethnicity, social class, and politics. These issues become obscured when mass shootings come to stand in for all gun crime, and when "mentally ill" ceases to be a medical designation and becomes a sign of violent threat.

  10. Mental Illness, Mass Shootings, and the Politics of American Firearms

    PubMed Central

    MacLeish, Kenneth T.

    2015-01-01

    Four assumptions frequently arise in the aftermath of mass shootings in the United States: (1) that mental illness causes gun violence, (2) that psychiatric diagnosis can predict gun crime, (3) that shootings represent the deranged acts of mentally ill loners, and (4) that gun control “won’t prevent” another Newtown (Connecticut school mass shooting). Each of these statements is certainly true in particular instances. Yet, as we show, notions of mental illness that emerge in relation to mass shootings frequently reflect larger cultural stereotypes and anxieties about matters such as race/ethnicity, social class, and politics. These issues become obscured when mass shootings come to stand in for all gun crime, and when “mentally ill” ceases to be a medical designation and becomes a sign of violent threat. PMID:25496006

  11. The influence of muscle tremor on shooting performance.

    PubMed

    Lakie, Martin

    2010-03-01

    Shooting ability is compromised by involuntary movement. Some of this movement is physiological tremor. Tremor size has a demonstrable inverse correlation with shooting performance. Consequently, factors which affect tremor size should affect shooting ability. Adrenaline and local muscle warming markedly increase tremor size, whereas local muscle cooling reduces it. The physiological mechanisms behind these changes are not well understood, but they have the potential to affect shooting performance in subjects who exercise heavily and/or are exposed to extreme environments. The Olympic biathlon is an event in which vigorous physical exercise alternates with rifle shooting and it often takes place in a cold environment. The possible impact of exercise, temperature and other factors on the Olympic biathlete is considered here.

  12. Ascus apical apparatus and ascospore characters in Xylariaceae.

    PubMed

    Suwannasai, Nuttika; Whalley, Margaret A; Whalley, Anthony J S; Thienhirun, Surang; Sihanonth, Prakitsin

    2012-12-01

    Members of Xylariaceae (Ascomycota) are recognized and classified mainly on the morphological features of their sexual state. In a number of genera high morphological variation of stromatal characters has made confident recognition of generic and specific boundaries difficult. There are, however, a range of microscopical characteristics which can in most cases make distinctions, especially at generic level, even in the absence of molecular data. These include details of the apical apparatus in the ascus (e.g. disc-shaped, inverted hat-shaped, rhomboid, composed of rings, amyloid, non-amyloid); position and length of the germ slit; and presence and type of ascospore wall ornamentation as seen by scanning electron microscopy (SEM). Unfortunately many of the classical studies on xylariaceous genera omitted these features and were undertaken long before the development of scanning electron microscopy. More recent studies have, however, demonstrated their value as diagnostic characters in the family. Camillea is for example, instantly recognizable by its rhomboid or diamond shaped apical apparatus, and the distinctive inverted hat or urniform type is usually prominent in Xylaria, Rosellinia, Kretzschmaria, and Nemania. At least six categories of apical apparatus based on shape and size can be recognized. Ascospore ornamentation as seen by SEM has been exceptionally useful and provided the basis for separating Camillea from Biscogniauxia and other xylariaceous genera.

  13. Apical Periodontitis - Is It Accountable for Cardiovascular Diseases?

    PubMed Central

    Chaman, Chandrakar

    2016-01-01

    The aim of this review was to assess the relationship between apical periodontitis and cardiovascular diseases and the predictive factors regarding this association. Cross sectional and observational studies have been included, which are mostly retrospective. A comprehensive search was performed in the Systematic Electronic Databases, PUBMED and MEDLINE from 1919 till September 2014. Articles were also hand searched. From 86 studies identified, all were read and 58 articles which were relevant were included in the text. Some articles were excluded because they were pertaining to periodontology and other systemic disorders. Some were solely animal studies and were thus excluded. Our results suggest an independent association between cardiovascular diseases and apical periodontitis. A causal relationship could not be established since weak parameters of risk have been assessed in the studies, population taken is difficult to compare and other confounding factors have not been ruled out. Only a more focused and better instituted scientific research can determine this association. Establishing a cause and effect relationship between apical periodontitis and cardiovascular diseases can affect the course of treatment of cardiovascular diseases. It is not only of interest from the scientific point of view but also from public health perspective. PMID:27656588

  14. Apical Periodontitis - Is It Accountable for Cardiovascular Diseases?

    PubMed

    Garg, Paridhi; Chaman, Chandrakar

    2016-08-01

    The aim of this review was to assess the relationship between apical periodontitis and cardiovascular diseases and the predictive factors regarding this association. Cross sectional and observational studies have been included, which are mostly retrospective. A comprehensive search was performed in the Systematic Electronic Databases, PUBMED and MEDLINE from 1919 till September 2014. Articles were also hand searched. From 86 studies identified, all were read and 58 articles which were relevant were included in the text. Some articles were excluded because they were pertaining to periodontology and other systemic disorders. Some were solely animal studies and were thus excluded. Our results suggest an independent association between cardiovascular diseases and apical periodontitis. A causal relationship could not be established since weak parameters of risk have been assessed in the studies, population taken is difficult to compare and other confounding factors have not been ruled out. Only a more focused and better instituted scientific research can determine this association. Establishing a cause and effect relationship between apical periodontitis and cardiovascular diseases can affect the course of treatment of cardiovascular diseases. It is not only of interest from the scientific point of view but also from public health perspective.

  15. An Apical-Membrane Chloride Channel in Human Tracheal Epithelium

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.

    1986-06-01

    The mechanism of chloride transport by airway epithelia has been of substantial interest because airway and sweat gland-duct epithelia are chloride-impermeable in cystic fibrosis. The decreased chloride permeability prevents normal secretion by the airway epithelium, thereby interfering with mucociliary clearance and contributing to the morbidity and mortality of the disease. Because chloride secretion depends on and is regulated by chloride conductance in the apical cell membrane, the patch-clamp technique was used to directly examine single-channel currents in primary cultures of human tracheal epithelium. The cells contained an anion-selective channel that was not strongly voltage-gated or regulated by calcium in cell-free patches. The channel was also blocked by analogs of carboxylic acid that decrease apical chloride conductance in intact epithelia. When attached to the cell, the channel was activated by isoproterenol, although the channel was also observed to open spontaneously. However, in some cases, the channel was only observed after the patch was excised from the cell. These results suggest that this channel is responsible for the apical chloride conductance in airway epithelia.

  16. Ontogenetic contingency of tolerance mechanisms in response to apical damage

    PubMed Central

    Gruntman, Michal; Novoplansky, Ariel

    2011-01-01

    Background and Aims Plants are able to tolerate tissue loss through vigorous branching which is often triggered by release from apical dominance and activation of lateral meristems. However, damage-induced branching might not be a mere physiological outcome of released apical dominance, but an adaptive response to environmental signals, such as damage timing and intensity. Here, branching responses to both factors were examined in the annual plant Medicago truncatula. Methods Branching patterns and allocation to reproductive traits were examined in response to variable clipping intensities and timings in M. truncatula plants from two populations that vary in the onset of reproduction. Phenotypic selection analysis was used to evaluate the strength and direction of selection on branching under the damage treatments. Key Results Plants of both populations exhibited an ontogenetic shift in tolerance mechanisms: while early damage induced greater meristem activation, late damage elicited investment in late-determined traits, including mean pod and seed biomass, and supported greater germination rates. Severe damage mostly elicited simultaneous development of multiple-order lateral branches, but this response was limited to early damage. Selection analyses revealed positive directional selection on branching in plants under early- compared with late- or no-damage treatments. Conclusions The results demonstrate that damage-induced meristem activation is an adaptive response that could be modified according to the plant's developmental stage, severity of tissue loss and their interaction, stressing the importance of considering these effects when studying plastic responses to apical damage. PMID:21873259

  17. An ion-transporting ATPase encodes multiple apical localization signals

    PubMed Central

    1993-01-01

    Epithelial cells accumulate distinct populations of membrane proteins at their two plasmalemmal domains. We have examined the molecular signals which specify the differential subcellular distributions of two closely related ion pumps. The Na,K-ATPase is normally restricted to the basolateral membranes of numerous epithelial cell types, whereas the H,K-ATPase is a component of the apical surfaces of the parietal cells of the gastric epithelium. We have expressed full length and chimeric H,K-ATPase/Na,K-ATPase cDNAs in polarized renal proximal tubular epithelial cells (LLC-PK1). We find that both the alpha and beta subunits of the H,K-ATPase encode independent signals that specify apical localization. Furthermore, the H,K-ATPase beta-subunit possesses a sequence which mediates its participation in the endocytic pathway. The interrelationship between epithelial sorting and endocytosis signals suggested by these studies supports the redefinition of apical and basolateral as functional, rather than simply topographic domains. PMID:8385670

  18. Automatic detection of apical roots in oral radiographs

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Xie, Fangfang; Yang, Jie; Cheng, Erkang; Megalooikonomou, Vasileios; Ling, Haibin

    2012-03-01

    The apical root regions play an important role in analysis and diagnosis of many oral diseases. Automatic detection of such regions is consequently the first step toward computer-aided diagnosis of these diseases. In this paper we propose an automatic method for periapical root region detection by using the state-of-theart machine learning approaches. Specifically, we have adapted the AdaBoost classifier for apical root detection. One challenge in the task is the lack of training cases especially for diseased ones. To handle this problem, we boost the training set by including more root regions that are close to the annotated ones and decompose the original images to randomly generate negative samples. Based on these training samples, the Adaboost algorithm in combination with Haar wavelets is utilized in this task to train an apical root detector. The learned detector usually generates a large amount of true and false positives. In order to reduce the number of false positives, a confidence score for each candidate detection result is calculated for further purification. We first merge the detected regions by combining tightly overlapped detected candidate regions and then we use the confidence scores from the Adaboost detector to eliminate the false positives. The proposed method is evaluated on a dataset containing 39 annotated digitized oral X-Ray images from 21 patients. The experimental results show that our approach can achieve promising detection accuracy.

  19. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    PubMed

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits.

  20. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components

    PubMed Central

    Singh, Sharmila; Singh, Alka; Yadav, Sandeep; Gautam, Vibhav; Singh, Archita; Sarkar, Ananda K.

    2017-01-01

    In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ formation remained unaddressed. Here we show that sirtinol affects meristem maintenance by altering the expression of key stem cell regulators, cell division and differentiation by modulating both auxin and cytokinin signaling in Arabidopsis thaliana. The expression of shoot stem cell niche related genes WUSCHEL (WUS) and CLAVATA3 (CLV3) was upregulated, whereas SHOOT MERISTEMLESS (STM) was downregulated in sirtinol treated seedlings. The expression level and domain of key root stem cell regulators PLETHORA (PLTs) and WUS-Related Homeobox 5 (WOX5) were altered in sirtinol treated roots. Sirtinol affects LR development by disturbing proper auxin transport and maxima formation, similar to 2,4-dichlorophenoxyacetic acid (2,4-D). Sirtinol also affects LR formation by altering cytokinin biosynthesis and signaling genes in roots. Therefore, sirtinol affects shoot and root growth, meristem maintenance and LR development by altering the expression of cytokinin-auxin signaling components, and regulators of stem cells, meristems, and LRs. PMID:28195159

  1. Diurnal Changes in Mitochondrial Function Reveal Daily Optimization of Light and Dark Respiratory Metabolism in Arabidopsis*

    PubMed Central

    Lee, Chun Pong; Eubel, Holger; Millar, A. Harvey

    2010-01-01

    Biomass production by plants is often negatively correlated with respiratory rate, but the value of this rate changes dramatically during diurnal cycles, and hence, biomass is the cumulative result of complex environment-dependent metabolic processes. Mitochondria in photosynthetic plant tissues undertake substantially different metabolic roles during light and dark periods that are dictated by substrate availability and the functional capacity of mitochondria defined by their protein composition. We surveyed the heterogeneity of the mitochondrial proteome and its function during a typical night and day cycle in Arabidopsis shoots. This used a staged, quantitative analysis of the proteome across 10 time points covering 24 h of the life of 3-week-old Arabidopsis shoots grown under 12-h dark and 12-h light conditions. Detailed analysis of enzyme capacities and substrate-dependent respiratory processes of isolated mitochondria were also undertaken during the same time course. Together these data reveal a range of dynamic changes in mitochondrial capacity and uncover day- and night-enhanced protein components. Clear diurnal changes were evident in mitochondrial capacities to drive the TCA cycle and to undertake functions associated with nitrogen and sulfur metabolism, redox poise, and mitochondrial antioxidant defense. These data quantify the nature and nuances of a daily rhythm in Arabidopsis mitochondrial respiratory capacity. PMID:20601493

  2. Effects of long-term hypergravity treatment on the development of inflorescence stems of arabidopsis

    NASA Astrophysics Data System (ADS)

    Karahara, Ichirou; Tamaoki, Daisuke; Kamisaka, Seiichiro; Yamaguchi, Takashi; Shinohara, Hironori; Kume, Atsushi; Inoue, Hiroshi

    Hypergravity experiments with plants have been mostly performed using a commercial centrifuge in the dark. In order to see longer-term effect of hypergravity on the development of plant shoots, however, it is necessary to carry out the experiments in the light. In the present study, we have set up a centrifuge equipped with lighting system, which supports long-term plant growth under hypergravity condition, in order to see long-term effects of hypergravity on the development of vascular tissues of inflorescence stems. Arabidopsis plants (Arabidopsis thaliana (L.) Heynh., Col-0), which were grown under 1 G conditions for 20-23 days and having the first visible flower bud, i.e., at Arabidopsis growth stage number 5 (according to Boys et al., 2001), were selected as the plant material. These plants were exposed to hypergravity stimulus at 10 G in a direction from the shoot to root for 10 days in the continuous light. Effects of hypergravity on growth of inflorescence stems, lignin content, and morphometrical parameters of the stem tissues were examined. As a result, the length of the inflorescence stem was decreased. Cross sectional area as well as cell number, and lignin content in the stem were increased under hypergravity. The length of basal internodes of the stem was decreased under hypergravity. In conclusion, the inflorescence stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under long-term hypergravity conditions.

  3. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis.

    PubMed

    Kim, Do-Young; Jin, Jun-Young; Alejandro, Santiago; Martinoia, Enrico; Lee, Youngsook

    2010-06-01

    Drought and salt are major abiotic stresses that adversely affect crop productivity. Thus, identification of factors that confer resistance to these stresses would pave way to increasing agricultural productivity. When grown on soil in green house longer than 5 weeks, transgenic Arabidopsis plants that overexpress an ATP-binding cassette (ABC) transporter, AtABCG36/AtPDR8, produced higher shoot biomass and less chlorotic leaves than the wild-type. We investigated whether the improved growth of AtABCG36-overexpressing plants was due to their improved resistance to abiotic stresses, and found that AtABCG36-overexpressing plants were more resistant to drought and salt stress and grew to higher shoot fresh weight (FW) than the wild-type. On the contrary, T-DNA insertional knockout lines were more sensitive to drought stress than wild-type and were reduced in shoot FW. To understand the mechanism of enhanced salt and drought resistance of the AtABCG36 overexpressing plants, we measured sodium contents and found that AtABCG36 overexpressing plants were lower in sodium content than the wild-type. Our data suggest that AtABCG36 contributes to drought and salt resistance in Arabidopsis by a mechanism that includes reduction of sodium content in plants.

  4. POST-TRAUMATIC APICAL LEFT VENTRICULAR ANEURYSM IN A PATIENT WITH LEFT VENTRICULAR APICAL-ABDOMINAL AORTIC CONDUIT: CASE PRESENTATION

    PubMed Central

    Ugorji, Clement C.; Cooley, Denton A.; Norman, John C.

    1979-01-01

    A patient with a small aortic annulus had an apico-aortic conduit implanted for aortic stenosis approximately three years before being admitted to our institution. Four months after sustaining a steering wheel injury to the chest, he developed chest pain and palpitations. X-ray films and left ventriculograms revealed a large apical aneurysm of unknown duration. At surgery, it was noted that the proximal portion of the conduit had been sewn directly to the myocardium without the use of a rigid or soft apical outlet prosthesis incorporating a sewing ring. The aneurysm was resected along with a small proximal segment of the conduit graft. A polished Pyrolite® rigid inlet tube with a sewing ring and graft extension was inserted into the residual left ventricular apex, and continuity was reestablished with the abdominal segment of the conduit. It is postulated that the aneurysm was caused by either the direct anastomosis of the fabric graft to the apical myocardium at the original operation (with subsequent disruption and aneurysm formation prior to the steering wheel injury), or was the result of fixation of the heart at the diaphragm by the conduit, with increased vulnerability to deceleration injury at the direct left ventricular apex myocardium-fabric graft site. Images PMID:15216296

  5. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    PubMed

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1.

  6. Determination of Arabidopsis floral meristem identity by AGAMOUS.

    PubMed

    Mizukami, Y; Ma, H

    1997-03-01

    Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.

  7. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  8. Metabolic changes associated with shoot formation in tobacco callus cultures

    SciTech Connect

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in (U-/sup 14/C)sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with (U-/sup 14/C)sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references.

  9. Plant shoots exhibit synchronized oscillatory motions

    PubMed Central

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    ABSTRACT In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals. PMID:27829981

  10. Shooting through clothing in firearm suicides.

    PubMed

    Hejna, Petr; Safr, Miroslav

    2010-05-01

    There is a longstanding empirical rule that people who commit suicide rarely shoot through their clothing, but rather put it aside to expose the nude skin. Signs of shots through clothing have always been considered suspicious, raising presumptions of the presence of an abettor. Our report, based on a retrospective study of fatal suicidal firearm injuries from the years 1980 to 2007, points out that suicide victims only rarely remove clothing from the site of the future entry wound. The report covered 43 cases with fatal gunshot wounds in the area of the thorax, with only four persons (9%) removing the clothing present in the area of the subsequent self-inflicted wound. Defects present on the clothing of a victim cannot, therefore, be understood as an absolute criterion for disproving the possibility of suicide, and nor do they necessarily indicate an unfortunate accident or homicide. If, however, the suicide victim removes the clothing from the area of the future wound, then this is almost always an indication of suicide.

  11. Plant shoots exhibit synchronized oscillatory motions.

    PubMed

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals.

  12. Heterologous transposon tagging of the DRL1 locus in Arabidopsis.

    PubMed Central

    Bancroft, I; Jones, J D; Dean, C

    1993-01-01

    The development of heterologous transposon tagging systems has been an important objective for many laboratories. Here, we demonstrate the use of a Dissociation (Ds) derivative of the maize transposable element Activator (Ac) to tag the DRL1 locus of Arabidopsis. The drl1 mutant shows highly abnormal development with stunted roots, few root hairs, lanceolate leaves, and a highly enlarged, disorganized shoot apex that does not produce an inflorescence. The mutation was shown to be tightly linked to a transposed Ds, and somatic instability was observed in the presence of the transposase source. Some plants showing somatic reversion flowered and produced large numbers of wild-type progeny. These revertant progeny always inherited a DRL1 allele from which Ds had excised. Analysis of the changes in DNA sequence induced by the insertion and excision of the Ds element showed that they were typical of those induced by Ac and Ds in maize. PMID:8392411

  13. Effects of shoot inversion on stem structure in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Sack, F. D.; Cline, M. G.

    1988-01-01

    The effects of shoot inversion on stem structure over 72 hr were investigated in Pharbitis nil by analyzing cell number, cell length, and the cross sectional areas of cells, tissues, and regions. An increase in stem diameter can be attributed to an increase in both cell number and cross sectional area of pith (primarily) and vascular tissue (secondarily). Qualitative observations of cell wall thickness in the light microscope did not reveal any significant effects of shoot inversion on this parameter. The inhibition of shoot elongation was accompanied by a significant decrease in cell length in the pith. The results are generally consistent with an ethylene effect on cell dimensions, especially in the pith.

  14. Recent non-chemical approaches to estimate the shooting distance.

    PubMed

    López-López, Maria; García-Ruiz, Carmen

    2014-06-01

    Shooting distance estimation offers useful information for the reconstruction of firearm related incidents. The muzzle to target distance is usually estimated by examining the bullet entrance hole and the gunshot residue pattern. To visualize the pattern the forensic analyst usually uses presumptive tests based on color chemical reactions that are applied using long and tedious proceedings. Due to the drawbacks of the chemical tests recent developments for shooting distance estimation not based on color chemical tests were described in the literature. The present review covers the approaches for shooting distance estimation published in the last 10 years considering two types of target, clothing and skin.

  15. Change of shoot architecture during juvenile-to-adult phase transition in soybean.

    PubMed

    Yoshikawa, Takanori; Ozawa, Suguru; Sentoku, Naoki; Itoh, Jun-Ichi; Nagato, Yasuo; Yokoi, Shuji

    2013-07-01

    Juvenile-to-adult phase change is an indispensable event which guarantees a successful life cycle. Phase change has been studied in maize, Arabidopsis and rice, but is mostly unknown in other species. Soybean/Fabaceae plants undergo drastic changes of shoot architecture at the early vegetative stage including phyllotactic change and leaf type alteration from simple to compound. These characteristics make soybean/Fabaceae plants an interesting taxon for investigating vegetative phase change. Following the expansion of two cotyledons, two simple leaves simultaneously emerge in opposite phyllotaxy. The phyllotaxy of the third and fourth leaves is not fixed; both opposite and distichous phyllotaxis are observed within the same population. Leaves were compound from the third leaf. But the third leaf was rarely simple. Morphological and quantitative changes in early vegetative phase were recognized in leaf size, leaf shape, number of trichomes, stipule size and shape, and shoot meristem shape. Two microRNA genes, miR156 and miR172, are known to be associated with vegetative phase change. Examination of the expression level revealed that miR156 expression was high in the first two leaves and subsequently down-regulated, and that of miR172 showed the inverse expression pattern. These expression patterns coincided with the case of other species. Taken all data together, the first and second leaves represent juvenile phase, the fifth and upper leaves adult phase, and the third and fourth leaves intermediate stage. Further investigation of soybean phase change would give fruitful understandings on plant development.

  16. Production of yam mosaic virus (ymv)-free Dioscorea opposita plants by cryotherapy of shoot-tips.

    PubMed

    Shin, Jong Hee; Kang, Dong Kyoon; Sohn, Jae Keun

    2013-01-01

    In the present study, Yam mosaic virus (YMV) could be efficiently eliminated by cryotherapy in Dioscorea opposita. Shoot apices were precultured for 16 h with 0.3 M sucrose, encapsulated in sodium alginate and dehydrated for 4 h prior to direct immersion in liquid nitrogen. Up to 90 percent of the plants regenerated from cryopreserved shoot tips were YMV-free, whereas only 40% of those regenerated using meristem culture were YMV-free. YMV-free yam plantlets could be propagated in vitro through nodal stem culture, with sequential subculturing at 6-week intervals on medium containing 0.5 mg per liter kinetin. The microtubers formed at the bottom and axil of the explants, incubated at 30 degreeC after being chilled (4 degree C) for 3 months, could be sprouted successfully under in vivo conditions. Healthy plants were established without any damaging symptoms of the virus. Thus, cryotherapy provides an alternative method for efficient elimination of yam viruses, and could be simultaneously used for long-term storage of yam germplasm and for the production of virus-free plants.

  17. A Unified Model of Shoot Tropism in Plants: Photo-, Gravi- and Propio-ception

    PubMed Central

    Bastien, Renaud; Douady, Stéphane; Moulia, Bruno

    2015-01-01

    Land plants rely mainly on gravitropism and phototropism to control their posture and spatial orientation. In natural conditions, these two major tropisms act concurrently to create a photogravitropic equilibrium in the responsive organ. Recently, a parsimonious model was developed that accurately predicted the complete gravitropic and proprioceptive control over the movement of different organs in different species in response to gravitational stimuli. Here we show that the framework of this unifying graviproprioceptive model can be readily extended to include phototropism. The interaction between gravitropism and phototropism results in an alignment of the apical part of the organ toward a photogravitropic set-point angle. This angle is determined by a combination of the two directional stimuli, gravity and light, weighted by the ratio between the gravi- and photo-sensitivities of the plant organ. In the model, two dimensionless numbers, the graviproprioceptive number B and the photograviceptive number M, control the dynamics and the shapes of the movement. The extended model agrees well with two sets of detailed quantitative data on photogravitropic equilibrium in oat coleoptiles. It is demonstrated that the influence of light intensity I can be included in the model in a power-law-dependent relationship M(I). The numbers B and M and the related photograviceptive number D are all quantitative genetic traits that can be measured in a straightforward manner, opening the way to the phenotyping of molecular and mechanical aspects of shoot tropism. PMID:25692607

  18. Shoot circumnutation and winding movements require gravisensing cells-mediated graviresponse

    NASA Astrophysics Data System (ADS)

    Kitazawa, D.; Miyazawa, Y.; Fujii, N.; Nitasaka, E.; Takahashi, H.

    The stationary nature of plants distinguishes them from other organisms Because of this unique nature higher plants have evolved various mechanisms for responding to environmental cues enabling them to utilize limited resources or to escape from environmental stresses One of the most important mechanisms that plants have acquired is the ability to sense gravity and to use it as a basis for governing their growth orientation a process known as gravitropism In addition to gravitropism oscillatory movement termed circumnutation and winding movement of climbing plants are also important mechanisms that allow plants to elevate their apical meristems to higher positions and these movements are hypothesized to be gravity-related However the relationship between the graviresponse and these movements has not been clarified To verify the necessity of the graviresponse in these movements we used a climbing plant namely Japanese morning glory as a model plant for it has winding growth that allow us to approach the above-mentioned issues We analyzed two distinct mutant lines of morning glory weeping1 and weeping2 both of which have loss of shoot gravitropism Histological characterization revealed that weeping1 has defect in development of gravisensing cells i e endodermis whereas weeping2 has normally developed endodermis with their amyloplasts sediment in response to gravity These observations suggest that these mutants have defect at a different point in the process of the graviresponse cascade Moreover

  19. A unified model of shoot tropism in plants: photo-, gravi- and Propio-ception.

    PubMed

    Bastien, Renaud; Douady, Stéphane; Moulia, Bruno

    2015-02-01

    Land plants rely mainly on gravitropism and phototropism to control their posture and spatial orientation. In natural conditions, these two major tropisms act concurrently to create a photogravitropic equilibrium in the responsive organ. Recently, a parsimonious model was developed that accurately predicted the complete gravitropic and proprioceptive control over the movement of different organs in different species in response to gravitational stimuli. Here we show that the framework of this unifying graviproprioceptive model can be readily extended to include phototropism. The interaction between gravitropism and phototropism results in an alignment of the apical part of the organ toward a photogravitropic set-point angle. This angle is determined by a combination of the two directional stimuli, gravity and light, weighted by the ratio between the gravi- and photo-sensitivities of the plant organ. In the model, two dimensionless numbers, the graviproprioceptive number B and the photograviceptive number M, control the dynamics and the shapes of the movement. The extended model agrees well with two sets of detailed quantitative data on photogravitropic equilibrium in oat coleoptiles. It is demonstrated that the influence of light intensity I can be included in the model in a power-law-dependent relationship M(I). The numbers B and M and the related photograviceptive number D are all quantitative genetic traits that can be measured in a straightforward manner, opening the way to the phenotyping of molecular and mechanical aspects of shoot tropism.

  20. Radial left ventricular dyssynchrony by speckle tracking in apical versus non apical right ventricular pacing- evidence of dyssynchrony on medium term follow up

    PubMed Central

    Choudhary, Dinesh; Chaurasia, Amit Kumar; Kumar, S Mahesh; Arulkumar, Ajeet; Thajudeen, Anees; Namboodiri, Narayanan; Sanjay, G; Abhilash, SP; Ajitkumar, VK; JA, Tharakan

    2016-01-01

    Introduction: To study effects of various sites of right ventricular pacing lead implantation on left ventricular function by 2-dimensional (2D) speckle tracking for radial strain and LV dyssynchrony. Methods: This was retrospective prospective study. Fifteen patients each with right ventricular (RV) apical (RV apex and apical septum) and non-apical (mid septal and low right ventricular outflow tract [RVOT]) were programmed to obtain 100% ventricular pacing for evaluation by echo. Location and orientation of lead tip was noted and archived by fluoroscopy. Electrocardiography (ECG) was archived and 2D echo radial dyssynchrony was calculated. Results: The baseline data was similar between two groups. Intraventricular dyssynchrony was significantly more in apical location as compared to non-apical location (radial dyssynchrony: 108.2 ± 50.2 vs. 50.5 ± 24, P < 0.001; septal to posterior wall delay [SLWD] 63.5 ± 27.5 vs. 34 ± 10.7, P < 0.001, SPWD 112.5 ± 58.1 vs. 62.7 ± 12.1, P = 0.003). The left ventricular ejection fraction was decreased more in apical location than non apical location. Interventricular dyssynchrony was more in apical group but was not statistically significant. The QRS duration, QTc and lead thresholds were higher in apical group but not statistically significant. Conclusion: Pacing in non apical location (RV mid septum or low RVOT) is associated with less dyssynchrony by specific measures like 2D radial strain and correlates with better ventricular function in long term. PMID:27069563

  1. Bacterial communities associated with apical periodontitis and dental implant failure

    PubMed Central

    Dingsdag, Simon; Nelson, Stephen; Coleman, Nicholas V.

    2016-01-01

    Background Previously, we demonstrated that bacteria reside in apparently healed alveolar bone, using culture and Sanger sequencing techniques. Bacteria in apparently healed alveolar bone may have a role in peri-implantitis and dental implant failure. Objective To compare bacterial communities associated with apical periodontitis, those colonising a failed implant and alveolar bone with reference biofilm samples from healthy teeth. Methods and results The study consisted of 196 samples collected from 40 patients undergoing routine dental implant insertion or rehabilitation. The bacterial 16S ribosomal DNA sequences were amplified. Samples yielding sufficient polymerase chain reaction product for further molecular analyses were subjected to terminal restriction fragment length polymorphism (T-RFLP; 31 samples) and next generation DNA sequencing (454 GS FLX Titanium; 8 samples). T-RFLP analysis revealed that the bacterial communities in diseased tissues were more similar to each other (p<0.049) than those from the healthy reference samples. Next generation sequencing detected 13 bacterial phyla and 373 putative bacterial species, revealing an increased abundance of Gram-negative [Prevotella, Fusobacterium (p<0.004), Treponema, Veillonellaceae, TG5 (Synergistetes)] bacteria and a decreased abundance of Gram-positive [(Actinomyces, Corynebacterium (p<0.008)] bacteria in the diseased tissue samples (n=5) relative to reference supragingival healthy samples (n=3). Conclusion Increased abundances of Prevotella, Fusobacterium and TG5 (Synergistetes) were associated with apical periodontitis and a failed implant. A larger sample set is needed to confirm these trends and to better define the processes of bacterial pathogenesis in implant failure and apical periodontitis. The application of combined culture-based, microscopic and molecular technique-based approaches is suggested for future studies. PMID:27834171

  2. SEM investigation of Er:YAG laser apical preparation

    NASA Astrophysics Data System (ADS)

    Bǎlǎbuc, Cosmin; Todea, Carmen; Locovei, Cosmin; RǎduÅ£ǎ, Aurel

    2016-03-01

    Endodontic surgery involves the incision and flap elevation, the access to the root tip, its resection, the cavity retrograde preparation and filling it with biocompatible material that provides a good seal of the apex[1]. Apicoectomy is compulsory in endodontic surgery. The final stage involves the root retropreparation and the carrying out of the retrograde obturation. In order to perform the retrograde preparation the endodontist can use various tools such as lowspeed conventional handpieces, sonic and ultrasonic equipment. The ideal depth of the preparation should be 3 mm, exceeding this value may affect the long-term success of the obturation [2]. Resection at the depth of 3 mm reduces apical ramifications by 98% and lateral root canals by 93%. The ultrasonic retropreparation has numerous advantages compared to the dental drill. Firstly, the cavity will be in the axis of the tooth which implies a minimum destruction of the root canal morphology. The preparations are precise, and the cutting pattern is perpendicular to the long axis of the root, the advantage being the reduction in the number of dentinal tubules exposed at the resected area [3]. Therefore, the retrograde filling is the procedure when an inert and non-toxic material is compacted in the apically created cavity.[4,5]. The Er:YAG laser is the most common wavelength indicated for dental hard tissue preparation. Its natural selectivity offers a significant advantage compared to the conventional hard tissue preparation [6-9].The purpose of this in vitro study was to investigate the quality of Er:YAG laser apical third preparation using Scanning Electron Microscopy (SEM), in comparison with the conventional ultrasonic method.

  3. Reproductive Toxicity and Life History Study of Silver Nanoparticle Effect, Uptake and Transport in Arabidopsis thaliana

    PubMed Central

    Geisler-Lee, Jane; Brooks, Marjorie; Gerfen, Jacob R.; Wang, Qiang; Fotis, Christin; Sparer, Anthony; Ma, Xingmao; Berg, R. Howard; Geisler, Matt

    2014-01-01

    Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs) on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at macroscopic and microscopic scales. Both gross phenotypes (in contrast to microscopic phenotypes) and routes of transport and accumulation were investigated from roots to shoots. Wild type Arabidopsis growing in soil, regularly irrigated with 75 μg/L of AgNPs, did not show any obvious morphological change. However, their vegetative development was prolonged by two to three days and their reproductive growth shortened by three to four days. In addition, the germination rates of offspring decreased drastically over three generations. These findings confirmed that AgNPs induce abiotic stress and cause reproductive toxicity in Arabidopsis. To trace transport of AgNPs, this study also included an Arabidopsis reporter line genetically transformed with a green fluorescent protein and grown in an optical transparent medium with 75 μg/L AgNPs. AgNPs followed three routes: (1) At seven days after planting (DAP) at S1.0 (stages defined by Boyes et al. 2001 [41]), AgNPs attached to the surface of primary roots and then entered their root tips; (2) At 14 DAP at S1.04, as primary roots grew longer, AgNPs gradually moved into roots and entered new lateral root primordia and root hairs; (3) At 17 DAP at S1.06 when the Arabidopsis root system had developed multiple lateral roots, AgNPs were present in vascular tissue and throughout the whole plant from root to shoot. In some cases, if cotyledons of the Arabidopsis seedlings were immersed in melted transparent medium, then AgNPs were taken up by and accumulated in stomatal guard cells. These findings in Arabidopsis are the first to document specific routes and rates of AgNP uptake in vivo and in situ.

  4. Membrane rafting: from apical sorting to phase segregation.

    PubMed

    Coskun, Unal; Simons, Kai

    2010-05-03

    In this review we describe the history of the development of the raft concept for membrane sub-compartmentalization. From its early beginnings as a mechanism for apical sorting in epithelial cells the concept has evolved to a general principle for membrane organisation. After a shaky start with crude methodology based on detergent extraction the field has become increasingly sophisticated, employing a host of different methods that support the existence of dynamic raft domains in membranes. These are composed of fluctuating nanoscale assemblies of sphingolipid, cholesterol and proteins that can be stabilized to coalesce, forming platforms that function in membrane signalling and trafficking.

  5. Structural Sterols Are Involved in Both the Initiation and Tip Growth of Root Hairs in Arabidopsis thaliana[W

    PubMed Central

    Ovečka, Miroslav; Berson, Tobias; Beck, Martina; Derksen, Jan; Šamaj, Jozef; Baluška, František; Lichtscheidl, Irene K.

    2010-01-01

    Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64–positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis. PMID:20841426

  6. Unusual attempted suicide by shooting through heart.

    PubMed

    Kadis, P; Pogorevc, L; Sipek, M; Vidovic, D

    2005-01-17

    Gunshot wounds in the heart are frequent suicidal injuries, especially in men. Most of them are lethal, but some cases of survival due to immediate and proper surgical treatment are reported. However, survival without specific treatment is extremely rare. In our case, a 44-year man attempted suicide by home-made shooting device. A special 12 cm long and 2.5 mm wide needle-like missile entered his body at the left anterior part of his chest, passed through the heart and lower lobe of right lung and exited at the right side of his back. The patient was able to move normally and he also looked for medical help immediately after attempting suicide. We found large atypical-shaped entrance wound on the anterior part of the chest, which was surgically treated, and tiny pointed exit wound under the right scapula. The patient was stable from cardio-circulatory and respiratory aspects from the time of admission to discharge from the hospital. We found only minimal pericardial bleeding (up to 10 mm thick) and there was no need for surgical intervention. In the next 2 weeks the haematoma absorbed spontaneously. The gunshot injury healed without any complication. Paranoid psychosis was diagnosed by psychiatrist and this probably had been the cause of attempting suicide. We think that the favorable outcome of the proved heart gunshot injury in our patient was due to the needle-shaped low-energy missile, which caused only tiny gunshot (stab) hole in the heart. Such a heart injury caused only minimal bleeding into the pericardial sac without heart tamponade.

  7. Application of Monte Carlo simulations to improve basketball shooting strategy

    NASA Astrophysics Data System (ADS)

    Min, Byeong June

    2016-10-01

    The underlying physics of basketball shooting seems to be a straightforward example of Newtonian mechanics that can easily be traced by using numerical methods. However, a human basketball player does not make use of all the possible basketball trajectories. Instead, a basketball player will build up a database of successful shots and select the trajectory that has the greatest tolerance to the small variations of the real world. We simulate the basketball player's shooting training as a Monte Carlo sequence to build optimal shooting strategies, such as the launch speed and angle of the basketball, and whether to take a direct shot or a bank shot, as a function of the player's court position and height. The phase-space volume Ω that belongs to the successful launch velocities generated by Monte Carlo simulations is then used as the criterion to optimize a shooting strategy that incorporates not only mechanical, but also human, factors.

  8. Ray-tube integration in shooting and bouncing ray method

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Ling, H.; Chou, R.

    1988-01-01

    Based on three formulations of the Huygen's principle, explicit expressions is given for the far field contribution from a small ray tube. This expression is useful in shooting and bouncing rays for solving complex scattering problems.

  9. Location of transported auxin in etiolated maize shoots using 5-azidoindole-3-acetic acid. [Zea mays L

    SciTech Connect

    Jones, A.M. )

    1990-07-01

    A study was undertaken using the photoaffinity labeling agent, tritiated 5-azidoindole-3-acetic acid (({sup 3}H),5-N{sub 3}IAA), to identify cells in the etiolated maize (Zea mays L.) shoot which transport auxin. Transport of ({sup 3}H),5-N{sub 3}IAA was shown to be polar, inhibited by 2,3,5-triiodobenzoic acid (TIBA) and essentially freely mobile. There was no detectable radiodecomposition of ({sup 3}H),5-N{sub 3}IAA within tissue kept in darkness for 4 hours. Shoot tissue which had taken up ({sup 3}H),5-N{sub 3}IAA was irradiated with ultraviolet light to covalently fix the photoaffinity labeling agent within cells that contained it at the time of photolysis. Subsequent microautoradiography showed that all cells contained radioactivity; however, the amount of radioactivity varied among different cell types. Epidermal cells contained the most radioactivity per area, approximately twofold more than other cells. Parenchyma cells in the mature stelar region contained the next largest amount and cortical cells, sieve tube cells, tracheary cells, and all cells in the leaf base contained the least amount of the radioactive label. Two observations suggest that the auxin within the epidermal cells is transported in a polar manner: (a) the amount of auxin in the epidermal cells is greatly reduced in the presence of TIBA, and (b) auxin accumulates on the apical side of a wound in the epidermis and is absent on the basal side. While these results indicate that auxin in the epidermis is polarly transported, this tissue cannot be the only pathway since the epidermis is only a small fraction of the shoot volume.

  10. Influence of intra-shoot trophic competition on shoot development in two grapevine cultivars (Vitis vinifera).

    PubMed

    Pallas, Benoît; Louarn, Gaëtan; Christophe, Angélique; Lebon, Eric; Lecoeur, Jérémie

    2008-09-01

    The effect of trophic competition between vegetative sources and reproductive sinks on grapevine (Vitis vinifera L.) shoot development was analyzed. Two international cultivars (Grenache N and Syrah) grown in pots, which were well watered, were studied. A large range of trophic competition levels was obtained by modifying the cluster loads per plant. An analytical breakdown of the branching system was used to analyze the effects of trophic competition. Phytomer production on the primary axis and the probability and timing of axillary budburst were not affected by trophic competition. However, the duration of development and leaf production rate for secondary axes were both significantly affected. The impact of trophic competition differed within the P0-P1-P2 architectural module, locally within the shoot and between cultivars. Trophic competition reduced the organogenesis of secondary axes most strongly close to clusters, on P1-P2 phytomers and in Grenache N. Based on these results, a modeling approach simulating sink strength variation and the local effects of sink proximity would be more relevant than a model considering only development as a function of thermal time or the global distribution of available biomass.

  11. Applicability of Phytoextraction with Arabidopsis halleri ssp. gemmifera to Remediate Cd-contaminated Andisols

    NASA Astrophysics Data System (ADS)

    Kameyama, Koji; Tani, Shigeru; Sugawara, Reiko; Ishikawa, Yuichi

    The objective of this study was to investigate the applicability of phytoextraction with a Cd-hyperaccumulator plant (Arabidopsis halleri ssp. gemmifera) to remediate Cd-contaminated Andisols. Cd absorption potentials of this plant for Andisols were examined in pot experiments. Sequentially, phytoextraction durations for remediation of Cd-contaminated Andisols were calculated from the experimental data. The results were as follows: (1) Cd concentrations in the plant shoots ranged from 170-750 mgṡkg-1. (2) Cd absorption of the plant for Andisols with ALC (Autoclaved Lightweight aerated Concrete) was less than for Andisols without ALC. However, the plants absorbed the same amount of soil Cd extracted by 0.01 M HCl with or without ALC. (3) Calculations suggest that the applicability of phytoextraction with this plant is high for slightly contaminated Andisols. Therefore, phytoextraction with Arabidopsis halleri ssp. gemmifera may be a viable option for the remediation of Cd-contaminated Andisols.

  12. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition.

    PubMed

    Ito, Shinsaku; Ito, Ken; Abeta, Naoko; Takahashi, Ryo; Sasaki, Yasuyuki; Yajima, Shunsuke

    2016-01-01

    Strigolactones (SLs) are a group of terpenoid lactones found in plants that regulate diverse developmental phenomena. SLs are thought to be involved in the maintenance of phosphate homeostasis. In addition, SL signaling is required for the regulation of shoot branching by nitrogen supply in Arabidopsis. In this study, we evaluated the effects of SLs on nitrogen deficient-inducing phenomena (leaf senescence and reduction of plant weight) in Arabidopsis. SL-biosynthesis (max1-1) and SL-insensitive (atd14-1) mutants showed altered responses to nitrogen deficient in comparison with wild-type (WT) plants. Nitrogen deficient conditions led to alterations in the expression levels of SL biosynthesis genes (MAX3 and MAX4). These results indicate that SLs could be key mediators of plant growth response to nitrogen supply.

  13. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    PubMed

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNU