Science.gov

Sample records for arabidopsis sieve elements

  1. Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves

    PubMed Central

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A.; Thompson, Gary A.; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo. PMID:25714357

  2. Looking inside phytoplasma-infected sieve elements: A combined microscopy approach using Arabidopsis thaliana as a model plant.

    PubMed

    Pagliari, Laura; Martini, Marta; Loschi, Alberto; Musetti, Rita

    2016-10-01

    Phytoplasmas are phloem-inhabiting plant pathogens that affect over one thousand plant species, representing a severe threat to agriculture. The absence of an effective curative strategy and the economic importance of many affected crops make a priority of studying how plants respond to phytoplasma infection. Nevertheless, the study of phytoplasmas has been hindered by the extreme difficulty of culturing them in vitro and by impediments to natural host plant surveys such as low phytoplasma titre, long plant life cycle and poor knowledge of natural host-plant biology. Stating correspondence between macroscopic symptoms of phytoplasma infected Arabidopsis thaliana and those observed in natural host plants, over the last decade some authors have started to use this plant as a model for studying phytoplasma-plant interactions. Nevertheless, the morphological and ultrastructural modifications occurring in A. thaliana tissues following phytoplasma infection have never been described in detail. In this work, we adopted a combined-microscopy approach to verify if A. thaliana can be considered a reliable model for the study of phytoplasma-plant interactions at the microscopical level. The consistent presence of phytoplasma in infected phloem allowed detailed study of the infection process and the relationship established by phytoplasmas with different components of the sieve elements. In infected A. thaliana, phytoplasmas induced strong disturbances of host plant development that were mainly due to phloem disorganization and impairment. Light microscopy showed collapse, necrosis and hyperplasia of phloem cells. TEM observations of sieve elements identified two common plant-responses to phytoplasma infection: phloem protein agglutination and callose deposition. PMID:27569416

  3. Looking inside phytoplasma-infected sieve elements: A combined microscopy approach using Arabidopsis thaliana as a model plant.

    PubMed

    Pagliari, Laura; Martini, Marta; Loschi, Alberto; Musetti, Rita

    2016-10-01

    Phytoplasmas are phloem-inhabiting plant pathogens that affect over one thousand plant species, representing a severe threat to agriculture. The absence of an effective curative strategy and the economic importance of many affected crops make a priority of studying how plants respond to phytoplasma infection. Nevertheless, the study of phytoplasmas has been hindered by the extreme difficulty of culturing them in vitro and by impediments to natural host plant surveys such as low phytoplasma titre, long plant life cycle and poor knowledge of natural host-plant biology. Stating correspondence between macroscopic symptoms of phytoplasma infected Arabidopsis thaliana and those observed in natural host plants, over the last decade some authors have started to use this plant as a model for studying phytoplasma-plant interactions. Nevertheless, the morphological and ultrastructural modifications occurring in A. thaliana tissues following phytoplasma infection have never been described in detail. In this work, we adopted a combined-microscopy approach to verify if A. thaliana can be considered a reliable model for the study of phytoplasma-plant interactions at the microscopical level. The consistent presence of phytoplasma in infected phloem allowed detailed study of the infection process and the relationship established by phytoplasmas with different components of the sieve elements. In infected A. thaliana, phytoplasmas induced strong disturbances of host plant development that were mainly due to phloem disorganization and impairment. Light microscopy showed collapse, necrosis and hyperplasia of phloem cells. TEM observations of sieve elements identified two common plant-responses to phytoplasma infection: phloem protein agglutination and callose deposition.

  4. Does aphid salivation affect phloem sieve element occlusion in vivo?

    PubMed Central

    Medina-Ortega, Karla J.

    2013-01-01

    To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation. PMID:24127515

  5. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock. PMID:24591057

  6. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.

  7. Post-sieve element transport of photoassimilates in sink regions.

    PubMed

    Patrick, J W; Offler, C E

    1996-08-01

    Photoassimilate transport from the sieve elements to the recipient sink cells, principally in the form of sucrose, provides a link between sink metabolism and compartmentation with phloem import. Phloem unloading has focused attention on photoassimilate transport across the sieve element boundary. However, post-sieve element transport can be of equal or greater significance. Three cellular pathways of sieve element unloading and post-sieve element transport are identified. These are apoplastic, symplastic and symplastic interrupted by an apoplastic step. The symplastic path is considered to be the common path, while the remaining pathways serve specialized functions. In particular, the apoplastic step isolates the sieve element transport function from the effects of solute concentration or osmotic changes in the sink cells. Switching between apo- and symplastic routes within a given sink has been found to be linked with such changes. Plasmodesmatal transport undoubtedly involves a diffusive component, but whether bulk flow contributes to the symplastic flux of photoassimilate from the sieve elements to the recipient sink cells is yet to be established unequivocally. Efflux across the plasma membranes of the sieve element-companion cell (se-cc) complexes and other vascular cells occurs by passive diffusion. Along the axial route, retrieval from the phloem apoplast is mediated by sucrose/proton symport. However, this mechanism is absent in terminal sinks. Non-vascular efflux from the maternal tissues of developing seed is passive in cereals and energy-coupled in certain grain legumes. Accumulation of sugars from the apoplast of all sinks with an apoplastic step universally occurs by a plasma membrane-bound sugar/proton symport mechanism. Regulation of symplastic transport could be mediated by a combination of sink metabolism and compartmentation coupled with changes in the transport properties of the interconnecting plasmodesmata. PMID:21245245

  8. GFP Tagging of Sieve Element Occlusion (SEO) Proteins Results in Green Fluorescent Forisomes

    PubMed Central

    Pélissier, Hélène C.; Peters, Winfried S.; Collier, Ray; van Bel, Aart J. E.; Knoblauch, Michael

    2008-01-01

    Forisomes are Ca2+-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as ‘FOR’ proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca2+ and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that ‘FOR’-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca2+ binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism. PMID:18784195

  9. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of nicotiana clevelandii

    PubMed Central

    Blackman, LM; Boevink, P; Cruz, SS; Palukaitis, P; Oparka, KJ

    1998-01-01

    The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer. PMID:9548980

  10. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    PubMed

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent. PMID:26387298

  11. Location of caspase 3-like protease in the development of sieve element and tracheary element of stem in Cucurbita moschata.

    PubMed

    Hao, Xia; Qian, Jie; Xu, Shan; Song, Xin; Zhu, Jian

    2008-12-01

    The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, external phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element.

  12. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation

    PubMed Central

    Musetti, Rita; Pagliari, Laura; Buxa, Stefanie V.; Degola, Francesca; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; van Bel, Aart J. E.

    2016-01-01

    ABSTRACT Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role. PMID:26795235

  13. A New Application of the Electrical Penetration Graph (EPG) for Acquiring and Measuring Electrical Signals in Phloem Sieve Elements.

    PubMed

    Salvador-Recatalà, Vicenta; Tjallingii, W Freddy

    2015-07-02

    Electrophysiological properties of cells are often studied in vitro, after dissociating them from their native environments. However, the study of electrical transmission between distant cells in an organism requires in vivo, artifact-free recordings of cells embedded within their native environment. The transmission of electrical signals from wounded to unwounded areas in a plant has since long piqued the interest of botanists. The phloem, the living part of the plant vasculature that is spread throughout the plant, has been postulated as a major tissue in electrical transmission in plants. The lack of suitable electrophysiological methods poses many challenges for the study of the electrical properties of the phloem cells in vivo. Here we present a novel approach for intracellular electrophysiology of sieve elements (SEs) that uses living aphids, or other phloem-feeding hemipteran insects, integrated in the electrical penetration graph (EPG) circuit. The versatility, robustness, and accuracy of this method made it possible to record and study in detail the wound-induced electrical signals in SEs of central veins of the model plant Arabidopsis thaliana(1). Here we show that EPG-electrodes can be easily implemented for intracellular electrophysiological recordings of SEs in marginal veins, as well as to study the capacity of SEs to respond with electrical signals to several external stimuli. The EPG approach applied to intracellular electrophysiology of SEs can be implemented to a wide variety of plant species, in a large number of plant/insect combinations, and for many research aims.

  14. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.

    PubMed

    Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J

    2013-10-01

    Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.

  15. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    PubMed Central

    Buxa, Stefanie V.; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes. PMID:26347766

  16. Characterization of five subgroups of the sieve element occlusion gene family in Glycine max reveals genes encoding non-forisome P-proteins, forisomes and forisome tails.

    PubMed

    Zielonka, Sascia; Ernst, Antonia M; Hawat, Susan; Twyman, Richard M; Prüfer, Dirk; Noll, Gundula A

    2014-09-01

    P-proteins are structural phloem proteins discussed to be involved in the rapid sealing of injured sieve elements. P-proteins are found in all dicotyledonous and some monocotyledonous plants, but additional crystalloid P-proteins, known as forisomes, have evolved solely in the Fabaceae. Both types are encoded by members of the sieve element occlusion (SEO) gene family, which comprises seven phylogenetic subgroups. The Fabaceae-specific subgroup 1 contains genes encoding forisome subunits in e.g. Medicago truncatula, Vicia faba, Dipteryx panamensis and Canavalia gladiata whereas basal subgroup 5 encodes P-proteins in Nicotiana tabacum (tobacco) and Arabidopsis thaliana. The function of remaining subgroups is still unknown. We chose Glycine max (soybean) as a model to investigate SEO proteins representing different subgroups in one species. We isolated native P-proteins to determine the SEO protein composition and analyzed the expression pattern, localization and structure of the G. max SEO proteins representing five of the subgroups. We found that subgroup 1 GmSEO genes encode forisome subunits, a member of subgroup 5 encodes a non-forisome P-protein and subgroup 2 GmSEO genes encode the components of forisome tails, which are present in a restricted selection of Fabaceaen species. We therefore present the first molecular characterization of a Fabaceae non-forisome P-protein and the first evidence that forisome tails are encoded by a phylogenetically-distinct branch of the SEO gene family.

  17. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks.

    PubMed

    Hafke, Jens B; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J E

    2013-06-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba).

  18. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks.

    PubMed

    Hafke, Jens B; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J E

    2013-06-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  19. Involvement of the Sieve Element Cytoskeleton in Electrical Responses to Cold Shocks1[W

    PubMed Central

    Hafke, Jens B.; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J.E.

    2013-01-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca2+-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca2+ influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La3+ in keeping with the involvement of Ca2+ channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca2+ influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  20. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance.

    PubMed

    Liesche, Johannes; Windt, Carel; Bohr, Tomas; Schulz, Alexander; Jensen, Kaare H

    2015-04-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.

  1. Symplastic isolation of the sieve element-companion cell complex in the phloem of Ricinus communis and Salix alba stems.

    PubMed

    van Bel, A J; Kempers, R

    1991-12-01

    The anatomical and physiological isolation of the sieve element-companion cell complex (se-cc complex) was investigated in stems of Ricinus communis L. and Salix alba L. In Ricinus, the plasmodesmatal frequencies were in the proportions 8∶1∶2∶30, in the order given, at the interfaces between sieve tube-companion cell, sieve tube-phloem parenchyma cell, companion cellphloem parenchyma cell, and phloem parenchyma cellphloem parenchyma cell. The membrane potentials of the se-cc complex and the surrounding phloem-parenchyma cells sharply contrasted: the membrane potential of the se-cc complex was about twice as negative as that of the phloem parenchyma. Lucifer Yellow CH injected into the sieve element or into the companion cell remained within the se-cc complex. Dye introduced into phloem parenchyma only moved (mostly poorly) to other phloem-parenchyma cells. The distribution of the plasmodesmatal frequencies, the differential dye-coupling and the sharp discontinuities in membrane potentials indicate that the se-cc complexes constitute symplast domains in the stem phloem. Symplastic autonomy is discussed as a basic necessity for the functioning of the se-cc complex in the stem.

  2. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants

    PubMed Central

    Hafke, Jens B.; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J. E.

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (−130 mV to −110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. −100 mV). In roots, the membrane potential of sieve elements dropped abruptly to −55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie–Hofstee (EH) -transformations pointed at biphasic Michaelis–Menten kinetics (2 MM, EH: Km1 1.2–1.8 mM, Km2 6.6–9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (−0.1 to −0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of Km values, (c) As yet, it remains unclear if one or two uptake systems are involved

  3. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  4. Symplasmic Constriction and Ultrastructural Features of the Sieve Element/Companion Cell Complex in the Transport Phloem of Apoplasmically and Symplasmically Phloem-Loading Species1

    PubMed Central

    Kempers, Ronald; Ammerlaan, Ankie; van Bel, Aart J.E.

    1998-01-01

    The ultrastructural features of the sieve element/companion cell complexes were screened in the stem phloem of two symplasmically loading (squash, [Cucurbita maxima L.] and Lythrum salicaria L.) and two apoplasmically loading (broad bean [Vicia faba L.] and Zinnia elegans L.) species. The distinct ultrastructural differences between the companion cells in the collection phloem of symplasmically and apoplasmically phloem-loading species continue to exist in the transport phloem. Plasmodesmograms of the stem phloem showed a universal symplasmic constriction at the interface between the sieve element/companion cell complex and the phloem parenchyma cells. This contrasts with the huge variation in symplasmic continuity between companion cells and adjoining cells in the collection phloem of symplasmically and apoplasmically loading species. Further, the ultrastructure of the companion cells in the transport phloem faintly reflected the features of the companion cells in the loading zone of the transport phloem. The companion cells of squash contained numerous small vacuoles (or vesicles), and those of L. salicaria contained a limited number of vacuoles. The companion cells of broad bean and Z. elegans possessed small wall protrusions. Implications of the present findings for carbohydrate processing in intact plants are discussed.

  5. Multi-Element Bioimaging of Arabidopsis thaliana Roots1[OPEN

    PubMed Central

    Salt, David E.

    2016-01-01

    Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventional protocols for microscopy, we observed that diffusible ions such as potassium and sodium were lost during sample dehydration. Thus, we developed a protocol that preserves ions in their native, cellular environment. Briefly, fresh roots are encapsulated in paraffin, cryo-sectioned, and freeze dried. Samples are finally analyzed by laser ablation-inductively coupled plasma-mass spectrometry, utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA, and DNA, making it attractive in combination with other omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion transport in roots. Being applicable to Arabidopsis, the molecular and genetic approaches available in this system can now be fully exploited in order to gain a better mechanistic understanding of these processes. PMID:27566167

  6. Generation of optical vortices by apodized photon sieves

    NASA Astrophysics Data System (ADS)

    Sun, Hai-bin; Wang, Xing-hai; Chen, Jun; Sun, Ping

    2016-05-01

    As a novel diffractive optical element, photon sieve has good focusing properties. We propose a method to verify the focusing properties by using apodized photon sieves. The apodized photon sieve is obtained by using a Gaussian window function to modulate the general photon sieve. Focusing properties of apodized photon sieve are studied by numerical simulations and experiments. It shows that photon sieves have good focusing ability, and the focusing ability of the photon sieve on the focal plane is stronger than that on other image planes. The experimental results also demonstrate that photon sieves can be used to generate optical vortices. The existence of optical vortices is confirmed by the formation of fork fringes. This apodized photon sieve is expected to have some practical applications in focusing analysis, optical imaging, and optical communication.

  7. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  8. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    PubMed Central

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expression. This review focuses on Arabidopsis studies concerning: 1) the remediation of elemental pollutants; 2) the remediation of organic pollutants; and 3) the phytoremediation genome. Elemental pollutants include heavy metals and metalloids (e.g., mercury, lead, cadmium, arsenic) that are immutable. The general goal of phytoremediation is to extract, detoxify, and hyperaccumulate elemental pollutants in above-ground plant tissues for later harvest. A few dozen Arabidopsis genes and proteins that play direct roles in the remediation of elemental pollutants are discussed. Organic pollutants include toxic chemicals such as benzene, benzo(a)pyrene, polychlorinated biphenyls, trichloroethylene, trinitrotoluene, and dichlorodiphenyltrichloroethane. Phytoremediation of organic pollutants is focused on their complete mineralization to harmless products, however, less is known about the potential of plants to act on complex organic chemicals. A preliminary survey of the Arabidopsis genome suggests that as many as 700 genes encode proteins that have the capacity to act directly on environmental pollutants or could be modified to do so. The potential of the phytoremediation proteome to be used to reduce human exposure to toxic pollutants appears to be enormous and untapped. PMID:22303204

  9. Argonautes team up to silence transposable elements in Arabidopsis

    PubMed Central

    Underwood, Charles J; Martienssen, Robert A

    2015-01-01

    The de novo silencing of transposable elements in plants and animals is mediated in part by RNA-directed chromatin modification. In flowering plants, AGO4 has been seen as the key argonaute protein in the RNA-directed DNA methylation pathway that links the plant-specific RNA polymerase V with the de novo DNA methyltransferase DRM2 (Zhong et al, 2014). Two recent papers in The EMBO Journal strongly implicate a role for the AGO6 protein in the process of de novo silencing. PMID:25630704

  10. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines.

    PubMed Central

    Bhatt, A M; Lister, C; Crawford, N; Dean, C

    1998-01-01

    Tag1 was identified as a highly active endogenous transposable element in transgenic Arabidopsis thaliana Landsberg erecta plants carrying the maize transposable element Activator (Ac). Here, we describe experiments designed to determine the basis for the high activity of Tag1. The frequency of transposition of Tag1 elements was compared in lines containing or lacking Ac transposase to assess the effect of Ac transposase on Tag1 activity. Three populations of nontransgenic plants, including nontransformed regenerants, were also analyzed. The high level of activity of Tag1 did not correlate with the presence or absence of Ac transposase but was significantly higher in transgenic lines. This result was maintained through at least six generations after transformation. These data suggest that Tag1 transposition is stimulated by processes that occur during the Agrobacterium transformation and that thereafter remain active. Two Tag1 elements are tightly linked in the Landsberg erecta genome and map to the lower arm of chromosome 1. Tag1 elements were found in only a few A. thaliana ecotypes but were present in four other Arabidopsis species. PMID:9501115

  11. Sieve Tube Geometry in Relation to Phloem Flow

    PubMed Central

    Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael

    2010-01-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199

  12. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.

    PubMed

    Mirouze, Marie; Vitte, Clémentine

    2014-06-01

    In the past decade, plant biologists and breeders have developed a growing interest in the field of epigenetics, which is defined as the study of heritable changes in gene expression that cannot be explained by changes in the DNA sequence. Epigenetic marks can be responsive to the environment, and evolve faster than genetic changes. Therefore, epigenetic diversity may represent an unexplored resource of natural variation that could be used in plant breeding programmes. On the other hand, crop genomes are largely populated with transposable elements (TEs) that are efficiently targeted by epigenetic marks, and part of the epigenetic diversity observed might be explained by TE polymorphisms. Characterizing the degree to which TEs influence epigenetic variation in crops is therefore a major goal to better use epigenetic variation. To date, epigenetic analyses have been mainly focused on the model plant Arabidopsis thaliana, and have provided clues on epigenome features, components that silence pathways, and effects of silencing impairment. But to what extent can Arabidopsis be used as a model for the epigenomics of crops? In this review, we discuss the similarities and differences between the epigenomes of Arabidopsis and crops. We explore the relationship between TEs and epigenomes, focusing on TE silencing control and escape, and the impact of TE mobility on epigenomic variation. Finally, we provide insights into challenges to tackle, and future directions to take in the route towards using epigenetic diversity in plant breeding programmes.

  13. Direct and residual effects of cadmium on the growth and elemental composition of Arabidopsis thaliana

    SciTech Connect

    Moser, T.J.; Tingey, D.; Rodecap, K.D.

    1986-01-01

    Experiments were conducted to determine the direct (first generation) and residual (second generation) phytotoxicity of a range of cadmium concentrations on Arabidopsis thaliana. Plants were grown under greenhouse conditions in double-container, vermiculite-hydroponic plot-culture systems. First generation plants were continuously exposed to nutrient solutions ranging from 0 to 100 micrometers CdCl/sub 2/. Biomass in the first generation plants decreased in response to nutrient solution containing increasing Cd concentrations. The 100 micrometers Cd treatment significantly reduced rosette, raceme and mature seed biomass. The progeny from the first-generation plants revealed no significant residual effects as far as growth and elemental composition are concerned.

  14. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    PubMed Central

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  15. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown un...

  16. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis.

    PubMed

    Pecinka, Ales; Dinh, Huy Q; Baubec, Tuncay; Rosa, Marisa; Lettner, Nicole; Mittelsten Scheid, Ortrun

    2010-09-01

    Epigenetic factors determine responses to internal and external stimuli in eukaryotic organisms. Whether and how environmental conditions feed back to the epigenetic landscape is more a matter of suggestion than of substantiation. Plants are suitable organisms with which to address this question due to their sessile lifestyle and diversification of epigenetic regulators. We show that several repetitive elements of Arabidopsis thaliana that are under epigenetic regulation by transcriptional gene silencing at ambient temperatures and upon short term heat exposure become activated by prolonged heat stress. Activation can occur without loss of DNA methylation and with only minor changes to histone modifications but is accompanied by loss of nucleosomes and by heterochromatin decondensation. Whereas decondensation persists, nucleosome loading and transcriptional silencing are restored upon recovery from heat stress but are delayed in mutants with impaired chromatin assembly functions. The results provide evidence that environmental conditions can override epigenetic regulation, at least transiently, which might open a window for more permanent epigenetic changes. PMID:20876829

  17. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota.

    PubMed Central

    Van Sluys, M A; Tempé, J; Fedoroff, N

    1987-01-01

    We have co-transformed carrot (Daucus carota) and Arabidopsis thaliana with an Agrobacterium tumefaciens non-tumorigenic T-DNA carrying the maize transposable element Activator (Ac) and an Agrobacterium rhizogenes Ri T-DNA. We present evidence that the Ac element transposes in transformed root or root-derived callus cultures of both species. We show that fertile plants can be regenerated from transformed, root-derived callus cultures of Arabidopsis, demonstrating the utility of the Ri plasmid for introducing the maize Ac element into plants. We also present evidence that Ac elements that excise from the transforming T-DNA early after transformation continue to be mobile in carrot root cultures. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2832144

  18. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Küpper, H; Lombi, E; Zhao, F J; McGrath, S P

    2000-12-01

    The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation. PMID:11219586

  19. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Küpper, H; Lombi, E; Zhao, F J; McGrath, S P

    2000-12-01

    The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation.

  20. Microfluidic sieve valves

    DOEpatents

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  1. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana.

    PubMed

    van Drunen, C M; Oosterling, R W; Keultjes, G M; Weisbeek, P J; van Driel, R; Smeekens, S C

    1997-10-01

    The Arabidopsis thaliana genome is currently being sequenced, eventually leading towards the unravelling of all potential genes. We wanted to gain more insight into the way this genome might be organized at the ultrastructural level. To this extent we identified matrix attachment regions demarking potential chromatin domains, in a 16 kb region around the plastocyanin gene. The region was cloned and sequenced revealing six genes in addition to the plastocyanin gene. Using an heterologous in vitro nuclear matrix binding assay, to search for evolutionary conserved matrix attachment regions (MARs), we identified three such MARs. These three MARs divide the region into two small chromatin domains of 5 kb, each containing two genes. Comparison of the sequence of the three MARs revealed a degenerated 21 bp sequence that is shared between these MARs and that is not found elsewhere in the region. A similar sequence element is also present in four other MARs of Arabidopsis.Therefore, this sequence may constitute a landmark for the position of MARs in the genome of this plant. In a genomic sequence database of Arabidopsis the 21 bp element is found approximately once every 10 kb. The compactness of the Arabidopsis genome could account for the high incidence of MARs and MRSs we observed.

  2. Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene.

    PubMed

    Schneidereit, Alexander; Imlau, Astrid; Sauer, Norbert

    2008-09-01

    The transition from young carbon-importing sink leaves of higher plants to mature carbon-exporting source leaves is paralleled by a complete reversal of phloem function. While sink-leaf phloem mediates the influx of reduced carbon from older source leaves and the release of this imported carbon to the sink-leaf mesophyll, source-leaf phloem catalyzes the uptake of photoassimilates into companion cells (CCs) and sieve elements (SEs) and the net carbon export from the leaf. Phloem loading in source leaves with sucrose, the main or exclusive transport form for fixed carbon in most higher plants, is catalyzed by plasma membrane-localized sucrose transporters. Consistent with the described physiological switch from sink to source, the promoter of the Arabidopsis AtSUC2 gene is active only in source-leaf CCs of Arabidopsis or of transgenic tobacco (Nicotiana tabacum). For the identification of regulatory elements involved in this companion cell-specific and source-specific gene expression, we performed detailed analyses of the AtSUC2 promoter by truncation and mutagenesis. A 126-bp promoter fragment was identified, which seems to contain these fragments and which drives AtSUC2-typical expression when combined with a 35S minimal promoter. Within this fragment, linker-scanning analyses revealed two cis-regulatory elements that were further characterized as putative binding sites for transcription factors of the DNA-binding-with-one-finger or the homeo-domain-leucine-zipper families. Similar or identical binding sites are found in other genes and in different plant species, suggesting an ancient regulatory mechanism for this important physiological switch. PMID:18551303

  3. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  4. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  5. The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to alter nutrient partitioning within plant cells is poorly understood. In Arabidopsis (Arabidopsis thaliana), a family of endomembrane cation exchangers (CAXs) transports Ca(2+) and other cations. However, experiments have not focused on how the distribution and partitioning of calcium ...

  6. Resolution enhancement of photon sieve based on apodization

    NASA Astrophysics Data System (ADS)

    Cheng, Guanxiao; Xing, Tingwen; Liao, Zhijie; Yang, Yong; Ma, Jianling

    2008-03-01

    Photon sieve is a novel diffractive optical element modulating either amplitude or phase which consists of a great number of pinholes distributed appropriately over the Fresnel zones for the focusing and imaging of light. Photon sieve has the advantages of the diameter of pinholes beyond the limitation of the corresponding Fresnel zone width and the minimum background in the focal plane. Furthermore, photon sieve can be fabricated on a single surface without any supporting struts required unlike the Fresnel zone plate. Photon sieve can be used as EUV telescope for solar orbiter, space-based surveillance telescope operating at visible light, or other imaging components. Photon sieve can also be used as one of the promising lithographic tools for nanoscale science and engineering to obtain the lower cost, higher flexibility and better resolution. The approaches to enhancing imaging resolution of photon sieve are presented in detail. According to Fresnel-Kirchhoff diffraction theory, the diffractive field of photon sieve is described by means of the discrete fast Fourier transform algorithm. The related contents include the calculation of point spread function, the suppression of side lobes, the imaging bandwidth, the physical limit of resolution, and the diffraction efficiency. Imaging properties of photon sieve are analyzed on the basis of precise test.

  7. Expression of the Arabidopsis transposable element Tag1 is targeted to developing gametophytes.

    PubMed Central

    Galli, Mary; Theriault, Angie; Liu, Dong; Crawford, Nigel M

    2003-01-01

    The Arabidopsis transposon Tag1 undergoes late excision during vegetative and germinal development in plants containing 35S-Tag1-GUS constructs. To determine if transcriptional regulation can account for the developmental control of Tag1 excision, the transcriptional activity of Tag1 promoter-GUS fusion constructs of various lengths was examined in transgenic plants. All constructs showed expression in the reproductive organs of developing flowers but no expression in leaves. Expression was restricted to developing gametophytes in both male and female lineages. Quantitative RT-PCR analysis confirmed that Tag1 expression predominates in the reproductive organs of flower buds. These results are consistent with late germinal excision of Tag1, but they cannot explain the vegetative excision activity of Tag1 observed with 35S-Tag1-GUS constructs. To resolve this issue, Tag1 excision was reexamined using elements with no adjacent 35S promoter sequences. Tag1 excision in this context is restricted to germinal events with no detectable vegetative excision. If a 35S enhancer sequence is placed next to Tag1, vegetative excision is restored. These results indicate that the intrinsic activity of Tag1 is restricted to germinal excision due to targeted expression of the Tag1 transposase to developing gametophytes and that this activity is altered by the presence of adjacent enhancers or promoters. PMID:14704189

  8. Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation.

    PubMed

    Kwon, Soon Il; Cho, Hong Joo; Park, Ohkmae K

    2010-11-01

    The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, vacuole collapse and programmed cell death (PCD). PCD during xylem differentiation is accomplished by degradation of cytoplasmic constituents, and it is required for the formation of hollow vessels, known as tracheary elements (TEs). Our recent study revealed that the small GTPase RabG3b acts as a regulator of TE differentiation through its autophagic activation. By using an Arabidopsis in vitro cell culture system, we showed that autophagy is activated during TE differentiation. Overexpression of a constitutively active RabG3b (RabG3bCA) significantly enhances both autophagy and TE differentiation, which are consistently suppressed in transgenic plants overexpressing a dominant negative form (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid-insensitive mutant bri1-301 and an autophagy mutant atg5-1. On the basis of our results, we propose that RabG3b functions as a component of autophagy and regulates TE differentiation by activating the process of PCD.

  9. Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa.

    PubMed

    Jia, Jia; Xue, Qingzhong

    2009-12-01

    Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes. High frequency of codons ending in A/T in TEs has been previously observed in some species. In this study, the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa. Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes. A remarkable positive correlation between highly expressed nuclear genes and C/G-ending codons were detected in O. sativa (r=0.944 and 0.839, respectively, P<0.0001) but not in A. thaliana, indicating a close association between the GC content and gene expression level in monocot species. In both species, TE codon usage biases are similar to that of weakly expressed genes. The expression and activity of TEs may be strictly controlled in plant genomes. Mutation bias and selection pressure have simultaneously acted on the TE evolution in A. thaliana and O. sativa. The consistently observed biases of nucleotide composition and codon usage of TEs may also provide a useful clue to accurately detect TE sequences in different species. PMID:20172490

  10. Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa.

    PubMed

    Jia, Jia; Xue, Qingzhong

    2009-12-01

    Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes. High frequency of codons ending in A/T in TEs has been previously observed in some species. In this study, the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa. Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes. A remarkable positive correlation between highly expressed nuclear genes and C/G-ending codons were detected in O. sativa (r=0.944 and 0.839, respectively, P<0.0001) but not in A. thaliana, indicating a close association between the GC content and gene expression level in monocot species. In both species, TE codon usage biases are similar to that of weakly expressed genes. The expression and activity of TEs may be strictly controlled in plant genomes. Mutation bias and selection pressure have simultaneously acted on the TE evolution in A. thaliana and O. sativa. The consistently observed biases of nucleotide composition and codon usage of TEs may also provide a useful clue to accurately detect TE sequences in different species.

  11. In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling.

    PubMed

    Forouzesh, Elham; Goel, Ashwani; Mackenzie, Sally A; Turner, Joseph A

    2013-02-01

    Turgor pressure in plant cells is involved in many important processes. Stable and normal turgor pressure is required for healthy growth of a plant, and changes in turgor pressure are indicative of changes taking place within the plant tissue. The ability to quantify the turgor pressure of plant cells in vivo would provide opportunities to understand better the process of pressure regulation within plants, especially when plant stress is considered, and to understand the role of turgor pressure in cellular signaling. Current experimental methods do not separate the influence of the turgor pressure from the effects associated with deformation of the cell wall when estimates of turgor pressure are made. In this paper, nanoindentation measurements are combined with finite element simulations to determine the turgor pressure of cells in vivo while explicitly separating the cell-wall properties from the turgor pressure effects. Quasi-static cyclic tests with variable depth form the basis of the measurements, while relaxation tests at low depth are used to determine the viscoelastic material properties of the cell wall. Turgor pressure is quantified using measurements on Arabidopsis thaliana under three pressure states (control, turgid and plasmolyzed) and at various stages of plant development. These measurements are performed on cells in vivo without causing damage to the cells, such that pressure changes may be studied for a variety of conditions to provide new insights into the biological response to plant stress conditions.

  12. Compilation of mRNA Polyadenylation Signals in Arabidopsis Revealed a New Signal Element and Potential Secondary Structures1[w

    PubMed Central

    Loke, Johnny C.; Stahlberg, Eric A.; Strenski, David G.; Haas, Brian J.; Wood, Paul Chris; Li, Qingshun Quinn

    2005-01-01

    Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3′-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3′-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a single-nucleotide profile scan on the 3′-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3′-ends for gene annotation. PMID:15965016

  13. Generalized Fibonacci photon sieves.

    PubMed

    Ke, Jie; Zhang, Junyong

    2015-08-20

    We successfully extend the standard Fibonacci zone plates with two on-axis foci to the generalized Fibonacci photon sieves (GFiPS) with multiple on-axis foci. We also propose the direct and inverse design methods based on the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones, according to the generalized Fibonacci sequences, we not only realize adjustable multifocal distances but also fulfill the adjustable compression ratio of focal spots in different directions. PMID:26368763

  14. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron.

    PubMed

    Akua, Tsofit; Shaul, Orit

    2013-11-01

    The mechanisms that underlie the ability of some introns to increase gene expression, a phenomenon called intron-mediated enhancement (IME), are not fully understood. It is also not known why introns localized in the 5'-untranslated region (5' UTR) are considerably longer than downstream eukaryotic introns. It was hypothesized that this extra length results from the presence of some functional intronic elements. However, deletion analyses studies carried out thus far were unable to identify specific intronic regions necessary for IME. Using deletion analysis and a gain-of-function approach, an internal element that considerably increases translational efficiency, without affecting splicing, was identified in the 5' UTR intron of the Arabidopsis thaliana MHX gene. Moreover, the ability of this element to enhance translation was diminished by a minor downstream shift in the position of introns containing it from the 5' UTR into the coding sequence. These data suggest that some of the extra length of 5' UTR introns results from the presence of elements that enhance translation, and, moreover, from the ability of 5' UTR introns to provide preferable platforms for such elements over downstream introns. The impact of the identified intronic element on translational efficiency was augmented upon removal of neighbouring intronic elements. Interference between different intronic elements had not been reported thus far. This interference may support the bioinformatics-based idea that some of the extra sequence of 5' UTR introns is also necessary for separating different functional intronic elements.

  15. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  16. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  17. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  18. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea.

    PubMed

    Zhang, Xiaoyu; Wessler, Susan R

    2004-04-13

    Transposable elements (TEs) are the major component of plant genomes where they contribute significantly to the >1,000-fold genome size variation. To understand the dynamics of TE-mediated genome expansion, we have undertaken a comparative analysis of the TEs in two related organisms: the weed Arabidopsis thaliana (125 megabases) and Brassica oleracea ( approximately 600 megabases), a species with many crop plants. Comparison of the whole genome sequence of A. thaliana with a partial draft of B. oleracea has permitted an estimation of the patterns of TE amplification, diversification, and loss that has occurred in related species since their divergence from a common ancestor. Although we find that nearly all TE lineages are shared, the number of elements in each lineage is almost always greater in B. oleracea. Class 1 (retro) elements are the most abundant TE class in both species with LTR and non-LTR elements comprising the largest fraction of each genome. However, several families of class 2 (DNA) elements have amplified to very high copy number in B. oleracea where they have contributed significantly to genome expansion. Taken together, the results of this analysis indicate that amplification of both class 1 and class 2 TEs is responsible, in part, for B. oleracea genome expansion since divergence from a common ancestor with A. thaliana. In addition, the observation that B. oleracea and A. thaliana share virtually all TE lineages makes it unlikely that wholesale removal of TEs is responsible for the compact genome of A. thaliana. PMID:15064405

  19. A Transposable Element within the Non-canonical Telomerase RNA of Arabidopsis thaliana Modulates Telomerase in Response to DNA Damage

    PubMed Central

    Xu, Hengyi; Nelson, Andrew D. L.; Shippen, Dorothy E.

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as critical factors in many biological processes, but little is known about how their regulatory functions evolved. One of the best-studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase. We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2 and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative regulator of telomerase activity, induced in response to double-strand breaks (DSBs). TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA 3’ terminus to generate TER2S, an RNA of unknown function. Here we investigate how A. thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis genomes project, we report that the intervening sequence within TER2 is derived from a transposable element termed DSB responsive element (DRE). DRE is found in the TER2 loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2) and without DRE (TER2Δ) we demonstrate that this element is responsible for many of the unique properties of TER2, including its enhanced binding to TERT and telomerase inhibitory function. We show that DRE destabilizes TER2, and further that TER2 induction by DNA damage reflects increased RNA stability and not increased transcription. DRE-mediated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telomerase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small transposon converted this lncRNA into a DNA damage sensor that modulates telomerase enzyme activity in response to genome assault. PMID:26075395

  20. HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis1[W][OA

    PubMed Central

    Liu, Xuncheng; Yu, Chun-Wei; Duan, Jun; Luo, Ming; Wang, Koching; Tian, Gang; Cui, Yuhai; Wu, Keqiang

    2012-01-01

    The molecular mechanism of how the histone deacetylase HDA6 participates in maintaining transposable element (TE) silencing in Arabidopsis (Arabidopsis thaliana) is not yet defined. In this study, we show that a subset of TEs was transcriptionally reactivated and that TE reactivation was associated with elevated histone H3 and H4 acetylation as well as increased H3K4Me3 and H3K4Me2 in hda6 mutants. Decreased DNA methylation of the TEs was also detected in hda6 mutants, suggesting that HDA6 silences the TEs by regulating histone acetylation and methylation as well as the DNA methylation status of the TEs. Similarly, transcripts of some of these TEs were also increased in the methyltransferase1 (met1) mutant, with decreased DNA methylation. Furthermore, H4 acetylation, H3K4Me3, H3K4Me2, and H3K36Me2 were enriched at the coregulated TEs in the met1 and hda6 met1 mutants. Protein-protein interaction analysis indicated that HDA6 physically interacts with MET1 in vitro and in vivo, and further deletion analysis demonstrated that the carboxyl-terminal region of HDA6 and the bromo-adjacent homology domain of MET1 were responsible for the interaction. These results suggested that HDA6 and MET1 interact directly and act together to silence TEs by modulating DNA methylation, histone acetylation, and histone methylation status. PMID:21994348

  1. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    1998-01-01

    Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.

  2. Identification of two-component system elements downstream of AHK5 in the stomatal closure response of Arabidopsis thaliana.

    PubMed

    Mira-Rodado, Virtudes; Veerabagu, Manikandan; Witthöft, Janika; Teply, Julia; Harter, Klaus; Desikan, Radhika

    2012-11-01

    To optimize water use efficiency, plants regulate stomatal closure through a complex signaling process. Hydrogen peroxide (H₂O₂) is produced in response to several environmental stimuli, and has been identified as a key second messenger involved in the regulation of stomatal aperture. The Arabidopsis histidine kinase 5 (AHK5) has been shown to regulate stomatal closure in response to H₂O₂ and other stimuli that depend on H₂O₂. AHK5 is a member of the two-component system (TCS) in Arabidopsis. The plant TCS comprises three different protein types: the hybrid histidine kinases (HKs), the phosphotransfer proteins (HPs) and the response regulators (RRs). Here we determined TCS elements involved in H₂O₂- and ethylene-dependent stomatal closure downstream of AHK5. By yeast and in planta interaction assays and functional studies, AHP1, 2 and 5 as well as the response regulators ARR4 and ARR7 were identified acting downstream of AHK5 in the ethylene and H₂O₂ response pathways of guard cells. Furthermore, we demonstrate that aspartate phosphorylation of ARR4 is only required for the H₂O₂- but not for the ethylene-induced stomatal closure response. Our data suggest the presence of a complex TCS signaling network comprising of at least AHK5, several AHPs and response regulators, which modulate stomatal closure in response to H₂O₂ and ethylene.

  3. Ultra-broadband achromatic imaging with diffractive photon sieves

    PubMed Central

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  4. Ultra-broadband achromatic imaging with diffractive photon sieves

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-06-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element.

  5. Antagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit

    PubMed Central

    González-Reig, Santiago; Ripoll, Juan José; Vera, Antonio; Yanofsky, Martin F.; Martínez-Laborda, Antonio

    2012-01-01

    The Arabidopsis fruit mainly consists of a mature ovary that shows three well defined territories that are pattern elements along the mediolateral axis: the replum, located at the medial plane of the flower, and the valve and the valve margin, both of lateral nature. JAG/FIL activity, which includes the combined functions of JAGGED (JAG), FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3), contributes to the formation of the two lateral pattern elements, whereas the cooperating genes BREVIPEDICELLUS (BP) and REPLUMLESS (RPL) promote replum development. A recent model to explain pattern formation along the mediolateral axis hypothesizes that JAG/FIL activity and BP/RPL function as antagonistic lateral and medial factors, respectively, which tend to repress each other. In this work, we demonstrate the existence of mutual exclusion mechanisms between both kinds of factors, and how this determines the formation and size of the three territories. Medial factors autonomously constrain lateral factors so that they only express outside the replum, and lateral factors negatively regulate the medially expressed BP gene in a non-autonomous fashion to ensure correct replum development. We also have found that ASYMMETRIC LEAVES1 (AS1), previously shown to repress BP both in leaves and ovaries, collaborates with JAG/FIL activity, preventing its repression by BP and showing synergistic interactions with JAG/FIL activity genes. Therefore AS gene function (the function of the interacting genes AS1 and AS2) has been incorporated in the model as a new lateral factor. Our model of antagonistic factors provides explanation for mutant fruit phenotypes in Arabidopsis and also may help to understand natural variation of fruit shape in Brassicaceae and other species, since subtle changes in gene expression may cause conspicuous changes in the size of the different tissue types. PMID:23133401

  6. Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements.

    PubMed

    Palmer, William M; Ru, Lei; Jin, Ye; Patrick, John W; Ruan, Yong-Ling

    2015-02-01

    Central to understanding fruit development is to elucidate the processes mediating a successful transition from pre-pollination ovaries to newly set fruit, a key step in establishing fruit yield potential. In tomato, cell wall invertase (CWIN) LIN5 and its inhibitor INH1 are essential for fruit growth. However, the molecular and cellular basis by which they exert their roles in ovary-to-fruit transition remains unknown. To address this issue, we conducted a study focusing on ovaries and fruitlets at 2 days before and 2 days after anthesis, respectively. In situ hybridization analyses revealed that LIN5 and INH1 exhibited a dispersed expression in ovaries compared with their phloem-specific expression in fruitlets. Remarkably, LIN5 and INH1 proteins were immunologically co-localized to cell walls of sieve elements (SEs) in ovaries immediately prior to anthesis and in young fruitlets, but were undetectable in provascular bundles of younger ovaries. A burst in CWIN activity occurred during ovary-to-fruit transition. Interestingly, the ovaries, but not the fruitlets, exhibited high expression of a defective invertase, SldeCWIN1, an ortholog of which is known to enhance inhibition of INH on CWIN activity in tobacco. Imaging of a fluorescent symplasmic tracer indicated an apoplasmic phloem unloading pathway operated in ovaries, contrary to the previously observed symplasmic unloading pathway in fruit pericarp. These new data indicate that (1) a phloem-specific patterning of the CWIN and INH mRNAs is induced during ovary-to-fruit transition, and (2) LIN5 protein functions specifically in walls of SEs and increases its activity during ovary-to-fruit transition, probably to facilitate phloem unloading and to generate a glucose signal positively regulating cell division, hence fruit set. PMID:25680776

  7. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGES

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  8. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    PubMed

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens.

  9. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  10. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  11. Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation.

    PubMed

    Khan, Asif; Yadav, Narendra Singh; Morgenstern, Yaakov; Zemach, Assaf; Grafi, Gideon

    2016-10-01

    Dedifferentiation, that is, the acquisition of stem cell-like state, commonly induced by stress (e.g., protoplasting), is characterized by open chromatin conformation, a chromatin state that could lead to activation of transposable elements (TEs). Here, we studied the activation of the Arabidopsis class II TE Tag1, in which two copies, situated close to each other (near genes) on chromosome 1 are found in Landsberg erecta (Ler) but not in Columbia (Col). We first transformed protoplasts with a construct in which a truncated Tag1 (ΔTag1 non-autonomous) blocks the expression of a reporter gene AtMBD5-GFP and found a relatively high ectopic excision of ΔTag1 accompanied by expression of AtMBD5-GFP in protoplasts derived from Ler compared to Col; further increase was observed in ddm1 (decrease in DNA methylation1) protoplasts (Ler background). Ectopic excision was associated with transcription of the endogenous Tag1 and changes in histone H3 methylation at the promoter region. Focusing on the endogenous Tag1 elements we found low level of excision in Ler protoplasts, which was slightly and strongly enhanced in ddm1 and cmt3 (chromomethylase3) protoplasts, respectively, concomitantly with reduction in Tag1 gene body (GB) CHG methylation and increased Tag1 transcription; strong activation of Tag1 was also observed in cmt3 leaves. Notably, in cmt3, but not in ddm1, Tag1 elements were excised out from their original sites and transposed elsewhere in the genome. Our results suggest that dedifferentiation is associated with Tag1 activation and that CMT3 rather than DDM1 plays a central role in restraining Tag1 activation via inducing GB CHG methylation. PMID:27475038

  12. Multiprocessing the Sieve of Eratosthenes

    SciTech Connect

    Bokhari, S.H.

    1987-04-01

    More than two thousand years ago, Eratosthenes of Cyrene described a procedure for finding all prime numbers in a given range. This straightforward algorithm, known as the Sieve of Eratosthenes, is to this day the only procedure for finding prime numbers. In recent years it has been of interest to computer scientists and engineers because it serves as a convenient benchmark against which to measure some aspects of a computer's performance. Specifically, the Sieve tests the power of a machine (or of a compiler) to access a very large array in memory rapidly and repeatedly. This power is clearly influenced by memory access time, the speed at which indexing is done, and the overhead of looping. The parallel version of the Sieve is very useful as a test of some of the capabilities of a parallel machine. The parallel algorithm is straightforward, and so is the process for checking the final results. However, the efficient implementation of the algorithm on a real parallel machine, especially in the dynamic load-balancing case, requires thoughtful design.

  13. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana.

    PubMed

    Omidbakhshfard, Mohammad Amin; Winck, Flavia Vischi; Arvidsson, Samuel; Riaño-Pachón, Diego M; Mueller-Roeber, Bernd

    2014-06-01

    The control of gene expression by transcriptional regulators and other types of functionally relevant DNA transactions such as chromatin remodeling and replication underlie a vast spectrum of biological processes in all organisms. DNA transactions require the controlled interaction of proteins with DNA sequence motifs which are often located in nucleosome-depleted regions (NDRs) of the chromatin. Formaldehyde-assisted isolation of regulatory elements (FAIRE) has been established as an easy-to-implement method for the isolation of NDRs from a number of eukaryotic organisms, and it has been successfully employed for the discovery of new regulatory segments in genomic DNA from, for example, yeast, Drosophila, and humans. Until today, however, FAIRE has only rarely been employed in plant research and currently no detailed FAIRE protocol for plants has been published. Here, we provide a step-by-step FAIRE protocol for NDR discovery in Arabidopsis thaliana. We demonstrate that NDRs isolated from plant chromatin are readily amenable to quantitative polymerase chain reaction and next-generation sequencing. Only minor modification of the FAIRE protocol will be needed to adapt it to other plants, thus facilitating the global inventory of regulatory regions across species.

  14. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis[OPEN

    PubMed Central

    Buschmann, Henrik; Lloyd, Clive W.

    2015-01-01

    Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric 14N/15N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning. PMID:26432860

  15. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis.

    PubMed

    Kwon, Soon Il; Cho, Hong Joo; Jung, Jin Hee; Yoshimoto, Kohki; Shirasu, Ken; Park, Ohkmae K

    2010-10-01

    The tracheary elements (TEs) of the xylem serve as the water-conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1-301, and an autophagy mutant atg5-1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.

  16. Functional dissection of the cis-acting sequences of the Arabidopsis transposable element Tag1 reveals dissimilar subterminal sequence and minimal spacing requirements for transposition.

    PubMed Central

    Liu, D; Mack, A; Wang, R; Galli, M; Belk, J; Ketpura, N I; Crawford, N M

    2001-01-01

    The Arabidopsis transposon Tag1 has an unusual subterminal structure containing four sets of dissimilar repeats: one set near the 5' end and three near the 3' end. To determine sequence requirements for efficient and regulated transposition, deletion derivatives of Tag1 were tested in Arabidopsis plants. These tests showed that a 98-bp 5' fragment containing the 22-bp inverted repeat and four copies of the AAACCX (X = C, A, G) 5' subterminal repeat is sufficient for transposition while a 52-bp 5' fragment containing only one copy of the subterminal repeat is not. At the 3' end, a 109-bp fragment containing four copies of the most 3' repeat TGACCC, but not a 55-bp fragment, which has no copies of the subterminal repeats, is sufficient for transposition. The 5' and 3' end fragments are not functionally interchangeable and require an internal spacer DNA of minimal length between 238 and 325 bp to be active. Elements with these minimal requirements show transposition rates and developmental control of excision that are comparable to the autonomous Tag1 element. Last, a DNA-binding activity that interacts with the 3' 109-bp fragment but not the 5' 98-bp fragment of Tag1 was found in nuclear extracts of Arabidopsis plants devoid of Tag1. PMID:11156999

  17. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  18. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis.

    PubMed

    Geisler, Matt; Kleczkowski, Leszek A; Karpinski, Stanislaw

    2006-02-01

    Short motifs of many cis-regulatory elements (CREs) can be found in the promoters of most Arabidopsis genes, and this raises the question of how their presence can confer specific regulation. We developed a universal algorithm to test the biological significance of CREs by first identifying every Arabidopsis gene with a CRE and then statistically correlating the presence or absence of the element with the gene expression profile on multiple DNA microarrays. This algorithm was successfully verified for previously characterized abscisic acid, ethylene, sucrose and drought responsive CREs in Arabidopsis, showing that the presence of these elements indeed correlates with treatment-specific gene induction. Later, we used standard motif sampling methods to identify 128 putative motifs induced by excess light, reactive oxygen species and sucrose. Our algorithm was able to filter 20 out of 128 novel CREs which significantly correlated with gene induction by either heat, reactive oxygen species and/or sucrose. The position, orientation and sequence specificity of CREs was tested in silicio by analyzing the expression of genes with naturally occurring sequence variations. In three novel CREs the forward orientation correlated with sucrose induction and the reverse orientation with sucrose suppression. The functionality of the predicted novel CREs was experimentally confirmed using Arabidopsis cell-suspension cultures transformed with short promoter fragments or artificial promoters fused with the GUS reporter gene. Our genome-wide analysis opens up new possibilities for in silicio verification of the biological significance of newly discovered CREs, and allows for subsequent selection of such CREs for experimental studies.

  19. Multiprocessing the Sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Bokhari, S.

    1986-01-01

    The Sieve of Eratosthenes for finding prime numbers in recent years has seen much use as a benchmark algorithm for serial computers while its intrinsically parallel nature has gone largely unnoticed. The implementation of a parallel version of this algorithm for a real parallel computer, the Flex/32, is described and its performance discussed. It is shown that the algorithm is sensitive to several fundamental performance parameters of parallel machines, such as spawning time, signaling time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing is employed. We describe the performance of our algorithm with and without load balancing and compare it with theoretical lower bounds and simulated results. It is straightforward to understand this algorithm and to check the final results. However, its efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic load balancing is desired. The fundamental operations required by the algorithm are very simple: this means that the slightest overhead appears prominently in performance data. The Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge for the programmer.

  20. Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    PubMed Central

    Louis, Joe; Shah, Jyoti

    2013-01-01

    The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed. PMID:23847627

  1. Genome-Wide Analysis of Ethylene-Responsive Element Binding Factor-Associated Amphiphilic Repression Motif-Containing Transcriptional Regulators in Arabidopsis1[W][OA

    PubMed Central

    Kagale, Sateesh; Links, Matthew G.; Rozwadowski, Kevin

    2010-01-01

    The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation. PMID:20097792

  2. Analysis of the enhancer-blocking function of the TBS element from Petunia hybrida in transgenic Arabidopsis thaliana and Nicotiana tabacum.

    PubMed

    Singer, Stacy D; Hily, Jean-Michel; Cox, Kerik D

    2011-11-01

    Transcriptional enhancers possess the ability to override the tissue-specificity and efficiency of nearby promoters, which is of concern when generating transgenic constructs bearing multiple cassettes. One means of preventing these inappropriate interactions is through the use of enhancer-blocking insulators. The 2-kb transformation booster sequence (TBS) from Petunia hybrida has been shown previously to exhibit this function when inserted between an enhancer and promoter in transgenic Arabidopsis thaliana. In this study, we attempted to further characterize the ability of this fragment to impede enhancer-promoter interference through an analysis of transgenic Arabidopsis and Nicotiana tabacum lines bearing various permutations of the TBS element between the cauliflower mosaic virus (CaMV) 35S enhancer and an assortment of tissue-specific promoters fused to the β-glucuronidase (GUS) reporter gene. The full-length TBS fragment was found to function in both orientations, although to a significantly lesser degree in the reverse orientation, and was operational in both plant species tested. While multiple deletion fragments were found to exhibit activity, it appeared that several regions of the TBS were required for maximal enhancer-blocking function. Furthermore, we found that this element exhibited promoter-like activity, which has implications in terms of possible mechanisms behind its ability to impede enhancer-promoter communication in plants.

  3. Thermodynamics of formation of molecular sieves

    NASA Astrophysics Data System (ADS)

    Piccione, Patrick Manuel

    2002-09-01

    Thermodynamic investigations are undertaken to better understand the energetic differences amongst molecular sieve frameworks and the mechanisms and interactions important in molecular sieve self-assembly. The enthalpies relative to quartz at 298.15 K are determined by high-temperature solution calorimetry for a collection of calcined pure-silica molecular sieves with diverse structural features. SiO2 molecular sieves are shown to be only modestly (6.8--14.4 kJ/mol) metastable with respect to quartz. The available thermal energy at typical synthesis conditions is RT = 3.5 kJ/mol. A strong correlation between enthalpy and molar volume is observed. The entropies of four pure-silica molecular sieves with a wide range of molar volumes are determined by heat capacity measurements from 5 to 400 K. The entropies of these structures are almost identical (3.2--4.2 J · K-1mol-1 above quartz). The enthalpy and entropy data are combined to calculate the Gibbs free energies of transition from quartz to eight other silica polymorphs. The molecular sieve Gibbs free energies are only 5.5--12.6 kJ/mol less stable than quartz. Therefore, there are no significant thermodynamic barriers to transformations between silica polymorphs. This result suggests that structure-directing agents (SDAs) in molecular sieves syntheses do not serve to stabilize otherwise very unstable phases. Interaction enthalpies between inorganic frameworks and organic SDAs are measured by HF solution calorimetry for six molecular sieve/SDA pairs. The enthalpies are only moderately exothermic (-1.1 to -5.9 kJ/mol SiO2), as expected if the predominant interactions are silica/hydrocarbon van der Waals contacts. Interaction entropies are estimated for three framework/SDA pairs, and together with the interaction enthalpies allow the calculation of the Gibbs free energies of interaction. The latter values range from -2.0 to -5.4 kJ/mol SiO2. This energy range is comparable to that observed for the SiO2 frameworks

  4. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis.

    PubMed

    Kaplan, Boaz; Davydov, Olga; Knight, Heather; Galon, Yael; Knight, Marc R; Fluhr, Robert; Fromm, Hillel

    2006-10-01

    The regulation of gene expression by cellular calcium is crucial for plant defense against biotic and abiotic stresses. However, the number of genes known to respond to specific transient calcium signals is limited, and as yet there is no definition of a calcium-responsive cis element in plants. Here, we generated specific cytosolic calcium transients in intact Arabidopsis thaliana seedlings and linked them to early transcriptome changes, followed by bioinformatic analysis of the responsive genes. A cytosolic calcium transient induced by calmodulin antagonists and blocked by lanthanides was characterized using aequorin-based luminometry and photon imaging. Analysis of transcriptome changes revealed 230 calcium-responsive genes, of which 162 were upregulated and 68 were downregulated. These include known early stress-responsive genes as well as genes of unknown function. Analysis of their upstream regions revealed, exclusively in the upregulated genes, a highly significant occurrence of a consensus sequence (P < 10(-13)) comprising two abscisic acid-specific cis elements: the abscisic acid-responsive element (ABRE; CACGTG[T/C/G]) and its coupling element ([C/A]ACGCG[T/C/G]) [corrected] Finally, we show that a tetramer of the ABRE cis element is sufficient to confer transcriptional activation in response to cytosolic Ca(2+) transients. Thus, at least for some specific Ca(2+) transients and motif combinations, ABREs function as Ca(2+)-responsive cis elements. PMID:16980540

  5. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis.

    PubMed

    Kaplan, Boaz; Davydov, Olga; Knight, Heather; Galon, Yael; Knight, Marc R; Fluhr, Robert; Fromm, Hillel

    2006-10-01

    The regulation of gene expression by cellular calcium is crucial for plant defense against biotic and abiotic stresses. However, the number of genes known to respond to specific transient calcium signals is limited, and as yet there is no definition of a calcium-responsive cis element in plants. Here, we generated specific cytosolic calcium transients in intact Arabidopsis thaliana seedlings and linked them to early transcriptome changes, followed by bioinformatic analysis of the responsive genes. A cytosolic calcium transient induced by calmodulin antagonists and blocked by lanthanides was characterized using aequorin-based luminometry and photon imaging. Analysis of transcriptome changes revealed 230 calcium-responsive genes, of which 162 were upregulated and 68 were downregulated. These include known early stress-responsive genes as well as genes of unknown function. Analysis of their upstream regions revealed, exclusively in the upregulated genes, a highly significant occurrence of a consensus sequence (P < 10(-13)) comprising two abscisic acid-specific cis elements: the abscisic acid-responsive element (ABRE; CACGTG[T/C/G]) and its coupling element ([C/A]ACGCG[T/C/G]) [corrected] Finally, we show that a tetramer of the ABRE cis element is sufficient to confer transcriptional activation in response to cytosolic Ca(2+) transients. Thus, at least for some specific Ca(2+) transients and motif combinations, ABREs function as Ca(2+)-responsive cis elements.

  6. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  7. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  8. Mechanical sieve for screening mineral samples

    NASA Technical Reports Server (NTRS)

    Otto, W. P.

    1970-01-01

    Mechanical sieve consists of three horizontal screens mounted in a vertical stack. A combination of rotation and tapping produces an even flow across the screens, dislodges trapped particles, an ensures rapid segregation of the sample.

  9. Modeling the hydrodynamics of Phloem sieve plates.

    PubMed

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  10. Cis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana.

    PubMed Central

    Park, S C; Kwon, H B; Shih, M C

    1996-01-01

    We report the characterization of cis-acting elements involved in light regulation of the nuclear gene (GapA) that encodes the A subunit of glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Our previous deletion analyses indicate that the -277 to -195 upstream region of GapA is essential for light induction of the beta-glucuronidase reporter gene in transgenic tobacco (Nicotiana tabacum) plants. This region contains three direct repeats with the consensus sequence 5'-CAAATGAA(A/G)A-3' (Gap boxes). Our results show that 2-bp substitutions of the last four nucleotides (AA or GA) of the Gap boxes by CC abolish light induction of the beta-glucuronidase reporter gene in vivo and affect binding of the Gap box binding factor in vitro. We have also identified an additional cis-acting element, AE (Activation Element) box, that is involved in regulation of GapA. A combination of a Gap box trimer and an AE box dimer can confer light responsiveness of the cauliflower mosaic virus 35S promoter containing the -92 to +6 upstream sequence, whereas oligomers of Gap boxes or AE boxes alone cannot confer light responsiveness on the same promoter. These results suggest that Gap boxes and AE boxes function together as the light-responsive element of GapA. PMID:8972600

  11. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.

    PubMed

    Honma, T; Goto, K

    2000-05-01

    PISTILLATA is a B-class floral organ identity gene required for the normal development of petals and stamens in Arabidopsis. PISTILLATA expression is induced in the stage 3 flowers (early expression) and is maintained until anthesis (late expression). To explore in more detail the developmentally regulated gene expression of PISTILLATA, we have analyzed the PISTILLATA promoter using uidA (beta)-glucuronidase gene) fusion constructs (PI::GUS) in transgenic Arabidopsis. Promoter deletion analyses suggest that early PISTILLATA expression is mediated by the distal region and that late expression is mediated by the proximal region. Based on the PI::GUS expression patterns in the loss- and gain-of-function alleles of meristem or organ identity genes, we have shown that LEAFY and UNUSUAL FLORAL ORGANS induce PISTILLATA expression in a flower-independent manner via a distal promoter, and that PISTILLATA and APETALA3 maintain PISTILLATA expression (autoregulation) in the later stages of flower development via a proximal promoter. In addition, we have demonstrated that de novo protein synthesis is required for the PISTILLATA autoregulatory circuit. PMID:10769227

  12. Chlorodifluoromethane equilibrium on 13X molecular sieve

    NASA Astrophysics Data System (ADS)

    Carlile, Donna L.; Mahle, John J.; Buettner, Leonard C.; Tevault, David E.; Friday, David K.

    1994-08-01

    Adsorption phase equilibrium data are required for evaluating any adsorption-based gas separation process. The U.S. Army Edgewood Research, Development and Engineering Center is currently measuring adsorption phase equilibrium data for a variety of chemical warfare agents and their surrogates on adsorbent materials to correlate physical properties to filtration/separation efficiencies of each vapor on each adsorbent. This report details the adsorption phase equilibrium data measured for chlorodifluoromethane (R-22) on 13X Molecular Sieve. The 13X Molecular Sieve is a candidate adsorbent for future military air purification systems employing the pressure-swing adsorption separation process.

  13. Catalytic cracking catalysts using silicoaluminophosphate molecular sieves

    SciTech Connect

    Pellet, R.J.; Coughlin, P.K.; Staniulis, M.T.; Long, G.N.; Rabo, J.A.

    1987-05-19

    A cracking catalyst is described comprising: a silicoaluminophosphate molecular sieve of U.S. Pat. No. 4,440,871 characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a pressure of 500 torr and a temperature of 20/sup 0/C and having an effective amount of the cations associated with the silicoaluminophosphate molecular sieve selected from the group consisting of H+, ammonium, Group IIA, groups IIIB to VIIB, cerium, lanthanum, praseodymium, neodymium, and promethium.

  14. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  15. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    PubMed Central

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-01-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol. PMID:26960707

  16. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  17. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  18. Recent Improvements To the Sieve of Eratosthenes.

    ERIC Educational Resources Information Center

    Quesada, Antonio R.

    1997-01-01

    Presents recently developed generalizations to the sieve of Eratosthenes, showing the principles underlying these improvements, which increase its efficiency without changing too much of its simplicity. Offers several possibilities to propose good investigations for students to explore, find patterns, and make generalizations. (JRH)

  19. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  20. Inferring the Geometry of Fourth-Period Metallic Elements in Arabidopsis thaliana Seeds using Synchrotron-Based Multi-Angle X-ray Fluorescence Mapping

    PubMed Central

    Young, Lester; Westcott, Neil; Christensen, Colleen; Terry, Jeff; Lydiate, Derek; Reaney, Martin

    2007-01-01

    Background Improving our knowledge of plant metal metabolism is facilitated by the use of analytical techniques to map the distribution of elements in tissues. One such technique is X-ray fluorescence (XRF), which has been used previously to map metal distribution in both two and three dimensions. One of the difficulties of mapping metal distribution in two dimensions is that it can be difficult to normalize for tissue thickness. When mapping metal distribution in three dimensions, the time required to collect the data can become a major constraint. In this article a compromise is suggested between two- and three-dimensional mapping using multi-angle XRF imaging. Methods A synchrotron-based XRF microprobe was used to map the distribution of K, Ca, Mn, Fe, Ni, Cu and Zn in whole Arabidopsis thaliana seeds. Relative concentrations of each element were determined by measuring fluorescence emitted from a 10 µm excitation beam at 13 keV. XRF spectra were collected from an array of points with 25 or 30 µm steps. Maps were recorded at 0 and 90°, or at 0, 60 and 120° for each seed. Using these data, circular or ellipsoidal cross-sections were modelled, and from these an apparent pathlength for the excitation beam was calculated to normalize the data. Elemental distribution was mapped in seeds from ecotype Columbia-4 plants, as well as the metal accumulation mutants manganese accumulator 1 (man1) and nicotianamine synthetase (nasx). Conclusions Multi-angle XRF imaging will be useful for mapping elemental distribution in plant tissues. It offers a compromise between two- and three-dimensional XRF mapping, as far as collection times, image resolution and ease of visualization. It is also complementary to other metal-mapping techniques. Mn, Fe and Cu had tissue-specific accumulation patterns. Metal accumulation patterns were different between seeds of the Col-4, man1 and nasx genotypes. PMID:17881334

  1. Inferring the Geometry of Fourth-Period Metallic Elements in Arabidopsis thaliana Seeds using Synchrotron-Based Multi-Angle X-ray Fluorescence Mapping

    SciTech Connect

    Young, Lester; Westcott, Neil; Christensen, Colleen; Terry, Jeff; Lydiate, Derek; Reaney, Martin

    2008-06-16

    Improving our knowledge of plant metal metabolism is facilitated by the use of analytical techniques to map the distribution of elements in tissues. One such technique is X-ray fluorescence (XRF), which has been used previously to map metal distribution in both two and three dimensions. One of the difficulties of mapping metal distribution in two dimensions is that it can be difficult to normalize for tissue thickness. When mapping metal distribution in three dimensions, the time required to collect the data can become a major constraint. In this article a compromise is suggested between two- and three-dimensional mapping using multi-angle XRF imaging. A synchrotron-based XRF microprobe was used to map the distribution of K, Ca, Mn, Fe, Ni, Cu and Zn in whole Arabidopsis thaliana seeds. Relative concentrations of each element were determined by measuring fluorescence emitted from a 10 {micro}m excitation beam at 13 keV. XRF spectra were collected from an array of points with 25 or 30 {micro}m steps. Maps were recorded at 0 and 90{sup o}, or at 0, 60 and 120{sup o} for each seed. Using these data, circular or ellipsoidal cross-sections were modelled, and from these an apparent pathlength for the excitation beam was calculated to normalize the data. Elemental distribution was mapped in seeds from ecotype Columbia-4 plants, as well as the metal accumulation mutants manganese accumulator 1 (man1) and nicotianamine synthetase (nasx). Multi-angle XRF imaging will be useful for mapping elemental distribution in plant tissues. It offers a compromise between two- and three-dimensional XRF mapping, as far as collection times, image resolution and ease of visualization. It is also complementary to other metal-mapping techniques. Mn, Fe and Cu had tissue-specific accumulation patterns. Metal accumulation patterns were different between seeds of the Col-4, man1 and nasx genotypes.

  2. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Molecular sieve resins. 173.40 Section 173.40 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.40 Molecular sieve resins. Molecular sieve resins may be safely used in the processing of food under the following prescribed conditions:...

  3. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Molecular sieve resins. 173.40 Section 173.40 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.40 Molecular sieve resins. Molecular sieve resins may be safely used in the processing of food under the following prescribed conditions:...

  4. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements1[OPEN

    PubMed Central

    Hayami, Natsuki; Sakai, Yusaku; Kimura, Mitsuhiro; Saito, Tatsunori; Tokizawa, Mutsutomo; Iuchi, Satoshi; Kurihara, Yukio; Matsui, Minami; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y.

    2015-01-01

    The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5. PMID:26175515

  5. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements.

    PubMed

    Hayami, Natsuki; Sakai, Yusaku; Kimura, Mitsuhiro; Saito, Tatsunori; Tokizawa, Mutsutomo; Iuchi, Satoshi; Kurihara, Yukio; Matsui, Minami; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y

    2015-09-01

    The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5. PMID:26175515

  6. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements.

    PubMed

    Hayami, Natsuki; Sakai, Yusaku; Kimura, Mitsuhiro; Saito, Tatsunori; Tokizawa, Mutsutomo; Iuchi, Satoshi; Kurihara, Yukio; Matsui, Minami; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y

    2015-09-01

    The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5.

  7. Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1.

    PubMed

    Pegadaraju, Venkatramana; Louis, Joe; Singh, Vijay; Reese, John C; Bautor, Jaqueline; Feys, Bart J; Cook, Graeme; Parker, Jane E; Shah, Jyoti

    2007-10-01

    Green peach aphid (GPA) Myzus persicae (Sülzer) is a phloem-feeding insect with an exceptionally wide host range. Previously, it has been shown that Arabidopsis thaliana PHYTOALEXIN DEFICIENT4 (PAD4), which is expressed at elevated levels in response to GPA infestation, is required for resistance to GPA in the Arabidopsis accession Columbia. We demonstrate here that the role of PAD4 in the response to GPA is conserved in Arabidopsis accessions Wassilewskija and Landsberg erecta. Electrical monitoring of aphid feeding behavior revealed that PAD4 modulates a phloem-based defense mechanism against GPA. GPA spends more time actively feeding from the sieve elements of pad4 mutants than from wild-type plants, and less time feeding on transgenic plants in which PAD4 is ectopically expressed. The activity of PAD4 in limiting phloem sap uptake serves as a deterrent in host-plant choice, and restricts aphid population size. In Arabidopsis defense against pathogens, all known PAD4 functions require its signaling and stabilizing partner EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1). Bioassays with eds1 mutants alone or in combination with pad4 and with plants conditionally expressing PAD4 under the control of a dexamethasone-inducible promoter reveal that PAD4-modulated defense against GPA does not involve EDS1. Thus, a PAD4 mode of action that is uncoupled from EDS1 determines the extent of aphid feeding in the phloem.

  8. Factorization using the quadratic sieve algorithm

    SciTech Connect

    Davis, J.A.; Holdridge, D.B.

    1983-12-01

    Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.

  9. Factorization using the quadratic sieve algorithm

    SciTech Connect

    Davis, J.A.; Holdridge, D.B.

    1983-01-01

    Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.

  10. Computational image formation with photon sieves for milli-arcsecond solar imaging

    NASA Astrophysics Data System (ADS)

    Oktem, Figen S.; Kamalabadi, Farzad; Davila, Joseph

    2016-07-01

    A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This diffractive imaging element is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture with sufficient surface figure accuracy to achieve diffraction-limited resolution. On the other hand, photon sieves enable diffraction-limited imaging with much more relaxed tolerances than conventional imaging technology. In this presentation, we present the capabilities of an instrument concept that is based on computational image formation with photon sieves. The instrument enables high-resolution spectral imaging by distributing the imaging task between a photon sieve system and a computational method. A photon sieve coupled with a moving detector provides measurements from multiple planes. Then computational image formation, which involves deconvolution, is performed in a Bayesian estimation framework to reconstruct the multi-spectral images from these measurements. In addition to diffraction-limited high spatial resolution enabled by photon sieves, this instrument can also achieve higher spectral resolution than the conventional spectral imagers, since the technique offers the possibility of separating nearby spectral components that would not otherwise be possible using wavelength filters. Here, the promising capabilities and the imaging performance are shown for imaging the solar corona at EUV wavelengths. The effectiveness of various potential observing scenarios, the effects of interfering emission lines, and the appropriate form of the cost function for image deconvolution are examined.

  11. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    PubMed

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps.

  12. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    PubMed

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. PMID:26991892

  13. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter.

    PubMed

    Maumus, Florian; Quesneville, Hadi

    2014-01-01

    Eukaryotic genomes contain highly variable amounts of DNA with no apparent function. This so-called junk DNA is composed of two components: repeated and repeat-derived sequences (together referred to as the repeatome), and non-annotated sequences also known as genomic dark matter. Because of their high duplication rates as compared to other genomic features, transposable elements are predominant contributors to the repeatome and the products of their decay is thought to be a major source of genomic dark matter. Determining the origin and composition of junk DNA is thus important to help understanding genome evolution as well as host biology. In this study, we have used a combination of tools enabling to show that the repeatome from the small and reducing A. thaliana genome is significantly larger than previously thought. Furthermore, we present the concepts and results from a series of innovative approaches suggesting that a significant amount of the A. thaliana dark matter is of repetitive origin. As a tentative standard for the community, we propose a deep compendium annotation of the A. thaliana repeatome that may help addressing farther genome evolution as well as transcriptional and epigenetic regulation in this model plant.

  14. Deep Investigation of Arabidopsis thaliana Junk DNA Reveals a Continuum between Repetitive Elements and Genomic Dark Matter

    PubMed Central

    Maumus, Florian; Quesneville, Hadi

    2014-01-01

    Eukaryotic genomes contain highly variable amounts of DNA with no apparent function. This so-called junk DNA is composed of two components: repeated and repeat-derived sequences (together referred to as the repeatome), and non-annotated sequences also known as genomic dark matter. Because of their high duplication rates as compared to other genomic features, transposable elements are predominant contributors to the repeatome and the products of their decay is thought to be a major source of genomic dark matter. Determining the origin and composition of junk DNA is thus important to help understanding genome evolution as well as host biology. In this study, we have used a combination of tools enabling to show that the repeatome from the small and reducing A. thaliana genome is significantly larger than previously thought. Furthermore, we present the concepts and results from a series of innovative approaches suggesting that a significant amount of the A. thaliana dark matter is of repetitive origin. As a tentative standard for the community, we propose a deep compendium annotation of the A. thaliana repeatome that may help addressing farther genome evolution as well as transcriptional and epigenetic regulation in this model plant. PMID:24709859

  15. Overexpression of Arabidopsis Dehydration-Responsive Element-Binding protein 2A confers tolerance to salinity stress to transgenic canola.

    PubMed

    Shafeinie, Alireza; Mohammadi, Valiollah; Alizadeh, Houshang; Zali, Abas Ali

    2014-05-01

    Stress responsive transcriptional regulation is an adaptive strategy of plants that alleviates the adverse effects of environmental stresses. The ectopic overexpression of Dehydration-Responsive Element Binding transcription factors (DREBs) either in homologous or in heterologous plants are the classical transcriptional regulators involved in plant responses to drought, salt and cold stresses. To elucidate the transcriptional mechanism associated with the DREB2A gene after removing PEST sequence, which acts as a signal peptide for protein degradation, 34 transgenic T0 canola plants overexpressing DREB2A were developed. The quantitative Real time PCR of transgenic plants showed higher expression of downstream stress-responsive genes including COR14, HSF3, HSP70, PEROX and RD20. The transgenic plants exhibited enhanced tolerance to salt stress. At the high concentration of NaCl the growth of non-transformed plants had been clearly diminished, whereas transgenic line was survived. These results indicated that transformed DREB2A gene might improve the plant response to salinity in transgenic canola plants. PMID:26030994

  16. Adsorption of gases on carbon molecular sieves

    SciTech Connect

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. . Dept. of Chemical Engineering); Ganesh, K.S. )

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  17. Production of carbon molecular sieves from illinois coals. An assessment

    USGS Publications Warehouse

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  18. Octahedral molecular sieve sorbents and catalysts

    SciTech Connect

    Li, Liyu; King, David L

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  19. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  20. The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs

    PubMed Central

    Loot, Céline; Santiago, Néstor; Sanz, Alicia; Casacuberta, Josep M.

    2006-01-01

    MITEs (miniature inverted-repeated transposable elements) are a particular class of defective DNA transposons usually present within genomes as high copy number populations of highly homogeneous elements. Although an active MITE, the mPing element, has recently been characterized in rice, the transposition mechanism of MITEs remains unknown. It has been proposed that transposases of related transposons could mobilize MITEs in trans. Moreover, it has also been proposed that the presence of conserved terminal inverted-repeated (TIR) sequences could be the only requirement of MITEs for mobilization, allowing divergent or unrelated elements to be mobilized by a particular transposase. We present here evidence for a recent mobility of the Arabidopsis Emigrant MITE and we report on the capacity of the proteins encoded by the related Lemi1 transposon, a pogo-related element, to specifically bind Emigrant elements. This suggests that Lemi1 could mobilize Emigrant elements and makes the Lemi1/Emigrant couple an ideal system to study the transposition mechanism of MITEs. Our results show that Lemi1 proteins bind Emigrant TIRs but also bind cooperatively to subterminal repeated motifs. The requirement of internal sequences for the formation of proper DNA/protein structure could affect the capacity of divergent MITEs to be mobilized by distantly related transposases. PMID:17003053

  1. Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters

    PubMed Central

    2011-01-01

    Background Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. Results DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. Conclusions Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR. PMID:21896186

  2. The MPK6-ERF6-ROS-Responsive cis-Acting Element7/GCC Box Complex Modulates Oxidative Gene Transcription and the Oxidative Response in Arabidopsis1[W][OA

    PubMed Central

    Wang, Pengcheng; Du, Yanyan; Zhao, Xiaoliang; Miao, Yuchen; Song, Chun-Peng

    2013-01-01

    Reactive oxygen species (ROS) have been characterized as both important signaling molecules and universal stressors that mediate many developmental and physiological responses. So far, details of the transcriptional mechanism of ROS-responsive genes are largely unknown. In the study reported here, we identified seven potential ROS-responsive cis-acting elements (ROSEs) from the promoters of genes up-regulated by ROS in Arabidopsis (Arabidopsis thaliana). We also found that the APETALA2/ethylene-responsive element binding factor6 (ERF6) could bind specifically to the ROSE7/GCC box. Coexpression of ERF6 enhanced luciferase activity driven by ROSE7. The deficient mutants of ERF6 showed growth retardation and higher sensitivity to photodamage. ERF6 interacted physically with mitogen-activated protein kinase6 (MPK6) and also served as a substrate of MPK6. MPK6-mediated ERF6 phosphorylation at both serine-266 and serine-269 affected the dynamic alternation of the ERF6 protein, which resulted in changes in ROS-responsive gene transcription. These data might provide new insight into the mechanisms that regulate ROS-responsive gene transcription via a complex of MPK6, ERF6, and the ROSE7/GCC box under oxidative stress or a fluctuating light environment. PMID:23300166

  3. The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture.

    PubMed

    Ham, Byung-Kook; Lucas, William J

    2014-04-01

    The plant vascular system serves a vital function by distributing water, nutrients and hormones essential for growth and development to the various organs of the plant. In this review, attention is focused on the role played by the phloem as the conduit for delivery of both photosynthate and information macromolecules, especially from the context of its mediation in traits that are important to modern agriculture. Resource allocation of sugars and amino acids, by the phloem, to specific sink tissues is of importance to crop yield and global food security. Current findings are discussed in the context of a hierarchical control network that operates to integrate resource allocation to competing sinks. The role of plasmodesmata that connect companion cells to neighbouring sieve elements and phloem parenchyma cells is evaluated in terms of their function as valves, connecting the sieve tube pressure manifold system to the various plant tissues. Recent studies have also revealed that plasmodesmata and the phloem sieve tube system function cooperatively to mediate the long-distance delivery of proteins and a diverse array of RNA species. Delivery of these information macromolecules is discussed in terms of their roles in control over the vegetative-to-floral transition, tuberization in potato, stress-related signalling involving miRNAs, and genetic reprogramming through the delivery of 24-nucleotide small RNAs that function in transcriptional gene silencing in recipient sink organs. Finally, we discuss important future research areas that could contribute to developing agricultural crops with engineered performance characteristics for enhance yield potential.

  4. Selective molecular sieving through porous graphene

    NASA Astrophysics Data System (ADS)

    Koenig, Steven P.; Wang, Luda; Pellegrino, John; Bunch, J. Scott

    2012-12-01

    Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H2, CO2, Ar, N2, CH4 and SF6) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.

  5. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for...

  6. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for...

  7. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for...

  8. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for...

  9. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for...

  10. AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.

    PubMed

    Steffens, Nils Ole; Galuschka, Claudia; Schindler, Martin; Bülow, Lorenz; Hehl, Reinhard

    2005-07-01

    The AthaMap database generates a map of cis-regulatory elements for the Arabidopsis thaliana genome. AthaMap contains more than 7.4 x 10(6) putative binding sites for 36 transcription factors (TFs) from 16 different TF families. A newly implemented functionality allows the display of subsets of higher conserved transcription factor binding sites (TFBSs). Furthermore, a web tool was developed that permits a user-defined search for co-localizing cis-regulatory elements. The user can specify individually the level of conservation for each TFBS and a spacer range between them. This web tool was employed for the identification of co-localizing sites of known interacting TFs and TFs containing two DNA-binding domains. More than 1.8 x 10(5) combinatorial elements were annotated in the AthaMap database. These elements can also be used to identify more complex co-localizing elements consisting of up to four TFBSs. The AthaMap database and the connected web tools are a valuable resource for the analysis and the prediction of gene expression regulation at http://www.athamap.de. PMID:15980498

  11. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  12. Antibacterial mesoporous molecular sieves modified with polymeric N-halamine.

    PubMed

    Wang, Yingfeng; Li, Lin; Liu, Ying; Ren, Xuehong; Liang, Jie

    2016-12-01

    In this research, a new kind of porous N-halamine material with high antibacterial efficacies was prepared. Poly [5,5-dimethyl-3-(3'-triethoxysilylpropyl)-hydantoin] (PSPH), an N-halamine precursor, was synthesized and grafted onto the surface of mesoporous molecular sieves (SBA-15). The mesoporous molecular sieves modified with the N-halamine polymer could be rendered biocidal upon exposure to dilute household bleach. The modified mesoporous molecular sieves were characterized by SEM, TEM, FTIR, XPS, TGA, XRD and BET analysis. It was found that the PSPH has been successfully grafted on the surface of mesoporous molecular sieves, and the morphology and structure of the modified mesoporous molecular sieves were slightly affected. The N-halamine modified mesoporous molecular sieves showed excellent antibacterial property, and inactivated 100% of S. aureus and E. coli O157:H7 with 8.05 and 7.92 log reductions within 1min of contact, respectively. The modified SBA-15 with high-antibacterial efficiency has potential application in water treatment and biomaterials areas. PMID:27612805

  13. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  14. The Arabidopsis ETHYLENE RESPONSE FACTOR1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different cis-Acting Elements in Response to Different Stress Signals1[W][OA

    PubMed Central

    Cheng, Mei-Chun; Liao, Po-Ming; Kuo, Wei-Wen; Lin, Tsan-Piao

    2013-01-01

    ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals. PMID:23719892

  15. Molecular Sieve Bench Testing and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.

    1995-01-01

    The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.

  16. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes.

    PubMed

    Furch, Alexandra C U; Buxa, Stefanie V; van Bel, Aart J E

    2015-01-01

    Sieve elements of legumes contain forisomes-fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures.

  17. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes.

    PubMed

    Furch, Alexandra C U; Buxa, Stefanie V; van Bel, Aart J E

    2015-01-01

    Sieve elements of legumes contain forisomes-fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures. PMID:26624625

  18. Effects of Mesh Size on Sieved Samples of Corophium volutator

    NASA Astrophysics Data System (ADS)

    Crewe, Tara L.; Hamilton, Diana J.; Diamond, Antony W.

    2001-08-01

    Corophium volutator (Pallas), gammaridean amphipods found on intertidal mudflats, are frequently collected in mud samples sieved on mesh screens. However, mesh sizes used vary greatly among studies, raising the possibility that sampling methods bias results. The effect of using different mesh sizes on the resulting size-frequency distributions of Corophium was tested by collecting Corophium from mud samples with 0·5 and 0·25 mm sieves. More than 90% of Corophium less than 2 mm long passed through the larger sieve. A significantly smaller, but still substantial, proportion of 2-2·9 mm Corophium (30%) was also lost. Larger size classes were unaffected by mesh size. Mesh size significantly changed the observed size-frequency distribution of Corophium, and effects varied with sampling date. It is concluded that a 0·5 mm sieve is suitable for studies concentrating on adults, but to accurately estimate Corophium density and size-frequency distributions, a 0·25 mm sieve must be used.

  19. Arabidopsis thaliana

    PubMed Central

    Strzalka, Wojciech; Aggarwal, Chhavi

    2013-01-01

    The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered. PMID:23656863

  20. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, R. |

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

  1. Visualization of Uptake of Mineral Elements and the Dynamics of Photosynthates in Arabidopsis by a Newly Developed Real-Time Radioisotope Imaging System (RRIS).

    PubMed

    Sugita, Ryohei; Kobayashi, Natsuko I; Hirose, Atsushi; Saito, Takayuki; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2016-04-01

    Minerals and photosynthates are essential for many plant processes, but their imaging in live plants is difficult. We have developed a method for their live imaging in Arabidopsis using a real-time radioisotope imaging system. When each radioisotope,(22)Na,(28)Mg,(32)P-phosphate,(35)S-sulfate,(42)K,(45)Ca,(54)Mn and(137)Cs, was employed as an ion tracer, ion movement from root to shoot over 24 h was clearly observed. The movements of(22)Na,(42)K,(32)P,(35)S and(137)Cs were fast so that they spread to the tip of stems. In contrast, high accumulation of(28)Mg,(45)Ca and(54)Mn was found in the basal part of the main stem. Based on this time-course analysis, the velocity of ion movement in the main stem was calculated, and found to be fastest for S and K among the ions we tested in this study. Furthermore, application of a heat-girdling treatment allowed determination of individual ion movement via xylem flow alone, excluding phloem flow, within the main stem of 43-day-old Arabidopsis inflorescences. We also successfully developed a new system for visualizing photosynthates using labeled carbon dioxide,(14)CO2 Using this system, the switching of source/sink organs and phloem flow direction could be monitored in parts of whole shoots and over time. In roots,(14)C photosynthates accumulated intensively in the growing root tip area, 200-800 µm behind the meristem. These results show that this real-time radioisotope imaging system allows visualization of many nuclides over a long time-course and thus constitutes a powerful tool for the analysis of various physiological phenomena.

  2. Visualization of Uptake of Mineral Elements and the Dynamics of Photosynthates in Arabidopsis by a Newly Developed Real-Time Radioisotope Imaging System (RRIS)

    PubMed Central

    Sugita, Ryohei; Kobayashi, Natsuko I.; Hirose, Atsushi; Saito, Takayuki; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2016-01-01

    Minerals and photosynthates are essential for many plant processes, but their imaging in live plants is difficult. We have developed a method for their live imaging in Arabidopsis using a real-time radioisotope imaging system. When each radioisotope, 22Na, 28Mg, 32P-phosphate, 35S-sulfate, 42K, 45Ca, 54Mn and 137Cs, was employed as an ion tracer, ion movement from root to shoot over 24 h was clearly observed. The movements of 22Na, 42K, 32P, 35S and 137Cs were fast so that they spread to the tip of stems. In contrast, high accumulation of 28Mg, 45Ca and 54Mn was found in the basal part of the main stem. Based on this time-course analysis, the velocity of ion movement in the main stem was calculated, and found to be fastest for S and K among the ions we tested in this study. Furthermore, application of a heat-girdling treatment allowed determination of individual ion movement via xylem flow alone, excluding phloem flow, within the main stem of 43-day-old Arabidopsis inflorescences. We also successfully developed a new system for visualizing photosynthates using labeled carbon dioxide, 14CO2. Using this system, the switching of source/sink organs and phloem flow direction could be monitored in parts of whole shoots and over time. In roots, 14C photosynthates accumulated intensively in the growing root tip area, 200–800 µm behind the meristem. These results show that this real-time radioisotope imaging system allows visualization of many nuclides over a long time-course and thus constitutes a powerful tool for the analysis of various physiological phenomena. PMID:27016100

  3. Microfabricated Sieve for the Continuous Sorting of Macromolecules

    NASA Astrophysics Data System (ADS)

    Duke, T. A. J.; Austin, R. H.

    1998-02-01

    In a two-dimensional periodic but asymmetric environment, a Brownian particle that is driven in one direction by a potential gradient will also drift in the orthogonal direction at a rate that depends on its diffusion coefficient. On this basis, we propose a new method for separating biological macromolecules according to size. A fine stream of molecules is electrophoresed through a microfabricated sieve, etched from a silicon chip by lithography. The sieve consists of a periodic array of oblong obstacles, which deflect the molecules so that each species follows a different trajectory, oblique to the flow. Advantages promised by the technique include improved efficiency, continuous sorting and ready automation.

  4. Carbon molecular sieves for air separation from Nomex aramid fibers.

    PubMed

    Villar-Rodil, Silvia; Martínez-Alonso, Amelia; Tascón, Juan M D

    2002-10-15

    Activated carbon fibers prepared from aramid fibers have proved to possess outstanding homogeneity in pore size, most of all when Nomex aramid fiber is used as precursor. Taking advantage of this feature, microporous carbon molecular sieves for air separation have been prepared through carbon vapor deposition of benzene on Nomex-derived carbon fibers activated to two different burnoff degrees. Carbon molecular sieves with good selectivity for this separation and showing acceptable adsorption capacities were obtained from ACFs activated to the two burnoff degrees chosen. PMID:12702417

  5. Flow Characteristics of Human Erythrocytes through Polycarbonate Sieves.

    PubMed

    Gregersen, M I; Bryant, C A; Hammerle, W E; Usami, S; Chien, S

    1967-08-18

    We used polycarbonate sieves with uniform cylindrical pores (2.4 to 6.8 microns in diameter) to filter suspensions of human erythrocytes (mean major diameter is 7.2 microns) in Eagle-albumin solution. With 6.8-micron sieves the pressure-flow curves are convexed to the pressure-axis at low pressures and become linear with high pressures. With 4.5-micron sieves, however, the pressure-flow relationship is linear throughout the range of study. In both types of sieves, flow rate is reduced progressively with increasing concentration of red blood cells (RBC) over a range of 0.5 to 95 percent. The resistance to flow of RBC suspensions is higher in 4.5-micron than in 6.8-micron pores. With filter pore diameters of 3.0 microns or more, the RBC concentration in the filtrate was 100 percent of that in the solution being filtered, but only 70 percent with 2.4-micron pores. The observed critical pore diameter for 100 percent cell transmission agrees with theoretical calculation based on the assumption that the RBC membrane is deformable but nonextensible. The importance of cell deformation in the passage of RBC's through small pores is shown by the inability of RBC hardened in acetaldehyde to pass pores with 6.8-micron diameter.

  6. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature.

    PubMed

    Zarka, Daniel G; Vogel, Jonathan T; Cook, Daniel; Thomashow, Michael F

    2003-10-01

    The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4 degrees C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide.

  7. Cell geometry guides the dynamic targeting of apoplastic GPI-linked lipid transfer protein to cell wall elements and cell borders in Arabidopsis thaliana.

    PubMed

    Ambrose, Chris; DeBono, Allan; Wasteneys, Geoffrey

    2013-01-01

    During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to "seal" the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition.

  8. Cell Geometry Guides the Dynamic Targeting of Apoplastic GPI-Linked Lipid Transfer Protein to Cell Wall Elements and Cell Borders in Arabidopsis thaliana

    PubMed Central

    Wasteneys, Geoffrey

    2013-01-01

    During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition. PMID:24260561

  9. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements

    PubMed Central

    Liu, Jian; Zhang, Lei; He, Chongsheng; Shen, Wen-Hui; Jin, Hong; Xu, Lin; Zhang, Yijing

    2016-01-01

    Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs. PMID:26760036

  10. Root-Derived Oxylipins Promote Green Peach Aphid Performance on Arabidopsis Foliage[W

    PubMed Central

    Nalam, Vamsi J.; Keeretaweep, Jantana; Sarowar, Sujon; Shah, Jyoti

    2012-01-01

    Oxylipins function as signaling molecules in plant growth and development and contribute to defense against stress. Here, we show that oxylipins also facilitate infestation of Arabidopsis thaliana shoots by the phloem sap–consuming green peach aphid (GPA; Myzus persicae), an agronomically important insect pest. GPAs had difficulty feeding from sieve elements and tapping into the xylem of lipoxygenase5 (lox5) mutant plants defective in LOX activity. These defects in GPA performance in the lox5 mutant were accompanied by reduced water content of GPAs and a smaller population size of GPAs in the mutant compared with the wild-type plant. LOX5 expression was rapidly induced in roots in response to infestation of shoots by GPAs. In parallel, levels of LOX5-derived oxylipins increased in roots and in petiole exudates of GPA-colonized plants. Application of 9-hydroxyoctadecadienoic acid (an oxylipin produced by the LOX5 enzyme) to roots restored water content and GPA population size in lox5 plants, thus confirming that a LOX5-derived oxylipin promotes infestation of the foliage by GPAs. Micrografting experiments demonstrated that GPA performance on foliage is influenced by the LOX5 genotype in roots, thus demonstrating the importance of root-derived oxylipins in colonization of aboveground organs by an insect. PMID:22474183

  11. Binding Properties of the N-Acetylglucosamine and High-Mannose N-Glycan PP2-A1 Phloem Lectin in Arabidopsis[W

    PubMed Central

    Beneteau, Julie; Renard, Denis; Marché, Laurent; Douville, Elise; Lavenant, Laurence; Rahbé, Yvan; Dupont, Didier; Vilaine, Françoise; Dinant, Sylvie

    2010-01-01

    Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N′,N″-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a β-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects. PMID:20442276

  12. Focusing properties of phase-only generalized Fibonacci photon sieves

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Zhang, Junyong

    2016-06-01

    We propose a new algorithm to extend the standard Fibonacci photon sieve to the phase-only generalized Fibonacci photon sieve (GFiPS) and find that the focusing properties of the phase-only GFiPS are only relevant to the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones on the basis of the generalized Fibonacci sequences, we not only realize adjustable bifocal lengths, but also give their corresponding analytic expressions. Besides, we investigate a special phase-only GFiPS, a spiral-phase GFiPS, which can present twin vortices along the axial coordinate. Compared with the single focusing system, bifocal system can be exploited to enhance the processing speed, and offer a broad range of applications, such as direct laser writing, optical tweezers or atom trapping and paralleled fluorescence microscope.

  13. Size-reduction and sorting behavior in sieve hammer mills

    NASA Astrophysics Data System (ADS)

    Schallnus, Harald

    Experiments were performed in a continuously operating sieve hammer mill to determine the duration of presence of the material to be ground in the size reduction machine. The test stand, analysis techniques, evaluation methods, and selection and production of samples are described. It is shown that the duration of presence of the material in the grinding space of the mill is approximately comparable to that in an ideal mixer. The type of sieve casing has an essential effect on the duration of presence. A combined model for the description of the size reduction and sorting behavior which allows the determination of the process coefficients (size reduction speed, sorting speed, mass transition coefficient) and their dependence on the different parameters, was developed.

  14. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  15. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  16. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  17. A differential delay equation arising from the sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Cheer, A. Y.; Goldston, D. A.

    1990-01-01

    Consideration is given to the differential delay equation introduced by Buchstab (1937) in connection with an asymptotic formula for the uncanceled terms in the sieve of Eratosthenes. Maier (1985) used this result to show there is unexpected irreqularity in the distribution of primes in short intervals. The function omega(u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  18. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-02-19

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices.

  19. Predictability sieve, pointer states, and the classicality of quantum trajectories

    SciTech Connect

    Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.

    2005-12-15

    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)

  20. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  1. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  2. Production of carbon molecular sieves from Illinois coal

    USGS Publications Warehouse

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  3. Nanoscale octahedral molecular sieves: Syntheses, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of nanoscale manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce nanoscale or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of nanoscale and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic nanoscale OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials

  4. Cis and trans-acting elements involved in the activation of Arabidopsis thaliana A1 gene encoding the translation elongation factor EF-1 alpha.

    PubMed Central

    Curie, C; Liboz, T; Bardet, C; Gander, E; Médale, C; Axelos, M; Lescure, B

    1991-01-01

    In A. thaliana the translation elongation factor EF-1 alpha is encoded by a small multigenic family of four members (A1-A4). The A1 gene promoter has been dissected and examined in a transient expression system using the GUS reporter gene. Deletion analysis has shown that several elements are involved in the activation process. One cis-acting domain, the TEF 1 box, has been accurately mapped 100 bp upstream of the transcription initiation site. This domain is the target for trans-acting factors identified in nuclear extracts prepared from A. thaliana. Homologies are found between the TEF 1 box and sequences present at the same location within the A2, A3 and A4 promoters. This observation, together with those obtained from gel retardation assays performed using DNA fragments from the A4 promoter, suggest that the activation process mediated by the TEF 1 element is conserved among the A. thaliana EF-1 alpha genes. Analysis of nearly full length cDNA clones has shown that in addition to a single intron located within the coding region, the A1 gene contains a second intron located within the 5' non coding region. Such an intron is also present within the A2, A3 and A4 genes. This 5' intervening sequence appears to be essential to obtain a maximum GUS activity driven by the A1 gene promoter. Images PMID:1840652

  5. Rapid separation of developing Arabidopsis seeds from siliques for RNA or metabolite analysis

    PubMed Central

    2013-01-01

    Background Protein, starch and oil produced in plant seeds are major renewable sources of food, chemicals and biofuels. Developing Arabidopsis thaliana seeds are commonly utilized as a model for seed crop research. However, due to the very small size of Arabidopsis seeds efficient collection of large amounts of tissue for gene expression or metabolite analysis is very difficult and time consuming. Results/conclusions Here we describe a method that allows very rapid separation and collection of large amounts of developing Arabidopsis seeds from their encapsulating silique tissue after flash freezing whole siliques in liquid nitrogen. The efficient popping open of the frozen siliques on dry ice and filtering the seeds away from the silique tissue with liquid nitrogen cooled funnels and sieves allows large amounts of developing seeds to be quickly isolated while remaining frozen. This method increases the speed of developing seed collection approximately 10 fold over methods which dissect individual siliques one at a time. PMID:23531158

  6. Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism.

    PubMed

    Aubry, Sylvain; Smith-Unna, Richard D; Boursnell, Chris M; Kopriva, Stanislav; Hibberd, Julian M

    2014-05-01

    Leaves of angiosperms are made up of multiple distinct cell types. While the function of mesophyll cells, guard cells, phloem companion cells and sieve elements are clearly described, this is not the case for the bundle sheath (BS). To provide insight into the role of the BS in the C3 species Arabidopsis thaliana, we labelled ribosomes in this cell type with a FLAG tag. We then used immunocapture to isolate these ribosomes, followed by sequencing of resident mRNAs. This showed that 5% of genes showed specific splice forms in the BS, and that 15% of genes were preferentially expressed in these cells. The BS translatome strongly implies that the BS plays specific roles in sulfur transport and metabolism, glucosinolate biosynthesis and trehalose metabolism. Much of the C4 cycle is differentially expressed between the C3 BS and the rest of the leaf. Furthermore, the global patterns of transcript residency on BS ribosomes overlap to a greater extent with cells of the root pericycle than any other cell type. This analysis provides the first insight into the molecular function of this cell type in C3 species, and also identifies characteristics of BS cells that are probably ancestral to both C3 and C4 plants.

  7. Lost in Transit: Long-Distance Trafficking and Phloem Unloading of Protein Signals in Arabidopsis Homografts[OPEN

    PubMed Central

    Gustin, Marie-Paule; Molnar, Attila; Oparka, Karl J.

    2016-01-01

    In addition to moving sugars and nutrients, the phloem transports many macromolecules. While grafting and aphid stylectomy experiments have identified many macromolecules that move in the phloem, the functional significance of phloem transport of these remains unclear. To gain insight into protein trafficking, we micrografted Arabidopsis thaliana scions expressing GFP-tagged chloroplast transit peptides under the 35S promoter onto nontransgenic rootstocks. We found that plastids in the root tip became fluorescent 10 d after grafting. We obtained identical results with the companion cell-specific promoter SUC2 and with signals that target proteins to peroxisomes, actin, and the nucleus. We were unable to detect the respective mRNAs in the rootstock, indicating extensive movement of proteins in the phloem. Outward movement from the root protophloem was restricted to the pericycle-endodermis boundary, identifying plasmodesmata at this interface as control points in the exchange of macromolecules between stele and cortex. Intriguingly, signals directing proteins to the endoplasmic reticulum and Golgi apparatus from membrane-bound ribosomes were not translocated to the root. It appears that many organelle-targeting sequences are insufficient to prevent the loss of their proteins into the translocation stream. Thus, nonspecific loss of proteins from companion cells to sieve elements may explain the plethora of macromolecules identified in phloem sap. PMID:27600534

  8. Visualization of three-dimensional liquid flow on sieve trays

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling

    2004-03-01

    This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.

  9. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  10. Nios II hardware acceleration of the epsilon quadratic sieve algorithm

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Botella, Guillermo; Castillo, Encarnacion; García, Antonio

    2010-04-01

    The quadratic sieve (QS) algorithm is one of the most powerful algorithms to factor large composite primes used to break RSA cryptographic systems. The hardware structure of the QS algorithm seems to be a good fit for FPGA acceleration. Our new ɛ-QS algorithm further simplifies the hardware architecture making it an even better candidate for C2H acceleration. This paper shows our design results in FPGA resource and performance when implementing very long arithmetic on the Nios microprocessor platform with C2H acceleration for different libraries (GMP, LIP, FLINT, NRMP) and QS architecture choices for factoring 32-2048 bit RSA numbers.

  11. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions.

    PubMed

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-08-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light.

  12. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  13. Medical sieve: a cognitive assistant for radiologists and cardiologists

    NASA Astrophysics Data System (ADS)

    Syeda-Mahmood, T.; Walach, E.; Beymer, D.; Gilboa-Solomon, F.; Moradi, M.; Kisilev, P.; Kakrania, D.; Compas, C.; Wang, H.; Negahdar, R.; Cao, Y.; Baldwin, T.; Guo, Y.; Gur, Y.; Rajan, D.; Zlotnick, A.; Rabinovici-Cohen, S.; Ben-Ari, R.; Guy, Amit; Prasanna, P.; Morey, J.; Boyko, O.; Hashoul, S.

    2016-03-01

    Radiologists and cardiologists today have to view large amounts of imaging data relatively quickly leading to eye fatigue. Further, they have only limited access to clinical information relying mostly on their visual interpretation of imaging studies for their diagnostic decisions. In this paper, we present Medical Sieve, an automated cognitive assistant for radiologists and cardiologists designed to help in their clinical decision-making. The sieve is a clinical informatics system that collects clinical, textual and imaging data of patients from electronic health records systems. It then analyzes multimodal content to detect anomalies if any, and summarizes the patient record collecting all relevant information pertinent to a chief complaint. The results of anomaly detection are then fed into a reasoning engine which uses evidence from both patient-independent clinical knowledge and large-scale patient-driven similar patient statistics to arrive at potential differential diagnosis to help in clinical decision making. In compactly summarizing all relevant information to the clinician per chief complaint, the system still retains links to the raw data for detailed review providing holistic summaries of patient conditions. Results of clinical studies in the domains of cardiology and breast radiology have already shown the promise of the system in differential diagnosis and imaging studies summarization.

  14. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water. PMID:20102186

  15. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS).

    SciTech Connect

    Rigali, Mark J.; Stewart, Thomas Austin

    2016-01-01

    Sandia National Laboratories has collaborated with Pleasanton Ridge Research Company (PRRC) to determine whether Sandia Octahedral Molecular Sieves (SOMS) and modified SOMs materials can be synthesized in large batches and produced in granular form. Sandia National Laboratories tested these SOMS and its variants based in aqueous chemical environments for an application-based evaluation of material performance as a sorbent. Testing focused primarily on determining the distribution coefficients (K d ) and chemical selectivity SOMs for alkali earth (Sr) ions in aqueous and dilute seawater solutions. In general the well-crystallized SOMS materials tested exhibited very high K d values (>10 6 ) in distilled water but K d values dropped substantially (%7E10 2 -10 3 ) in the dilute seawater (3%). However, one set of SOMS samples (1.4.2 and 1.4.6) provided by PRRC yielded relatively high K d (approaching 10 4 ) in dilute seawater. Further examination of these samples by scanning electron microscopy (SEM) revealed the presence of at least two phases at least one of which may be accounting for the improved K d values in dilute seawater. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS) January 20, 2016

  16. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.

  17. A method to engineer phase-encoded photon sieve for intensity pattern generations

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Ma, Li; Gao, Yaru; Liu, Chunxiang; Xu, Shicai; Zhang, Meina; Cheng, Chuanfu

    2015-11-01

    We propose a novel type of photon sieve where phases of its sieved waves are encoded as radial positions of the pinholes and use such phase-encoded sieves for generating designed intensity patterns in Fresnel domain. The sieve pinholes are arranged around Fresnel-rings to eliminate the quadratic Fresnel phase factor of diffraction of the sieved waves, leading the wave propagation to be equivalent to Fraunhofer diffraction. The pinholes take constant size in this paper and realize equal amplitude in the multiple sieved waves. Their positions are adjusted radially from corresponding rings to encode wave phases, taking effect by resulting in different optical paths from them to the observation plane origin. Then along with wave propagation, the encoded phases are decoded and the required phase differences are obtained in the discrete waves. We first conduct numerical simulations to show satisfactory performance of such phase-encoded photon sieves in generating arbitrarily designed intensity patterns and describe the quality of the reconstructed patterns. Then for qualitatively verifying the phase-encoding method, we experimentally fabricate three such sieves with relatively small pinhole number and obtain the designed patterns.

  18. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-03-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves.

  19. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  20. Mechanisms of recirculating liquid flow on distillation sieve plates

    SciTech Connect

    Biddulph, M.W. . Dept. of Chemical Engineering); Burton, A.C. )

    1994-11-01

    This paper describes an experimental investigation into the phenomenon of flow recirculation on distillation sieve trays. A novel dye injection technique has been applied to a 1.81 m air-water simulation column and has yielded new information concerning the nature of the boundary layer of gas-liquid biphase as it detaches from the column wall. The study has shown that recirculation is strongly influenced by inlet conditions. A critical factor is the underflow clearance between the inlet downcomer apron and the tray floor. As this clearance is increased, the size of the recirculating zones passes through a minimum, indicating the existence of two different mechanisms responsible for the nonuniform flow patterns. A significant implication of this work is that tray designers may minimize the impact of recirculating on mass transfer efficiency by appropriate choice of underflow clearance.

  1. Transformation of metal-organic frameworks for molecular sieving membranes.

    PubMed

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-04-19

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

  2. Transformation of metal-organic frameworks for molecular sieving membranes

    NASA Astrophysics Data System (ADS)

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-04-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

  3. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  4. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  5. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  6. Overexpression of IRM1 Enhances Resistance to Aphids in Arabidopsis thaliana

    PubMed Central

    Chen, Xi; Zhang, Zhao; Visser, Richard G. F.; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth. PMID:23951039

  7. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana.

    PubMed

    Chen, Xi; Zhang, Zhao; Visser, Richard G F; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth.

  8. Analyzing Synthetic Promoters Using Arabidopsis Protoplasts.

    PubMed

    Stracke, Ralf; Thiedig, Katharina; Kuhlmann, Melanie; Weisshaar, Bernd

    2016-01-01

    This chapter describes a transient protoplast co-transfection method that can be used to quantitatively study in vivo the activity and function of promoters and promoter elements (reporters), and their induction or repression by transcription factors (effectors), stresses, hormones, or metabolites. A detailed protocol for carrying out transient co-transfection assays with Arabidopsis At7 protoplasts and calculating the promoter activity is provided. PMID:27557761

  9. Arabidopsis Type I Proton-Pumping Pyrophosphatase Expresses Strongly in Phloem, Where It Is Required for Pyrophosphate Metabolism and Photosynthate Partitioning1[OPEN

    PubMed Central

    Pizzio, Gaston A.; Paez-Valencia, Julio; Khadilkar, Aswad S.; Regmi, Kamesh; Patron-Soberano, Araceli; Zhang, Shangji; Sanchez-Lares, Jonathan; Furstenau, Tara; Li, Jisheng; Sanchez-Gomez, Concepcion; Valencia-Mayoral, Pedro; Yadav, Umesh P.; Ayre, Brian G.; Gaxiola, Roberto A.

    2015-01-01

    Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function. PMID:25681328

  10. Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning.

    PubMed

    Pizzio, Gaston A; Paez-Valencia, Julio; Khadilkar, Aswad S; Regmi, Kamesh; Patron-Soberano, Araceli; Zhang, Shangji; Sanchez-Lares, Jonathan; Furstenau, Tara; Li, Jisheng; Sanchez-Gomez, Concepcion; Valencia-Mayoral, Pedro; Yadav, Umesh P; Ayre, Brian G; Gaxiola, Roberto A

    2015-04-01

    Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function. PMID:25681328

  11. Clast-contact conglomerates in submarine canyons: possible subaqueous sieve deposits

    SciTech Connect

    Fitzgerald, M.S.

    1987-05-01

    Thick, coarse, clast-contact conglomerates in submarine canyon fill have previously been attributed to rock-fall, grain-flow, or winnowing processes. However, these processes do not adequately explain some thick conglomeratic sequences. The proposed process of subaqueous sieve deposition could account for these clast-contact conglomerates. Subaerial sieve deposition has been documented on small-scale fan models and on alluvial fans. A subaerial sieve deposit begins as a debris flow which at some point freezes up. The matrix is then lost by subsequent filtration or outflow, and the emplacement of a clast-contact gravel ensues. A subaqueous sieve deposit would be slightly modified in that the matrix would not be lost by filtration into the submarine canyon floor, but rather by outflow at the terminus of the lobe immediately after deposition, or possibly from the top and/or sides of the freezing flow mass during transport. Besides forming in submarine canyons, subaqueous sieve deposits might also occur in paralic, submarine fan channel, and base-of-the-slope settings. In substantiating the existence of subaqueous sieve deposits, the sedimentary structures and grain-size data from recent sieve deposits on alluvial fans are compared to those of ancient submarine canyon deposits. Numerous similarities are found supporting this new method of deposition. Some discrepancies are encountered, but these are expected due to modifications caused by an aqueous medium.

  12. Biofuel Manufacturing from Woody Biomass: Effects of Sieve Size Used in Biomass Size Reduction

    PubMed Central

    Zhang, Meng; Song, Xiaoxu; Deines, T. W.; Pei, Z. J.; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes. PMID:22665985

  13. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    PubMed

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  14. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Gallego, Nidia C; Burchell, Timothy D

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues, measurements were

  15. H+-PPase AVP1 is necessary for phloem development in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of a plasma membrane (PM) localized type I H+-PPase in sieve elements of Ricinus communis was documented years ago. Unfortunately, the physiological and developmental relevance of these findings remained obscure due to the lack of genetic and molecular reagents to study Ricinus communis...

  16. Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).

    SciTech Connect

    Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

    2006-11-01

    This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

  17. Shape-selective sieving layers on an oxide catalyst surface.

    PubMed

    Canlas, Christian P; Lu, Junling; Ray, Natalie A; Grosso-Giordano, Nicolas A; Lee, Sungsik; Elam, Jeffrey W; Winans, Randall E; Van Duyne, Richard P; Stair, Peter C; Notestein, Justin M

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al(2)O(3) (thickness, 0.4-0.7 nm) with 'nanocavities' (<2 nm in diameter) on a TiO(2) photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations. PMID:23174984

  18. Shape-selective sieving layers on an oxide catalyst surface

    NASA Astrophysics Data System (ADS)

    Canlas, Christian P.; Lu, Junling; Ray, Natalie A.; Grosso-Giordano, Nicolas A.; Lee, Sungsik; Elam, Jeffrey W.; Winans, Randall E.; van Duyne, Richard P.; Stair, Peter C.; Notestein, Justin M.

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4-0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

  19. Sieve of Eratosthenes benchmarks for the Z8 FORTH microcontroller

    SciTech Connect

    Edwards, R.

    1989-02-01

    This report presents benchmarks for the Z8 FORTH microcontroller system that ORNL uses extensively in proving concepts and developing prototype test equipment for the Smart House Project. The results are based on the sieve of Eratosthenes algorithm, a calculation used extensively to rate computer systems and programming languages. Three benchmark refinements are presented,each showing how the execution speed of a FORTH program can be improved by use of a particular optimization technique. The last version of the FORTH benchmark shows that optimization is worth the effort: It executes 20 times faster than the Gilbreaths' widely-published FORTH benchmark program. The National Association of Home Builders Smart House Project is a cooperative research and development effort being undertaken by American home builders and a number of major corporations serving the home building industry. The major goal of the project is to help the participating organizations incorporate advanced technology in communications,energy distribution, and appliance control products for American homes. This information is provided to help project participants use the Z8 FORTH prototyping microcontroller in developing Smart House concepts and equipment. The discussion is technical in nature and assumes some experience with microcontroller devices and the techniques used to develop software for them. 7 refs., 5 tabs.

  20. Continuous-Flow Bioseparation Using Microfabricated Anisotropic Nanofluidic Sieving Structures

    PubMed Central

    Fu, Jianping; Mao, Pan; Han, Jongyoon

    2010-01-01

    The anisotropic nanofluidic filter (nanofilter) array (ANA) is a unique molecular sieving structure for separating biomolecules. Here we describe fabrication of planar and vertical ANA chips and how to perform continuous-flow bioseparation using them. This protocol is most useful for bioengineers that are interested in developing automated multistep chip-based bioanalysis systems and assumes prior cleanroom microfabrication knowledge. The ANA consists of a two-dimensional periodic nanofilter array, and the designed structural anisotropy of the ANA causes different sized- or charged-biomolecules to follow distinct trajectories under applied electric fields, leading to efficient continuous-flow separation. Using microfluidic channels surrounding the ANA, the fractionated biomolecule streams are collected and routed to different fluid channels or reservoirs for convenient sample recovery and downstream bioanalysis. The ANA is physically robust and can be reused repeatedly. Compared to conventional gel-based separation techniques, the ANA offers the potential for faster separation, higher throughput, and more convenient sample recovery. PMID:19876028

  1. Experimental testing of focusing properties of subwavelength photon sieves using exposure method

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Zhang, Xiaohua

    2016-04-01

    An exposure method is proposed to test the focusing properties of subwavelength photon sieves. To solve the problems caused by the subwavelength photon sieves (such as short focal length and small focal spot size), a grating moiré fringe phase detection technique and a microcontact sensor with lead zirconium titanate (PZT) stepping hybrid technique are used in the experimental setup. The focusing properties of the subwavelength photon sieves are tested by this setup. The results show that the focal length and the focal spot size are close to the designed value. Finally, the intensity distribution of the focal spot is proposed. This research result will be beneficial for understanding the focusing properties of subwavelength photon sieves, will help us to improve the imaging quality, and will provide a good experimental basis for practical applications in the nanolithography field.

  2. Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Dreyer, Christopher; Riedel, Edward

    2013-01-01

    Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation

  3. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins.

    PubMed

    Fu, Jianping; Schoch, Reto B; Stevens, Anna L; Tannenbaum, Steven R; Han, Jongyoon

    2007-02-01

    Microfabricated regular sieving structures hold great promise as an alternative to gels to improve the speed and resolution of biomolecule separation. In contrast to disordered porous gel networks, these regular structures also provide well defined environments ideal for the study of molecular dynamics in confining spaces. However, the use of regular sieving structures has, to date, been limited to the separation of long DNA molecules, however separation of smaller, physiologically relevant macromolecules, such as proteins, still remains a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array. The designed structural anisotropy causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins, as well as electrostatic separation of proteins, was achieved, demonstrating the potential use of this device as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system. PMID:18654231

  4. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins

    NASA Astrophysics Data System (ADS)

    Fu, Jianping; Schoch, Reto B.; Stevens, Anna L.; Tannenbaum, Steven R.; Han, Jongyoon

    2007-02-01

    Microfabricated regular sieving structures hold great promise as an alternative to gels to improve the speed and resolution of biomolecule separation. In contrast to disordered porous gel networks, these regular structures also provide well defined environments ideal for the study of molecular dynamics in confining spaces. However, the use of regular sieving structures has, to date, been limited to the separation of long DNA molecules, however separation of smaller, physiologically relevant macromolecules, such as proteins, still remains a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array. The designed structural anisotropy causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins, as well as electrostatic separation of proteins, was achieved, demonstrating the potential use of this device as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system.

  5. Dr. Grant Heikan examines lunar material in sieve from sample container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Grant Heikan, Manned Spacecraft Center and a Lunar Sample preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory.

  6. Peculiarities in formation of Arabidopsis Thaliana (L.) Heynh, generative organs under space flight conditions

    NASA Technical Reports Server (NTRS)

    Kordyum, Y. L.; Chernyayeva, I. I.

    1983-01-01

    Peculiarities in the formation of the andrecium and gynecium elements are described for Arabidopsis plants grown from the stages of two cotyledonous leaves in the Svitoblok-1 device on board the Salyut 6 orbital research station and in the laboratory. It is established that flower buds and flowers, normally formed in habitus, contain sterile elements of andrecium and gynecium whose degeneration occurs at different developmental stages of the Arabidopsis plants in the experiment under conditions of weightlessness.

  7. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  8. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  9. Copia-, Gypsy- and Line-like Retrotransposon Fragments in the Mitochondrial Genome of Arabidopsis Thaliana

    PubMed Central

    Knoop, V.; Unseld, M.; Marienfeld, J.; Brandt, P.; Sunkel, S.; Ullrich, H.; Brennicke, A.

    1996-01-01

    Several retrotransposon fragments are integrated in the mitochondrial genome of Arabidopsis thaliana. These insertions are derived from all three classes of nuclear retrotransposons, the Ty1/copia-, Ty3/gypsy- and non-LTR/LINE-families. Members of the Ty3/gypsy group of elements have not yet been identified in the nuclear genome of Arabidopsis. The varying degrees of similarity with nuclear elements and the dispersed locations of the sequences in the mitochondrial genome suggest numerous independent transfer-insertion events in the evolutionary history of this plant mitochondrial genome. Overall, we estimate remnants of retrotransposons to cover >/=5% of the mitochondrial genome in Arabidopsis. PMID:8852855

  10. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    SciTech Connect

    Boncukcuoglu, Recep . E-mail: rboncuk@yahoo.com; Icelli, Orhan; Erzeneoglu, Salih; Muhtar Kocakerim, M.

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays of the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.

  11. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  12. Suppressor Screens in Arabidopsis.

    PubMed

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  13. Computational identification of 69 retroposons in Arabidopsis.

    PubMed

    Zhang, Yujun; Wu, Yongrui; Liu, Yilei; Han, Bin

    2005-06-01

    Retroposition is a shot-gun strategy of the genome to achieve evolutionary diversities by mixing and matching coding sequences with novel regulatory elements. We have identified 69 retroposons in the Arabidopsis (Arabidopsis thaliana) genome by a computational approach. Most of them were derivatives of mature mRNAs, and 20 genes contained relics of the reverse transcription process, such as truncations, deletions, and extra sequence additions. Of them, 22 are processed pseudogenes, and 52 genes are likely to be actively transcribed, especially in tissues from apical meristems (roots and flowers). Functional compositions of these retroposon parental genes imply that not the mRNA itself but its expression in gamete cells defines a suitable template for retroposition. The presence/absence patterns of retroposons can be used as cladistic markers for biogeographic research. Effects of human and the Mediterranean Pleistocene refugia in Arabidopsis biogeographic distributions were revealed based on two recent retroposons (At1g61410 and At5g52090). An evolutionary rate of new gene creation by retroposition was calculated as 0.6 genes per million years. Retroposons can also be used as molecular fossils of the parental gene expressions in ancient time. Extensions of 3' untranslated regions for those expressed parental genes are revealed as a possible trend of plant transcriptome evolution. In addition, we reported the first plant functional chimeric gene that adapts to intercompartmental transport by capturing two additional exons after retroposition. PMID:15923328

  14. Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol.

    PubMed

    Jun, Jong Won; Jeon, Jaewoo; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2013-04-01

    Microporous SAPO-34 molecular sieves were hydrothermally synthesized with microwave irradiation in the presence of tetraethylammonium hydroxide (TEAOH) as a template. SAPO-34 molecular sieves with mesoporosity were also prepared in the presence of carbon black as a hard template. By increasing the content of the carbon black template in the synthesis, the mesopore volume increased. Dehydration of alcohols (butanols and ethanol) was carried out with the synthesized SAPO-34 molecular sieves, and the lifetime of the catalysts for the dehydration reaction increased as the mesoporosity increased. Moreover, the performance of the microporous catalyst synthesized with microwave was better than that of the catalyst obtained with conventional electric heating. The relative performance of the catalytic dehydration may be explained by the mesoporosity and the crystal size. Therefore, it may be concluded that small-sized SAPO-34 molecular sieves with high mesoporosity can be produced efficiently with microwave irradiation in the presence of carbon black template, and the molecular sieves are effective in the stable dehydration of alcohols.

  15. Trichome morphogenesis in Arabidopsis.

    PubMed Central

    Schwab, B; Folkers, U; Ilgenfritz, H; Hülskamp, M

    2000-01-01

    Trichomes (plant hairs) in Arabidopsis thaliana are large non-secreting epidermal cells with a characteristic three-dimensional architecture. Because trichomes are easily accessible to a combination of genetic, cell biological and molecular methods they have become an ideal model system to study various aspects of plant cell morphogenesis. In this review we will summarize recent progress in the understanding of trichome morphogenesis. PMID:11128981

  16. Gains and Losses of Cis-regulatory Elements Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space, and Level of Expression and Regulation of One Paralog by the Other.

    PubMed

    Ye, Lingling; Wang, Bin; Zhang, Wengen; Shan, Hongyan; Kong, Hongzhi

    2016-06-01

    How genes change their expression patterns over time is still poorly understood. Here, by conducting expression, functional, bioinformatic, and evolutionary analyses, we demonstrate that the differences between the Arabidopsis (Arabidopsis thaliana) APETALA1 (AP1) and CAULIFLOWER (CAL) duplicate genes in the time, space, and level of expression were determined by the presence or absence of functionally important transcription factor-binding sites (TFBSs) in regulatory regions. In particular, a CArG box, which is the autoregulatory site of AP1 that can also be bound by the CAL protein, is a key determinant of the expression differences. Because of the CArG box, AP1 is both autoregulated and cross-regulated (by AP1 and CAL, respectively), and its relatively high-level expression is maintained till to the late stages of sepal and petal development. The observation that the CArG box was gained recently further suggests that the autoregulation and cross-regulation of AP1, as well as its function in sepal and petal development, are derived features. By comparing the evolutionary histories of this and other TFBSs, we further indicate that the divergence of AP1 and CAL in regulatory regions has been markedly asymmetric and can be divided into several stages. Specifically, shortly after duplication, when AP1 happened to be the paralog that maintained the function of the ancestral gene, CAL experienced certain degrees of degenerate evolution, in which several functionally important TFBSs were lost. Later, when functional divergence allowed the survival of both paralogs, CAL remained largely unchanged in expression, whereas the functions of AP1 were gradually reinforced by gains of the CArG box and other TFBSs.

  17. Birth, death and subfunctionalization in the Arabidopsis genome.

    PubMed

    Rutter, Matthew T; Cross, Katilyn V; Van Woert, Patrick A

    2012-04-01

    Arabidopsis thaliana is now a model system, not just for plant biology but also for comparative genomics. The completion of the sequences of two closely related species, Arabidopsis lyrata and Brassica rapa, is complemented by genomic comparisons among A. thaliana accessions and mutation accumulation lines. Together these genomic data document the birth of new genes via gene duplication, transposon exaptation and de novo formation of new genes from noncoding sequence. Most novel loci exhibit low expression, and are undergoing pseudogenization or subfunctionalization. Comparatively, A. thaliana has lost large amounts of sequence through deletion, particularly of transposable elements. Intraspecific genomic variation indicates high rates of deletion mutations and deletion polymorphisms across accessions, shedding light on the history of Arabidopsis genome architecture.

  18. Building an efficient curation workflow for the Arabidopsis literature corpus.

    PubMed

    Li, Donghui; Berardini, Tanya Z; Muller, Robert J; Huala, Eva

    2012-01-01

    TAIR (The Arabidopsis Information Resource) is the model organism database (MOD) for Arabidopsis thaliana, a model plant with a literature corpus of about 39 000 articles in PubMed, with over 4300 new articles added in 2011. We have developed a literature curation workflow incorporating both automated and manual elements to cope with this flood of new research articles. The current workflow can be divided into two phases: article selection and curation. Structured controlled vocabularies, such as the Gene Ontology and Plant Ontology are used to capture free text information in the literature as succinct ontology-based annotations suitable for the application of computational analysis methods. We also describe our curation platform and the use of text mining tools in our workflow. Database URL: www.arabidopsis.org PMID:23221298

  19. The modeling of cobalt ions adsorption on molecular sieves and zeolite AW-300

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Aras, Erdal; Dede, Bülent; Kılıç, Ahmet

    2013-12-01

    High concentration heavy metals in the environment can cause serious problem on human health. Cobalt is a heavy metal that has a large application in different fields. In the present work, we aimed to investigate the adsorption of the cobalt ions from aqueous solutions on molecular sieves and zeolite AW-300. Molecular sieves and zeolites were activated at 873 K for two hours before the adsorption experiment. UV-Visible spectrometer was used to measure concentrations of cobalt ions. All adsorption experiments were performed according to statistical designs for response surface methodological approach. A response surface analysis was guided to advance understand the interactions between adsorbent dose and initial concentration of cobalt ions. The removal efficiencies of cobalt ions on sorbents were characterized. The results indicated that molecular sieves and zeolite AW-300 can be used to remove cobalt ions from aqueous solutions.

  20. Brownian Motion Rectifier: Continuous Sorting of Macromolecules in a Microfabricated Sieve

    NASA Astrophysics Data System (ADS)

    Chou, C. F.; Duke, T. A. J.; Chan, S. S.; Bakajin, O. B.; Austin, R. H.; Cox, E. C.

    1998-03-01

    A new method for separating biological macromolecules according to size has been proposed by Duke and Austin (T.A.J. Duke and R.H. Austin, preprint (1997).). A fine stream of molecules is transported through a microfabricated sieve, etched from a silicon chip by photolithography. The sieve consists of a periodic array of oblong obstacles, oriented at an angle to the direction of flow. The spatial asymmetry and the broken time-reversal symmetry (imposed by the flow) cause the Brownian motion of the molecules to be rectified. Since the effect depends on the thermal motion, molecules with different diffusion coefficients are deflected by different amounts, and consequently a mixture of molecules is sorted according to size. Our preliminary results in sorting a mixture of DNA in such a sieve will be presented.

  1. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    PubMed

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  2. Laser Diffraction Techniques Replace Sieving for Lunar Soil Particle Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Gonzalez, C. P.; McKay, D. S.; Fruland, R. L.

    2012-01-01

    Sieving was used extensively until 1999 to determine the particle size distribution of lunar samples. This method is time-consuming, and requires more than a gram of material in order to obtain a result in which one may have confidence. This is demonstrated by the difference in geometric mean and median for samples measured by [1], in which a 14-gram sample produced a geometric mean of approx.52 micrometers, whereas two other samples of 1.5 grams resulted in gave means of approx.63 and approx.69 micrometers. Sample allocations for sieving are typically much smaller than a gram, and many of the sample allocations received by our lab are 0.5 to 0.25 grams in mass. Basu [2] has described how the finest fraction of the soil is easily lost in the sieving process, and this effect is compounded when sample sizes are small.

  3. Direct Measurement of Sieve Tube Turgor Pressure Using Severed Aphid Stylets 1

    PubMed Central

    Wright, John P.; Fisher, Donald B.

    1980-01-01

    Turgor pressure in individual sieve tubes was measured directly by gluing capillary micromanometers over exuding aphid stylets with cyanoac-rylate adhesive. Pressures of up to 10 bars were measured in sieve tubes of Salix babylonica, with an estimated accuracy of ± 0.3 bars or better. For comparison with the direct measurements of sieve tube turgor, calculated values of turgor pressure were also obtained from the difference between leaf water potential and phloem exudate solute potential, estimated from its refractive index and sucrose content. In most cases the measured turgor pressure was greater than the calculated value. The discrepancy between the two values was most likely due to the presence of appreciable concentrations of potassium and amino acids in the phloem exudate. PMID:16661346

  4. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  5. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  6. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  7. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    SciTech Connect

    Nguyen, T. X.; Bhatia, S. K.; Jobic, H.

    2010-08-20

    We report quasielastic neutron scattering studies of H{sub 2}-D{sub 2} diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  8. Chlorodifluoromethane equilibrium on 13X molecular sieve. Final report, September 1992-March 1993

    SciTech Connect

    Carlile, D.L.; Mahle, J.J.; Buettner, L.C.; Tevault, D.E.; Friday, D.K.

    1994-08-01

    Adsorption phase equilibrium data are required for evaluating any adsorption-based gas separation process. The U.S. Army Edgewood Research, Development and Engineering Center is currently measuring adsorption phase equilibrium data for a variety of chemical warfare agents and their surrogates on adsorbent materials to correlate physical properties to filtration/separation efficiencies of each vapor on each adsorbent. This report details the adsorption phase equilibrium data measured for chlorodifluoromethane (R-22) on 13X Molecular Sieve. The 13X Molecular Sieve is a candidate adsorbent for future military air purification systems employing the pressure-swing adsorption separation process.

  9. Application of 3A molecular sieve layer in dye-sensitized solar cells

    SciTech Connect

    Yan, Yuan; Wang, Jinzhong E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang E-mail: qingjiang.yu@hit.edu.cn; Huang, Yuewu; Chang, Quanhong; Hao, Chunlei; Jiao, Shujie; Gao, Shiyong; Li, Hongtao; Wang, Dongbo

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  10. Effect of liquid channeling on a 1.8-m distillation sieve tray

    SciTech Connect

    Proctor, S.J.; Biddulph, M.W.; Krishnamurthy, K.R.

    1998-06-01

    This paper describes an experimental investigation designed to establish the extent of the effects of liquid channeling and stagnant zones on the efficiency of a 1.8-m diameter sieve tray. The method used is to compare performance, in the same column and using the same system, with a novel tray which is known, from hydraulic studies, to remove stagnant zones. It is found that there is an observable loss in efficiency in the sieve tray, particularly at heavy loadings, and this will have implications for designers specifying high-capacity trays for new or upgraded columns.

  11. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr

    2007-11-06

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  12. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  13. CTR Fuel recovery system using regeneration of a molecular sieve drying bed

    DOEpatents

    Folkers, Charles L.

    1981-01-01

    A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.

  14. Chronic recording of regenerating VIIIth nerve axons with a sieve electrode

    NASA Technical Reports Server (NTRS)

    Mensinger, A. F.; Anderson, D. J.; Buchko, C. J.; Johnson, M. A.; Martin, D. C.; Tresco, P. A.; Silver, R. B.; Highstein, S. M.

    2000-01-01

    A micromachined silicon substrate sieve electrode was implanted within transected toadfish (Opsanus tau) otolith nerves. High fidelity, single unit neural activity was recorded from seven alert and unrestrained fish 30 to 60 days after implantation. Fibrous coatings of genetically engineered bioactive protein polymers and nerve guide tubes increased the number of axons regenerating through the electrode pores when compared with controls. Sieve electrodes have potential as permanent interfaces to the nervous system and to bridge missing connections between severed or damaged nerves and muscles. Recorded impulses might also be amplified and used to control prosthetic devices.

  15. Arabidopsis KANADI1 acts as a transcriptional repressor by interacting with a specific cis-element and regulates auxin biosynthesis, transport, and signaling in opposition to HD-ZIPIII factors.

    PubMed

    Huang, Tengbo; Harrar, Yaël; Lin, Changfa; Reinhart, Brenda; Newell, Nicole R; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn; Kerstetter, Randall A

    2014-01-01

    The formation of leaves and other lateral organs in plants depends on the proper specification of adaxial-abaxial (upper-lower) polarity. KANADI1 (KAN1), a member of the GARP family of transcription factors, is a key regulator of abaxial identity, leaf growth, and meristem formation in Arabidopsis thaliana. Here, we demonstrate that the Myb-like domain in KAN1 binds the 6-bp motif GNATA(A/T) and that this motif alone is sufficient to squelch transcription of a linked reporter in vivo. In addition, we report that KAN1 acts as a transcriptional repressor. Among its targets are genes involved in auxin biosynthesis, auxin transport, and auxin response. Furthermore, we find that the adaxializing HD-ZIPIII transcription factor REVOLUTA has opposing effects on multiple components of the auxin pathway. We hypothesize that HD-ZIPIII and KANADI transcription factors pattern auxin accumulation and responsiveness in the embryo. Specifically, we propose the opposing actions of KANADI and HD-ZIPIII factors on cotyledon formation (KANADI represses and HD-ZIPIII promotes cotyledon formation) occur through their opposing actions on genes acting at multiple steps in the auxin pathway.

  16. An Egg Apparatus-Specific Enhancer of Arabidopsis, Identified by Enhancer Detection1

    PubMed Central

    Yang, Wei; Jefferson, Richard A.; Huttner, Eric; Moore, James M.; Gagliano, Wendy B.; Grossniklaus, Ueli

    2005-01-01

    Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5′ and 3′ deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed. PMID:16258010

  17. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems. PMID:6774707

  18. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  19. Quinidine thiourea-catalyzed enantioselective synthesis of β-nitrophosphonates: Beneficial effects of molecular sieves

    PubMed Central

    Abbaraju, Santhi; Bhanushali, Mayur; Zhao, Cong-Gui

    2011-01-01

    An efficient method for enantioselective synthesis of β-nitrophosphonates via the Michael addition of diphenyl phosphite to nitroalkenes using the readily available quinidine thiourea organocatalyst has been developed. The desired β-nitrophosphonates were obtained in good ee values. Molecular sieves were found to be crucial for achieving high reproducible yields in this reaction. PMID:21921970

  20. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  1. Alternative sieving method for extraction of light filth from cheeses: collaborative study.

    PubMed

    Nakashima, M J

    1994-01-01

    A collaborative study was conducted on an alternative sieving method for the extraction of light filth from cheeses. The alternative method was developed that is applicable to broad variety of cheeses. A 225 g test portion is dispersed in a solution of 5.7% HCl, Igepal CO-730, and Igepal DM-710. Digested cheese is wet-sieved on a No. 230 sieve. The residue is treated with Tergitol Anionic 4, transferred to 1% sodium lauryl sulfate solution, heated, and maintained at 65 degrees-75 degrees C for 10 min. The residue is washed with these 2 surfactants a maximum of 4 times until it is reduced to an amount that is filterable. The residue is filtered and the filter papers are examined microscopically at a magnification of ca 30x. Average recoveries by 9 collaborators for 3 spike levels of rat hairs (5, 10, and 15) were 80, 68, and 81%, respectively; for insect fragments (5, 15, and 30) recoveries were 97, 90, and 92%, respectively. The alternative sieving method for extraction of light filth from cheeses has been adopted first action by AOAC INTERNATIONAL. PMID:7950417

  2. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems.

  3. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    PubMed

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  4. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    PubMed

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  5. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature

    PubMed Central

    Adams, William W.; Stewart, Jared J.; Cohu, Christopher M.; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature – most strongly in Col-0 and least strongly in the Italian ecotype – and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  6. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  7. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice

  8. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.

    PubMed

    Cruz, Tiago M D; Carvalho, Raquel F; Richardson, Dale N; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  9. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    PubMed Central

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  10. Epigenetic Natural Variation in Arabidopsis thaliana

    PubMed Central

    Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W. Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R.W; Martienssen, Robert A

    2007-01-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means. PMID:17579518

  11. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  12. Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Sun, Fuxing; Li, Lina; Cui, Peng; Zhu, Guangshan

    2014-06-01

    Owing to environmental pollution and energy depletion, efficient separation of energy gases has attracted widespread attention. Low-cost and efficient adsorbents for gas separation are greatly needed. Here we report a family of quaternary pyridinium-type porous aromatic frameworks with tunable channels. After carefully choosing and adjusting the sterically hindered counter ions via a facile ion exchange approach, the pore diameters are tuned at an angstrom scale in the range of 3.4-7 Å. The designed pore sizes may bring benefits to capturing or sieving gas molecules with varied diameters to separate them efficiently by size-exclusive effects. By combining their specific separation properties, a five-component (hydrogen, nitrogen, oxygen, carbon dioxide and methane) gas mixture can be separated completely. The porous aromatic frameworks may hold promise for practical and commercial applications as polymeric sieves.

  13. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    SciTech Connect

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activating a dessicant, and hydrogen uptake testing.

  14. Chip-based optical microscopy for imaging membrane sieve plates of liver scavenger cells

    NASA Astrophysics Data System (ADS)

    Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Ahluwalia, Balpreet S.

    2015-08-01

    The evanescent field on top of optical waveguides is used to image membrane network and sieve-plates of liver endothelial cells. In waveguide excitation, the evanescent field is dominant only near the surface (~100-150 nm) providing a default optical sectioning by illuminating fluorophores in close proximity to the surface and thus benefiting higher signal-to-noise ratio. The sieve plates of liver sinusoidal endothelial cells are present on the cell membrane, thus near-field waveguide chip-based microscopy configuration is preferred over epi-fluorescence. The waveguide chip is compatible with optical fiber components allowing easy multiplexing to different wavelengths. In this paper, we will discuss the challenges and opportunities provided by integrated optical microscopy for imaging cell membranes.

  15. Molecular sieve oxygen generating system: the argon question--a brief review.

    PubMed

    Ikels, K G; Adams, J D

    1979-09-01

    The molecular sieve oxygen generating system (MSOG) is currently being considered as a replacement for liquid and gaseous stores on aircraft for the supply of aviator's breathing oxygen. Incorporation of onboard oxygen generation in aircraft not only increases system safety but also minimizes logistic requirements. However, a unique characteristic of the MSOG is that it concentrates not only oxygen but also argon in the process of removing nitrogen from engine bleed air. Maximum concentrations produced by present systems are in the order of 95% oxygen and 5% argon. These results have precipitated numerous questions relating to the physiological effects of argon in the product breathing gas. This report reviews the current literature concerning argon as a minor constituent (less than 10%) in gas breathing systems and recommends studies prior to human compatibility testing of the molecule sieve oxygen generating systems.

  16. Distribution of 28 elements in size fractions of lunar mare and highlands soils

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Wasson, J. T.

    1977-01-01

    Four volatile, six siderophile and 18 generally lithophile elements were determined in six sieve fractions of mare soil 15100 (moderately mature) and seven sieve fractions of highlands soil 66080 (highly mature). Previous work (Boynton et al., 1976) showed that the volatile elements in lunar soils were enriched in the finest size fraction relative to the coarsest factors by up to about 20. The present investigation tests Boynton's interpretation that the distribution pattern of the volatiles indicates the presence of two components: a volume-correlated component having volatile concentrations independent of grain size and a surface-correlated component with concentration increasing with decreasing grain size.

  17. A Superfamily of Arabidopsis Thaliana Retrotransposons

    PubMed Central

    Konieczny, A.; Voytas, D. F.; Cummings, M. P.; Ausubel, F. M.

    1991-01-01

    We describe a superfamily of Arabidopsis thaliana retrotransposable elements that consists of at least ten related families designated Ta1-Ta10. The Ta1 family has been described previously. Two genomic clones representing the Ta2 and Ta3 elements were isolated from an A. thaliana (race Landsberg erecta) λ library using sequences derived from the reverse transcriptase region of Ta1 as hybridization probes. Nucleotide sequence analysis showed that the Ta1, Ta2 and Ta3 families share >75% amino acid identity in pairwise comparisons of their reverse transcriptase and RNase H genes. In addition to Ta1, Ta2 and Ta3, we identified seven other related retrotransposon families in Landsberg erecta, Ta4-Ta10, using degenerate primers and the polymerase chain reaction to amplify a highly conserved region of retrotransposon-encoded reverse transcriptase. One to two copies of elements Ta2-Ta10 are present in the genomes of the A. thaliana races Landsberg erecta and Columbia indicating that the superfamily comprises at least 0.1% of the A. thaliana genome. The nucleotide sequences of the reverse transcriptase regions of the ten element families place them in the category of copia-like retrotransposons and phylogenetic analysis of the amino acid sequences suggests that horizontal transfer may have played a role in their evolution. PMID:1709409

  18. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  19. Reproducibility of a silicone-based test food to masticatory performance evaluation by different sieve methods.

    PubMed

    Sánchez-Ayala, Alfonso; Vilanova, Larissa Soares Reis; Costa, Marina Abrantes; Farias-Neto, Arcelino

    2014-01-01

    The aim of this study was to evaluate the reproducibility of the condensation silicone Optosil Comfort® as an artificial test food for masticatory performance evaluation. Twenty dentate subjects with mean age of 23.3±0.7 years were selected. Masticatory performance was evaluated using the simple (MPI), the double (IME) and the multiple sieve methods. Trials were carried out five times by three examiners: three times by the first, and once by the second and third examiners. Friedman's test was used to find the differences among time trials. Reproducibility was determined by the intra-class correlation (ICC) test (α=0.05). No differences among time trials were found, except for MPI-4 mm (p=0.022) from the first examiner results. The intra-examiner reproducibility (ICC) of almost all data was high (ICC≥0.92, p<0.001), being moderate only for MPI-0.50 mm (ICC=0.89, p<0.001). The inter-examiner reproducibility was high (ICC>0.93, p<0.001) for all results. For the multiple sieve method, the average mean of absolute difference from repeated measurements were lower than 1 mm. This trend was observed only from MPI-0.50 to MPI-1.4 for the single sieve method, and from IME-0.71/0.50 to IME-1.40/1.00 for the double sieve method. The results suggest that regardless of the method used, the reproducibility of Optosil Comfort® is high. PMID:24918363

  20. [Sieve-tube plastids of monocotyledons : Comparative investigations of the fine structure and distribution of specific plastids].

    PubMed

    Behnke, H D

    1968-06-01

    Fine-structural investigations of 24 monocotyledons from 21 families and all but one order succeeded in revealing a plastid with cuneate proteinaceous inclusion bodies as being typical of monocot sieve-tubes. Inclusion bodies originate in large numbers during plastid differentiation; they concentrate in the matrix and aggregate around an invisible centre, that mostly lies at one end of the elongated ameboid proplastid. The inclusion-free part of the young plastid contains countless vesicles and short membranes, presumably invaginations of the inner plastid envelope. Proteinaceous inclusion bodies show a crystal-like structure composed of 50-60 Å subunits in straight and parallel order. Besides these crystal-like inclusion bodies sieve-tube plastids of many monocotyledons also contain starch. - Sieve-tube plastids of Nuphar luteum and Nymphaea alba look like plastids in dicotyledon sieve-tubes, starch being their only inclusion.

  1. MOLECULAR SIEVES AS CATALYSTS FOR METHANOL DEHYDRATION IN THE LPDMEtm PROCESS

    SciTech Connect

    Andrew W. Wang

    2002-04-01

    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME{trademark} (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME{trademark} system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity.

  2. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    PubMed Central

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C.; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  3. Chemical Reactivity of Formaldehyde in FeAlP0{sub 4} Sieve

    SciTech Connect

    Yeom, Young-Hoon; Ulagappan, Nagappan; Frei, Heinz

    2001-03-12

    Formaldehyde gas loaded into framework Fe aluminophosphate sieve (FeAlP O4-5) at 250 K was found to react with adsorbed H2O, CH3OH, H2O2, or lattice OH groups to yield the corresponding addition product, namely CH2(OH)2, CH3OCH2OH, HO 2CH2OH, or POCH2OH, respectively. Reactions were monitored in situ by static FT-IR spectroscopy, and assignments are based on experiments with CD2=0 and CD3OD. Most efficient was the reaction with H2O2 as indicated by the fact that HO2CH2OH was formed at the exclusion of CH2(OH)2 and POCH2OH when adsorbing formaldehyde onto a sieve loaded with H2O2 and H2O. Methoxymethanol, methanediol, and POCH2OH were stable at 250 K, but dissociated above 0 degrees C under release of formaldehyde. Hydromethyl hydroperoxide disproportionates to formic acid and water. Under 355 nm irradiation in FeAlPO4 sieve, HO2CH2OH was found to undergo efficient photofragmentation.

  4. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Tanev, Peter T.; Chibwe, Malama; Pinnavaia, Thomas J.

    1994-03-01

    TITANIUM silicalite is an effective molecular-sieve catalyst for the selective oxidation of alkanes, the hydroxylation of phenol and the epoxidation of alkenes in the presence of H2O2 (refs 1-3). The range of organic compounds that can be oxidized is greatly limited, however, by the relatively small pore size (about 0.6 nm) of the host framework4. Large-pore (mesoporous) silica-based molecular sieves have been prepared recently by Kresge et all5-7 and Kuroda et al 8.; the former used a templating approach in which the formation of an inorganic mesoporous structure is assisted by self-organization of surfactants, and the latter involved topochemical rearrangement of a layered silica precursor. Here we describe the use of the templating approach to synthesize mesoporous silica-based molecular sieves partly substituted with titanium-large-pore analogues of titanium silicalite. We find that these materials show selective catalytic activity towards the oxidation of 2,6-ditert-butyl phenol to the corresponding quinone and the conversion of benzene to phenol.

  5. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    PubMed

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge. PMID:26819389

  6. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as (3)He/(4)He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high (3)He/(4)He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  7. Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve

    SciTech Connect

    NYMAN,MAY D.; GU,B.X.; WANG,L.M.; EWING,R.C.; NENOFF,TINA M.

    2000-03-20

    Ongoing hydrothermal Cs-Ti-Si-O-H{sub 2}O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs{sub 3}TiSi{sub 3}O{sub 9.5}{center_dot}3H{sub 2}O. SNL-B is only the second molecular sieve Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1 x 2 microns) with a blade-like morphology. SNL-B is confirmed to be a 3-dimensional molecular sieve by a variety of characterization techniques (N{sub 2} adsorption, ion exchange, water adsorption/desorption, solid state CP-MAS NMR). SNL-B is able to desorb and adsorb water from its pores while retaining its crystal structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, {sup 29}Si and {sup 133}/Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H{sub 2}O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15}(SNL-A).

  8. Praseodymium incorporated AIPO-5 molecular sieves for aerobic oxidation of ethylbenzene.

    PubMed

    Sundaravel, B; Babu, C M; Palanisamy, B; Palanichamy, M; Shanthi, K; Murugesan, V

    2013-04-01

    PrAlPO-5 with (Al + P)/Pr ratios of 25, 50, 75 and 100 molecular sieves were successfully synthesized by hydrothermal method. These molecular sieves were characterised using XPS, TPD-NH3, ex-situ pyridine adsorbed IR, TPR, TGA, 27Al and 31P MAS-NMR and ESR studies. The incorporation of praseodymium in the framework of AlPO-5 was confirmed by XRD, DRS UV-vis and 27Al and 31P MAS-NMR analysis. ESR spectrum showed the presence of adsorbed oxygen. The nature and strength of acid sites were identified by ex-situ pyridine adsorbed IR and TPD-NH3. The BET surface area was found to be in the range of 238-272 m2 g(-1). The catalytic activity of the molecular sieves was tested for the liquid phase aerobic oxidation of ethylbenzene. Acetophenone was found to be the major product with more than 90% ethylbenzene conversion. ICP-OES analysis revealed the presence of praseodymium intact in the framework of AlPO-5 up to five cycles.

  9. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  10. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  11. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    PubMed

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.

  12. A pervaporation study of ammonia solutions using molecular sieve silica membranes.

    PubMed

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  13. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.

    PubMed

    Shen, Jie; Liu, Gongping; Huang, Kang; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-03-22

    Two-dimensional (2D) materials with atomic thickness and extraordinary physicochemical properties exhibit unique mass transport behaviors, enabling them as emerging nanobuilding blocks for separation membranes. Engineering 2D materials into membrane with subnanometer apertures for precise molecular sieving remains a great challenge. Here, we report rational-designing external forces to precisely manipulate nanoarchitecture of graphene oxide (GO)-assembled 2D channels with interlayer height of ∼0.4 nm for fast transporting and selective sieving gases. The external forces are synergistic to direct the GO nanosheets stacking so as to realize delicate size-tailoring of in-plane slit-like pores and plane-to-plane interlayer-galleries. The 2D channels endow GO membrane with excellent molecular-sieving characteristics that offer 2-3 orders of magnitude higher H2 permeability and 3-fold enhancement in H2/CO2 selectivity compared with commercial membranes. Formation mechanism of 2D channels is proposed on the basis of the driving forces, nanostructures, and transport behaviors.

  14. The ethylene response pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.

  15. Stomatal Development in Arabidopsis

    PubMed Central

    Pillitteri, Lynn Jo; Dong, Juan

    2013-01-01

    Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants. PMID:23864836

  16. Quality Control of Trichinella Testing at the Slaughterhouse Laboratory: Evaluation of the Use of a 400-Micrometer-Mesh-Size Sieve in the Magnetic Stirrer Method.

    PubMed

    Franssen, Frits; van Andel, Esther; Swart, Arno; van der Giessen, Joke

    2016-02-01

    The performance of a 400-μm-mesh-size sieve (sieve400) has not previously been compared with that of a 180-μm-mesh-size sieve (sieve180). Using pork samples spiked with 0 to 10 Trichinella muscle larvae and an artificial digestion method, sieve performance was evaluated for control of Trichinella in meat-producing animals. The use of a sieve400 resulted in 12% lower larval counts, 147% more debris, and 28% longer counting times compared with the use of a sieve180. Although no false-negative results were obtained, prolonged counting times with the sieve400 may have an impact on performance in a high-throughput environment such as a slaughterhouse laboratory. Based on our results, the sieve180 remains the sieve of choice for Trichinella control in meat in slaughterhouse laboratories, according to the European Union reference method (European Commission regulation 2075/2005). Furthermore, the results of the present study contribute to the discussion of harmonization of meat inspection requirements among countries. PMID:26818995

  17. Quality Control of Trichinella Testing at the Slaughterhouse Laboratory: Evaluation of the Use of a 400-Micrometer-Mesh-Size Sieve in the Magnetic Stirrer Method.

    PubMed

    Franssen, Frits; van Andel, Esther; Swart, Arno; van der Giessen, Joke

    2016-02-01

    The performance of a 400-μm-mesh-size sieve (sieve400) has not previously been compared with that of a 180-μm-mesh-size sieve (sieve180). Using pork samples spiked with 0 to 10 Trichinella muscle larvae and an artificial digestion method, sieve performance was evaluated for control of Trichinella in meat-producing animals. The use of a sieve400 resulted in 12% lower larval counts, 147% more debris, and 28% longer counting times compared with the use of a sieve180. Although no false-negative results were obtained, prolonged counting times with the sieve400 may have an impact on performance in a high-throughput environment such as a slaughterhouse laboratory. Based on our results, the sieve180 remains the sieve of choice for Trichinella control in meat in slaughterhouse laboratories, according to the European Union reference method (European Commission regulation 2075/2005). Furthermore, the results of the present study contribute to the discussion of harmonization of meat inspection requirements among countries.

  18. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect

    Liu, Paul

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and

  19. Araport: the Arabidopsis Information Portal

    PubMed Central

    Krishnakumar, Vivek; Hanlon, Matthew R.; Contrino, Sergio; Ferlanti, Erik S.; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D.; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A.; Stubbs, Joseph; Sullivan, Julie M.; Krampis, Konstantinos; Miller, Jason R.; Micklem, Gos; Vaughn, Matthew; Town, Christopher D.

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. PMID:25414324

  20. [Creation and analysis of Brassica napus + Arabidopsis thaliana somatic hybrids possessing maize Spm/dSpm heterologous transposable system].

    PubMed

    Ovcharenko, O O; Komarnyts'kyĭ, I K; Cherep, M M; Hleba, Iu Iu; Kuchuk, M V

    2005-01-01

    Functionally asymmetric somatic hybrids possessing heterologous transposable element Spm/dSpm were obtained following intertribal somatic hybridization between Brassica napus and transgenic Arabidopsis thaliana. Mobile genetic elements actively transposed in the hybrid genomes. Complete elimination of A. thaliana genome was not observed.

  1. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    SciTech Connect

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.; Sawada, K.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  2. Investigations to improve carbon dioxide control with amine and molecular sieve type sorbers

    NASA Technical Reports Server (NTRS)

    Bertrand, J. F.; Brose, H. F.; Kester, F. L.; Lunde, P. J.

    1972-01-01

    The optimization trends and operating parameters of an integral molecular sieve bed heat exchanger were investigated. The optimum combination of substrate and coating for the HS-B porous polymer was determined based on the CO2 dynamic capacity in the presence of water vapor. Full size HS-B canister performance was evaluated. An Amine CO2 Concentrator utilizing IR-45 sorber material and available Manned Orbiting Laboratory hardware was designed, fabricated and tested for use as an experiment in the NASA 90-day space simulator test of 1970. It supported four men in the simulator for 71 days out of the 90-day test duration.

  3. Sieve tray performances for steam stripping toluene from water in a 4-ft diameter column

    SciTech Connect

    Kunesh, J.G.; Ognisty, T.P.; Sakata, M.; Chen, G.X.

    1996-08-01

    The liquid holdup, pressure drop, and mass transfer efficiency of sieve trays for the steam stripping trace toluene from water were measured from a 4-ft column at atmospheric pressure. The measured data were then compared with predictions from often-used models. It was found that the published efficiency models whether based on distillation or stripping systems are unable to predict both the trend and value of the measured efficiency. Since the 4-ft column owned by Fractionation Research, Inc. (FRI) can be considered as an industrial-scale column, the measured efficiency provides immediate design guidelines for such services.

  4. Synthesis, characterization, and pulsed laser ablation of molecular sieves for thin film applications

    NASA Astrophysics Data System (ADS)

    Munoz, Trinidad, Jr.

    1998-12-01

    Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations

  5. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature.

    PubMed

    Silvestre-Albero, Joaquín; Wahby, Anass; Sepúlveda-Escribano, Antonio; Martínez-Escandell, Manuel; Kaneko, Katsumi; Rodríguez-Reinoso, Francisco

    2011-06-28

    Although metal-organic framework (MOF) materials have been postulated as superior to any other sorbent for CO(2) adsorption at room temperature, here we prove that the appropriate selection of the raw material and the synthesis conditions allows the preparation of carbon molecular sieves (CMSs) with adsorption capacity, on a volumetric basis, highly exceeding those reported in the literature for MOFs. Furthermore, the excellent sorption properties of CMSs over the whole pressure range (up to 50 bar) are fully reversible after different adsorption/desorption cycles.

  6. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  7. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    PubMed

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region.

  8. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Palonen, V.

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  9. Combining sieving and washing, a way to treat MSWI boiler fly ash.

    PubMed

    De Boom, Aurore; Degrez, Marc

    2015-05-01

    Municipal Solid Waste Incineration (MSWI) fly ashes contain some compounds that could be extracted and valorised. A process based on wet sieving and washing steps has been developed aiming to reach this objective. Such unique combination in MSWI fly ash treatment led to a non-hazardous fraction from incineration fly ashes. More specifically, MSWI Boiler Fly Ash (BFA) was separately sampled and treated. The BFA finer particles (13wt%) were found to be more contaminated in Pb and Zn than the coarser fractions. After three washing steps, the coarser fractions presented leaching concentrations acceptable to landfill for non-hazardous materials so that an eventual subsequent valorisation may be foreseen. At the contrary, too much Pb leached from the finest particles and this fraction should be further treated. Wet sieving and washing permit thus to reduce the leachability of MSWI BFA and to concentrate the Pb and Zn contamination in a small (in particle size and volume) fraction. Such combination would therefore constitute a straightforward and efficient basis to valorise coarse particles from MSWI fly ashes. PMID:25736808

  10. A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements

    SciTech Connect

    Palonen, V.

    2015-12-15

    We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{sub 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  11. Remembering the SIEV X: who cares for the bodies of the stateless, lost at sea?

    PubMed

    Gibbings, Beth

    2010-02-01

    The SIEV X was a tiny fishing vessel traveling from Indonesia to Australia in 2001, carrying around four hundred people seeking asylum after fleeing from the warfare and persecution predominantly in Iraq and Afghanistan. Many were women and children trying to enter Australia to join fathers and husbands already granted refugee status but not allowed to bring in family members because of new Australian laws on "Temporary Protection Visas". Of these, 353 drowned when the boat sank in international waters. The conservative Australian government denied responsibility, using the event in an election campaign to play on fears about illegal entry and border defense in the Islamophobic climate in the aftermath of 9/11. Yet many everyday Australians eventually became involved in a collaborative design process to create a memorial to those asylum seekers. This article discusses the debates around memorials for those lost at sea, and particularly for those who might be portrayed as enemies or "illegal immigrants" whose coming threatens national borders. It identifies the conditions under which the campaign to commemorate those who died on the SIEV X moved from being a minority interest to become a cause so widely supported by Australians across the country that the memorial was eventually erected in the heart of the national capital. PMID:20503912

  12. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.

    PubMed

    Palonen, V

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  13. Hydroxylation of phenol over MeAPO molecular sieves synthesized by vapor phase transport

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2016-07-01

    In this study, MeAPO-25 (Me = Fe, Cu, Mn) molecular sieves were first synthesized by a vapor phase transport method using tetramethyl guanidine as the template and applied to hydroxylation of phenol. The zeolites were characterized by XRD, SEM, FT-IR, and DR UV-Vis. As a result, MeAPO-21 and MeAPO-15 were synthesized by changing the Me/Al ratio. UV-Visible diffuse reflectance study suggested incorporation of heteroatoms into the framework and FT-IR study also supported these data. Effects of heteroatoms, contents of Me in MeAPO-25, reaction temperature, phenol/H2O2 mole ratios, reaction time and concentration of catalyst on the conversion of phenol, as well as on the selectivity were studied. FeAPO-25 exhibited a high catalytic activity at the mole ratio of FeO and Al2O3 equal to 0.1 in the synthesis gel, giving the phenol conversion of 88.75% and diphenols selectivity of 66.23% at 60°C within 3 h [ n(phenol)/ n(H2O2) = 0.75, m(FeAPO-25)/ m(phenol) = 7.5%]. Experimental results indicated that the FeAPO-25 molecular sieve was a fairly promising candidate for the application in hydroxylation of phenol.

  14. Combining sieving and washing, a way to treat MSWI boiler fly ash.

    PubMed

    De Boom, Aurore; Degrez, Marc

    2015-05-01

    Municipal Solid Waste Incineration (MSWI) fly ashes contain some compounds that could be extracted and valorised. A process based on wet sieving and washing steps has been developed aiming to reach this objective. Such unique combination in MSWI fly ash treatment led to a non-hazardous fraction from incineration fly ashes. More specifically, MSWI Boiler Fly Ash (BFA) was separately sampled and treated. The BFA finer particles (13wt%) were found to be more contaminated in Pb and Zn than the coarser fractions. After three washing steps, the coarser fractions presented leaching concentrations acceptable to landfill for non-hazardous materials so that an eventual subsequent valorisation may be foreseen. At the contrary, too much Pb leached from the finest particles and this fraction should be further treated. Wet sieving and washing permit thus to reduce the leachability of MSWI BFA and to concentrate the Pb and Zn contamination in a small (in particle size and volume) fraction. Such combination would therefore constitute a straightforward and efficient basis to valorise coarse particles from MSWI fly ashes.

  15. Remembering the SIEV X: who cares for the bodies of the stateless, lost at sea?

    PubMed

    Gibbings, Beth

    2010-02-01

    The SIEV X was a tiny fishing vessel traveling from Indonesia to Australia in 2001, carrying around four hundred people seeking asylum after fleeing from the warfare and persecution predominantly in Iraq and Afghanistan. Many were women and children trying to enter Australia to join fathers and husbands already granted refugee status but not allowed to bring in family members because of new Australian laws on "Temporary Protection Visas". Of these, 353 drowned when the boat sank in international waters. The conservative Australian government denied responsibility, using the event in an election campaign to play on fears about illegal entry and border defense in the Islamophobic climate in the aftermath of 9/11. Yet many everyday Australians eventually became involved in a collaborative design process to create a memorial to those asylum seekers. This article discusses the debates around memorials for those lost at sea, and particularly for those who might be portrayed as enemies or "illegal immigrants" whose coming threatens national borders. It identifies the conditions under which the campaign to commemorate those who died on the SIEV X moved from being a minority interest to become a cause so widely supported by Australians across the country that the memorial was eventually erected in the heart of the national capital.

  16. Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media.

    PubMed

    Fontes, Nuno; Partridge, Johann; Halling, Peter J; Barreiros, Susana

    2002-02-01

    Zeolite molecular sieves very commonly are used as in situ drying agents in reaction mixtures of enzymes in nonaqueous media. They often affect enzyme behavior, and this has been interpreted in terms of altered hydration. Here, we show that zeolites can also have dramatic acid-base effects on enzymes in low water media, resulting from their cation-exchange ability. Initial rates of transesterification catalyzed by cross-linked crystals of subtilisin were compared in supercritical ethane, hexane, and acetonitrile with water activity fixed by pre-equilibration. Addition of zeolite NaA (4 A powder) still caused remarkable rate enhancements (up to 20-fold), despite the separate control of hydration. In the presence of excess of an alternative solid-state acid-base buffer, however, zeolite addition had no effect. The more commonly used Merck molecular sieves (type 3 A beads) had similar but somewhat smaller effects. All zeolites have ion-exchange ability and can exchange H+ for cations such as Na+ and K+. These exchanges will tend to affect the protonation state of acidic groups in the protein and, hence, enzymatic activity. Zeolites pre-equilibrated in aqueous suspensions of varying pH-pNa gave very different enzyme activities. Their differing basicities were demonstrated directly by equilibration with an indicator dissolved in toluene. The potential of zeolites as acid-base buffers for low-water media is discussed, and their ability to overcome pH memory is demonstrated.

  17. Redox chemistry of gaseous reactants inside photoexcited FeAlPO{sub 4} molecular sieve

    SciTech Connect

    Ulagappan, N.; Frei, H.

    2000-01-27

    The reactivity of ligand-to-metal charge transfer excited Fe centers of FeAlPO{sub 4}-5 molecular sieve at the gas-micropore interface has been probed by in situ FT-IR spectroscopy. Laser light in the region 350--430 nm was used to excite the metal centers, and reaction was induced between methanol or 2-propanol and O{sub 2}. Acetone and H{sub 2}O are the observed products of the 2-propanol + O{sub 2} system, while the reaction of methanol with O{sub 2} yields formic acid, methyl formate, and H{sub 2}O as final products. These originate from secondary thermal reaction of initially produced formaldehyde and hydrogen peroxide. The primary step of the proposed mechanism involves one-electron reduction of O{sub 2} by transient Fe{sup +II} under concurrent donation of an electron to be hole of framework oxygen by the alcohol molecule. The efficient reaction suggests that the photoreduced Fe center of the molecular sieve has a substantially stronger reducing power than the conduction band electrons of dense-phase Fe{sub 2}O{sub 3} semiconductor particles.

  18. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  19. Threshold microsclerotial inoculum for cotton verticillium wilt determined through wet-sieving and real-time quantitative PCR.

    PubMed

    Wei, Feng; Fan, Rong; Dong, Haitao; Shang, Wenjing; Xu, Xiangming; Zhu, Heqin; Yang, Jiarong; Hu, Xiaoping

    2015-02-01

    Quantification of Verticillium dahliae microsclerotia is an important component of wilt management on a range of crops. Estimation of microsclerotia by dry or wet sieving and plating of soil samples on semiselective medium is a commonly used technique but this method is resource-intensive. We developed a new molecular quantification method based on Synergy Brands (SYBR) Green real-time quantitative polymerase chain reaction of wet-sieving samples (wet-sieving qPCR). This method can detect V. dahliae microsclerotia as low as 0.5 CFU g(-1) of soil. There was a high correlation (r=0.98) between the estimates of conventional plating analysis and the new wet-sieving qPCR method for 40 soil samples. To estimate the inoculum threshold for cotton wilt, >400 soil samples were taken from the rhizosphere of individual plants with or without visual wilt symptoms in experimental and commercial cotton fields at the boll-forming stage. Wilt inoculum was estimated using the wet-sieving qPCR method and related to wilt development. The estimated inoculum threshold varied with cultivar, ranging from 4.0 and 7.0 CFU g(-1) of soil for susceptible and resistant cultivars, respectively. In addition, there was an overall relationship of wilt incidence with inoculum density across 31 commercial fields where a single composite soil sample was taken at each field, with an estimated inoculum threshold of 11 CFU g(-1) of soil. These results suggest that wilt risk can be predicted from the estimated soil inoculum density using the new wet-sieving qPCR method. We recommend the use of 4.0 and 7.0 CFU g(-1) as an inoculum threshold on susceptible and resistant cultivars, respectively, in practical risk prediction schemes.

  20. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition.

    PubMed

    Jarvis, P; Belzile, F; Page, T; Dean, C

    1997-05-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.

  1. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  2. Assessing Gravitropic Responses in Arabidopsis.

    PubMed

    Barker, Richard; Cox, Benjamin; Silber, Logan; Sangari, Arash; Assadi, Amir; Masson, Patrick

    2016-01-01

    Arabidopsis thaliana was the first higher organism to have its genome sequenced and is now widely regarded as the model dicot. Like all plants, Arabidopsis develops distinct growth patterns in response to different environmental stimuli. This can be seen in the gravitropic response of roots. Methods to investigate this particular tropism are presented here. First, we describe a high-throughput time-lapse photographic analysis of root growth and curvature response to gravistimulation allowing the quantification of gravitropic kinetics and growth rate at high temporal resolution. Second, we present a protocol that allows a quantitative evaluation of gravitropic sensitivity using a homemade 2D clinostat. Together, these approaches allow an initial comparative analysis of the key phenomena associated with root gravitropism between different genotypes and/or accessions. PMID:26867611

  3. Asparagine Metabolic Pathways in Arabidopsis.

    PubMed

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  4. Mutants in Arabidopsis thaliana with altered shoot gravitropism

    SciTech Connect

    Bullen, B.L.; Poff, K.L.

    1987-04-01

    A procedure has been developed and used to screen 40,000 m-2 seedlings of Arabidopsis thaliana for strains with altered shoot gravitropism. Several strains have been identified for which shoot gravitropism is considerably more random than that of their wild-type parent (based on frequency distribution histograms of the gravitropic response to a 1 g stimulus). One such strain exhibits normal hypocotyl phototropism and normal root gravitropism. Thus, the gravitropism pathway in the shoot contains at least one mutable element which is not required for root gravitropism.

  5. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  6. [Immunocytological localization of IAA in the parenchyma cell and vascular elements in the graft union of Cucurbita pepo/Cucurbita moschata at the early developmental stage].

    PubMed

    Wang, Y Q; Han, J; Jia, W S; Du, Z

    2000-06-01

    Immuno-gold localization of IAA in cells of the graft union in the explant internode graft of Cucurbita pepo/Cucurbita moschata were investigated with electron microscopy. In parenchyma cells near the graft union, the gold particles were mainly accumulated in nucleus, plastid and endoplasmic reticulum, while no gold particles was detected in Golgi body, mitochondrion, cell wall and vacuoles. In the differentiating xylem element, the gold particles were labeled in secondary wall and cytoplasm. In the sieve element gold particles were found in the sieve plate, sieve pore and cytoplasm. There was a dense label of the gold particles in the companion cell. The role of IAA in the differentiation of the vascular elements was discussed.

  7. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  8. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  9. Catalytic Reforming of Lignin-Derived Bio-Oil Over a Nanoporous Molecular Sieve Silicoaluminophosphate-11.

    PubMed

    Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon

    2016-05-01

    Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies.

  10. Synthesis of MCM-41 molecular sieves in the presence of dialkyl dimethyl ammonium salts

    SciTech Connect

    Karra, V.R.; Sayari, A.

    1995-12-01

    In the synthesis of MCM-41 mesoporous molecular sieves the chain length of the surfactant template plays a major role in determining the pore dimensions of the resulting material. The effect of the bulkiness of quaternary ammonium template on the pore size of mesoporous silicates has been studied using various dialkyl dimethyl ammonium bromide salts. These templates were prepared by refluxing long chain N,N-dimethyl alkyl amines and bromo alkanes for 24 h. The obtained silicates were characterized by various techniques including XRD, nitrogen and benzene adsorption, FTIR, {sup 29}Si MAS NMR and electron microscopy. The relationship between the length of both alkyl groups and the pore size of the material will be presented.

  11. Catalytic Reforming of Lignin-Derived Bio-Oil Over a Nanoporous Molecular Sieve Silicoaluminophosphate-11.

    PubMed

    Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon

    2016-05-01

    Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies. PMID:27483769

  12. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Koh, Dong-Yeun; McCool, Benjamin A.; Deckman, Harry W.; Lively, Ryan P.

    2016-08-01

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

  13. Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Čejka, Jiří

    Heterogeneous catalysts for olefin metathesis using different types of (i) siliceous mesoporous molecular sieves, and (ii) organized mesoporous alumina as supports are reported. The catalysts were prepared either by spreading of transition metal oxidic phase on the support surface or by immobilizing transition metal compounds (mostly organometallic) on the support. The activity of these catalysts in various types of metathesis reactions (i.e. alkene and diene metathesis, metathesis of unsaturated esters and ethers, RCM, ROMP and metathesis polymerization of alkynes) was described. The main advantages of these catalysts consist generally in their high activity and selectivity, easy separation of catalysts from reaction products and the preparation of products free of catalyst residue. The examples of pore size influence on the selectivity in metathesis reactions are also given.

  14. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes.

    PubMed

    Koh, Dong-Yeun; McCool, Benjamin A; Deckman, Harry W; Lively, Ryan P

    2016-08-19

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature. PMID:27540170

  15. Ultrafiltration Failure and Impaired Sodium Sieving During Long-Term Peritoneal Dialysis: More Than Aquaporin Dysfunction?

    PubMed

    Morelle, Johann; Sow, Amadou; Hautem, Nicolas; Devuyst, Olivier; Goffin, Eric

    2016-01-01

    Fifteen years ago, our group reported the case of a 67-year-old man on peritoneal dialysis for 11 years, in whom ultrafiltration failure and impaired sodium sieving were associated with an apparently normal expression of aquaporin-1 (AQP1) water channels in peritoneal capillaries. At that time, AQP1 dysfunction was suggested as the cause of impaired free-water transport. However, recent data from computer simulations, and structural and functional analysis of the peritoneal membrane of patients with encapsulating peritoneal sclerosis, demonstrated that changes in the peritoneal interstitium directly alter osmotic water transport. In light of these insights, we challenge the initial hypothesis and provide several lines of evidence supporting the diagnosis of encapsulating peritoneal sclerosis in this patient and suggesting that severe peritoneal fibrosis accounted for the loss of osmotic conductance developed during the course of peritoneal dialysis. PMID:27006441

  16. Inorganic fluoride uptake as a measure of relative compatibility of molecular sieve desiccants with fluorocarbon refrigerants

    SciTech Connect

    Cohen, A.P.; Blackwell, C.S.

    1995-12-31

    The fluoride content of molecular sieve desiccants after exposure to R-32 in compatibility tests indicates the extent of the reaction of refrigerant with desiccant. The objective is to determine this fluoride content in a way that reports fluorine that has reacted with the desiccant, not fluorine that is present as adsorbed refrigerant. A conditioning procedure is described to remove adsorbed refrigerant by displacement with water vapor. The efficacy of this procedure is substantiated by {sup 19}F NMR spectroscopy. The conditioned desiccant undergoes pyrohydrolysis at a high temperature (975 C, 1787 F) to remove reacted fluorine as HF. Fluoride is determined in the resulting condensate using an ion-selective electrode. The ability of this technique to report accurate fluoride values is confirmed with standard reference materials.

  17. Ionothermal synthesis process for aluminophosphate molecular sieves in the mixed water/ionic liquid system.

    PubMed

    Zhao, Zhenchao; Zhang, Weiping; Xu, Renshun; Han, Xiuwen; Tian, Zhijian; Bao, Xinhe

    2012-01-21

    The synthesis process of aluminophosphate AlPO(4)-11 molecular sieve in the mixed water/1-butyl- 3-methylimidazolium bromide ([bmim]Br) ionic liquid was investigated by XRD, multinuclear solid-state NMR, scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). It was observed that a tablet phase, named SIZ-2, was formed at the early stage of crystallization. During crystallization metastable SIZ-2 with an incompletely condensed framework phosphorus disappeared gradually, and the phosphorous species became fully condensed through hydroxyl reaction with tetrahedral aluminum to form thermodynamically stable AlPO(4)-11 in the final product. It was found that [bmim]Br, acting as the structure-directing agent, was occluded into the AlPO(4)-11 channel.

  18. Improving the accuracy of sediment-associated constituent concentrations in whole storm water samples by wet-sieving

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.; Bowman, G.

    2007-01-01

    Sand-sized particles (>63 ??m) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample. Once separated, both the sieved solids and the remaining aqueous (water suspension of particles less than 63 ??m) samples were analyzed for total recoverable metals using a modification of USEPA Method 200.7. The modified version digests the entire sample, rather than an aliquot, of the sample. Using a total recoverable acid digestion on the entire contents of the sieved solid and aqueous samples improved the accuracy of the derived sediment-associated constituent concentrations. Concentration values of sieved solid and aqueous samples can later be summed to determine an event mean concentration. ?? ASA, CSSA, SSSA.

  19. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    SciTech Connect

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compact ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.

  20. Tocopherols and tocotrienols in barley oil prepared from germ and other fractions from scarification and sieving of hulless barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two cultivars of hulless barley (Doyce and Merlin), were scarified to abrade the outer layers of the kernels (germ, pericarp, and aleurone). The resulting scarification fines fractions were then separated into four particle size subfractions using sieves. Each of the size subfractions was then extr...

  1. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect

    Willms, R.S.; Taylor, D.J.; Enoeda, Mikio; Okuno, Kenji

    1994-06-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB`s) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H{sub 2} and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  2. Ground, sieved, and C18 modified monolithic silica particles for packing material of microcolumn high-performance liquid chromatography.

    PubMed

    Ko, Joung Ho; Baik, Yoon Suk; Park, Seong Tae; Cheong, Won Jo

    2007-03-16

    We here report a new type of stationary phase for microcolumns. C18 modified silica monolith particles were prepared by grinding and sieving the silica monolith followed by C18 modification and end-capping, and were used as packing material. Ground silica monolith particles were not spherical but irregular with some residual monolithic network structure. The separation efficiency of the stationary phase made of sieved monolith particles (5-10 microm) was better than that of the stationary phase made of unsieved particles. The microcolumn packed with the sieved C18 ground monolith particles (5-10 microm) showed quite good separation efficiency (height equivalent to theoretical plate, HETP, as low as 15 microm) and it was even superior to the microcolumn packed with a commercial spherical 5 microm C18 stationary phase. The column pressure drop of C18 monolith particles was about two-third of that of the commercial spherical C18 phase. The preparation method of C18 stationary phase with ground and sieved silica monolith particles presumably suggests advantages of simplicity and convenience in modification and washing procedures compared to bulk silica monolith. It also showed both improved separation efficiency and low back pressure. PMID:17289065

  3. Production of carbon molecular sieves from Illinois coal. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Feizoulof, C.A.; Vyas, S.N.

    1994-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of CMS and to evaluate the potential application of the products in commercial gas separation processes. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal char preparation conditions determined in Phase I are being applied to production of larger quantities of CMS in a 2 in. ID batch fluidized-bed reactor (FBR) and a 4 in. ID continuous rotary tube kiln (RTK). In the previous reporting period, an invention disclosure describing a novel CMS preparation technique (oxygen deposition) was prepared and submitted to Research Corporation Technologies for evaluation. During this reporting period, work continued on the development of the oxygen deposition process. Carbon deposition as a means to narrow pore size was also investigated. Pound quantities of CMS were prepared from IBC-102 coal in the TRK. A meeting was arranged between the ISGS and Carbo Tech Industieservice GmbH, one of two companies in the world that produce CMS from coal, to discuss possible shipment of Illinois coal to Germany for CMS production. A secrecy agreement between the ISGS and Carbo Tech is in preparation. Several large scale char production runs using Industry Mine coal were conducted in an 18 in. ID batch and 8 in. ID continuous RTK at Allis Mineral Systems, Milwaukee, WI. The molecular sieve properties of the chars have yet to be determined.

  4. Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: Examples from Arabidopsis thaliana

    PubMed Central

    Hindt, Maria; Socha, Amanda L.; Zuber, Hélène

    2013-01-01

    Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (Phenotyping), an unidentified gene is associated with a known phenotype (Gene Cloning) and finally, a Screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls. PMID:23912758

  5. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

  6. [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].

    PubMed

    Chu, Tingting; Xie, Hua; Xu, Yong; Ma, Rongcai

    2010-11-01

    FRUITFULL (FUL) is an MADS box gene that functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. In order to clarify the regulation of FUL expression the upstream regulatory region, -2148 bp - +96 bp and the first intron of the FUL gene were cloned, and vectors with a series of deletion of FUL promoter, and the ones fused with the first intron were constructed. Vectors harboring the fusion of cis-acting elements with the constitutive promoters of TUBULIN and ACTIN were also constructed. Beta-Glucuronidase activity assays of the transgenic Arabidopsis plants showed that two cis-elements were involved in the repression of FUL expression, with one of the two being probably the binding site of the transcriptional factor AP1. And the two CArG boxes played a important role in FUL initiation particularly. Furthermore, the first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.

  7. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    PubMed

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression.

  8. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation. PMID:25624147

  9. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila.

    PubMed

    Grob, Stefan; Schmid, Marc W; Grossniklaus, Ueli

    2014-09-01

    Chromosomes are folded, spatially organized, and regulated by epigenetic marks. How chromosomal architecture is connected to the epigenome is not well understood. We show that chromosomal architecture of Arabidopsis is tightly linked to the epigenetic state. Furthermore, we show how physical constraints, such as nuclear size, correlate with the folding principles of chromatin. We also describe a nuclear structure, termed KNOT, in which genomic regions of all five Arabidopsis chromosomes interact. These KNOT ENGAGED ELEMENT (KEE) regions represent heterochromatic islands within euchromatin. Similar to PIWI-interacting RNA clusters, such as flamenco in Drosophila, KEEs represent preferred landing sites for transposable elements, which may be part of a transposon defense mechanism in the Arabidopsis nucleus. PMID:25132176

  10. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis

    PubMed Central

    Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2016-01-01

    AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722

  11. Recovery of macroinvertebrates by screening in the field: a comparison between coarse (1.18 mm) and fine (0.60 mm) mesh sieves

    USGS Publications Warehouse

    Dukerschein, J.T.; Gent, R.; Sauer, J.

    1996-01-01

    We evaluated the potential loss of target benthic macroinvertebrates from coarse-mesh field wash down of samples through a 1.18-mm mesh sieve nested on a 0.60-mm mesh sieve. Visible target organisms (midges, mayflies, and fingernail clams) in the 1.18-mm mesh sieve were removed from the sample and enumerated in the field. The entire contents of both sieves were preserved for subsequent laboratory enumeration under 4X magnification. Percent recoveries from each treatment were based on total intact organisms found in all sieves. Percent recovery for fingernail clams found in the field (31%) was lower than for mayflies (79%) and midges (88%). Laboratory enumeration of organisms retained by the 1.18-mm sieve yielded additional fingernail clams (to total 74% recovered in the field and lab), mayflies (to total 89%), and midges (to total 91%). If the 1.18-mm sieve is used alone in the field, it is adequate to monitor mayflies, midges >1 cm, and adult fingernail clams greater than or equal to 5.0 mm shell length.

  12. Taxonomy and Phylogeny of Arabidopsis (Brassicaceae)

    PubMed Central

    Al-Shehbaz, Ihsan A.; O'Kane, Steve L.

    2002-01-01

    Detailed taxonomic, cytological, and phylogenetic accounts of Arabidopsis are presented. As currently delimited, the genus consists of nine species all of which are indigenous to Europe, with the ranges of two species extending into northern and eastern Asia and North American into central United States. A survey of chromosome numbers in the genus is presented, and the country of origin for each count is given. Detailed descriptions of all species and subspecies and keys to all taxa are provided. Generic assignments are updated for the 50 species previously included in Arabidopsis. A cladogram of the species of Arabidopsis based on molecular phylogenetic studies by the authors is given. PMID:22303187

  13. Sulfenome mining in Arabidopsis thaliana

    PubMed Central

    Waszczak, Cezary; Akter, Salma; Eeckhout, Dominique; Persiau, Geert; Wahni, Khadija; Bodra, Nandita; Van Molle, Inge; De Smet, Barbara; Vertommen, Didier; Gevaert, Kris; De Jaeger, Geert; Van Montagu, Marc; Messens, Joris; Van Breusegem, Frank

    2014-01-01

    Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage. PMID:25049418

  14. Polyploidy in the Arabidopsis genus.

    PubMed

    Bomblies, Kirsten; Madlung, Andreas

    2014-06-01

    Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids. PMID:24788061

  15. Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide.

    PubMed

    Kuan, Wen-Hui; Hu, Ching-Yao; Liu, Bin-Sheng; Tzou, Yu-Min

    2013-01-01

    The kinetics and mechanism ofamoxicillin (AMO) degradation using a 1 x 1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M(-2) s(-1), and it decreased to 4.27 M(-2) s(-1) at pH 8.53 beyond the pk(a2) of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1 x 1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal. PMID:24350501

  16. Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures

    SciTech Connect

    Pauly, T.R.; Liu, Y.; Pinnavaia, T.J.; Billinge, S.J.L.; Rieker, T.P.

    1999-09-29

    Three different water-alcohol cosolvent systems were used to assemble mesoporous molecular sieve silicas with wormhole framework structures (previously denoted HMS silicas) from an electrically neutral amine surfactant (S{degree}) and a silicon alkoxide precursor (I{degree}). The fundamental particle size and associated textural (interparticle) porosity of the disordered structures were correlated with the solubility of the surfactant in the water-alcohol cosolvents used for the S{degree}I{degree} assembly process. Polar cosolvents containing relatively low volume fractions of C{sub n}H{sub 2n+1}OH alcohols (n = 1--3) gave heterogeneous surfactant emulsions that assembled intergrown aggregates of small primary particles with high textural pore volumes (designated HMS-HTx). Conversely, three-dimensional, monolithic particles with little or no textural porosity (designated HMS-LTx) were formed from homogeneous surfactant solutions in lower polarity cosolvents. Aluminum substituted AL-HMS-HTx analogues with high textural porosity and improved framework accessibility also were shown to be much more efficient catalysts than AL-HMS-LTx or monolithic forms of hexagonal AL-MCM-41 for the sterically demanding condensed phase alkylation of 2,4-di-tert-butylphenol with cinnamyl alcohol. Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies verified the textural differences between wormhole HMS and electrostatically assembled hexagonal MCM-41 and SBA-3 molecular sieves. Power law fits to the scattering data indicated a surface fractal (D{sub s} = 2.76) for HMS-HTx, consistent with rough surfaces. A second power law at lower-q indicated the formation of a mass fractal (D{sub m} = 1.83) consistent with branching of small fundamental particles. Hexagonal MCM-41 and SBA-3 silicas, on the other hand, exhibited scattering properties consistent with moderately rough surfaces (D{sub s} = 2.35 and 2.22, respectively) and large particle diameters ({much

  17. Sieve textures in impact zircon from Vredefort, South Africa: Implications to impact geochronology

    NASA Astrophysics Data System (ADS)

    Wielicki, M. M.; Harrison, M.

    2013-12-01

    The bombardment history of our planet has major implications for Earth's atmosphere, habitability, near surface conditions, and the delivery of the building blocks of life over its four and a half billion years. Constraining the impact flux was highlighted by the National Research Council's 2007 report "The Scientific Context for the Exploration of the Moon" as the top priority goal for lunar research as evidence of such a bombardment is uniquely preserved on the lunar surface. Evidence of the impact flux on the Earth-Moon system has largely been based on interpretations of Ar-Ar ages of lunar samples which can be problematic due to the presence of relic clasts, incomplete Ar outgassing, diffusive modification during shock and heating, and exposure to solar wind and cosmic rays. Recent studies have utilized zircon from Apollo samples as well as lunar meteorites to better constrain the impact history of the Moon. Sieve textures found in zircon within lunar meteorite SaU 169 have been identified as "poikilitic impact melt zircon formed during equilibrium crystallization of the impact melt" and used to better constrain the age of the Imbrium impact. Such textures had previously not been observed in terrestrial zircon. We report the first terrestrial sieve textures in zircon isolated from Vredefort impactites. Zircons isolated from the granophyre unit show a intimate relationship with pyroxene, similar to that seen in the lunar samples. U-Pb analysis of such grains clearly shows that the zircons have been inherited from the target and are not neo-formed zircon that crystallized from the impact melt and thus should not be used to imply impact events. Pb-loss is highly variable in these samples and the lower intercept age of ~1985×150 Ma agrees well with that of the Vredefort impact. Such textures have been previously observed in plagioclase from rapid decompression and resorption into non-equilibrium melts and do not represent primary growth features. Zircon

  18. The fifth international conference on Arabidopsis research

    SciTech Connect

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  19. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  20. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    SciTech Connect

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.

  1. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  2. Cytological analysis of Arabidopsis thaliana meiotic chromosomes.

    PubMed

    Armstrong, Susan J; Sanchez-Moran, Eugenio; Franklin, F Chris H

    2009-01-01

    Advances in molecular biology and in the genetics of Arabidopsis thaliana have led to this organism becoming an important model for the analysis of meiosis in plants. Cytogenetic investigations are pivotal to meiotic studies and a number of technological improvements for Arabidopsis cytology have provided a range of tools to investigate chromosome behaviour during meiosis. This chapter includes protocols on basic cytology, FISH analysis, immunocytology, a procedure for a meiotic time course and electron microscopy.

  3. It's elemental

    NASA Astrophysics Data System (ADS)

    The Periodic Table of the elements will now have to be updated. An international team of researchers has added element 110 to the Earth's armory of elements. Though short-lived—of the order of microseconds, element 110 bottoms out the list as the heaviest known element on the planet. Scientists at the Heavy Ion Research Center in Darmstadt, Germany, made the 110-proton element by colliding a lead isotope with nickel atoms. The element, which is yet to be named, has an atomic mass of 269.

  4. Synthesis, Characterization and Application of N-Ti/13X/MCM-41 Mesoporous Molecular Sieves.

    PubMed

    Tao, Hong; Nguyen, Nhat-Thien; Hei, Xiao-Hui; Nguyen, Cong Nguyen; Tsai, Hsiao-Hsin; Chang, I-Cheng; Chang, Chang-Tang

    2016-06-01

    Di-n-butyl phthalate (DBP) is a type of phthalate ester. In recent years, an increasing number of studies have examined the removal of DBP. In this study we use a composite material of N-Ti/13X/MCM-41, synthesized by nitrogen, molecular sieve 13X, tetrabutyl orthotitanate and tetraethyl orthosilicate as raw materials, CTAB as a structural template and tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as the amount of material, reaction time, pH value and initial concentration were tested. The surface areas of N-Ti/13X/MCM-41 were found to be 664 m2g(-1). TEM micrographs revealed N-Ti/13X/MCM-41 is consisting of aggregates of spherical particles, similar with standard synthesized MCM-41 (Mobil Composition of Matter No. 41). Through photocatalytic degradation experiments, the optimum degradation efficiency of DBP was more than 90% at a pH 6.0 with catalyst dosing of 0.15 g L(-1). PMID:27427754

  5. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    PubMed

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-01-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  6. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    NASA Astrophysics Data System (ADS)

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-07-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m‑2 h‑1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93–99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  7. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    SciTech Connect

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C.

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  8. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  9. Use of weather radar for flood forecasting in the Sieve River Basin: A sensitivity analysis

    SciTech Connect

    Pessoa, M.L.; Bras, R.L.; Williams, E.R. )

    1993-03-01

    Weather radar, in combination with a distributed rainfall-runoff model, promises to significantly improve real-time flood forecasting. This paper investigates the value of radar-derived precipitation in forecasting streamflow in the Sieve River basin, near Florence, Italy. The basin is modeled with a distributed rainfall-runoff model that exploits topographic information available from digital elevation maps. The sensitivity of the flood forecast to various properties of the radar-derived rainfall is studied. It is found that use of the proper radar reflectivity-rainfall intensity (Z-R) relationship is the most crucial factor in obtaining correct flood hydrographs. Errors resulting from spatially averaging radar rainfall are acceptable, but the use of discrete point information (i.e. raingage) can lead to serious problems. Reducing the resolution of the 5-min radar signal by temporally averaging over 15 and 30 min does not lead to major errors. Using 3-bit radar data (rather than the usual 8-bit data) to represent intensities results in significant operational savings without serious problems in hydrograph accuracy. 24 refs., 28 figs., 2 tabs.

  10. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations

    DOE PAGES

    Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; Kim, Daejin

    2016-01-11

    Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separationmore » performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N2 462, CO2/N2 97, and O2/N2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N2 156, CO2/N2 88, and O2/N2 7.7.« less

  11. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  12. SANDY: A Matlab tool to estimate the sediment size distribution from a sieve analysis

    NASA Astrophysics Data System (ADS)

    Ruiz-Martínez, Gabriel; Rivillas-Ospina, Germán Daniel; Mariño-Tapia, Ismael; Posada-Vanegas, Gregorio

    2016-07-01

    This paper presents a new computational tool called SANDY© which calculates the sediment size distribution and its textural parameters from a sieved sediment sample using Matlab®. The tool has been developed for professionals involved in the study of sediment transport along coastal margins, estuaries, rivers and desert dunes. The algorithm uses several types of statistical analyses to obtain the main textural characteristics of the sediment sample (D50, mean, sorting, skewness and kurtosis). SANDY© includes the method of moments (geometric, arithmetic and logarithmic approaches) and graphical methods (geometric, arithmetic and mixed approaches). In addition, it provides graphs of the sediment size distribution and its classification. The computational tool automatically exports all the graphs as enhanced metafile images and the final report is also exported as a plain text file. Parameters related to bed roughness such as Nikuradse and roughness length are also computed. Theoretical depositional environments are established by a discriminant function analysis. Using the uniformity coefficient the hydraulic conductivity of the sand as well as the porosity and void ratio of the sediment sample are obtained. The maximum relative density related to sand compaction is also computed. The Matlab® routine can compute one or several samples. SANDY© is a useful tool for estimating the sediment textural parameters which are the basis for studies of sediment transport.

  13. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    PubMed Central

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics. PMID:23687400

  14. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space.

    PubMed

    Hu, Chaoyang; Ham, Byung-Kook; El-Shabrawi, Hattem M; Alexander, Danny; Zhang, Dabing; Ryals, John; Lucas, William J

    2016-09-01

    The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system. PMID:27155400

  15. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    PubMed Central

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-01-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m−2 h−1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93–99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%. PMID:27469389

  16. New correlation for sieve-tray point efficiency, entrainment, and section efficiency

    SciTech Connect

    Bennett, D.L.; Watson, D.N.; Wiescinski, M.A.

    1997-06-01

    A comprehensive composite database for distillation sieve-tray efficiency is used to develop point efficiency and entrainment correlations based on a model that considers the fluid on the distillation tray to be contained in a liquid-continuous region near the tray deck and a vapor-continuous region on top of the liquid-continuous region. This model allows estimates of the portion of the mass transfer resistance that occurs on the liquid side and vapor side of the interface. For most cases, most of the mass transfer occurs within the liquid-continuous region. The liquid side resistance is often significant. The entrainment correlation is consistent with the work of bennett et al., which relates entrainment to the ratios of the liquid to vapor density and the forth height to the tray spacing. A simple liquid continuous-only mass-transfer model containing only four empirical parameters correlates the point efficiency data to within 6.4%. Despite a twofold change in vapor Schmidt number, no dependency on vapor Schmidt number is seen. Important dimensionless groupings are the Reynolds number based on the hole velocity, effective froth density, ratio of the liquid inventory to the perforation diameter, and fraction of the tray area perforated. Mathematically simple and accurate methods allow the prediction of the section efficiency for trays operating in cross or parallel flow. They address vapor and liquid mixing, entrainment and a criterion to avoid significant degradation of the tray efficiency due to weeping.

  17. Spontaneous liquid-gas imbibition for characterization of carbon molecular sieves.

    PubMed

    Su, Yanmin; Xu, Shaoping; Wang, Jifeng; Xiao, Ronglin

    2012-07-01

    Spontaneous liquid-gas imbibition at 293.2K and 0.1 MPa was conducted to assess the micropore size and size-exclusion property of carbon molecular sieves (CMS). The CMS were firstly saturated with N(2) and then immersed into water. The volume of gas recovered by the water imbibition was measured and applied to evaluate the density of the N(2) adsorbed in the CMS. The micropore size of the CMS was determined by comparing the N(2) density from the water-N(2) imbibition with that calculated by grand canonical simulation. The micropore size evaluated by the liquid-gas imbibition coincides with that obtained by N(2) adsorption at ambient temperature. The size-exclusion property of the CMS was estimated through comparing the N(2) recovery by imbibition of liquids with increasing molecular dimensions, that is, water, benzene, and cyclohexane. The amount of N(2) recovered from benzene imbibition is dramatically less than that from the water imbibition, showing that the dominated micropore size of the CMS is smaller than 0.37 nm. Furthermore, the effect of chemical vapor deposition treatment on the porous texture of the CMS was revealed by the liquid-gas imbibition.

  18. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    DOE PAGES

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; Davis, Mark E.

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å ×more » 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less

  19. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space.

    PubMed

    Hu, Chaoyang; Ham, Byung-Kook; El-Shabrawi, Hattem M; Alexander, Danny; Zhang, Dabing; Ryals, John; Lucas, William J

    2016-09-01

    The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system.

  20. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    SciTech Connect

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; Davis, Mark E.

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.

  1. Passive CO{sub 2} removal using a carbon fiber composite molecular sieve

    SciTech Connect

    Burchell, T.D.; Judkins, R.R.

    1995-12-01

    Manufacture and characterization of a carbon fiber composite molecular sieve (CFCMS), and its efficacy as a CO{sub 2} gas adsorbent are reported. The CFCMS consists of an isotropic pitch derived carbon fiber and a phenolic resin derived carbon binder. Activation (selective gasification) of the CFCMS creates microporosity in the carbon fibers, yielding high micropore volumes (>0.5 cm{sup 3}/g) and BET surface areas (>1000 m{sup 2}/g). Moreover, the CFCMS material is a rigid, strong, monolith with an open structure that allows the free-flow of fluids through the material. This combination of properties provides an adsorbent material that has several distinct advantages over granular adsorbents in gas separation systems such as pressure swing adsorption (PSA) units. The results of our initial evaluations of the CO{sub 2} adsorption capacity and kinetics of CFCMS are reported. The room temperature CO{sub 2} adsorption capacity of CFCMS is >120 mg of CO{sub 2} per g of CFCMS. A proposed project is described that targets the development, over a three-year period, of a demonstration separation system based on CFCMS for the removal of CO{sub 2} from a flue gas slip stream at a coal-fired power plant. The proposed program would be conducted jointly with industrial and utility partners.

  2. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    PubMed

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-01-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%. PMID:27469389

  3. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    NASA Astrophysics Data System (ADS)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  4. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    SciTech Connect

    PR Bredt; CH Delegard; AJ Schmidt; KL Silvers; BM Thornton; S Gano

    2000-12-22

    This report presents the results of particle size analyses and calorimetry testing performed on selected single-pull sludge samples collected from the Hanford K East Basin between December 1998 and June 1999. The samples were collected as isolated cores predominantly from areas that had not been previously sampled (e.g., North Loadout Pit, Dummy Elevator Pit, Tech View Pit), or from areas in which the sludge composition had been altered since the last sampling (e.g., Weasel Pit). Particle size analyses were performed by washing wet sludge samples through a series of four sieves with openings of 250, 500, 1410, and 4000 {micro}m. The loaded sieves were weighed before and after drying to obtain wet and dry particle size distributions. Knowledge of the particle size distribution is needed to design and predict the performance of the systems that will be used to retrieve, transport, and recover sludge. Also, sieving provides an opportunity to observe the components in the sludge. For example, during sieving of the sludge sample from the North Loadout Pit, significant quantities of organic ion exchange beads were observed. The uranium metal content and the particle size of the uranium metal in the K Basin sludge will largely determine the chemical reactivity of the sludge. In turn, the designs for the sludge handling and storage systems must be compatible with the reactivity of the sludge. Therefore, acid calorimetry was performed to estimate the uranium metal content of the sludge. For this testing, sludge samples were dissolved in nitric acid within a calibrated adiabatic calorimeter. The resulting dissolution enthalpy data were then used to discriminate between metallic uranium ({minus}3750 J/g in nitric acid) and uranium oxide ({minus}394 J/g in nitric acid). Results from this testing showed that the single-pull sludge samples contained little or no uranium metal.

  5. Titanium(IV) in the organic-structure-directing-agent-free synthesis of hydrophobic and large-pore molecular sieves as redox catalysts.

    PubMed

    Wang, Jingui; Yokoi, Toshiyuki; Kondo, Junko N; Tatsumi, Takashi; Zhao, Yanli

    2015-08-10

    Titanium(IV) incorporated into the framework of molecular sieves can be used as a highly active and sustainable catalyst for the oxidation of industrially important organic molecules. Unfortunately, the current process for the incorporation of titanium(IV) requires a large amount of expensive organic molecules used as organic-structure-directing agents (OSDAs), and this significantly increases the production costs and causes environmental problems owing to the removal of OSDAs by pyrolysis. Herein, an OSDA-free process was developed to incorporate titanium(IV) into BEA-type molecular sieves for the first time. More importantly, the hydrophobic environment and the robust, 3 D, and large pore structure of the titanium(IV)-incorporated molecular sieves fabricated from the OSDA-free process created a catalyst that was extremely active and selective for the epoxidation of bulky cyclooctene in comparison to Ti-incorporated BEA-type molecular sieves synthesized with OSDAs and commercial titanosilicate TS-1.

  6. Apoplastic diffusion barriers in Arabidopsis.

    PubMed

    Nawrath, Christiane; Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J; Kunst, Ljerka

    2013-12-27

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.

  7. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  8. Identification of Arabidopsis rat Mutants

    PubMed Central

    Zhu, Yanmin; Nam, Jaesung; Humara, Jaime M.; Mysore, Kirankumar S.; Lee, Lan-Ying; Cao, Hongbin; Valentine, Lisa; Li, Jingling; Kaiser, Anthony D.; Kopecky, Andrea L.; Hwang, Hau-Hsuan; Bhattacharjee, Saikat; Rao, Praveen K.; Tzfira, Tzvi; Rajagopal, Jyothi; Yi, HoChul; Veena; Yadav, Badam S.; Crane, Yan M.; Lin, Kui; Larcher, Yves; Gelvin, Matthew J.K.; Knue, Marnie; Ramos, Cynthia; Zhao, Xiaowen; Davis, Susan J.; Kim, Sang-Ic; Ranjith-Kumar, C.T.; Choi, Yoo-Jin; Hallan, Vipin K.; Chattopadhyay, Sudip; Sui, Xiangzhen; Ziemienowicz, Alicja; Matthysse, Ann G.; Citovsky, Vitaly; Hohn, Barbara; Gelvin, Stanton B.

    2003-01-01

    Limited knowledge currently exists regarding the roles of plant genes and proteins in the Agrobacterium tumefaciens-mediated transformation process. To understand the host contribution to transformation, we carried out root-based transformation assays to identify Arabidopsis mutants that are resistant to Agrobacterium transformation (rat mutants). To date, we have identified 126 rat mutants by screening libraries of T-DNA insertion mutants and by using various “reverse genetic” approaches. These mutants disrupt expression of genes of numerous categories, including chromatin structural and remodeling genes, and genes encoding proteins implicated in nuclear targeting, cell wall structure and metabolism, cytoskeleton structure and function, and signal transduction. Here, we present an update on the identification and characterization of these rat mutants. PMID:12805582

  9. The Arabidopsis metacaspase9 degradome.

    PubMed

    Tsiatsiani, Liana; Timmerman, Evy; De Bock, Pieter-Jan; Vercammen, Dominique; Stael, Simon; van de Cotte, Brigitte; Staes, An; Goethals, Marc; Beunens, Tine; Van Damme, Petra; Gevaert, Kris; Van Breusegem, Frank

    2013-08-01

    Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1'. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.

  10. Tetrapyrrole Metabolism in Arabidopsis thaliana

    PubMed Central

    Tanaka, Ryouichi; Kobayashi, Koichi; Masuda, Tatsuru

    2011-01-01

    Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed. PMID:22303270

  11. Preliminary report on the baseline thermal and hydraulic performance tests of a sieve tray direct contact heat exchanger

    SciTech Connect

    Mines, G.L.

    1982-11-01

    A sieve tray direct contact heat exchanger was designed, built and then tested in a binary power cycle at the Raft River geothermal test site. A series of baseline thermal and hydraulic tests were conducted with an isobutane working fluid. The evaluation of these tests is reported. The testing of the DCHX confirmed that the repeated forming and coalescence of the working fluid drops in the sieve tray column produce excellent heat transfer performance. Tray thermal efficiencies were at or above the design value of 70% and the pinch points were well under the design goal of 1/sup 0/F (too small to be measured with installed instrumentation). From a hydraulic standpoint, the column operated at the working fluid velocities from the plate holes corresponding to the predicted condition of maximum total drop surface area (or minimum drop size) when the unit was operating near the flooding limits, or throughputs. This is the recommended working fluid hole velocity for use in designing sieve tray columns. The geothermal flow limits encountered (at flooding) corresponded roughly to the thermal rise velocity of a 1/32-inch drop. This is a drop size commonly used for specifying the terminal velocity (or continuous fluid velocity) in the design of columns for mass transfer applications.

  12. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  13. Effect of sample area and sieve size on benthic macrofaunal community condition assessments in California enclosed bays and estuaries.

    PubMed

    Hammerstrom, Kamille K; Ranasinghe, J Ananda; Weisberg, Stephen B; Oliver, John S; Fairey, W Russell; Slattery, Peter N; Oakden, James M

    2012-10-01

    Benthic macrofauna are used extensively for environmental assessment, but the area sampled and sieve sizes used to capture animals often differ among studies. Here, we sampled 80 sites using 3 different sized sampling areas (0.1, 0.05, 0.0071 m(2)) and sieved those sediments through each of 2 screen sizes (0.5, 1 mm) to evaluate their effect on number of individuals, number of species, dominance, nonmetric multidimensional scaling (MDS) ordination, and benthic community condition indices that are used to assess sediment quality in California. Sample area had little effect on abundance but substantially affected numbers of species, which are not easily scaled to a standard area. Sieve size had a substantial effect on both measures, with the 1-mm screen capturing only 74% of the species and 68% of the individuals collected in the 0.5-mm screen. These differences, though, had little effect on the ability to differentiate samples along gradients in ordination space. Benthic indices generally ranked sample condition in the same order regardless of gear, although the absolute scoring of condition was affected by gear type. The largest differences in condition assessment were observed for the 0.0071-m(2) gear. Benthic indices based on numbers of species were more affected than those based on relative abundance, primarily because we were unable to scale species number to a common area as we did for abundance. PMID:20938972

  14. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development

    PubMed Central

    Lu, Jiongming; Bergert, Martin; Walther, Anita; Suter, Beat

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRSs) constitute a family of ubiquitously expressed essential enzymes that ligate amino acids to their cognate tRNAs for protein synthesis. Recently, aaRS mutations have been linked to various human diseases; however, how these mutations lead to diseases has remained unclear. In order to address the importance of aminoacylation fidelity in multicellular organisms, we generated an amino-acid double-sieving model in Drosophila melanogaster using phenylalanyl-tRNA synthetase (PheRS). Double-sieving-defective mutations dramatically misacylate non-cognate Tyr, induce protein mistranslation and cause endoplasmic reticulum stress in flies. Mutant adults exhibit many defects, including loss of neuronal cells, impaired locomotive performance, shortened lifespan and smaller organ size. At the cellular level, the mutations reduce cell proliferation and promote cell death. Our results also reveal the particular importance of the first amino-acid recognition sieve. Overall, these findings provide new mechanistic insights into how malfunctioning of aaRSs can cause diseases. PMID:25427601

  15. HydrogeoSieveXL: an Excel-based tool to estimate hydraulic conductivity from grain-size analysis

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2015-04-01

    For over a century, hydrogeologists have estimated hydraulic conductivity (K) from grain-size distribution curves. The benefits of the practice are simplicity, cost, and a means of identifying spatial variations in K. Many techniques have been developed over the years, but all suffer from similar shortcomings: no accounting of heterogeneity within samples (i.e., aquifer structure is lost), loss of grain packing characteristics, and failure to account for the effects of overburden pressure on K. In addition, K estimates can vary by an order of magnitude between the various methods, and it is not generally possible to identify the best method for a given sample. The drawbacks are serious, but the advantages have seen the use of grain-size distribution curves for K estimation continue, often using a single selected method to estimate K in a given project. In most cases, this restriction results from convenience. It is proposed here that extending the analysis to include several methods would be beneficial since it would provide a better indication of the range of K that might apply. To overcome the convenience limitation, an Excel-based spreadsheet program, HydrogeoSieveXL, is introduced here. HydrogeoSieveXL is a freely available program that calculates K from grain-size distribution curves using 15 different methods. HydrogeoSieveXL was found to calculate K values essentially identical to those reported in the literature, using the published grain-size distribution curves.

  16. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    PubMed

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  17. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  18. Isolation and characterization of an Arabidopsis biotin carboxylase gene and its promoter.

    PubMed

    Bao, X; Shorrosh, B S; Ohlrogge, J B

    1997-11-01

    In the plastids of most plants, acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a multisubunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protien (BCCP), and carboxytransferase (alpha-CT, beta-CT) subunits. To better understand the regulation of this enzyme, we have isolated and sequenced a BC genomic clone from Arabidopsis and partially characterized its promoter. Fifteen introns were identified. The deduced amino acid sequence of the mature BC protein is highly conserved between Arabidopsis and tobacco (92.6% identity). BC expression was evaluated using northern blots and BC/GUS fusion constructs in transgenic Arabidopsis. GUS activity in the BC/GUS transgenics as well as transcript level of the native gene were both found to be higher in silique and flower than in root and leaf. Analysis of tobacco suspension cells transformed with truncated BC promoter/GUS gene fusions indicated the region from -140 to +147 contained necessary promoter elements which supported basal gene expression. A positive regulatory region was found to be located between -2100 and -140, whereas a negative element was possibly located in the first intron. In addition, several conserved regulatory elements were identified in the BC promoter. Surprisingly, although BC is a low-abundance protein, the expression of BC/GUS fusion constructs was similar to 35S/GUS constructs.

  19. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis.

    PubMed

    Unterholzner, Simon J; Rozhon, Wilfried; Papacek, Michael; Ciomas, Jennifer; Lange, Theo; Kugler, Karl G; Mayer, Klaus F; Sieberer, Tobias; Poppenberger, Brigitte

    2015-08-01

    Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone's growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana. We reveal that Arabidopsis mutants deficient in BR signaling are severely impaired in the production of bioactive GA, which is correlated with defective GA biosynthetic gene expression. Expression of the key GA biosynthesis gene GA20ox1 in the BR signaling mutant bri1-301 rescues many of its developmental defects. We provide evidence that supports a model in which the BR-regulated transcription factor BES1 binds to a regulatory element in promoters of GA biosynthesis genes in a BR-induced manner to control their expression. In summary, our study underscores a role of BRs as master regulators of GA biosynthesis and shows that this function is of major relevance for the growth and development of vascular plants.

  20. Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis

    PubMed Central

    Liu, Ming-Jung; Wu, Szu-Hsien; Chen, Ho-Ming; Wu, Shu-Hsing

    2012-01-01

    Environmental ‘light' has a vital role in regulating plant growth and development. Transcriptomic profiling has been widely used to examine how light regulates mRNA levels on a genome-wide scale, but the global role of translational regulation in the response to light is unknown. Through a transcriptomic comparison of steady-state and polysome-bound mRNAs, we reveal a clear impact of translational control on thousands of genes, in addition to transcriptomic changes, during photomorphogenesis. Genes encoding ribosomal protein are preferentially regulated at the translational level, which possibly contributes to the enhanced translation efficiency. We also reveal that mRNAs regulated at the translational level share characteristics of longer half-lives and shorter cDNA length, and that transcripts with a cis-element, TAGGGTTT, in their 5′ untranslated region have higher translatability. We report a previously neglected aspect of gene expression regulation during Arabidopsis photomorphogenesis. The identities and molecular signatures associated with mRNAs regulated at the translational level also offer new directions for mechanistic studies of light-triggered translational enhancement in Arabidopsis. PMID:22252389

  1. RNA editing of nuclear transcripts in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background RNA editing is a transcript-based layer of gene regulation. To date, no systemic study on RNA editing of plant nuclear genes has been reported. Here, a transcriptome-wide search for editing sites in nuclear transcripts of Arabidopsis (Arabidopsis thaliana) was performed. Results MPSS (massively parallel signature sequencing) and PARE (parallel analysis of RNA ends) data retrieved from public databases were utilized, focusing on one-base-conversion editing. Besides cytidine (C)-to-uridine (U) editing in mitochondrial transcripts, many nuclear transcripts were found to be diversely edited. Interestingly, a sizable portion of these nuclear genes are involved in chloroplast- or mitochondrion-related functions, and many editing events are tissue-specific. Some editing sites, such as adenosine (A)-to-U editing loci, were found to be surrounded by peculiar elements. The editing events of some nuclear transcripts are highly enriched surrounding the borders between coding sequences (CDSs) and 3′ untranslated regions (UTRs), suggesting site-specific editing. Furthermore, RNA editing is potentially implicated in new start or stop codon generation, and may affect alternative splicing of certain protein-coding transcripts. RNA editing in the precursor microRNAs (pre-miRNAs) of ath-miR854 family, resulting in secondary structure transformation, implies its potential role in microRNA (miRNA) maturation. Conclusions To our knowledge, the results provide the first global view of RNA editing in plant nuclear transcripts. PMID:21143795

  2. Transposon tagging and the study of root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Olson, M. L.; Fedoroff, N. V.

    1998-01-01

    The maize Ac-Ds transposable element family has been used as the basis of transposon mutagenesis systems that function in a variety of plants, including Arabidopsis. We have developed modified transposons and methods which simplify the detection, cloning and analysis of insertion mutations. We have identified and are analyzing two plant lines in which genes expressed either in the root cap cells or in the quiescent cells, cortex/endodermal initial cells and columella cells of the root cap have been tagged with a transposon carrying a reporter gene. A gene expressed in root cap cells tagged with an enhancer-trap Ds was isolated and its corresponding EST cDNA was identified. Nucleotide and deduced amino acid sequences of the gene show no significant similarity to other genes in the database. Genetic ablation experiments have been done by fusing a root cap-specific promoter to the diphtheria toxin A-chain gene and introducing the fusion construct into Arabidopsis plants. We find that in addition to eliminating gravitropism, root cap ablation inhibits elongation of roots by lowering root meristematic activities.

  3. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis

    PubMed Central

    Unterholzner, Simon J.; Rozhon, Wilfried; Papacek, Michael; Ciomas, Jennifer; Lange, Theo; Kugler, Karl G.; Mayer, Klaus F.; Sieberer, Tobias; Poppenberger, Brigitte

    2015-01-01

    Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone’s growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana. We reveal that Arabidopsis mutants deficient in BR signaling are severely impaired in the production of bioactive GA, which is correlated with defective GA biosynthetic gene expression. Expression of the key GA biosynthesis gene GA20ox1 in the BR signaling mutant bri1-301 rescues many of its developmental defects. We provide evidence that supports a model in which the BR-regulated transcription factor BES1 binds to a regulatory element in promoters of GA biosynthesis genes in a BR-induced manner to control their expression. In summary, our study underscores a role of BRs as master regulators of GA biosynthesis and shows that this function is of major relevance for the growth and development of vascular plants. PMID:26243314

  4. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  5. A tale of two neglected systems—structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves

    PubMed Central

    Botha, C. E. J.

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280

  6. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis.

    PubMed

    Elwell, Angela L; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P; Brooks, Tessa L Durham

    2011-02-01

    Plant growth and development is profoundly influenced by environmental conditions that laboratory experimentation typically attempts to control. However, growth conditions are not uniform between or even within laboratories and the extent to which these differences influence plant growth and development is unknown. Experiments with wild-type Arabidopsis thaliana were designed to quantify the influences of parental environment and seed size on growth and development in the next generation. A single lot of seed was planted in six environmental chambers and grown to maturity. The seed produced was mechanically sieved into small and large size classes then grown in a common environment and subjected to a set of assays spanning the life cycle. Analysis of variance demonstrated that seed size effects were particularly significant early in development, affecting primary root growth and gravitropism, but also flowering time. Parental environment affected progeny germination time, flowering and weight of seed the progeny produced. In some cases, the parental environment affected the magnitude of (interacted with) the observed seed size effects. These data indicate that life history circumstances of the parental generation can affect growth and development throughout the life cycle of the next generation to an extent that should be considered when performing genetic studies.

  7. Function Annotation of an SBP-box Gene in Arabidopsis Based on Analysis of Co-expression Networks and Promoters

    PubMed Central

    Wang, Yi; Hu, Zongli; Yang, Yuxin; Chen, Xuqing; Chen, Guoping

    2009-01-01

    The SQUAMOSA PROMOTER BINDING PROTEIN–LIKE (SPL) gene family is an SBP-box transcription family in Arabidopsis. While several physiological responses to SPL genes have been reported, their biological role remains elusive. Here, we use a combined analysis of expression correlation, the interactome, and promoter content to infer the biological role of the SPL genes in Arabidopsis thaliana. Analysis of the SPL-correlated gene network reveals multiple functions for SPL genes. Network analysis shows that SPL genes function by controlling other transcription factor families and have relatives with membrane protein transport activity. The interactome analysis of the correlation genes suggests that SPL genes also take part in metabolism of glucose, inorganic salts, and ATP production. Furthermore, the promoters of the correlated genes contain a core binding cis-element (GTAC). All of these analyses suggest that SPL genes have varied functions in Arabidopsis. PMID:19333437

  8. Effect of milling and sieving on functionality of dry powder inhalation products.

    PubMed

    Steckel, H; Markefka, P; teWierik, H; Kammelar, R

    2006-02-17

    Alpha-lactose monohydrate is the standard excipient used as diluent or carrier in dry powder inhaler (DPI) formulations. Earlier studies have already revealed that raw materials for the production of inhalation grade lactose have to be carefully selected in order to avoid batch-to-batch variability. In the present study, the effect of milling and milling intensity on the flow properties and the physico-chemical characteristics of lactose crystals has been determined. The milled lactoses were then further processed by sieving to give lactose qualities with identical size distribution data, but different batch history (non-milled and milled at different conditions). These were then used to manufacture low concentration (0.25%) drug blends with the model drugs salbutamol sulphate (SBS) and beclometasonedipropionate (BDP); the blends were analysed with a Multistage Liquid Impinger (MLI) after delivery from an Easyhaler and an Aerolizer device. It could be shown that gentle milling already results in surface defects on the lactose crystal which are further enhanced by using a higher milling intensity. Produced fine lactose particles during the milling process strongly adhere to the lactose surface and cannot be removed by compressed air which is used for the particle sizing. By trend, a higher milling intensity resulted in higher fine particle fractions (FPF) with both devices. Also, SBS was found to generally give higher fine particle fractions than BDP, independent from the device used. In conclusion, lactose pre-treatment by gentle or strong milling affects the carrier surface and thereby the aerosolization properties of drug/lactose blends produced. PMID:16377105

  9. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.

    PubMed

    Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong

    2015-12-01

    This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. PMID:26196405

  10. Elemental ZOO

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2003-04-01

    This puzzle uses the symbols of 39 elements to spell the names of 25 animals found in zoos. Underlined spaces and the names of the elements serve as clues. To solve the puzzle, students must find the symbols that correspond to the elemental names and rearrange them into the animals' names.

  11. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene.

    PubMed

    Rouse, D T; Marotta, R; Parish, R W

    1996-03-01

    A genomic clone of a group 2 lea/rab/dehydrin gene from Arabidopsis thaliana, Xero2/lti30, was cloned and sequenced. Promoter-GUS fusions were introduced into plants to analyse the promoter and determine expression patterns. Using root cultures, GUS expression was found to be moderately stimulated by abscisic acid (ABA), wounding, cold and dehydration. Results with an ABA-deficient mutant suggested endogenous ABA is required for these responses. Promoter deletion studies indicated multiple cis-acting elements are involved in the induction of the gene. GUS expression occurred in desiccated seeds, in all tissues of young seedlings and in roots (with the exception of the root tip), desiccated pollen grains, trichomes and the vascular tissues of leaves and stems in mature plants.

  12. Root system architecture: insights from Arabidopsis and cereal crops

    PubMed Central

    Smith, Stephanie; De Smet, Ive

    2012-01-01

    Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the importance of investigating specific aspects of root architecture in both the model plant Arabidopsis thaliana and (cereal) crops, presents novel insights into elements that are currently hardly addressed and provides new tools and technologies to study various aspects of root system architecture. This introduction gives a broad overview of the importance of the root system and provides a snapshot of the molecular control mechanisms associated with root branching and responses to the environment in A. thaliana and cereal crops. PMID:22527386

  13. Terpene Specialized Metabolism in Arabidopsis thaliana

    PubMed Central

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C5-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C20-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C10-, C15-, and C20-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes. PMID:22303268

  14. BRX promotes Arabidopsis shoot growth.

    PubMed

    Beuchat, Julien; Scacchi, Emanuele; Tarkowska, Danuse; Ragni, Laura; Strnad, Miroslav; Hardtke, Christian S

    2010-10-01

    • BREVIS RADIX (BRX) has been identified through a loss-of-function allele in the Umkirch-1 accession in a natural variation screen for Arabidopsis root growth vigor. Physiological and gene expression analyses have suggested that BRX is rate limiting for auxin-responsive gene expression by mediating cross-talk with the brassinosteroid pathway, as impaired root growth and reduced auxin perception of brx can be (partially) rescued by external brassinosteroid application. • Using genetic tools, we show that brx mutants also display significantly reduced cotyledon and leaf growth. • Similar to the root, the amplitude and penetrance of this phenotype depends on genetic background and shares the physiological features, reduced auxin perception and brassinosteroid rescue. Furthermore, reciprocal grafting experiments between mutant and complemented brx shoot scions and root stocks suggest that the shoot phenotypes are not an indirect consequence of the root phenotype. Finally, BRX gain-of-function lines display epinastic leaf growth and, in the case of dominant negative interference, increased epidermal cell size. Consistent with an impact of BRX on brassinosteroid biosynthesis, this phenotype is accompanied by increased brassinosteroid levels. • In summary, our results demonstrate a ubiquitous, although quantitatively variable role of BRX in modulating the growth rate in both the root and shoot.

  15. Arabidopsis Chitinases: a Genomic Survey

    PubMed Central

    Passarinho, Paul A.; de Vries, Sacco C.

    2002-01-01

    Plant chitinases (EC 3.2.1.14) belong to relatively large gene families subdivided in classes that suggest class-specific functions. They are commonly induced upon the attack of pathogens and by various sources of stress, which led to associating them with plant defense in general. However, it is becoming apparent that most of them display several functions during the plant life cycle, including taking part in developmental processes such as pollination and embryo development. The number of chitinases combined with their multiple functions has been an obstacle to a better understanding of their role in plants. It is therefore important to identify and inventory all chitinase genes of a plant species to be able to dissect their function and understand the relations between the different classes. Complete sequencing of the Arabidopsis genome has made this task feasible and we present here a survey of all putative chitinase-encoding genes accompanied by a detailed analysis of their sequence. Based on their characteristics and on studies on other plant chitinases, we propose an overview of their possible functions as well as modified annotations for some of them. PMID:22303199

  16. Early flower development in Arabidopsis.

    PubMed Central

    Smyth, D R; Bowman, J L; Meyerowitz, E M

    1990-01-01

    The early development of the flower of Arabidopsis thaliana is described from initiation until the opening of the bud. The morphogenesis, growth rate, and surface structure of floral organs were recorded in detail using scanning electron microscopy. Flower development has been divided into 12 stages using a series of landmark events. Stage 1 begins with the initiation of a floral buttress on the flank of the apical meristem. Stage 2 commences when the flower primordium becomes separate from the meristem. Sepal primordia then arise (stage 3) and grow to overlie the primordium (stage 4). Petal and stamen primordia appear next (stage 5) and are soon enclosed by the sepals (stage 6). During stage 6, petal primordia grow slowly, whereas stamen primordia enlarge more rapidly. Stage 7 begins when the medial stamens become stalked. These soon develop locules (stage 8). A long stage 9 then commences with the petal primordia becoming stalked. During this stage all organs lengthen rapidly. This includes the gynoecium, which commences growth as an open-ended tube during stage 6. When the petals reach the length of the lateral stamens, stage 10 begins. Stigmatic papillae appear soon after (stage 11), and the petals rapidly reach the height of the medial stamens (stage 12). This final stage ends when the 1-millimeter-long bud opens. Under our growing conditions 1.9 buds were initiated per day on average, and they took 13.25 days to progress through the 12 stages from initiation until opening. PMID:2152125

  17. Proteins are polyisoprenylated in Arabidopsis thaliana.

    PubMed

    Gutkowska, Malgorzata; Bieńkowski, Tomasz; Hung, Vo Si; Wanke, Malgorzata; Hertel, Jozefina; Danikiewicz, Witold; Swiezewska, Ewa

    2004-09-24

    Isoprenoid lipids were found to be covalently linked to proteins of Arabidopsis thaliana. Their identity (polyprenols: Prenol-9-11 with Pren-10 dominating and dolichols: Dol-15-17 with Dol-16 dominating) was confirmed by means of HPLC/ESI-MS with application of the multiple reaction monitoring technique as well as metabolic labeling of Arabidopsis plants with [(3)H]mevalonate and other precursors. The occurrence of typical farnesol-, geranylgeraniol-, and phytol-modified proteins was also noted. Radioisotopic labeling allowed detection of several proteins that were covalently bound to mevalonate-derived isoprenoid alcohols. A significant portion of polyisoprenylated proteins was recovered in the cytosolic/light vesicular fraction of Arabidopsis cells upon subfractionation. Taken together our data prove that a subset of plant proteins is polyisoprenylated.

  18. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, K.C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-??m fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-??m fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/ baseline concentrations were examined; however

  19. Charge-selective gate of arrayed MWCNTs for ultra high-efficient biomolecule enrichment by nano-electrostatic sieving (NES).

    PubMed

    Wu, Jen-Kuei; Wu, Yi-Shiuan; Yang, Chung-Shi; Tseng, Fan-Gang

    2013-05-15

    We report a rapid and highly-efficient biomolecule preconcentrating device based on nano-electrostatic sieving (NES) mechanism that is facilitated by multi-nanofluidic channels operated in parallel. The opening of these nanochannels is regulated by tunable charges that are generated on arrayed multi-walled carbon nanotubes (MWCNTs) gate. The NES device is fabricated by standard photolithography and plasma-enhanced chemical vapor deposition (PECVD) techniques, followed by subsequent deposition of parylene (poly(p-xylylene))-C on vertically grown MWCNTs in order to obtain arrayed multi-nanochannels with mean pore sizes that are comparable to the thickness of an electrical double layer (EDL). The enrichment efficiency for charged analytes is dependent on electrostatic repulsion, which is regulated by the distribution of the local electric field on the MWCNTs gate. The NES device exhibits polarity selectivity on the analytes and performs efficient collection and separation of biomolecules by probing the surface charge density dependence on the applied gate field. A tunable gate of the parylene-MWCNT nanochannels was used as size sieving devices for nano-scale biomolecules. The experimental results for the collection of FITC-labeled bovine serum albumin (BSA, 0.033nM) were as high as nearly 10(6) fold after only 45min. These data are attributed to the in-parallel molecule sieving process as conducted by the many nanochannels formed among the MWCNTs. This device allows uncharged polar molecules, such as water, to rapidly pass through thus enable highly efficient bio-molecule concentration for the application to ultra-high sensitive biosensing. PMID:23391690

  20. Gibberellins control fruit patterning in Arabidopsis thaliana

    PubMed Central

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A.; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-01-01

    The Arabidopsis basic helix–loop–helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  1. Gibberellins control fruit patterning in Arabidopsis thaliana.

    PubMed

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  2. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    SciTech Connect

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  3. Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana

    PubMed Central

    Simon, Lauriane; Voisin, Maxime; Tatout, Christophe; Probst, Aline V.

    2015-01-01

    The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation. PMID:26648952

  4. Elemental health

    SciTech Connect

    Tonneson, L.C.

    1997-01-01

    Trace elements used in nutritional supplements and vitamins are discussed in the article. Relevant studies are briefly cited regarding the health effects of selenium, chromium, germanium, silicon, zinc, magnesium, silver, manganese, ruthenium, lithium, and vanadium. The toxicity and food sources are listed for some of the elements. A brief summary is also provided of the nutritional supplements market.

  5. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  6. Biosynthetic Pathways of Brassinolide in Arabidopsis1

    PubMed Central

    Noguchi, Takahiro; Fujioka, Shozo; Choe, Sunghwa; Takatsuto, Suguru; Tax, Frans E.; Yoshida, Shigeo; Feldmann, Kenneth A.

    2000-01-01

    Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone → 3-dehydro-6-deoxoteasterone → 6-deoxotyphasterol → 6-deoxocastasterone → 6α-hydroxycastasterone → castasterone → BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone → 3-dehydroteasterone → typhasterol → castasterone → BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants. PMID:10982435

  7. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  8. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  9. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    PubMed

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: <0.1, 2-0.1, and >2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at <45%. The highest efficiency by washing for Pb, Cd, Zn, and As was from the soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended.

  10. Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, Yanhui; Zhou, Xuping; Jiang, Tingshun; Li, Changsheng; Yin, Hengbo

    2010-03-01

    Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N 2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 ∘C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 ∘C utilizing Fe/MCM-41 as a catalytic template.

  11. N-methyldiethanolamine: a multifunctional structure-directing agent for the synthesis of SAPO and AlPO molecular sieves.

    PubMed

    Wang, Dehua; Tian, Peng; Fan, Dong; Yang, Miao; Gao, Beibei; Qiao, Yuyan; Wang, Chan; Liu, Zhongmin

    2015-05-01

    In the present study, N-methyldiethanolamine (MDEA) is demonstrated to be a multifunctional structure-directing agent for the synthesis of aluminophosphate-based molecular sieves. Four types of molecular sieves, including SAPO-34, -35, AlPO-9 and -22, are for the first time acquired with MDEA as a novel template. The phase selectivity of the present synthesis is found to be condition-dependent. SAPO-34 (CHA) crystallizes from a conventional hydrothermal system with a higher MDEA concentration. When using MDEA as both the template and solvent, pure SAPO-35 (LEV) is obtained from the synthetic gel with a high P2O5/Al2O3 ratio of (2-3), in which the concentration of MDEA could be varied in a wide range. AlPO-9 and AlPO-22 (AWW) are synthesized under the similar conditions to SAPO-35, except without the addition of Si source. The physicochemical properties of the obtained samples are investigated by XRD, XRF, SEM, N2 physisorption, TG-DSC, and various NMR spectra ((13)C, (29)Si, (27)Al and (31)P). Both SAPO-34 and SAPO-35 show good thermal stability, large surface area, and high pore volume. The catalytic performance of SAPO-34 is evaluated by the methanol-to-olefins (MTO) reaction and a good (C2H4+C3H6) selectivity of 82.7% has been achieved. PMID:25616250

  12. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    PubMed

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: <0.1, 2-0.1, and >2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at <45%. The highest efficiency by washing for Pb, Cd, Zn, and As was from the soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. PMID:26969066

  13. Time-Dependent CO[subscript 2] Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve

    SciTech Connect

    Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A.; Allen, Andrew J.; Snyder, Chad R.; Chiu, Chun; Siderius, Daniel W.; Li, Lan; Cockayne, Eric; Espinal, Anais E.; Suib, Steven L.

    2014-09-24

    The development of sorbents for next-generation CO{sub 2} mitigation technologies will require better understanding of CO{sub 2}/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO{sub 2} sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO{sub 2} sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a 'gate-keeping' role of the cation in the tunnel, only allowing CO{sub 2} molecules to enter fully into the tunnel via a highly unstable transient state when CO{sub 2} loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO{sub 2} is responsible for the observed hysteretic behavior.

  14. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  15. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  16. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer

    NASA Astrophysics Data System (ADS)

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-01

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons’ self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  17. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    PubMed Central

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  18. CAMTA 1 regulates drought responses in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. Results In camta1, root development was abolished showing high-susceptibility to induced osmotic stress resulting in small wrinkled rosette leaves and stunted primary root. In camta1 under drought condition, we identified growth retardation, poor WUE, low photosystem II efficiency, decline in RWC and higher sensitivity to drought with reduced survivability. The microarray analysis of drought treated camta1 revealed that CAMTA1 regulates “drought recovery” as most indicative pathway along with other stress response, osmotic balance, apoptosis, DNA methylation and photosynthesis. Interestingly, majority of positively regulated genes were related to plasma membrane and chloroplast. Further, our analysis indicates that CAMTA1 regulates several stress responsive genes including RD26, ERD7, RAB18, LTPs, COR78, CBF1, HSPs etc. and promoter of these genes were enriched with CAMTA recognition cis-element. CAMTA1 probably regulate drought recovery by regulating expression of AP2-EREBP transcription factors and Abscisic acid response. Conclusion CAMTA1 rapidly changes broad spectrum of responsive genes of membrane integrity and photosynthetic machinery by generating ABA response for challenging drought stress. Our results demonstrate the important role of CAMTA1 in regulating drought response in Arabidopsis, thus could be genetically engineered for improving drought tolerance in crop. PMID:23547968

  19. Activation and Micropore Structure Determination of Carbon-Fiber Composite Molecular Sieves

    SciTech Connect

    Jagtoyen, M.

    1995-01-01

    levels of burnoff above about 40%, the extent of contraction is sufficient to produce stresses that result in fracture. Activated composites have been evaluated for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus has been constructed specifically for this purpose. Samples activated to low burn-off (5-7% wt loss) with low surface areas (from 300-500m{sup 2}/g) give much better separation of CO{sub 2} and CH{sub 4}, than samples produced at higher burnoff, and there appears to be no benefit in producing composites at burnoffs higher than 10%. The greater separation efficiency obtained at low burnoff means that the most effective CFCMS can be produced at relatively low cost. Continuing work will attempt to define the parameters that influence this gas separation, and whether these are applicable to other gas mixtures. Five samples of CFCMS have been recently prepared for shipment to British Oxygen Corporation (BOC) for testing as molecular sieves. The samples were machined to specific dimensions at ORNL (approx. 2.5 cm diameter x 1.25 cm thick) and activated at CAER. The samples were produced to different burn-off, but all have relatively narrow pore size distributions with average pore diameters around 6A.

  20. Superheavy Elements

    ERIC Educational Resources Information Center

    Tsang, Chin Fu

    1975-01-01

    Discusses the possibility of creating elements with an atomic number of around 114. Describes the underlying physics responsible for the limited extent of the periodic table and enumerates problems that must be overcome in creating a superheavy nucleus. (GS)

  1. Elemental Education.

    ERIC Educational Resources Information Center

    Daniel, Esther Gnanamalar Sarojini; Saat, Rohaida Mohd.

    2001-01-01

    Introduces a learning module integrating three disciplines--physics, chemistry, and biology--and based on four elements: carbon, oxygen, hydrogen, and silicon. Includes atomic model and silicon-based life activities. (YDS)

  2. 17th International Conference on Arabidopsis Research

    SciTech Connect

    Judith Bender

    2006-07-01

    The 17th International Conference on Arabidopsis Research was held at the University of Madison, Wisconsin from June 27- July 2, 2006. ICAR-2006 included approximately 625 scientists from across the world. The scientific program was of excellent quality featuring 73 talks, including 30 from invited speakers. There were also 6 community-organized workshops (facilitated by conference staff) featuring additional talks on topics including ‘Submitting data to long-term repositories,’ ‘TAIR introductory workshop,’ ‘Web services and demonstration,’ ‘Public engagement: broadening the impact of your research,’ ‘Systems biology approaches to analysis of metabolic and regulatory networks of Arabidopsis,’ and ‘Mechanotransduction in Arabidopsis.’ Approximately 440 posters were presented in general topic areas including, among others, Development, Modeling/Other Systems, Energy, Environment, and Genetic/Epigenetic mechanisms. Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up a significant portion of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The North American Arabidopsis Steering Committee (NAASC) continued its outreach effort and again sponsored two special luncheons to encourage personal and professional development of young scientists and also underrepresented minorities. The ‘Emerging Scientists Luncheon’ featured 10 graduate students selected on the basis of scientific excellence of their submitted research abstracts. The ‘Minority Funding Luncheon,’ featured 8 awardees selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from

  3. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome.

    PubMed

    Becker, Claude; Hagmann, Jörg; Müller, Jonas; Koenig, Daniel; Stegle, Oliver; Borgwardt, Karsten; Weigel, Detlef

    2011-09-20

    Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles, and these can influence the expression of nearby genes. However, to understand their role in evolution, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.

  4. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock.

    PubMed

    Dai, Shunhong; Wei, Xiaoping; Pei, Liping; Thompson, Rebecca L; Liu, Yi; Heard, Jacqueline E; Ruff, Thomas G; Beachy, Roger N

    2011-03-01

    BROTHER OF LUX ARRHYTHMO (BOA) is a GARP family transcription factor in Arabidopsis thaliana and is regulated by circadian rhythms. Transgenic lines that constitutively overexpress BOA exhibit physiological and developmental changes, including delayed flowering time and increased vegetative growth under standard growing conditions. Arabidopsis circadian clock protein CIRCADIAN CLOCK ASSOCIATED1 (CCA1) binds to the evening element of the BOA promoter and negatively regulates its expression. Furthermore, the period of BOA rhythm was shortened in cca1-11, lhy-21 (for LATE ELONGATED HYPOCOTYL), and cca1-11 lhy-21 genetic backgrounds. BOA binds to the promoter of CCA1 through newly identified promoter binding sites and activates the transcription of CCA1 in vivo and in vitro. In transgenic Arabidopsis lines that overexpress BOA, the period length of CCA1 rhythm was increased and the amplitude was enhanced. Rhythmic expression of other clock genes, including LHY, GIGANTEA (GI), and TIMING OF CAB EXPRESSION1 (TOC1), was altered in transgenic lines that overexpress BOA. Rhythmic expression of BOA was also affected in mutant lines of toc1-1, gi-3, and gi-4. Results from these studies indicate that BOA is a critical component of the regulatory circuit of the circadian clock.

  5. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development1[OPEN

    PubMed Central

    Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2015-01-01

    TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. PMID:26417009

  6. Systemic and local induction of an Arabidopsis thionin gene by wounding and pathogens.

    PubMed

    Vignutelli, A; Wasternack, C; Apel, K; Bohlmann, H

    1998-05-01

    The Arabidopsis Thi2.1 thionin gene was cloned and sequenced. The promoter was fused to the uidA gene and stably transformed into Arabidopsis to study its regulation. GUS expression levels correlated with the steady-state levels of Thi2.1 mRNA, thus demonstrating that the promoter is sufficient for the regulation of the Thi2.1 gene. The sensitivity of the Thi2.1 gene to methyl jasmonate was found to be developmentally determined. Systemic and local expression could be induced by wounding and inoculation with Fusarium oxysporum f sp. matthiolae. A deletion analysis of the promoter identified a fragment of 325 bp upstream of the start codon, which appears to contain all the elements necessary for the regulation of the Thi2.1 gene. These results support the view that thionins are defence proteins, and indicate the possibility that resistance of Arabidopsis plants to necrotrophic fungal pathogens is mediated through the octadecanoid pathway. PMID:9628023

  7. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  8. Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis.

    PubMed

    Gao, Wei; Li, Hong-Ye; Xiao, Shi; Chye, Mee-Len

    2010-08-01

    In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [(14)C]linoleoyl-CoA and [(14)C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.

  9. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response. PMID:27486921

  10. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis.

    PubMed

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-09-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features.

  11. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis.

    PubMed

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-09-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features. PMID:23023171

  12. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  13. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    NASA Astrophysics Data System (ADS)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  14. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    SciTech Connect

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule

    2015-05-15

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  15. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2.

    PubMed

    Chen, Kai-Jie; Madden, David G; Pham, Tony; Forrest, Katherine A; Kumar, Amrit; Yang, Qing-Yuan; Xue, Wei; Space, Brian; Perry, John J; Zhang, Jie-Peng; Chen, Xiao-Ming; Zaworotko, Michael J

    2016-08-22

    Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity.

  16. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  17. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents

    PubMed Central

    Martínez-Franco, Raquel; Moliner, Manuel; Yun, Yifeng; Sun, Junliang; Wan, Wei; Zou, Xiaodong; Corma, Avelino

    2013-01-01

    The synthesis of crystalline microporous materials containing large pores is in high demand by industry, especially for the use of these materials as catalysts in chemical processes involving bulky molecules. An extra-large–pore silicoaluminophosphate with 16-ring openings, ITQ-51, has been synthesized by the use of bulky aromatic proton sponges as organic structure-directing agents. Proton sponges show exceptional properties for directing extra-large zeolites because of their unusually high basicity combined with their large size and rigidity. This extra-large–pore material is stable after calcination, being one of the very few examples of hydrothermally stable molecular sieves containing extra-large pores. The structure of ITQ-51 was solved from submicrometer-sized crystals using the rotation electron diffraction method. Finally, several hypothetical zeolites related to ITQ-51 have been proposed. PMID:23431186

  18. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2.

    PubMed

    Chen, Kai-Jie; Madden, David G; Pham, Tony; Forrest, Katherine A; Kumar, Amrit; Yang, Qing-Yuan; Xue, Wei; Space, Brian; Perry, John J; Zhang, Jie-Peng; Chen, Xiao-Ming; Zaworotko, Michael J

    2016-08-22

    Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity. PMID:27439315

  19. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  20. Titanium(IV) in the organic-structure-directing-agent-free synthesis of hydrophobic and large-pore molecular sieves as redox catalysts.

    PubMed

    Wang, Jingui; Yokoi, Toshiyuki; Kondo, Junko N; Tatsumi, Takashi; Zhao, Yanli

    2015-08-10

    Titanium(IV) incorporated into the framework of molecular sieves can be used as a highly active and sustainable catalyst for the oxidation of industrially important organic molecules. Unfortunately, the current process for the incorporation of titanium(IV) requires a large amount of expensive organic molecules used as organic-structure-directing agents (OSDAs), and this significantly increases the production costs and causes environmental problems owing to the removal of OSDAs by pyrolysis. Herein, an OSDA-free process was developed to incorporate titanium(IV) into BEA-type molecular sieves for the first time. More importantly, the hydrophobic environment and the robust, 3 D, and large pore structure of the titanium(IV)-incorporated molecular sieves fabricated from the OSDA-free process created a catalyst that was extremely active and selective for the epoxidation of bulky cyclooctene in comparison to Ti-incorporated BEA-type molecular sieves synthesized with OSDAs and commercial titanosilicate TS-1. PMID:26073555

  1. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases.

    PubMed

    Kupriyanova, E V; Mamoshina, P O; Ezhova, T A

    2015-10-01

    Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.

  2. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  3. Unraveling the circadian clock in Arabidopsis

    PubMed Central

    Wang, Xiaoxue; Ma, Ligeng

    2013-01-01

    The circadian clock is an endogenous timing system responsible for coordinating an organism’s biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcriptional and posttranslational mechanisms. The discovery of the DNA-binding and repressive activities of TOC1 has overturned our initial concept of its function in the circadian clock. The alternative splicing of circadian clock-related genes plays an essential role in normal functioning of the clock and enables organisms to sense environmental changes. In this review, we describe the regulatory mechanisms of the circadian clock that have been identified in Arabidopsis. PMID:23221775

  4. DYn-2 Based Identification of Arabidopsis Sulfenomes*

    PubMed Central

    Akter, Salma; Huang, Jingjing; Bodra, Nandita; De Smet, Barbara; Wahni, Khadija; Rombaut, Debbie; Pauwels, Jarne; Gevaert, Kris; Carroll, Kate; Van Breusegem, Frank; Messens, Joris

    2015-01-01

    Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana. PMID:25693797

  5. From genome to function: the Arabidopsis aquaporins

    PubMed Central

    Quigley, Francoise; Rosenberg, Joshua M; Shachar-Hill, Yair; Bohnert, Hans J

    2002-01-01

    Background In the post-genomic era newly sequenced genomes can be used to deduce organismal functions from our knowledge of other systems. Here we apply this approach to analyzing the aquaporin gene family in Arabidopsis thaliana. The aquaporins are intrinsic membrane proteins that have been characterized as facilitators of water flux. Originally termed major intrinsic proteins (MIPs), they are now also known as water channels, glycerol facilitators and aqua-glyceroporins, yet recent data suggest that they facilitate the movement of other low-molecular-weight metabolites as well. Results The Arabidopsis genome contains 38 sequences with homology to aquaporin in four subfamilies, termed PIP, TIP, NIP and SIP. We have analyzed aquaporin family structure and expression using the A. thaliana genome sequence, and introduce a new NMR approach for the purpose of analyzing water movement in plant roots in vivo. Conclusions Our preliminary data indicate a strongly transcellular component for the flux of water in roots. PMID:11806824

  6. Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana.

    PubMed

    Sánchez-Moreiras, Adela M; Martínez-Peñalver, Ana; Reigosa, Manuel J

    2011-06-15

    Measurements of chlorophyll a fluorescence, nutrient and trace elements, total protein content and malonyldialdehyde in leaves of Arabidopsis thaliana between 1 and 192 h after treatment with 0, 1 or 3 mM 2-3H-benzoxazolinone (BOA), together with imaging of chlorophyll a fluorescence and of the distributions of hydrogen peroxide and superoxide anion, suggested that the primary phytotoxic action of BOA is the induction of premature senescence, and that oxidative stress is a secondary effect that sets in a day or two later.

  7. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.

    PubMed

    Brand, U; Fletcher, J C; Hobe, M; Meyerowitz, E M; Simon, R

    2000-07-28

    The fate of stem cells in plant meristems is governed by directional signaling systems that are regulated by negative feedback. In Arabidopsis thaliana, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell-restricting pathway. We used transgenic plants overexpressing CLV3 to show that meristem cell accumulation and fate depends directly on the level of CLV3 activity and that CLV3 signaling occurs exclusively through a CLV1/CLV2 receptor kinase complex. We also demonstrate that the CLV pathway acts by repressing the activity of the transcription factor WUSCHEL, an element of the positive, stem cell-promoting pathway. PMID:10915624

  8. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction

    PubMed Central

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-01-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system’s performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a ‘silver’ CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%). Database URL: SilverCID–The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530).

  9. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-12-31

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  10. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction.

    PubMed

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-07-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system's performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a 'silver' CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%).Database URL: SilverCID-The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530). PMID:27630201

  11. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction

    PubMed Central

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-01-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system’s performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a ‘silver’ CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%). Database URL: SilverCID–The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530). PMID:27630201

  12. Luminescence in CaSO4 : Dy phosphor - dependence on grain agglomeration, sintering temperature, sieving and washing

    NASA Astrophysics Data System (ADS)

    Lakshmanan, A. R.; Jose, M. T.; Ponnusamy, V.; Vivek Kumar, P. R.

    2002-02-01

    In the recently developed high-sensitive CaSO4 : Dy phosphor, sieving before the high-temperature sintering treatment has successfully eliminated particle agglomeration during subsequent sintering, and has further enhanced its thermostimulated luminescence (TSL) sensitivity to γ-rays. The reduction in TSL sensitivity of higher sized grains observed earlier following the procedure of sieving after sintering has also more or less vanished. Maximum TSL sensitivity is seen after sintering around 700°C, whereas maximum photoluminescent (PL) sensitivity is seen after sintering around 325°C. While the observed increase in TSL sensitivity (by 30%) with increasing sintering temperature in the range 325-700°C is explained on the basis of diffusion of Dy3+ ions from the surface to the whole volume of the grains (0-75 µm), the drastic decrease (by a factor of 3) in PL sensitivity with increasing sintering temperature is explained on the basis of change in the Dy3+ environment on the grain surface perhaps due to oxygen incorporation. Washing with water and acetone, which affect mainly the surface traps, enhances the PL sensitivity of CaSO4 : Dy slightly; however, it does not influence TSL sensitivity very significantly. Grinding reduces PL in general, but no such trend was noticed in TSL which supports the conclusion that PL originates mainly from surface traps since grinding affects mainly the grain surface. However, the sharp reduction in TSL and PL sensitivities observed at 400°C indicates that an unusual process takes place near that sintering temperature.

  13. A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Wang, Peifu; Niu, Futao; Huang, Cunping; Li, Yang; Yao, Weifeng

    2016-08-01

    A small-pore silicon-substituted silicon aluminum phosphate (SAPO-34) molecular sieve, for the first time, is reported to significantly increase both the activity and life span of Ag3PO4 photocatalyst for visible-light degradation of methylene blue (MB) and rhodamine B (RhB). Results show that 60 wt.% Ag3PO4/SAPO-34 exhibits the highest photocatalytic degradation efficiencies for both MB (91.0% degradation within 2.0 min) and RhB (91.0% degradation within 7.0 min). In comparison, pure Ag3PO4 powder photocatalyst requires 8.0 min and 12.0 min for decomposing 91.0% of MB and RhB, respectively. During MB degradation the rate constant for 60 wt.% Ag3PO4/SAPO-34 increases 317.2% in comparison with the rate constant of pure Ag3PO4. This activity is also much higher than literature reported composite or supported Ag3PO4 photocatalysts. In three photocatalytic runs for the degradation of RhB, the rate constant for 60 wt.% Ag3PO4/SAPO-34 reduces from 0.33 to 0.18 min-1 (45.5% efficiency loss). In contrast, the rate constant of pure Ag3PO4 catalyst decreases from 0.2 to 0.07 min-1 (80.0% efficiency loss). All experimental results have shown that small pores and zero light absorption loss of SAPO-34 molecular sieves minimize Ag3PO4 loading, enhance photocatalytic activity and prolong the lifespan of Ag3PO4 photocatalyst.

  14. Meiosis in autopolyploid and allopolyploid Arabidopsis.

    PubMed

    Lloyd, Andrew; Bomblies, Kirsten

    2016-04-01

    All newly formed polyploids face a challenge in meiotic chromosome segregation due to the presence of an additional set of chromosomes. Nevertheless, naturally occurring auto and allopolyploids are common and generally show high fertility, showing that evolution can find solutions. Exactly how meiosis is adapted in these cases, however, remains a mystery. The rise of Arabidopsis as a model genus for polyploid and meiosis research has seen several new studies begin to shed light on this long standing question.

  15. Flavonoid-specific staining of Arabidopsis thaliana.

    PubMed

    Sheahan, J J; Rechnitz, G A

    1992-12-01

    Crop yields may be threatened by increases in UV-B radiation resulting from depletion of the ozone layer. In higher plants, the presence of flavonols provides a protective mechanism, and we report a novel staining procedure for the visualization of such protectants in plant tissue. It is shown that the proposed technique provides sensitive and specific fluorescence of flavonoids in chlorophyll-bleached tissue of Arabidopsis thaliana.

  16. Fluorescence-Activated Nucleolus Sorting in Arabidopsis.

    PubMed

    Pontvianne, Frédéric; Boyer-Clavel, Myriam; Sáez-Vásquez, Julio

    2016-01-01

    Nucleolar isolation allows exhaustive characterization of the nucleolar content. Centrifugation-based protocols are not adapted to isolation of nucleoli directly from a plant tissue because of copurification of cellular debris. We describe here a method that allows the purification of nucleoli using fluorescent-activated cell sorting from Arabidopsis thaliana leaves. This approach requires the expression of a specific nucleolar protein such as fibrillarin fused to green fluorescent protein in planta. PMID:27576720

  17. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  18. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil.

    PubMed

    Markey, Andrea M; Clark, C Scott; Succop, Paul A; Roda, Sandra

    2008-03-01

    Soil samples collected in housing areas with potential lead contamination generally are analyzed with flame atomic absorption spectrometry (FAAS) or other laboratory methods. Previous work indicates that field-portable X-ray fluorescence (XRF) analysis is capable of detecting soil lead levels comparable to those detected by FAAS in samples sieved to less than 125 microm in a laboratory. A considerable savings, both economical and in laboratory reporting time, would occur if a practical field method could be developed that does not require laboratory digestion and analysis. The XRF method also would provide immediate results that would facilitate the provision of information to residents and other interested parties more quickly than is possible with conventional laboratory methods. The goal of the study reported here was to determine the practicality of using the field-portable XRF analyzer for analysis of lead in soil samples that were sieved in the field. The practicality of using the XRF was determined by the amount of time it took to prepare and analyze the samples in the field and by the ease with which the procedure could be accomplished on site. Another objective of the study was to determine the effects of moisture on the process of sieving the soil. Seventy-eight samples were collected from 30 locations near 10 houses and were prepared and analyzed at the locations where they were collected. Mean soil lead concentrations by XRF were 816 ppm before drying and 817 ppm after drying, and by laboratory FAAS were 1,042 ppm. Correlation of field-portable XRF and FAAS results was excellent for samples sieved to less than 125 microm, with R2 values of .9902 and .992 before and after drying, respectively. The saturation ranged from 10 percent to 90 percent. At 65 percent saturation or higher, it was not feasible to sieve the soil in the field without a thorough drying step, since the soil would not pass through the sieve. Therefore the field method with sieving was

  19. Element Research.

    ERIC Educational Resources Information Center

    Herald, Christine

    2001-01-01

    Describes a research assignment for 8th grade students on the elements of the periodic table. Students use web-based resources and a chemistry handbook to gather information, construct concept maps, and present the findings to the full class using the mode of their choice: a humorous story, a slideshow or gameboard, a brochure, a song, or skit.…

  20. Mercury, elemental

    Integrated Risk Information System (IRIS)

    Mercury , elemental ; CASRN 7439 - 97 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  1. Analysis of the Arabidopsis Mitochondrial Proteome1

    PubMed Central

    Millar, A. Harvey; Sweetlove, Lee J.; Giegé, Philippe; Leaver, Christopher J.

    2001-01-01

    The complete set of nuclear genes that encode proteins targeted to mitochondria in plants is currently undefined and thus the full range of mitochondrial functions in plants is unknown. Analysis of two-dimensional gel separations of Arabidopsis cell culture mitochondrial protein revealed approximately 100 abundant proteins and 250 low-abundance proteins. Comparison of subfractions of mitochondrial protein on two-dimensional gels provided information on the soluble, membrane, or integral membrane locations of this protein set. A total of 170 protein spots were excised, trypsin-digested, and matrix-assisted laser desorption ionization/time of flight mass spectrometry spectra obtained. Using this dataset, 91 of the proteins were identified by searching translated Arabidopsis genomic databases. Of this set, 81 have defined functions based on sequence comparison. These functions include respiratory electron transport, tricarboxylic acid cycle metabolism, amino acid metabolism, protein import, processing, and assembly, transcription, membrane transport, and antioxidant defense. A total of 10 spectra were matched to Arabidopsis putative open reading frames for which no specific function has been determined. A total of 64 spectra did not match to an identified open reading frame. Analysis of full-length putative protein sequences using bioinformatic tools to predict subcellular targeting (TargetP, Psort, and MitoProt) revealed significant variation in predictions, and also a lack of mitochondrial targeting prediction for several characterized mitochondrial proteins. PMID:11743115

  2. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions

    PubMed Central

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-01-01

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available. PMID:26404238

  3. Transcriptional profiling of the Arabidopsis embryo.

    PubMed

    Spencer, Matthew W B; Casson, Stuart A; Lindsey, Keith

    2007-02-01

    We have used laser-capture microdissection to isolate RNA from discrete tissues of globular, heart, and torpedo stage embryos of Arabidopsis (Arabidopsis thaliana). This was amplified and analyzed by DNA microarray using the Affymetrix ATH1 GeneChip, representing approximately 22,800 Arabidopsis genes. Cluster analysis showed that spatial differences in gene expression were less significant than temporal differences. Time course analysis reveals the dynamics and complexity of gene expression in both apical and basal domains of the developing embryo, with several classes of synexpressed genes identifiable. The transition from globular to heart stage is associated in particular with an up-regulation of genes involved in cell cycle control, transcriptional regulation, and energetics and metabolism. The transition from heart to torpedo stage is associated with a repression of cell cycle genes and an up-regulation of genes encoding storage proteins, and pathways of cell growth, energy, and metabolism. The torpedo stage embryo shows strong functional differentiation in the root and cotyledon, as inferred from the classes of genes expressed in these tissues. The time course of expression of the essential EMBRYO-DEFECTIVE genes shows that most are expressed at unchanging levels across all stages of embryogenesis. We show how identified genes can be used to generate cell type-specific markers and promoter activities for future application in cell biology.

  4. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  5. Superheavy Elements

    NASA Astrophysics Data System (ADS)

    Hofmann, S.

    The nuclear shell model predicts that the next doubly magic shell closure beyond 208Pb is at a proton number Z=114, 120, or 126 and at a neutron number N=172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical `SuperHeavy Elements' (SHEs). Experimental methods have been developed which allowed for the identification of new elements at production rates of one atom per month. Using cold fusion reactions which are based on lead and bismuth targets, relatively neutron-deficient isotopes of the elements from 107 to 113 were synthesized at GSI in Darmstadt, Germany, and/or at RIKEN in Wako, Japan. In hot fusion reactions of 48Ca projectiles with actinide targets more neutron-rich isotopes of the elements from 112 to 116 and even 118 were produced at the Flerov Laboratory of Nuclear Reactions (FLNR) at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. Recently, part of these data which represent the first identification of nuclei located on the predicted island of SHEs were confirmed in two independent experiments. The decay data reveal that for the heaviest elements, the dominant decay mode is α emission rather than fission. Decay properties as well as reaction cross-sections are compared with results of theoretical studies. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the detailed exploration of the region of spherical SHEs will be in the center of interest of future experimental work. New data will certainly challenge theoretical studies on the mechanism of the synthesis, on the nuclear decay properties, and on the chemical behavior of these heaviest atoms at the limit of stability.

  6. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression. PMID:26227242

  7. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.

    PubMed

    Shi, Haitao; Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J; He, Chaozu

    2015-10-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring small molecule that acts as an important secondary messenger in plant stress responses. However, the mechanism underlying the melatonin-mediated signaling pathway in plant stress responses has not been established. C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) encode transcription factors that play important roles in plant stress responses. This study has determined that endogenous melatonin and transcripts level of CBFs (AtCBF1, AtCBF2, and AtCBF3) in Arabidopsis leaves were significantly induced by salt, drought, and cold stresses and by pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 infection. Moreover, both exogenous melatonin treatment and overexpression of CBFs conferred enhanced resistance to both abiotic and biotic stresses in Arabidopsis. Notably, AtCBFs and exogenous melatonin treatment positively regulated the mRNA expression of several stress-responsive genes (COR15A, RD22, and KIN1) and accumulation of soluble sugars content such as sucrose in Arabidopsis under control and stress conditions. Additionally, exogenous sucrose also conferred improved resistance to both abiotic and biotic stresses in Arabidopsis. Taken together, this study indicates that AtCBFs confer enhanced resistance to both abiotic and biotic stresses, and AtCBF-mediated signaling pathway and sugar accumulation may be involved in melatonin-mediated stress response in Arabidopsis, at least partially.

  8. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  9. Comparative genomics of Arabidopsis and maize: prospects and limitations

    PubMed Central

    Brendel, Volker; Kurtz, Stefan; Walbot, Virginia

    2002-01-01

    The completed Arabidopsis genome seems to be of limited value as a model for maize genomics. In addition to the expansion of repetitive sequences in maize and the lack of genomic micro-colinearity, maize-specific or highly-diverged proteins contribute to a predicted maize proteome of about 50,000 proteins, twice the size of that of Arabidopsis. PMID:11897028

  10. How to grow transgenic Arabidopsis in the field.

    PubMed

    Jänkänpää, Hanna Johansson; Jansson, Stefan

    2012-01-01

    Arabidopsis is naturally adapted to habitats in which both biotic variables (e.g., light, wind, and humidity) and abiotic variables (e.g., competition, herbivory, and pathogen densities) strongly fluctuate. Hence, conditions in controlled growth chambers (in which Arabidopsis is typically grown for scientific experiments) differ substantially from those in natural environments. In order to mimic more closely natural conditions, we grow Arabidopsis outdoors under "semi-natural" field conditions. Performing experiments on transgenic Arabidopsis grown in the field that are sufficiently reliable for publication is challenging. In this chapter, we present some of our experiences based on 10 years of field experimentation, which may be of use to researchers seeking to perform field experiments using transgenic Arabidopsis.

  11. The word landscape of the non-coding segments of the Arabidopsis thaliana genome

    PubMed Central

    Lichtenberg, Jens; Yilmaz, Alper; Welch, Joshua D; Kurz, Kyle; Liang, Xiaoyu; Drews, Frank; Ecker, Klaus; Lee, Stephen S; Geisler, Matt; Grotewold, Erich; Welch, Lonnie R

    2009-01-01

    Background Genome sequences can be conceptualized as arrangements of motifs or words. The frequencies and positional distributions of these words within particular non-coding genomic segments provide important insights into how the words function in processes such as mRNA stability and regulation of gene expression. Results Using an enumerative word discovery approach, we investigated the frequencies and positional distributions of all 65,536 different 8-letter words in the genome of Arabidopsis thaliana. Focusing on promoter regions, introns, and 3' and 5' untranslated regions (3'UTRs and 5'UTRs), we compared word frequencies in these segments to genome-wide frequencies. The statistically interesting words in each segment were clustered with similar words to generate motif logos. We investigated whether words were clustered at particular locations or were distributed randomly within each genomic segment, and we classified the words using gene expression information from public repositories. Finally, we investigated whether particular sets of words appeared together more frequently than others. Conclusion Our studies provide a detailed view of the word composition of several segments of the non-coding portion of the Arabidopsis genome. Each segment contains a unique word-based signature. The respective signatures consist of the sets of enriched words, 'unwords', and word pairs within a segment, as well as the preferential locations and functional classifications for the signature words. Additionally, the positional distributions of enriched words within the segments highlight possible functional elements, and the co-associations of words in promoter regions likely represent the formation of higher order regulatory modules. This work is an important step toward fully cataloguing the functional elements of the Arabidopsis genome. PMID:19814816

  12. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    PubMed

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function. PMID:26786939

  13. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    PubMed

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

  14. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana

    PubMed Central

    Hundertmark, Michaela; Hincha, Dirk K

    2008-01-01

    Background LEA (late embryogenesis abundant) proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE) and/or low temperature response (LTRE) elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for future efforts to elucidate

  15. Molecule mechanism of stem cells in Arabidopsis thaliana.

    PubMed

    Zhang, Wenjin; Yu, Rongming

    2014-07-01

    Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  16. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana.

    PubMed

    Mahalingam, Ramamurthy; Jambunathan, Niranjani; Gunjan, Samir Kumar; Faustin, Enock; Weng, Hua; Ayoubi, Patricia

    2006-07-01

    We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis. Temporal patterns of ROS following a 6 h exposure to 300 nL L(-1) of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Down-regulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death. PMID:17080957

  17. Molecular analysis of ethylene-insensitive mutants in arabidopsis

    SciTech Connect

    Meyerowitz, E.

    1991-01-01

    The subject of this study is the biochemical basis of ethylene reception. The Arabidopsis thaliana ETR gene codes for the ethylene receptor or is involved in transduction of the ethylene-generated signal. We have cloned an etr mutation which results in a decrease in the ethylene response of the plant, with a decrease in ethylene binding of about five-fold. Two genes have been found in the cloned region which confer resistance. By sequence analysis, the first protein contains three distinct regions: a transmembrane region, a serine/threonine protein kinase region, and a control region similar to the RAS-binding region of yeast adenylate cyclase. The second protein contains a zinc-finger; since sequence of the first protein shows no mutant-dependent changes, and transition metals have been implicated in ethylene binding, this protein could be the ETR gene product. However, no mutant dependent differences have been found in this protein, either. The mutation could be upstream of the coding region of either gene and involve regulatory elements, so we are continuing to sequence. (MHB)

  18. Whole-mount immunolocalization to study female meiosis in Arabidopsis.

    PubMed

    Escobar-Guzmán, Rocio; Rodríguez-Leal, Daniel; Vielle-Calzada, Jean-Philippe; Ronceret, Arnaud

    2015-10-01

    Here we describe a whole-mount immunolocalization protocol to follow the subcellular localization of proteins during female meiosis in Arabidopsis thaliana, a model species that is used to study sexual reproduction in flowering plants. By using confocal microscopy, the procedure allows one to follow megasporogenesis at all stages before differentiation of the functional megaspore. This in particular includes stages that occur during prophase I, such as the installation of the axial and central elements of the synaptonemal complex along the meiotic chromosomes. In contrast to procedures that require microtome sectioning or enzymatic isolation and smearing to separate female meiocytes from neighboring cells, this 3-day protocol preserves the constitution of the developing primordium and incorporates the architecture of the ovule to provide a temporal and spatial context to meiotic divisions. This opens up the possibility to systematically compare the dynamics of protein localization during female and male meiosis. Steps describe tissue collection and fixation, preparation of slides and polyacrylamide embedding, tissue permeabilization, antibody incubation, propidium iodide staining, and finally image acquisition by confocal microscopy. The procedure adds an essential technique to the toolkit of plant meiotic analysis, and it represents a framework for technical adaptations that could soon allow the analysis of plant reproductive alternatives to sexual reproduction.

  19. Whole-mount immunolocalization to study female meiosis in Arabidopsis.

    PubMed

    Escobar-Guzmán, Rocio; Rodríguez-Leal, Daniel; Vielle-Calzada, Jean-Philippe; Ronceret, Arnaud

    2015-10-01

    Here we describe a whole-mount immunolocalization protocol to follow the subcellular localization of proteins during female meiosis in Arabidopsis thaliana, a model species that is used to study sexual reproduction in flowering plants. By using confocal microscopy, the procedure allows one to follow megasporogenesis at all stages before differentiation of the functional megaspore. This in particular includes stages that occur during prophase I, such as the installation of the axial and central elements of the synaptonemal complex along the meiotic chromosomes. In contrast to procedures that require microtome sectioning or enzymatic isolation and smearing to separate female meiocytes from neighboring cells, this 3-day protocol preserves the constitution of the developing primordium and incorporates the architecture of the ovule to provide a temporal and spatial context to meiotic divisions. This opens up the possibility to systematically compare the dynamics of protein localization during female and male meiosis. Steps describe tissue collection and fixation, preparation of slides and polyacrylamide embedding, tissue permeabilization, antibody incubation, propidium iodide staining, and finally image acquisition by confocal microscopy. The procedure adds an essential technique to the toolkit of plant meiotic analysis, and it represents a framework for technical adaptations that could soon allow the analysis of plant reproductive alternatives to sexual reproduction. PMID:26357009

  20. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  1. Generation and identification of Arabidopsis EMS mutants.

    PubMed

    Qu, Li-Jia; Qin, Genji

    2014-01-01

    EMS mutant analysis is a routine experiment to identify new players in a specific biological process or signaling pathway using forward genetics. It begins with the generation of mutants by treating Arabidopsis seeds with EMS. A mutant with a phenotype of interest (mpi) is obtained by screening plants of the M2 generation under a specific condition. Once the phenotype of the mpi is confirmed in the next generation, map-based cloning is performed to locate the mpi mutation. During the map-based cloning, mpi plants (Arabidopsis Columbia-0 (Col-0) ecotype background) are first crossed with Arabidopsis Landsberg erecta (Ler) ecotype, and the presence or absence of the phenotype in the F1 hybrids indicates whether the mpi is recessive or dominant. F2 plants with phenotypes similar to the mpi, if the mpi is recessive, or those without the phenotype, if the mpi is dominant, are used as the mapping population. As few as 24 such plants are selected for rough mapping. After finding one marker (MA) linked to the mpi locus or mutant phenotype, more markers near MA are tested to identify recombinants. The recombinants indicate the interval in which the mpi is located. Additional recombinants and molecular markers are then required to narrow down the interval. This is an iterative process of narrowing down the mapping interval until no further recombinants or molecular markers are available. The genes in the mapping interval are then sequenced to look for the mutation. In the last step, the wild-type or mutated gene is cloned to generate binary constructs. Complementation or recapitulation provides the most convincing evidence in determining the mutation that causes the phenotype of the mpi. Here, we describe the procedures for generating mutants with EMS and analyzing EMS mutations by map-based cloning.

  2. Functional Analysis of Transcription Factors in Arabidopsis

    PubMed Central

    Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-01-01

    Transcription factors (TFs) regulate the expression of genes at the transcriptional level. Modification of TF activity dynamically alters the transcriptome, which leads to metabolic and phenotypic changes. Thus, functional analysis of TFs using ‘omics-based’ methodologies is one of the most important areas of the post-genome era. In this mini-review, we present an overview of Arabidopsis TFs and introduce strategies for the functional analysis of plant TFs, which include both traditional and recently developed technologies. These strategies can be assigned to five categories: bioinformatic analysis; analysis of molecular function; expression analysis; phenotype analysis; and network analysis for the description of entire transcriptional regulatory networks. PMID:19478073

  3. Concentration of trace elements on branded cigarette in Malaysia

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Yasir, Muhamad Samudi; Rahman, Irman Abdul; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd

    2016-01-01

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 1012 n cm-2 s-1. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO).

  4. Are Nutrient Stresses Associated with Enantioselectivity of the Chiral Herbicide Imazethapyr in Arabidopsis thaliana?

    PubMed

    Chen, Zunwei; Chen, Hui; Zou, Yuqin; Qiu, Jiguo; Wen, Yuezhong; Xu, Dongmei

    2015-12-01

    Plant growth can be inhibited by herbicides and is strongly limited by the availability of nutrients, which can influence human health through the food chain. Until now, however, cross talk between the enantioselectivity of herbicides and nutrient stresses has been poorly understood. We analyzed trace element and macroelement contents in shoots of Arabidopsis thaliana treated by the chiral herbicide imazethapyr (IM) and observed that multiple-nutrient stress (trace elements Mn, Cu, and Fe and macroelements P, K, Ca, and Mg) was enantioselective. The (R)-IM treatments resulted in Mn 23.37%, Cu 63.53%, P 30.61%, K 63.70%, Ca 34.32%, and Mg 36.14% decreases compared with the control. Interestingly, it was also found that herbicidally active (R)-IM induced notable aggregation of nutrient elements in leaves and roots compared with the control and (S)-IM. Through gene expression analyses, it was found that herbicidally active (R)-IM induced the up- or down-regulation of genes involved in the transport of nutrient elements. We propose that (R)-IM affected the uptake and translocation of nutrient elements in A. thaliana, which destroyed the balance of nutrient elements in the plant. This finding reminds us to reconsider the effect of nutrient stresses in risk assessment of herbicides. PMID:26566036

  5. "Out of pollen" hypothesis for origin of new genes in flowering plants: study from Arabidopsis thaliana.

    PubMed

    Wu, Dong-Dong; Wang, Xin; Li, Yan; Zeng, Lin; Irwin, David M; Zhang, Ya-Ping

    2014-10-01

    New genes, which provide material for evolutionary innovation, have been extensively studied for many years in animals where it is observed that they commonly show an expression bias for the testis. Thus, the testis is a major source for the generation of new genes in animals. The source tissue for new genes in plants is unclear. Here, we find that new genes in plants show a bias in expression to mature pollen, and are also enriched in a gene coexpression module that correlates with mature pollen in Arabidopsis thaliana. Transposable elements are significantly enriched in the new genes, and the high activity of transposable elements in the vegetative nucleus, compared with the germ cells, suggests that new genes are most easily generated in the vegetative nucleus in the mature pollen. We propose an "out of pollen" hypothesis for the origin of new genes in flowering plants.

  6. An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings

    PubMed Central

    2013-01-01

    Background Grafting procedures are an excellent tool to study long range signalling processes within a plant. In the last decade, suitable flat-surface grafting procedures for young Arabidopsis seedlings using a collar to support the graft have been developed, allowing the study of long-range signals from a molecular perspective. Results In the modification presented here, scion and stock are put together on the medium without supporting elements, while cotyledons are removed from the scion, resulting in increased grafting success that can reach up to 100%. At the same time, the protocol enables to process as many as 36 seedlings per hour, which combined with the high success percentage represents increased efficiency per time unit. Conclusions Growing cotyledons usually push the scion and the rootstock away in the absence of a supporting element. Removing them at the grafting step greatly improved success rate and reduced post-grafting manipulations. PMID:23641687

  7. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-09-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum-nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a `breath shell' to enhance hydrogen enrichment and activation on platinum-nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum-nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes.

  8. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  9. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    SciTech Connect

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

  10. Semi-Technical Cryogenic Molecular Sieve Bed for the Tritium Extraction System of the Test Blanket Module for ITER

    SciTech Connect

    Beloglazov, S.; Bekris, N.; Glugla, M.; Wagner, R.

    2005-07-15

    The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H{sub 2}, HT, T{sub 2}) as well as impurities (N{sub 2}, O{sub 2}) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm data to be 9.4 mol of H{sub 2} at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm{sup 3}h{sup -1} of He with 110 Pa of H{sub 2} conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates.

  11. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition

    SciTech Connect

    Atchudan, R.; Joo, Jin.; Pandurangan, A.

    2013-06-01

    Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTs using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.

  12. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units. PMID:27335235

  13. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    PubMed Central

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-01-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum–nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a ‘breath shell' to enhance hydrogen enrichment and activation on platinum–nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum–nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes. PMID:26391605

  14. Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers

    SciTech Connect

    Keller, A.; Jacobs, H.R.; Boehm, R.F.

    1980-12-01

    The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

  15. Ionothermal Synthesis of MnAPO-SOD Molecular Sieve without the Aid of Organic Structure-Directing Agents.

    PubMed

    Liu, Hao; Tian, Zhijian; Wang, Lei; Wang, Yasong; Li, Dawei; Ma, Huaijun; Xu, Renshun

    2016-02-15

    An SOD-type metalloaluminophosphate molecular sieve (denoted as SOD-Mn) was ionothermally synthesized by introducing manganese(II) cations into the reaction mixture via MnO-acid or MnO2-reductant reactions. Composition and structure analyses results show that two kinds of manganese(II) cations exist in the SOD-Mn structure. Part of the manganese(II) cations isomorphously substitute the framework aluminum(III) with a substitution degree of ∼30%. The rest of the manganese(II) cations occupy a fraction of the sod cages in their hydrated forms. A comprehensive investigation of the synthesis parameters, crystal sizes, and crystallization kinetics indicates that the in situ released hydrated manganese(II) cations direct the formation of SOD-Mn. Such structure-directing effect may be inhibited by both the fluorination of manganese(II) cations and the water accumulation during crystallization. In the fluoride anion-containing reaction mixture with a low ionic liquid content, the crystallization process is strongly suppressed, and large SOD-Mn single crystals of over 200 μm in size are yielded. SOD-Mn is free from organics and shows improved thermal stability compared with metalloaluminophosphates synthesized by using organic structure-directing agents.

  16. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  17. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    PubMed

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community. PMID:26397455

  18. Fluid mechanics of distillation trays (II): Prediction of flow fields on some practically important sieve trays

    SciTech Connect

    Basaran, O.A.; Wohlhuter, F.K.

    1995-04-01

    Separation processes account for 6% of the annual US energy expenditure, 50% of which is consumed by distillation alone. Therefore, it is not too surprising that distillation, the work horse of the chemical process industry, is under attack by emerging technologies based on membranes and adsorption, whose proponents claim enormous potential savings in energy expenditures. Moreover, the massive scale of use plus the energy intensiveness implies that even small improvements in the efficiency of distillation processes can result in large gains in energy savings. Such improvements can come from developing fundamental understanding of the fluid mechanics of tray columns, which has heretofore been lacking and is the subject of this paper. The flow on a distillation tray is governed by the equations of mass and momentum conservation in three-dimensions. These equations are reduced here to a set of two-dimensional equations by averaging them across the depth of the fluid film flowing across the tray. The depth-averaged equations are then solved by a Galerkin/finite element technique. The evolution of film height and flow fields are determined for three types of trays that are commonly found in the laboratory and in actual plants: rectangular trays, circular trays, and so-called race track trays. Sample results include development and growth of eddies of zones of recirculation on various types of trays, variation of film height with position on a tray, and effect of tray geometry, flow rate, and physical properties on tray holdup. Occurrence of eddies and large height variations on trays can have detrimental consequences in vapor-liquid contacting operations. Therefore, the new rigorous computations should prove indispensable in developing column designs that avoid or minimize them.

  19. Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh?

    PubMed Central

    Lu, G; Paul, A L; McCarty, D R; Ferl, R J

    1996-01-01

    Assignment of particular transcription factors to specific roles in promoter elements can be problematic, especially in systems such as the G-box, where multiple factors of overlapping specificity exist. In the Arabidopsis alcohol dehydrogenase (Adh) promoter, the G-box regulates expression in response to cold and dehydration, presumably through the action of abscisic acid (ABA), and is bound by a nuclear protein complex in vivo during expression in cell cultures. In this report, we test the conventional wisdom of biochemical approaches used to identify DNA binding proteins and assess their specific interactions by using the G-box and a nearby half G-box element of the Arabidopsis Adh promoter as a model system. Typical in vitro assays demonstrated specific interaction of G-box factor 3 (GBF3) with both the G-box and the half G-box element. Dimethyl sulfate footprint analysis confirmed that the in vitro binding signature of GBF3 essentially matches the footprint signature detected in vivo at the G-box. Because RNA gel blot data indicated that GBF3 is itself induced by ABA, we might have concluded that GBF3 is indeed the GBF responsible in cell cultures for binding to the Adh G-box and is therefore responsible for ABA-regulated expression of Adh. Potential limitations of this conclusion are exposed by the fact that other GBFs bind the G-box with the same signature as GBF3, and subtle differences between in vivo and in vitro footprint signatures indicate that factors other than or in addition to GBF3 interact with the half G-box element. PMID:8672884

  20. Bacterial RNAs activate innate immunity in Arabidopsis.

    PubMed

    Lee, Boyoung; Park, Yong-Soon; Lee, Soohyun; Song, Geun Cheol; Ryu, Choong-Min

    2016-01-01

    The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EF-Tu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants. PMID:26499893