Science.gov

Sample records for arabidopsis thaliana uma

  1. Brassinosteroids in Arabidopsis thaliana.

    PubMed

    Fujioka, S; Noguchi, T; Yokota, T; Takatsuto, S; Yoshida, S

    1998-06-01

    From the seeds and siliques of Arabidopsis thaliana, six brassinosteroids, brassinolide, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol and 6-deoxoteasterone, were identified by GC-mass spectrometry or GC-selected ion monitoring. As the occurrence of castasterone, typhasterol, 6-deoxocastasterone and 6-deoxotyphasterol in the shoots of A. thaliana has already been reported, this study provides evidence for the occurrence of the above four brassinosteroids in different organs, seeds and siliques, and the first evidence for the occurrence of brassinolide and 6-deoxoteasterone in A. thaliana. All brassinosteroids identified in this study belong to important components of both the early and late C-6 oxidation pathways, which were established in the cultured cells of Catharanthus roseus. This suggests that both pathways are operating in A. thaliana to produce the most biologically active brassinosteroid, brassinolide, which is responsible for growth and development of the plant.

  2. Systemic endopolyploidy in Arabidopsis thaliana

    SciTech Connect

    Galbraith, D.W.; Harkins, K.R. ); Knapp, S. )

    1991-07-01

    Microfluorometric analysis of the nuclear DNA contents of the somatic tissues of Arabidopsis thaliana has revealed extensive endoreduplication, resulting in tissues that comprise mixtures of polypoloid cells. Endoreduplication was found in all tissues except those of the inflorescences and was developmentally regulated according to the age of the tissues and their position within the plant.

  3. Sulfenome mining in Arabidopsis thaliana

    PubMed Central

    Waszczak, Cezary; Akter, Salma; Eeckhout, Dominique; Persiau, Geert; Wahni, Khadija; Bodra, Nandita; Van Molle, Inge; De Smet, Barbara; Vertommen, Didier; Gevaert, Kris; De Jaeger, Geert; Van Montagu, Marc; Messens, Joris; Van Breusegem, Frank

    2014-01-01

    Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage. PMID:25049418

  4. Arabidopsis thaliana life without phytochromes

    PubMed Central

    Strasser, Bárbara; Sánchez-Lamas, Maximiliano; Yanovsky, Marcelo J.; Casal, Jorge J.; Cerdán, Pablo D.

    2010-01-01

    Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal. PMID:20176939

  5. Novel glyoxalases from Arabidopsis thaliana.

    PubMed

    Kwon, Kyu; Choi, Dongwook; Hyun, Jae Kyung; Jung, Hyun Suk; Baek, Kwanghee; Park, Chankyu

    2013-07-01

    We examined six Arabidopsis thaliana genes from the DJ-1/PfpI superfamily for similarity to the recently characterized bacterial and animal glyoxalases. Based on their sequence similarities, the six genes were classified into two sub-groups consisting of homologs of the human DJ-1 gene and the PH1704 gene of Pyrococcus horikoshii. Unlike the homologs from other species, all the A. thaliana genes have two tandem domains, which may have been created by gene duplication. The six AtDJ-1 proteins (a-f) were expressed in Escherichia coli for enzymatic assays with glyoxals. The DJ-1d protein, which belongs to the PH1704 sub-group, exhibits the highest activity against methylglyoxal and glyoxal, and K(m) values of 0.10 and 0.27 mm were measured for these two substrates, respectively, while the corresponding k(cat) values were 1700 and 2200 min(-1), respectively. The DJ-1a and DJ-1b glyoxalases exhibited higher specificity towards glyoxal. The other three proteins have either no or extremely low activity for glyoxals. For the DJ-1d enzyme, the residues, Cys120/313 and Glu19/212 at the active site and His121/314 and Glu94/287 at the oligomeric interface were mutated to alanines. As in other enzymes characterized to date, mutation of either the Cys or the Glu residues of the active site completely abolished enzyme activity, whereas mutation of the interface residues produced a variable decrease in activity. DJ-1d differs from its animal and bacterial homologs with respect to the configuration of its catalytic residues and the oligomeric property of the enzyme. When the wild-type DJ-1d enzyme was expressed in E. coli, the bacteria became resistant to glyoxals. © 2013 FEBS.

  6. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    USDA-ARS?s Scientific Manuscript database

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  7. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases.

    PubMed

    Kupriyanova, E V; Mamoshina, P O; Ezhova, T A

    2015-10-01

    Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.

  8. Terpene Specialized Metabolism in Arabidopsis thaliana

    PubMed Central

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C5-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C20-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C10-, C15-, and C20-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes. PMID:22303268

  9. Tetrapyrrole Metabolism in Arabidopsis thaliana

    PubMed Central

    Tanaka, Ryouichi; Kobayashi, Koichi; Masuda, Tatsuru

    2011-01-01

    Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed. PMID:22303270

  10. Metabolic fingerprinting of Arabidopsis thaliana accessions

    PubMed Central

    Sotelo-Silveira, Mariana; Chauvin, Anne-Laure; Marsch-Martínez, Nayelli; Winkler, Robert; de Folter, Stefan

    2015-01-01

    In the post-genomic era much effort has been put on the discovery of gene function using functional genomics. Despite the advances achieved by these technologies in the understanding of gene function at the genomic and proteomic level, there is still a big genotype-phenotype gap. Metabolic profiling has been used to analyze organisms that have already been characterized genetically. However, there is a small number of studies comparing the metabolic profile of different tissues of distinct accessions. Here, we report the detection of over 14,000 and 17,000 features in inflorescences and leaves, respectively, in two widely used Arabidopsis thaliana accessions. A predictive Random Forest Model was developed, which was able to reliably classify tissue type and accession of samples based on LC-MS profile. Thereby we demonstrate that the morphological differences among A. thaliana accessions are reflected also as distinct metabolic phenotypes within leaves and inflorescences. PMID:26074932

  11. Arabidopsis thaliana telomeres exhibit euchromatic features

    PubMed Central

    Vaquero-Sedas, María I.; Gámez-Arjona, Francisco M.; Vega-Palas, Miguel A.

    2011-01-01

    Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation. PMID:21071395

  12. Accumulation of coumarins in Arabidopsis thaliana.

    PubMed

    Kai, Kosuke; Shimizu, Bun-ichi; Mizutani, Masaharu; Watanabe, Ken; Sakata, Kanzo

    2006-02-01

    The biosynthesis of coumarins in plants is not well understood, although these metabolic pathways are often found in the plant kingdom. We report here the occurrence of coumarins in Arabidopsis thaliana ecotype Columbia. Considerably high levels of scopoletin and its beta-d-glucopyranoside, scopolin, were found in the wild-type roots. The scopolin level in the roots was approximately 1200nmol/gFW, which was approximately 180-fold of that in the aerial parts. Calli accumulated scopolin at a level of 70nmol/gFW. Scopoletin and scopolin formation were induced in shoots after treatment with either 2,4-dichlorophenoxyacetic acid (at 100microM) or a bud-cell suspension of Fusarium oxysporum. In order to gain insight into the biosynthetic pathway of coumarins in A. thaliana, we analyzed coumarins in the mutants obtained from the SALK Institute collection that carried a T-DNA insertion within the gene encoding the cytochrome P450, CYP98A3, which catalyzes 3'-hydroxylation of p-coumarate units in the phenylpropanoid pathway. The content of scopoletin and scopolin in the mutant roots greatly decreased to approximately 3% of that in the wild-type roots. This observation suggests that scopoletin and scopolin biosynthesis in A. thaliana are strongly dependent on the 3'-hydroxylation of p-coumarate units catalyzed by CYP98A3. We also found that the level of skimmin, a beta-d-glucopyranoside of umbelliferone, was slightly increased in the mutant roots.

  13. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  14. Defining the core Arabidopsis thaliana root microbiome

    PubMed Central

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  15. Photoperiodic flowering regulation in Arabidopsis thaliana

    PubMed Central

    Golembeski, Greg S.; Kinmonth-Schultz, Hannah A.; Song, Young Hun; Imaizumi, Takato

    2015-01-01

    Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction. PMID:25684830

  16. Bimodal expression level polymorphisms in Arabidopsis thaliana

    PubMed Central

    Nagano, Atsushi J.; Tsuchimatsu, Takashi; Okuyama, Yudai; Hara-Nishimura, Ikuko

    2012-01-01

    Differences in gene expression are termed expression level polymorphisms (ELPs). Here, we propose a new ELP class, bimodal ELPs (bELPs), as a criterion to screen for genes that are responsible for natural phenotypic variation and/or that are targeted by balancing selection. bELP genes are characterized by two expression level modes. Genomic scans based on nucleotide sequences are not ideal for identifying genes targeted for selection. A critical concern is that several genes can be present in the selection-targeted regions identified by such scans. This situation indicates the importance of integrating genomic sequence data and other information, such as gene expression data. Comparative transcriptomics is useful for determining evolutionarily and ecologically important polymorphisms. In a genome-wide expression screen of 34 accessions, we identified 344 Arabidopsis thaliana genes exhibiting bELPs. Population genetic analysis revealed that bELP genes had high nucleotide diversities and long linkage disequilibriums. The highest nucleotide diversity (11-fold greater than the genomic mean) was found in the At1g23780 gene, which encodes a putative F-box protein. We observed a clear association between the expression mode and sequence type of the At1g23780 gene. Our results suggest that bELPs will be useful for the screening and functional analysis of genes responsible for phenotypic polymorphisms. Such a “multi-omics” approach has the potential to facilitate the scanning of genes relevant to balanced polymorphisms not only in A. thaliana, but also in other model and non-model organisms. PMID:22751308

  17. The Alphabet of Galactolipids in Arabidopsis thaliana

    PubMed Central

    Ibrahim, Amina; Schütz, Anna-Lena; Galano, Jean-Marie; Herrfurth, Cornelia; Feussner, Kirstin; Durand, Thierry; Brodhun, Florian; Feussner, Ivo

    2011-01-01

    Galactolipids constitute the major lipid class in plants. In recent years oxygenated derivatives of galactolipids have been detected. They are discussed as signal molecules during leaf damage, since they accumulate in wounded leaves in high levels. Using different analytical methods such as nuclear magnetic resonance, infra-red spectroscopy, and high performance liquid chromatography/mass spectrometry (HPLC/MS) earlier reports focused on the analysis of either oxidized or non-oxidized species and needed high levels of analytes. Here, we report on the analysis of the galactolipid subfraction of the Arabidopsis leaf lipidome by an improved HPLC/MS2-based method that is fast, robust, and comparatively simple in its performance. Due to a combination of phase partitioning, solid phase fractionation, liquid chromatography, and MS2 experiments this method has high detection sensitivity and requires only low amounts of plant material. With this method 167 galactolipid species were detected in leaves of Arabidopsis thaliana. Out of these 79 being newly described species. From all species the head group and acyl side chains were identified via MS2 experiments. Moreover, the structural identification was supported by HPLC/time-of-flight (TOF)-MS and gas chromatography (GC)/MS analysis. The quantification of different galactolipid species that accumulated 30 min after a mechanical wounding in A. thaliana leaves showed that the oxidized acyl side chains in galactolipids are divided into 65% cyclopentenones, 27% methyl-branched ketols, 3.8% hydroperoxides/straight-chain ketols, 2.0% hydroxides, and 2.6% phytoprostanes. In comparison to the free cyclopentenone derivatives, the esterified forms occur in a 149-fold excess supporting the hypothesis that galactolipids might function as storage compounds for cyclopentenones. Additional analysis of the ratio of non-oxidized to oxidized galactolipid species in leaves of wounded plants was performed resulting in a ratio of 2.0 in case

  18. Catabolism of Glutathione Conjugates in Arabidopsis thaliana

    PubMed Central

    Brazier-Hicks, Melissa; Evans, Kathryn M.; Cunningham, Oliver D.; Hodgson, David R. W.; Steel, Patrick G.; Edwards, Robert

    2008-01-01

    The safener fenclorim (4,6-dichloro-2-phenylpyrimidine) increases tolerance to chloroacetanilide herbicides in rice by enhancing the expression of detoxifying glutathione S-transferases (GSTs). Fenclorim also enhances GSTs in Arabidopsis thaliana, and while investigating the functional significance of this induction in suspension cultures, we determined that these enzymes glutathionylated the safener. The resulting S-(fenclorim)-glutathione conjugate was sequentially processed to S-(fenclorim)-γ-glutamyl-cysteine and S-(fenclorim)-cysteine (FC), the latter accumulating in both the cells and the medium. FC was then either catabolized to 4-chloro-6-(methylthio)-phenylpyrimidine (CMTP) or N-acylated with malonic acid. These cysteine derivatives had distinct fates, with the enzymes responsible for their formation being induced by fenclorim and FC. Fenclorim-N-malonylcysteine was formed from FC by the action of a malonyl-CoA-dependent N-malonyltransferase. A small proportion of the fenclorim-N-malonylcysteine then underwent decarboxylation to yield a putative S-fenclorim-N-acetylcysteine intermediate, which underwent a second round of GST-mediated S-glutathionylation and subsequent proteolytic processing. The formation of CMTP was catalyzed by the concerted action of a cysteine conjugate β-lyase and an S-methyltransferase, with the two activities being coordinately regulated. Although the fenclorim conjugates tested showed little GST-inducing activity in Arabidopsis, the formation of CMTP resulted in metabolic reactivation, with the product showing good enhancing activity. In addition, CMTP induced GSTs and herbicide-safening activity in rice. The bioactivated CMTP was in turn glutathione-conjugated and processed to a malonyl cysteine derivative. These results reveal the surprisingly complex set of competing catabolic reactions acting on xenobiotics entering the S-glutathionylation pathway in plants, which can result in both detoxification and bioactivation. PMID

  19. Shotgun proteomic analysis of Arabidopsis thaliana leaves.

    PubMed

    Lee, Joohyun; Garrett, Wesley M; Cooper, Bret

    2007-09-01

    Two shotgun tandem MS proteomics approaches, multidimensional protein identification technology (MudPIT) and 1-D gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible with MudPIT were used with 1-D gel-LC-MS/MS to help enrich for the detection of membrane-spanning and hydrophobic proteins. By combining the data from all MudPIT and 1-D gel-LC-MS/MS experiments, 2342 nonredundant proteins spanning a broad range of molecular weights and pI values were detected. With the exception of unknown proteins, the distribution of gene ontology (GO) classifications for the detected proteins was similar to that encoded by the genome, which shows that these extraction and separation procedures are useful for a broad proteomic survey of plant cells. Unknown proteins will likely have to be targeted by using additional methods, some of which should be compatible with separation strategies taken here.

  20. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  1. Phenotypic consequences of aneuploidy in Arabidopsis thaliana.

    PubMed

    Henry, Isabelle M; Dilkes, Brian P; Miller, Eric S; Burkart-Waco, Diana; Comai, Luca

    2010-12-01

    Aneuploid cells are characterized by incomplete chromosome sets. The resulting imbalance in gene dosage has phenotypic consequences that are specific to each karyotype. Even in the case of Down syndrome, the most viable and studied form of human aneuploidy, the mechanisms underlying the connected phenotypes remain mostly unclear. Because of their tolerance to aneuploidy, plants provide a powerful system for a genome-wide investigation of aneuploid syndromes, an approach that is not feasible in animal systems. Indeed, in many plant species, populations of aneuploid individuals can be easily obtained from triploid individuals. We phenotyped a population of Arabidopsis thaliana aneuploid individuals containing 25 different karyotypes. Even in this highly heterogeneous population, we demonstrate that certain traits are strongly associated with the dosage of specific chromosome types and that chromosomal effects can be additive. Further, we identified subtle developmental phenotypes expressed in the diploid progeny of aneuploid parent(s) but not in euploid controls from diploid lineages. These results indicate long-term phenotypic consequences of aneuploidy that can persist after chromosomal balance has been restored. We verified the diploid nature of these individuals by whole-genome sequencing and discuss the possibility that trans-generational phenotypic effects stem from epigenetic modifications passed from aneuploid parents to their diploid progeny.

  2. Phenotypic Consequences of Aneuploidy in Arabidopsis thaliana

    PubMed Central

    Henry, Isabelle M.; Dilkes, Brian P.; Miller, Eric S.; Burkart-Waco, Diana; Comai, Luca

    2010-01-01

    Aneuploid cells are characterized by incomplete chromosome sets. The resulting imbalance in gene dosage has phenotypic consequences that are specific to each karyotype. Even in the case of Down syndrome, the most viable and studied form of human aneuploidy, the mechanisms underlying the connected phenotypes remain mostly unclear. Because of their tolerance to aneuploidy, plants provide a powerful system for a genome-wide investigation of aneuploid syndromes, an approach that is not feasible in animal systems. Indeed, in many plant species, populations of aneuploid individuals can be easily obtained from triploid individuals. We phenotyped a population of Arabidopsis thaliana aneuploid individuals containing 25 different karyotypes. Even in this highly heterogeneous population, we demonstrate that certain traits are strongly associated with the dosage of specific chromosome types and that chromosomal effects can be additive. Further, we identified subtle developmental phenotypes expressed in the diploid progeny of aneuploid parent(s) but not in euploid controls from diploid lineages. These results indicate long-term phenotypic consequences of aneuploidy that can persist after chromosomal balance has been restored. We verified the diploid nature of these individuals by whole-genome sequencing and discuss the possibility that trans-generational phenotypic effects stem from epigenetic modifications passed from aneuploid parents to their diploid progeny. PMID:20876566

  3. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  4. Light responses in Photoperiodism in Arabidopsis thaliana

    SciTech Connect

    Anthony R. Cashmore

    2006-08-01

    B. Nature 410, 487-490. Jarillo, J. A., Gabrys, H., Capel, J., Alonso, J. M., Ecker, J. R., and Cashmore, A. R. (2001b). Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952-954. Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki Ki, K. (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656-660. Mas, P., Kim, W. Y., Somers, D. E., and Kay, S. A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567-570.

  5. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana.

    PubMed

    Vespermann, Anja; Kai, Marco; Piechulla, Birgit

    2007-09-01

    Volatiles of Stenotrophomonas, Serratia, and Bacillus species inhibited mycelial growth of many fungi and Arabidopsis thaliana (40 to 98%), and volatiles of Pseudomonas species and Burkholderia cepacia retarded the growth to lesser extents. Aspergillus niger and Fusarium species were resistant, and B. cepacia and Staphylococcus epidermidis promoted the growth of Rhizoctonia solani and A. thaliana. Bacterial volatiles provide a new source of compounds with antibiotic and growth-promoting features.

  6. Proteomic Responses in Arabidopsis thaliana Seedlings Treated with Ethylene

    USDA-ARS?s Scientific Manuscript database

    Ethylene (ET) is a volatile plant growth hormone that most famously modulates fruit ripening, but it also controls plant growth, development and stress responses. In Arabidopsis thaliana, ET is perceived by receptors in the endoplasmic reticulum, and a signal is transduced through a protein kinase,...

  7. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    USDA-ARS?s Scientific Manuscript database

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  8. A survey of dominant mutations in Arabidopsis thaliana.

    PubMed

    Meinke, David W

    2013-02-01

    Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.

  9. Enantioselective effects of herbicide imazapyr on Arabidopsis thaliana.

    PubMed

    Hsiao, Yu-Ling; Wang, Yei-Shung; Yen, Jui-Hung

    2014-01-01

    The enantioselective toxicity of chiral herbicides in the environment is of increasing concern. To investigate the enantioselective effects of the chiral herbicide imazapyr on target organisms, we exposed Arabidopsis thaliana to imazapyr enantiomers and racemate. The results show that imazapyr was enantioselectively toxic to A. thaliana. The total chlorophyll content in A. thaliana was affected more by (+)-imazapyr than (±)-imazapyr and (-)-imazapyr. Concentrations of proline and malondialdehyde reflected a toxic effect in the order of (+)-imazapyr > (±)-imazapyr > (-)-imazapyr at every concentration. Acetolactate synthase (ALS) activity was inhibited more by (+)-imazapyr than (±)-imazapyr or (-)-imazapyr. At 100 mg L(-1) of imazapyr, ALS activity was 78%, 43%, and 19% with (-)-, (±)-, and (+)-imazapyr, respectively. The results suggest the significant enantioselective toxicity of imazapyr in A. thaliana for greater toxicity with (+)-imazapyr than (±)-imazapyr and (-)-imazapyr, which suggests that (+)-imazapyr has more herbicidal effect.

  10. Planting molecular functions in an ecological context with Arabidopsis thaliana

    PubMed Central

    Krämer, Ute

    2015-01-01

    The vascular plant Arabidopsis thaliana is a central genetic model and universal reference organism in plant and crop science. The successful integration of different fields of research in the study of A. thaliana has made a large contribution to our molecular understanding of key concepts in biology. The availability and active development of experimental tools and resources, in combination with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the most advanced systems biology approaches among all land plants. Research in molecular ecology and evolution has also brought the natural history of A. thaliana into the limelight. This article showcases our current knowledge of the natural history of A. thaliana from the perspective of the most closely related plant species, providing an evolutionary framework for interpreting novel findings and for developing new hypotheses based on our knowledge of this plant. DOI: http://dx.doi.org/10.7554/eLife.06100.001 PMID:25807084

  11. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    DTIC Science & Technology

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform k-shell decomposition analysis on...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

  12. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana

    PubMed Central

    Beilstein, Mark A.; Nagalingum, Nathalie S.; Clements, Mark D.; Manchester, Steven R.; Mathews, Sarah

    2010-01-01

    Dated molecular phylogenies are the basis for understanding species diversity and for linking changes in rates of diversification with historical events such as restructuring in developmental pathways, genome doubling, or dispersal onto a new continent. Valid fossil calibration points are essential to the accurate estimation of divergence dates, but for many groups of flowering plants fossil evidence is unavailable or limited. Arabidopsis thaliana, the primary genetic model in plant biology and the first plant to have its entire genome sequenced, belongs to one such group, the plant family Brassicaceae. Thus, the timing of A. thaliana evolution and the history of its genome have been controversial. We bring previously overlooked fossil evidence to bear on these questions and find the split between A. thaliana and Arabidopsis lyrata occurred about 13 Mya, and that the split between Arabidopsis and the Brassica complex (broccoli, cabbage, canola) occurred about 43 Mya. These estimates, which are two- to threefold older than previous estimates, indicate that gene, genomic, and developmental evolution occurred much more slowly than previously hypothesized and that Arabidopsis evolved during a period of warming rather than of cooling. We detected a 2- to 10-fold shift in species diversification rates on the branch uniting Brassicaceae with its sister families. The timing of this shift suggests a possible impact of the Cretaceous–Paleogene mass extinction on their radiation and that Brassicales codiversified with pierid butterflies that specialize on mustard-oil–producing plants. PMID:20921408

  13. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, William C.; Brown, Christopher S.

    1994-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional sodium doedocyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  14. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  15. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  16. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    PubMed

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana.

  17. Identifying essential genes in Arabidopsis thaliana.

    PubMed

    Meinke, David; Muralla, Rosanna; Sweeney, Colleen; Dickerman, Allan

    2008-09-01

    Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.

  18. The defense response in Arabidopsis thaliana against Fusarium sporotrichioides

    PubMed Central

    2012-01-01

    Background Certain graminaceous plants such as Zea mays and Triticum aestivum serve as hosts for Fusarium sporotrichioides; however, molecular interactions between the host plants and F. sporotrichioides remain unknown. It is also not known whether any interaction between Arabidopsis thaliana and F. sporotrichioides can occur. To understand these interactions, we performed proteomic analysis. Results Arabidopsis leaves and flowers were inoculated with F. sporotrichioides. Accumulation of PLANT DEFENSIN1.2 (PDF1.2) and PATHOGENESIS RELATED1 (PR1) mRNA in Arabidopsis were increased by inoculation of F. sporotrichioides. Furthermore, mitogen-activated protein kinase 3 (MPK3) and mitogen-activated protein kinase 6 (MPK6), which represent MAP kinases in Arabidopsis, were activated by inoculation of F. sporotrichioides. Proteomic analysis revealed that some defense-related proteins were upregulated, while the expression of photosynthesis- and metabolism-related proteins was down regulated, by inoculation with F. sporotrichioides. We carried out the proteomic analysis about upregulated proteins by inoculation with Fusarium graminearum. The glutathione S-transferases (GSTs), such as GSTF4 and GSTF7 were upregulated, by inoculation with F. graminearum-infected Arabidopsis leaves. On the other hand, GSTF3 and GSTF9 were uniquely upregulated, by inoculation with F. sporotrichioides. Conclusions These results indicate that Arabidopsis is a host plant for F. sporotrichioides. We revealed that defense response of Arabidopsis is initiated by infection with F. sporotrichioides. PMID:23110430

  19. Function of polar glycerolipids in flower development in Arabidopsis thaliana.

    PubMed

    Nakamura, Yuki

    2015-10-01

    The flower lipidome is an unexplored frontier of plant lipid research as compared with the major advances in photosynthetic or storage organs. However, ample evidence from recent molecular biological studies suggests that lipids play crucial roles in coordinating flower development rather than being an inert end product of metabolism. This review summarizes the current understanding of the function of glycerolipids in flower development in Arabidopsis thaliana. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth.

    PubMed

    DeRose-Wilson, Leah; Gaut, Brandon S

    2011-01-01

    To characterize and dissect genetic variation for salinity tolerance, we assessed variation in salinity tolerance during germination and seedling growth for a worldwide sample of Arabidopsis thaliana accessions. By combining QTL mapping, association mapping and expression data, we identified genomic regions involved in salinity response. Among the worldwide sample, we found germination ability within a moderately saline environment (150 mM NaCl) varied considerable, from >90% among the most tolerant lines to complete inability to germinate among the most susceptible. Our results also demonstrated wide variation in salinity tolerance within A. thaliana RIL populations and identified multiple genomic regions that contribute to this variation. These regions contain known candidate genes, but at least four of the regions contain loci not yet associated with salinity tolerance response phenotypes. Our observations suggest A. thaliana natural variation may be an underutilized resource for investigating salinity stress response.

  1. Structure of the Arabidopsis thaliana TOP2 oligopeptidase

    PubMed Central

    Wang, Ruiying; Rajagopalan, Krithika; Sadre-Bazzaz, Kianoush; Moreau, Magali; Klessig, Daniel F.; Tong, Liang

    2014-01-01

    Thimet oligopeptidase (TOP) is a zinc-dependent metallopeptidase. Recent studies suggest that Arabidopsis thaliana TOP1 and TOP2 are targets for salicylic acid (SA) binding and participate in SA-mediated plant innate immunity. The crystal structure of A. thaliana TOP2 has been determined at 3.0 Å resolution. Comparisons to the structure of human TOP revealed good overall structural conservation, especially in the active-site region, despite their weak sequence conservation. The protein sample was incubated with the photo-activated SA analog 4-azido-SA and exposed to UV irradiation before crystallization. However, there was no conclusive evidence for the binding of SA based on the X-ray diffraction data. Further studies are needed to elucidate the molecular mechanism of how SA regulates the activity of A. thaliana TOP1 and TOP2. PMID:24817709

  2. Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions

    PubMed Central

    Silva-Guzman, Macarena; Addo-Quaye, Charles; Dilkes, Brian P.

    2016-01-01

    Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana. PMID:27467746

  3. Study of cis-cinnamic acid in Arabidopsis thaliana.

    PubMed

    Wong, Wai Shing; Guo, Di; Wang, Xiao Li; Yin, Zhi Qi; Xia, Bing; Li, Ning

    2005-01-01

    Trans-cinnamic acid (CA) can be isomerized to cis-CA in Arabidopsis thaliana extract under sunlight. Piperonylic acid treatment of Arabidopsis under ultraviolet (UV) light increased the level of cis-CA in these treated tissues. Similarly, cis-CA was also detected from Oryza sativa seedlings grown under sunlight. These results suggest that cis-CA may occur in planta. Application of cis-CA to seedlings of both wild type Arabidopsis and auxin-insensitive mutants, aux1 and axr2, resulted in nearly identical dose response curves in root growth, indicating that the mode of action by which cis-CA affects plant growth is different from that of auxins. According to root growth inhibition assay, cis-CA is nearly 10 times more active than trans-CA. These results suggest that cis-CA is a unique plant growth regulator but its in vivo function remains to be elucidated.

  4. Characterization of Arabidopsis thaliana telomeres isolated in yeast.

    PubMed Central

    Richards, E J; Chao, S; Vongs, A; Yang, J

    1992-01-01

    In an effort to learn more about the genomic organization of chromosomal termini in plants we employed a functional complementation strategy to isolate Arabidopsis thaliana telomeres in the yeast, Saccharomyces cerevisiae. Eight yeast episomes carrying A. thaliana telomeric sequences were obtained. The plant sequences carried on two episomes, YpAtT1 and YpAtT7, were characterized in detail. The telomeric origins of YpAtT1 and YpAtT7 insert DNAs were confirmed by demonstrating that corresponding genomic sequences are preferentially degraded during exonucleolytic digestion. The isolated telomeric restriction fragments contain G-rich repeat arrays characteristic of A. thaliana telomeres, as well as subterminal telomere-associated sequences (TASs). DNA sequence analysis revealed the presence of variant telomeric repeats at the centromere-proximal border of the terminal block of telomere repeats. The TAS flanking the telomeric G-rich repeat in YpAtT7 corresponds to a repetitive element present at other A. thaliana telomeres, while more proximal sequences are unique to one telomere. The YpAtT1 TAS is unique in the Landsberg strain of A. thaliana from which the clone originated; however, the Landsberg TAS cross-hybridizes weakly to a second telomere in the strain Columbia. Restriction analysis with cytosine methylation-sensitive endonucleases indicated that both TASs are highly methylated in the genome. Images PMID:1508688

  5. GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana.

    PubMed

    Ramegowda, Venkategowda; Gill, Upinder Singh; Sivalingam, Palaiyur Nanjappan; Gupta, Aarti; Gupta, Chirag; Govind, Geetha; Nataraja, Karaba N; Pereira, Andy; Udayakumar, Makarla; Mysore, Kirankumar S; Senthil-Kumar, Muthappa

    2017-08-22

    Drought transcriptome analysis of finger millet (Eleusine coracana) by cDNA subtraction identified drought responsive genes that have a potential role in drought tolerance. Through virus-induced gene silencing (VIGS) in a related crop species, maize (Zea mays), several genes, including a G-BOX BINDING FACTOR 3 (GBF3) were identified as candidate drought stress response genes and the role of GBF3 in drought tolerance was studied in Arabidopsis thaliana. Overexpression of both EcGBF3 and AtGBF3 in A. thaliana resulted in improved tolerance to osmotic stress, salinity and drought stress in addition to conferring insensitivity to ABA. Conversely, loss of function of this gene increased the sensitivity of A. thaliana plants to drought stress. EcGBF3 transgenic A. thaliana results also suggest that drought tolerance of sensitive plants can be improved by transferring genes from far related crops like finger millet. Our results demonstrate the role of GBF3 in imparting drought tolerance in A. thaliana and indicate the conserved role of this gene in drought and other abiotic stress tolerance in several plant species.

  6. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  7. Diuretics prime plant immunity in Arabidopsis thaliana.

    PubMed

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  8. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    PubMed Central

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  9. Epigenetic natural variation in Arabidopsis thaliana.

    PubMed

    Vaughn, Matthew W; Tanurdzić, Milos; Lippman, Zachary; Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R W; Martienssen, Robert A

    2007-07-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F(2) families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.

  10. Epigenetic Natural Variation in Arabidopsis thaliana

    PubMed Central

    Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W. Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R.W; Martienssen, Robert A

    2007-01-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F 2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means. PMID:17579518

  11. Metallochaperone-like genes in Arabidopsis thaliana.

    PubMed

    Tehseen, Muhammad; Cairns, Narelle; Sherson, Sarah; Cobbett, Christopher S

    2010-08-01

    A complete inventory of metallochaperone-like proteins containing a predicted HMA domain in Arabidopsis revealed a large family of 67 proteins. 45 proteins, the HIPPs, have a predicted isoprenylation site while 22 proteins, the HPPs, do not. Sequence comparisons divided the proteins into seven major clusters (I-VII). Cluster IV is notable for the presence of a conserved Asp residue before the CysXXCys, metal binding motif, analogous to the Zn binding motif in E. coli ZntA. HIPP20, HIPP21, HIPP22, HIPP26 and HIPP27 in Cluster IV were studied in more detail. All but HIPP21 could rescue the Cd-sensitive, ycf1 yeast mutant but failed to rescue the growth of zrt1zrt2, zrc1cot1 and atx1 mutants. In Arabidopsis, single and double mutants did not show a phenotype but the hipp20/21/22 triple mutant was more sensitive to Cd and accumulated less Cd than the wild-type suggesting the HIPPs can have a role in Cd-detoxification, possibly by binding Cd. Promoter-GUS reporter expression studies indicated variable expression of these HIPPs. For example, in roots, HIPP22 and HIPP26 are only expressed in lateral root tips while HIPP20 and HIPP25 show strong expression in the root vasculature.

  12. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  13. The fate of retrotransposed processed genes in Arabidopsis thaliana.

    PubMed

    Abdelkarim, Basma T M; Maranda, Vincent; Drouin, Guy

    2017-04-20

    Processed genes are functional genes that have arisen as a result of the retrotransposition of mRNA molecules. We found 6 genes that generated processed genes in the common ancestor of five Brassicaceae species (Arabidopsis thaliana, Arabidopsis lyrata, Capsella rubella, Brassica rapa and Thellungiella parvula). These processed genes have therefore been kept for at least 30millionyears. Analyses of the Ka/Ks ratio of these genes, and of those having given rise to them, show that they evolve relatively slowly and suggest that the processed genes maintained the same function as that of their parental gene. There is a significant negative correlation between the number of ESTs and transcripts produced and the Ka/Ks ratios of the parental genes but not of the processed genes. This suggests that selection has not yet adapted the selective pressure the processed genes experience to their expression level. However, the A. thaliana processed genes tend to be expressed in the same tissues as that of their parental genes. Furthermore, most have a CAATT-box, a TATA-box and are located about 1kb from another protein-coding gene. Altogether, our results suggest that the processed genes found in the A. thaliana genome have been kept to produce more of the same product, and in the same tissues, as that encoded by their parental gene.

  14. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes.

    PubMed Central

    Clauss, M J; Mitchell-Olds, T

    2004-01-01

    In multigene families, variation among loci and alleles can contribute to trait evolution. We explored patterns of functional and genetic variation in six duplicated Arabidopsis thaliana trypsin inhibitor (ATTI) loci. We demonstrate significant variation in constitutive and herbivore-induced transcription among ATTI loci that show, on average, 65% sequence divergence. Significant variation in ATTI expression was also found between two molecularly defined haplotype classes. Population genetic analyses for 17 accessions of A. thaliana showed that six ATTI loci arranged in tandem within 10 kb varied 10-fold in nucleotide diversity, from 0.0009 to 0.0110, and identified a minimum of six recombination events throughout the tandem array. We observed a significant peak in nucleotide and indel polymorphism spanning ATTI loci in the interior of the array, due primarily to divergence between the two haplotype classes. Significant deviation from the neutral equilibrium model for individual genes was interpreted within the context of intergene linkage disequilibrium and correlated patterns of functional differentiation. In contrast to the outcrosser Arabidopsis lyrata for which recombination is observed even within ATTI loci, our data suggest that response to selection was slowed in the inbreeding, annual A. thaliana because of interference among functionally divergent ATTI loci. PMID:15082560

  15. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    PubMed

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering.

  16. Radiation-sensitive mutants of Arabidopsis thaliana

    SciTech Connect

    Jenkins, M.E.; Harlow, G.R.; Liu, Z.

    1995-06-01

    Five Arabidopsis mutants have been isolated on the basis of hypersensitivity of leaf tissue to UV light. For each mutant, the UV-hypersensitive phenotype (uvh) was inherited as a single recessive Mendelian trait. In addition, each uvh mutant represented a separate complementation group. Three of the mutations producing the UV hypersensitive phenotype have been mapped relative to either genetic markers or physical microsatellite polymorphisms. Locus UVH1 is linked to nga76 on chromosome 5, UVH3 to GL1 on chromosome three, and UVH6 to nga59 on chromosome 1. Each uvh mutant has a characteristic pattern of sensitivity based on UV sensitivity of leaf tissue, UV sensitivity of root tissue, and ionizing radiation sensitivity of seeds. On the basis of these patterns, possible molecular defects in these mutants are discussed. 30 refs., 3 figs., 5 tabs.

  17. Photomorphogenesis in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Brown, J. A. M.; Klein, W. H.

    1971-01-01

    Arabidopsis seeds were germinated on sterile mineral agar supplemented with 1% glucose and cultured under continuous light regimes. With 4-hour incandescent plus 20-hour monochromatic illumination in the region from 400 to 485 nanometers there was effective floral induction at an intensity of 100 microwatts per square centimeter. Exclusion of far red wave lengths from the 4-hour incandescent period sharply reduced the effectiveness of subsequent monochromatic blue light in promoting floral induction. Delayed floral induction occurred under continuous incandescent light lacking far red and was attributable to the blue wave lengths. Continuous 485 nanometer (100 microwatts per square centimeter) exposure without any white light treatment during the postgermination growth period was ineffective in floral induction and meristem development. Light at 730 nanometers under the same conditions was partially effective, whereas energy between 500 and 700 nanometers was completely ineffective. When continuous monochromatic light at a 3-fold higher energy level was administered, all photomorphogenic responses were accomplished with 485 nanometer light, including germination and 100% floral induction without any white light treatment at any time during the experiment. Almost equal quantum effectiveness was calculated when equivalent quantum flux densities in the region from 710 to 740 nanometers or at 485 nanometers were used. It is postulated that floral induction in Arabidopsis may be the result of a continuous excitation of a stable form of far red-absorbing phytochrome localized in or on a membrane, and that excitation can be either by direct absorption of energy by far red-absorbing phytochrome or by transfer from an accessory pigment. Images PMID:16657629

  18. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.

    PubMed

    Curie, C; Alonso, J M; Le Jean, M; Ecker, J R; Briat, J F

    2000-05-01

    Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants.

  19. Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions

    PubMed Central

    Zan, Yanjun; Shen, Xia; Forsberg, Simon K. G.; Carlborg, Örjan

    2016-01-01

    An increased knowledge of the genetic regulation of expression in Arabidopsis thaliana is likely to provide important insights about the basis of the plant’s extensive phenotypic variation. Here, we reanalyzed two publicly available datasets with genome-wide data on genetic and transcript variation in large collections of natural A. thaliana accessions. Transcripts from more than half of all genes were detected in the leaves of all accessions, and from nearly all annotated genes in at least one accession. Thousands of genes had high transcript levels in some accessions, but no transcripts at all in others, and this pattern was correlated with the genome-wide genotype. In total, 2669 eQTL were mapped in the largest population, and 717 of them were replicated in the other population. A total of 646 cis-eQTL-regulated genes that lacked detectable transcripts in some accessions was found, and for 159 of these we identified one, or several, common structural variants in the populations that were shown to be likely contributors to the lack of detectable RNA transcripts for these genes. This study thus provides new insights into the overall genetic regulation of global gene expression diversity in the leaf of natural A. thaliana accessions. Further, it also shows that strong cis-acting polymorphisms, many of which are likely to be structural variations, make important contributions to the transcriptional variation in the worldwide A. thaliana population. PMID:27226169

  20. Herkogamy and its effects on mating patterns in Arabidopsis thaliana.

    PubMed

    Luo, Yonghai; Widmer, Alex

    2013-01-01

    The evolution of mating systems, which exhibit an extraordinary diversity in flowering plants, is of central interest in plant biology. Herkogamy, the spatial separation of sexual organs within flowers, is a widespread floral mechanism that is thought to be an adaptive trait reducing self-pollination in hermaphroditic plants. In contrast with previous studies of herkogamy that focused on plants with relatively large floral displays, we here characterized herkogamy in Arabidopsis thaliana, a model plant with a strong selfing syndrome. Developmental features, reproductive consequences, and genetic architecture of herkogamy were exploited using naturally variable A. thaliana accessions, under both greenhouse and natural conditions. Our results demonstrate that the degree of herkogamy can strongly influence the mating patterns of A. thaliana: approach herkogamy can effectively promote outcrossing, no herkogamy is also capable of enhancing the opportunity for outcrossing, and reverse herkogamy facilitates efficient self-pollination. In addition, we found that the expression of herkogamy in A. thaliana was environment-dependent and regulated by multiple quantitative trait loci. This study reveals how minor modifications in floral morphology may cause dramatic changes in plant mating patterns, provides new insights into the function of herkogamy, and suggests the way for dissecting the genetic basis of this important character in a model plant.

  1. Transgenic expression of therapeutic proteins in Arabidopsis thaliana seed.

    PubMed

    Nykiforuk, Cory L; Boothe, Joseph G

    2012-01-01

    The production of therapeutic proteins in plant seed augments alternative production platforms such as microbial fermentation, cell-based systems, transgenic animals, and other recombinant plant production systems to meet increasing demands for the existing biologics, drugs under evaluation, and undiscovered therapeutics in the future. We have developed upstream purification technologies for oilseeds which are designed to cost-effectively purify therapeutic proteins amenable to conventional downstream manufacture. A very useful tool in these endeavors is the plant model system Arabidopsis thaliana. The current chapter describes the rationale and methods used to over-express potential therapeutic products in A. thaliana seed for evaluation and definitive insight into whether our production platform, Safflower, can be utilized for large-scale manufacture.

  2. Cutinsomes as building-blocks of Arabidopsis thaliana embryo cuticle.

    PubMed

    Stępiński, Dariusz; Kwiatkowska, Maria; Wojtczak, Agnieszka; Domínguez, Eva; Heredia, Antonio; Popłońska, Katarzyna

    2017-08-02

    Cutinsomes, spherical nanoparticles containing cutin mono- and oligomers, are engaged in cuticle formation. Earlier they were revealed to participate in cuticle biosynthesis in Solanum lycopersicum fruit and Ornithogalum umbellatum ovary epidermis. Here, transmission electron microscopy (TEM) and immunogold labeling with antibody against the cutinsomes were applied to aerial cotyledon epidermal cells of Arabidopsis thaliana mature embryos. TEM as well as gold particles conjugated with the cutinsome antibody revealed these structures in the cytoplasm, near the plasmalemma, in the cell wall and incorporated into the cuticle. Thus, the cutinsomes most probably are involved in the formation of A. thaliana embryo cuticle and this model plant is another species in which these specific structures participate in the building of cuticle in spite of the lack of the lipotubuloid metabolon. In addition, a mechanism of plant cuticle lipid biosynthesis based on current knowledge is proposed. © 2017 Scandinavian Plant Physiology Society.

  3. Transcriptional networks in the nitrate response of Arabidopsis thaliana.

    PubMed

    Vidal, Elena A; Álvarez, José M; Moyano, Tomás C; Gutiérrez, Rodrigo A

    2015-10-01

    Nitrogen is an essential macronutrient for plants and its availability is a key determinant of plant growth and development and crop yield. Besides their nutritional role, N nutrients and metabolites are signals that activate signaling pathways that modulate many plant processes. Because the most abundant inorganic N source for plants in agronomic soils is nitrate, much of the work to understand plant N-signaling has focused on this nutrient. Over the last years, several studies defined a comprehensive catalog of nitrate-responsive genes, involved in nitrate transport, metabolism and a variety of other processes. Despite significant progress in recent years, primarily using Arabidopsis thaliana as a model system, the molecular mechanisms by which nitrate elicits changes in transcript abundance are still not fully understood. Here we highlight recent advancements in identifying key transcription factors and transcriptional mechanisms that orchestrate the gene expression response to changes in nitrate availability in A. thaliana.

  4. Adaptation to climate across the Arabidopsis thaliana genome.

    PubMed

    Hancock, Angela M; Brachi, Benjamin; Faure, Nathalie; Horton, Matthew W; Jarymowycz, Lucien B; Sperone, F Gianluca; Toomajian, Chris; Roux, Fabrice; Bergelson, Joy

    2011-10-07

    Understanding the genetic bases and modes of adaptation to current climatic conditions is essential to accurately predict responses to future environmental change. We conducted a genome-wide scan to identify climate-adaptive genetic loci and pathways in the plant Arabidopsis thaliana. Amino acid-changing variants were significantly enriched among the loci strongly correlated with climate, suggesting that our scan effectively detects adaptive alleles. Moreover, from our results, we successfully predicted relative fitness among a set of geographically diverse A. thaliana accessions when grown together in a common environment. Our results provide a set of candidates for dissecting the molecular bases of climate adaptations, as well as insights about the prevalence of selective sweeps, which has implications for predicting the rate of adaptation.

  5. Mutants in Arabidopsis thaliana with altered shoot gravitropism

    SciTech Connect

    Bullen, B.L.; Poff, K.L.

    1987-04-01

    A procedure has been developed and used to screen 40,000 m-2 seedlings of Arabidopsis thaliana for strains with altered shoot gravitropism. Several strains have been identified for which shoot gravitropism is considerably more random than that of their wild-type parent (based on frequency distribution histograms of the gravitropic response to a 1 g stimulus). One such strain exhibits normal hypocotyl phototropism and normal root gravitropism. Thus, the gravitropism pathway in the shoot contains at least one mutable element which is not required for root gravitropism.

  6. A Chemical Genetic Screening Procedure for Arabidopsis thaliana Seedlings

    PubMed Central

    Bjornson, Marta; Song, Xingshun; Dandekar, Abhaya; Franz, Annaliese; Drakakaki, Georgia; Dehesh, Katayoon

    2016-01-01

    Unbiased screening approaches are powerful tools enabling identification of novel players in biological processes. Chemical genetic screening refers to the technique of using a reporter response, such as expression of luciferase driven by a promoter of interest, to discover small molecules that affect a given process when applied to plants. These chemicals then act as tools for identification of regulatory components that could not otherwise be detected by forward genetic screens due to gene family redundancy or mutant lethality. This protocol describes a chemical genetic screen using Arabidopsis thaliana seedlings, which has led to recognition of novel players in the plant general stress response. PMID:27446980

  7. Microgravity effects on Arabidopsis thaliana energy pool

    NASA Astrophysics Data System (ADS)

    Dobrota, C.; Piso, M. I.; Banciu, H.; Keul, A.

    The flexibility of plant bioenergetics helps plants to acclimate to environmental stresses Our work is focused on standard free energy changes for PPi and ATP hydrolysis in order to assess the relative importance of PPi versus ATP as an energy donor in the plant cytosol of Arabidopsis plants exposed to microgravity The results indicated that PPi would be particularly favored as a phosphoryl donor relative to ATP under cytosolic conditions known to accompany stresses Recent researches showed that besides its functions inside the cell ATP may be released to the extracellular milieu where it functions as the primary signaling molecule of a diverse range of physiological processes It seems that extracellular ATP is essential for maintaining plant cell viability We intend to study how the production and the release of ATP is influenced by the microgravity References begin enumerate item Chivasaa S Bongani K Ndimbab W Simonc J Lindseyc K and Slabasc A 2005 Extracellular ATP Functions as an Endogenous External Metabolite Regulating Plant Cell Viability The Plant Cell 17 3019-3034 item Palma D A Blumwald E and Plaxton W C 2000 Upregulation of vacuolar H -translocating pyrophosphatase by phosphate starvation of Brassica napus rapeseed suspension cell cultures FEBS Letters 486 155-158 item Plaxton W C 2004 Plant response to stress Biochemical adaptations to phosphate deficiency In R Goodman ed Encyclopedia of Plant and Crop Science Marcel Dekker Inc N Y end enumerate

  8. A reference map of the Arabidopsis thaliana mature pollen proteome

    SciTech Connect

    Noir, Sandra; Braeutigam, Anne; Colby, Thomas; Schmidt, Juergen; Panstruga, Ralph . E-mail: panstrug@mpiz-koeln.mpg.de

    2005-12-02

    The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of the identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome.

  9. Floral glycerolipid profiles in homeotic mutants of Arabidopsis thaliana.

    PubMed

    Nakamura, Yuki; Liu, Yu-Chi; Lin, Ying-Chen

    2014-08-08

    Flowers have distinct glycerolipid composition, yet its floral organ-specific profile remains elusive in Arabidopsis whose flowers are too tiny to dissect different floral organs. Here, we employed known floral homeotic mutants agamous-1 (ag-1) and apetala3-3 (ap3-3) to facilitate sample preparation enriched in different floral organs. The result of analysis on different polar glycerolipid classes and their fatty acid composition demonstrated that flowers of ap3-3 and ag-1 have distinct glycerolipid composition from that of wild type. Moreover, distinct set of glycerolipid biosynthetic genes is expressed in these mutants by qRT-PCR gene expression analysis. These data suggest that glycerolipid profile is distinct among different floral organs of Arabidopsis thaliana. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana

    SciTech Connect

    Not Available

    1991-01-01

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  11. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis.

    PubMed

    Herrero, Joaquín; Esteban-Carrasco, Alberto; Zapata, José Miguel

    2013-06-01

    Monolignol polymerization into lignin is catalyzed by peroxidases or laccases. Recently, a Zinnia elegans peroxidase (ZePrx) that is considered responsible for monolignol polymerization in this plant has been molecularly and functionally characterized. Nevertheless, Arabidopsis thaliana has become an alternative model plant for studies of lignification, filling the gaps that may occur with Z. elegans. The arabidopsis genome offers the possibility of performing bioinformatic analyses and data mining that are not yet feasible with other plant species, in order to obtain preliminary evidence on the role of genes and proteins. In our search for arabidopsis homologs to the ZePrx, we performed an exhaustive in silico characterization of everything from the protein to the transcript of Arabidopsis thaliana peroxidases (AtPrxs) homologous to ZePrx, with the aim of identifying one or more peroxidases that may be involved in monolignol polymerization. Nine peroxidases (AtPrx 4, 5, 52, 68, 67, 36, 14, 49 and 72) with an E-value greater than 1e-80 with ZePrx were selected for this study. The results demonstrate that a high level of 1D, 2D and 3D homology between these AtPrxs and ZePrx are not always accompanied by the presence of the same electrostatic and mRNA properties that indicate a peroxidase is involved in lignin biosynthesis. In summary, we can confirm that the peroxidases involved in lignification are among AtPrx 4, 52, 49 and 72. Their structural and mRNA features indicate that exert their action in the cell wall similar to ZePrx.

  12. Quantitative trait loci for inflorescence development in Arabidopsis thaliana.

    PubMed Central

    Ungerer, Mark C; Halldorsdottir, Solveig S; Modliszewski, Jennifer L; Mackay, Trudy F C; Purugganan, Michael D

    2002-01-01

    Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions. PMID:11901129

  13. An Arabidopsis thaliana methyltransferase Capable of Methylating Farnesoic Acid

    SciTech Connect

    Yang,Y.; Yuan, J.; Ross, J.; Noel, J.; Pichersky, E.

    2006-01-01

    We previously reported the identification of a new family of plant methyltransferases (MTs), named the SABATH family, that use S-adenosyl-l-methionine (SAM) to methylate a carboxyl moiety or a nitrogen-containing functional group on a diverse array of plant compounds. The Arabidopsis genome alone contains 24 distinct SABATH genes. To identify the catalytic specificities of members of this protein family in Arabidopsis, we screened recombinantly expressed and purified enzymes with a large number of potential substrates. Here, we report that the Arabidopsis thaliana gene At3g44860 encodes a protein with high catalytic specificity towards farnesoic acid (FA). Under steady-state conditions, this farnesoic acid carboxyl methyltransferase (FAMT) exhibits K{sub M} values of 41 and 71 {mu}M for FA and SAM, respectively. A three-dimensional model of FAMT constructed based upon similarity to the experimentally determined structure of Clarkia breweri salicylic acid methyltransferase (SAMT) suggests a reasonable model for FA recognition in the FAMT active site. In plants, the mRNA levels of At3g44860 increase in response to the exogenous addition of several compounds previously shown to induce plant defense responses at the transcriptional level. Although methyl farnesoate (MeFA) has not yet been detected in Arabidopsis, the presence of a FA-specific carboxyl methyltransferase in Arabidopsis capable of producing MeFA, an insect juvenile hormone made by some plants as a presumed defense against insect herbivory, suggests that MeFA or chemically similar compounds are likely to serve as new specialized metabolites in Arabidopsis.

  14. Transcriptional Analysis of Arabidopsis thaliana Response to Lima Bean Volatiles

    PubMed Central

    Zhang, Sufang; Wei, Jianing; Kang, Le

    2012-01-01

    Background Exposure of plants to herbivore-induced plant volatiles (HIPVs) alters their resistance to herbivores. However, the whole-genome transcriptional responses of treated plants remain unknown, and the signal pathways that produce HIPVs are also unclear. Methodology/Principal Findings Time course patterns of the gene expression of Arabidopsis thaliana exposed to Lima bean volatiles were examined using Affymetrix ATH1 genome arrays. Results showed that A. thaliana received and responded to leafminer-induced volatiles from Lima beans through up-regulation of genes related to the ethylene (ET) and jasmonic acid pathways. Time course analysis revealed strong and partly qualitative differences in the responses between exposure at 24 and that at 48 h. Further experiments using either A. thaliana ET mutant ein2-1 or A. thaliana jasmonic acid mutant coi1-2 indicated that both pathways are involved in the volatile response process but that the ET pathway is indispensable for detecting volatiles. Moreover, transcriptional comparisons showed that plant responses to larval feeding do not merely magnify the volatile response process. Finally, (Z)-3-hexen-ol, ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene triggered responses in A. thaliana similar to those induced by the entire suite of Lima bean volatiles after 24 and 48 h. Conclusions/Significance This study shows that the transcriptional responses of plants to HIPVs become stronger as treatment time increases and that ET signals are critical during this process. PMID:22558246

  15. Monoterpene-induced molecular responses in Arabidopsis thaliana.

    PubMed

    Godard, Kimberley-Ann; White, Richard; Bohlmann, Jörg

    2008-06-01

    Terpenoid volatiles mediate various forms of chemical communications of plants with other organisms. In this paper we demonstrate that exposure of intact Arabidopsis thaliana plants to monoterpene volatiles results in substantial changes of the plant transcriptome and induction of methyl jasmonate (MeJA) accumulation. We used a heterologous pinII::GUS reporter system to test monoterpenes for their potential to induce a response in A. thaliana. Plants showed increased pinII-promoter activity upon exposure to different monoterpene volatiles, similar to the response induced by MeJA, mechanical wounding, or insect feeding. Microarray gene expression profiling indicated induced changes in the abundance of several hundred transcripts in wild-type plants upon either exposure to myrcene volatiles or exposure to a blend of ocimene volatiles consisting of (E)-beta-ocimene, (Z)-beta-ocimene, and allo-ocimene. Many of the monoterpene-induced transcripts are annotated as either transcription factors or as stress or defense genes including several steps in the octadecanoid pathway. Metabolite analysis showed that exposure of Arabidopsis for 2h to myrcene or ocimene induced increased tissue levels of MeJA. Octadecanoid biosynthesis (aoc) and signaling (coi1) mutants showed some reduced ocimene-induction of gene expression.

  16. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    PubMed

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-07-08

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes.

  17. Free-flow electrophoresis for fractionation of Arabidopsis thaliana membranes.

    PubMed

    Bardy, N; Carrasco, A; Galaud, J P; Pont-Lezica, R; Canut, H

    1998-06-01

    Highly purified tonoplast and plasma membrane vesicles were isolated from microsomes of Arabidopsis thaliana by preparative free-flow electrophoresis. The most electronegative fractions were identified as tonoplast using nitrate-inhibited Mg2+-ATPase as enzyme marker. The least electronegative fractions were identified as plasma membrane using glucan-synthase II, UDPG: sterol-glucosyl-transferase, and vanadate-inhibited Mg2+-ATPase as enzyme markers. Other membrane markers, latent inosine-5'-diphosphatase (Golgi), NADPH-cytochrome-c reductase (endoplasmic reticulum) and cytochrome-c oxidase (mitochondria) were recovered in the fractions intermediate between tonoplast and plasma membrane. Immunoblot analysis of membrane fractions by antibodies directed against tonoplast and plasma membrane proteins confirmed the nature and the purity of the isolated membranes. The cytoskeletal protein actin, which was also identified by immunoblotting, was found to be specifically attached to the plasma membrane vesicles. The structural and functional integrity of the isolated membranes from Arabidopsis thaliana is discussed in the light of results obtained for the location of receptors and enzymes, or for the determination of ligand binding activity.

  18. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana.

    PubMed

    Rudrappa, Thimmaraju; Biedrzycki, Meredith L; Kunjeti, Sridhara G; Donofrio, Nicole M; Czymmek, Kirk J; Paré, Paul W; Bais, Harsh P

    2010-03-01

    The majority of plant growth promoting rhizobacteria (PGPR) confer plant immunity against a wide range of foliar diseases by activating plant defences that reduce a plant's susceptibility to pathogen attack. Here we show that Arabidopsis thaliana (Col-0) plants exposed to Bacillus subtilis strain FB17 (hereafter FB17), results in reduced disease severity against Pseudomonas syringae pv. tomato DC3000 (hereafter DC3000) compared to plants without FB17 treatment. Exogenous application of the B. subtilis derived elicitor, acetoin (3-hydroxy-2-butanone), was found to trigger induced systemic resistance (ISR) and protect plants against DC3000 pathogenesis. Moreover, B. subtilis acetoin biosynthetic mutants that emitted reduced levels of acetoin conferred reduced protection to A. thaliana against pathogen infection. Further analysis using FB17 and defense-compromised mutants of A. thaliana indicated that resistance to DC3000 occurs via NPR1 and requires salicylic acid (SA)/ethylene (ET) whereas jasmonic acid (JA) is not essential. This study provides new insight into the role of rhizo-bacterial volatile components as elicitors of defense responses in plants.

  19. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana

    PubMed Central

    Rudrappa, Thimmaraju; Biedrzycki, Meredith L; Kunjeti, Sridhara G; Donofrio, Nicole M; Czymmek, Kirk J; Paré, Paul W

    2010-01-01

    The majority of plant growth promoting rhizobacteria (PGPR) confer plant immunity against a wide range of foliar diseases by activating plant defences that reduce a plant’s susceptibility to pathogen attack. Here we show that Arabidopsis thaliana (Col-0) plants exposed to Bacillus subtilis strain FB17 (hereafter FB17), results in reduced disease severity against Pseudomonas syringae pv. tomato DC3000 (hereafter DC3000) compared to plants without FB17 treatment. Exogenous application of the B. subtilis derived elicitor, acetoin (3-hydroxy-2-butanone), was found to trigger induced systemic resistance (ISR) and protect plants against DC3000 pathogenesis. Moreover, B. subtilis acetoin biosynthetic mutants that emitted reduced levels of acetoin conferred reduced protection to A. thaliana against pathogen infection. Further analysis using FB17 and defense-compromised mutants of A. thaliana indicated that resistance to DC3000 occurs via NPR1 and requires salicylic acid (SA)/ethylene (ET) whereas jasmonic acid (JA) is not essential. This study provides new insight into the role of rhizo-bacterial volatile components as elicitors of defense responses in plants. PMID:20585504

  20. Cleaning the GenBank Arabidopsis thaliana data set.

    PubMed Central

    Korning, P G; Hebsgaard, S M; Rouze, P; Brunak, S

    1996-01-01

    Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we extracted a data set from the A.thaliana entries in GenBank. A number of simple 'sanity' checks, based on the nature of the data, revealed an alarmingly high error rate. More than 15% of the most important entries extracted did contain erroneous information. In addition, a number of entries had directly conflicting assignments of exons and introns, not stemming from alternative splicing. In a few cases the errors are due to mere typographical misprints, which may be corrected by comparison to the original papers, but errors caused by wrong assignments of splice sites from experimental data are the most common. It is proposed that the level of error correction should be increased and that gene structure sanity checks should be incorporated--also at the submitter level--to avoid or reduce the problem in the future. A non-redundant and error corrected subset of the data for A.thaliana is made available through anonymous FTP. PMID:8628656

  1. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana.

    PubMed

    Zhen, Ying; Dhakal, Preeti; Ungerer, Mark C

    2011-07-01

    Abstract When resources are limited, there is a trade-off between growth/reproduction and stress defense in plants. Most temperate plant species, including Arabidopsis thaliana, can enhance freezing tolerance through cold acclimation at low but nonfreezing temperatures. Induction of the cold acclimation pathway should be beneficial in environments where plants frequently encounter freezing stress, but it might represent a cost in environments where freezing events are rare. In A. thaliana, induction of the cold acclimation pathway critically involves a small subfamily of genes known as the CBFs. Here we test for a cost of cold acclimation by utilizing (1) natural accessions of A. thaliana that originate from different regions of the species' native range and that have experienced different patterns of historical selection on their CBF genes and (2) transgenic CBF overexpression and T-DNA insertion (knockdown/knockout) lines. While benefits of cold acclimation in the presence of freezing stress were confirmed, no cost of cold acclimation was detected in the absence of freezing stress. These findings suggest that cold acclimation is unlikely to be selected against in warmer environments and that naturally occurring mutations disrupting CBF function in the southern part of the species range are likely to be selectively neutral. An unanticipated finding was that cold acclimation in the absence of a subsequent freezing stress resulted in increased fruit production, that is, fitness.

  2. Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis)

    PubMed Central

    2012-01-01

    Background Plants have evolved a complicated resistance system and exhibit a variety of defense patterns in response to different attackers. Previous studies have shown that responses of plants to chewing insects and phloem-feeding insects are significantly different. Less is known, however, regarding molecular responses to leafminer insects. To investigate plant transcriptome response to leafminers, we selected the leafminer Liriomyza huidobrensis, which has a special feeding pattern more similar to pathogen damage than that of chewing insects, as a model insect, and Arabidopsis thaliana as a response plant. Results We first investigated local and systemic responses of A. thaliana to leafminer feeding using an Affymetrix ATH1 genome array. Genes related to metabolic processes and stimulus responses were highly regulated. Most systemically-induced genes formed a subset of the local response genes. We then downloaded gene expression data from online databases and used hierarchical clustering to explore relationships among gene expression patterns in A. thaliana damaged by different attackers. Conclusions Our results demonstrate that plant response patterns are strongly coupled to damage patterns of attackers. PMID:23231622

  3. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Sedbrook, J.; Boonsirichai, K.; Chen, R.; Hilson, P.; Pearlman, R.; Rosen, E.; Rutherford, R.; Batiza, A.; Carroll, K.; Schulz, T.; hide

    1998-01-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  4. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana.

    PubMed

    Sedbrook, J; Boonsirichai, K; Chen, R; Hilson, P; Pearlman, R; Rosen, E; Rutherford, R; Batiza, A; Carroll, K; Schulz, T; Masson, P H

    1998-05-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  5. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Sedbrook, J.; Boonsirichai, K.; Chen, R.; Hilson, P.; Pearlman, R.; Rosen, E.; Rutherford, R.; Batiza, A.; Carroll, K.; Schulz, T.; Masson, P. H.

    1998-01-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  6. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    PubMed Central

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses. PMID:27790067

  7. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana.

    PubMed

    White, P J; Bowen, H C; Parmaguru, P; Fritz, M; Spracklen, W P; Spiby, R E; Meacham, M C; Mead, A; Harriman, M; Trueman, L J; Smith, B M; Thomas, B; Broadley, M R

    2004-08-01

    Selenium (Se) is an essential plant micronutrient, but is toxic at high tissue concentrations. It is chemically similar to sulphur (S), an essential plant macronutrient. The interactions between Se and S nutrition were investigated in the model plant Arabidopsis thaliana (L.) Heynh. Arabidopsis plants were grown on agar containing a complete mineral complement and various concentrations of selenate and sulphate. The Se/S concentration ratio in the shoot ([Se](shoot)/[S](shoot)) showed a complex dependence on the ratio of selenate to sulphate concentration in the agar ([Se](agar)/[S](agar)). Increasing [S](agar) increased shoot fresh weight (FW) and [S](shoot), but decreased [Se](shoot). Increasing [Se](agar) increased both [Se](shoot) and [S](shoot), but reduced shoot FW. The reduction in shoot FW in the presence of Se was linearly related to the shoot Se/S concentration ratio. These data suggest (i) that Se and S enter Arabidopsis through multiple transport pathways with contrasting sulphate/selenate selectivities, whose activities vary between plants of contrasting nutritional status, (ii) that rhizosphere sulphate inhibits selenate uptake, (iii) that rhizosphere selenate promotes sulphate uptake, possibly by preventing the reduction in the abundance and/or activity of sulphate transporters by sulphate and/or its metabolites, and (iv) that Se toxicity occurs because Se and S compete for a biochemical process, such as assimilation into amino acids of essential proteins.

  8. Linkage maps for Arabidopsis lyrata subsp. lyrata and Arabidopsis lyrata subsp. petraea combining anonymous and Arabidopsis thaliana-derived markers.

    PubMed

    Beaulieu, Julien; Jean, Martine; Belzile, François

    2007-02-01

    Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed.

  9. Multi-Element Bioimaging of Arabidopsis thaliana Roots1[OPEN

    PubMed Central

    Salt, David E.

    2016-01-01

    Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventional protocols for microscopy, we observed that diffusible ions such as potassium and sodium were lost during sample dehydration. Thus, we developed a protocol that preserves ions in their native, cellular environment. Briefly, fresh roots are encapsulated in paraffin, cryo-sectioned, and freeze dried. Samples are finally analyzed by laser ablation-inductively coupled plasma-mass spectrometry, utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA, and DNA, making it attractive in combination with other omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion transport in roots. Being applicable to Arabidopsis, the molecular and genetic approaches available in this system can now be fully exploited in order to gain a better mechanistic understanding of these processes. PMID:27566167

  10. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana

    PubMed Central

    Buer, Charles S.; Djordjevic, Michael A.

    2009-01-01

    Flavonoids are low molecular weight secondary plant metabolites with a myriad of functions. As flavonoids affect auxin transport (an important growth-controlling hormone) and are biologically active in eukaryotes, flavonoid mutants were expected to have undescribed architectural phenotypes. The Arabidopsis thaliana transparent testa (tt) mutants are compromised in the enzymatic steps or transcriptional regulators affecting flavonoid synthesis. tt mutant seedlings were grown on hard-slanted agar (a stress condition), under varying light conditions, and in soil to examine the resulting growth patterns. These tt mutants revealed a wide variety of architectural phenotypes in root and aerial tissues. Mutants with increased inflorescences, siliques, and lateral root density or reduced stature are traits that could affect plant yield or performance under certain environmental conditions. The regulatory genes affected in architectural traits may provide useful molecular targets for examination in other plants. PMID:19129166

  11. The molecular population genetics of shoot development in Arabidopsis thaliana.

    PubMed

    Shepard, Kristen A

    2007-01-01

    Studies in Arabidopsis thaliana have provided us with a wealth of information about the genetic pathways that regulate plant morphogenesis. This developmental genetic treasure trove represents a fantastic resource for researchers interested in the microevolution of development. Several laboratories have begun using molecular population genetic analyses to investigate the evolutionary forces that act upon loci that regulate shoot morphogenesis. Much of this work has focused on coding sequence variation in transcription factors; however, recent studies have explored sequence variation in other types of proteins and in promoter regions. Several genes that regulate shoot development contain signatures of selective sweeps associated with positive selection or harbor putative balanced polymorphisms in coding and noncoding sequences. Other regulatory genes appear to be evolving neutrally, but have accumulated potentially deleterious replacement polymorphisms.

  12. Growth distribution during phototropism of Arabidopsis thaliana seedlings

    SciTech Connect

    Orbovic, V.; Poff, K.L. )

    1993-09-01

    The elongation rates of two opposite sides of hypocotyls of Arabidopsis thaliana seedlings were measured during phototropism by using an infrared imaging system. In first positive phototropism, second positive phototropism, and red light-enhanced first positive phototropism, curvature toward the light source was the result of an increase in the rate of elongation of the shaded side and a decrease in the rate of elongation of the lighted side of the seedlings. The phase of straightening that followed maximum curvature resulted from a decrease in the elongation rate of the shaded side and an increase in the elongation rate of the lighted side. These data for the three types of blue light-induced phototropism tested in this study and for the phase of straightening are all clearly consistent with the growth rate changes predicted by the Cholodny-Went theory. 31 refs., 7 figs.

  13. Mediated electrochemistry of nitrate reductase from Arabidopsis thaliana.

    PubMed

    Kalimuthu, Palraj; Fischer-Schrader, Katrin; Schwarz, Günter; Bernhardt, Paul V

    2013-06-27

    Herein we report the mediated electrocatalytic voltammetry of the plant molybdoenzyme nitrate reductase (NR) from Arabidopsis thaliana using the established truncated molybdenum-heme fragment at a glassy carbon (GC) electrode. Methyl viologen (MV), benzyl viologen (BV), and anthraquinone-2-sulfonic acid (AQ) are employed as effective artificial electron transfer partners for NR, differing in redox potential over a range of about 220 mV and delivering different reductive driving forces to the enzyme. Nitrate is reduced at the Mo active site of NR, yielding the oxidized form of the enzyme, which is reactivated by the electro-reduced form of the mediator. Digital simulation was performed using a single set of enzyme dependent parameters for all catalytic voltammetry obtained under different sweep rates and various substrate or mediator concentrations. The kinetic constants from digital simulation provide new insight into the kinetics of the NR catalytic mechanism.

  14. Kinetics for phototropic curvature by etiolated seedlings of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Orbovic, V.; Poff, K. L.

    1991-01-01

    An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16 degrees about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6 degrees during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics.

  15. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.

    PubMed

    Yoshimoto, Kaori; Noutoshi, Yoshiteru; Hayashi, Ken-ichiro; Shirasu, Ken; Takahashi, Taku; Motose, Hiroyasu

    2012-08-01

    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation.

  16. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana.

    PubMed Central

    Berná, G; Robles, P; Micol, J L

    1999-01-01

    As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants. PMID:10353913

  17. Polycomb-Mediated Gene Silencing in Arabidopsis thaliana

    PubMed Central

    Kim, Dong-Hwan; Sung, Sibum

    2014-01-01

    Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana. PMID:25410906

  18. Multimodal nonlinear imaging of arabidopsis thaliana root cell

    NASA Astrophysics Data System (ADS)

    Jang, Bumjoon; Lee, Sung-Ho; Woo, Sooah; Park, Jong-Hyun; Lee, Myeong Min; Park, Seung-Han

    2017-07-01

    Nonlinear optical microscopy has enabled the possibility to explore inside the living organisms. It utilizes ultrashort laser pulse with long wavelength (greater than 800nm). Ultrashort pulse produces high peak power to induce nonlinear optical phenomenon such as two-photon excitation fluorescence (TPEF) and harmonic generations in the medium while maintaining relatively low average energy pre area. In plant developmental biology, confocal microscopy is widely used in plant cell imaging after the development of biological fluorescence labels in mid-1990s. However, fluorescence labeling itself affects the sample and the sample deviates from intact condition especially when labelling the entire cell. In this work, we report the dynamic images of Arabidopsis thaliana root cells. This demonstrates the multimodal nonlinear optical microscopy is an effective tool for long-term plant cell imaging.

  19. Mild ammonium stress increases chlorophyll content in Arabidopsis thaliana.

    PubMed

    Sanchez-Zabala, Joseba; González-Murua, Carmen; Marino, Daniel

    2015-01-01

    Nitrate (NO3(-)) and ammonium (NH4(+)) are the main forms of nitrogen available in the soil for plants. Excessive NH4(+) accumulation in tissues is toxic for plants and exclusive NH4(+)-based nutrition enhances this effect. Ammonium toxicity syndrome commonly includes growth impairment, ion imbalance and chlorosis among others. In this work, we observed high intraspecific variability in chlorophyll content in 47 Arabidopsis thaliana natural accessions grown under 1 mM NH4(+) or 1 mM NO3(-) as N-source. Interestingly, chlorophyll content increased in every accession upon ammonium nutrition. Moreover, this increase was independent of ammonium tolerance capacity. Thus, chlorosis seems to be an exclusive effect of severe ammonium toxicity while mild ammonium stress induces chlorophyll accumulation.

  20. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana

    PubMed Central

    Yoshimoto, Kaori; Noutoshi, Yoshiteru; Hayashi, Ken-ichiro; Shirasu, Ken; Takahashi, Taku; Motose, Hiroyasu

    2012-01-01

    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation. PMID:22751360

  1. Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh.

    PubMed

    Mano, Eriko; Horiguchi, Gorou; Tsukaya, Hirokazu

    2006-02-01

    In higher plants, stems and roots show negative and positive gravitropism, respectively. However, current knowledge on the graviresponse of leaves is lacking. In this study, we analyzed the positioning and movement of rosette leaves of Arabidopsis thaliana under light and dark conditions. We found that the radial positioning of rosette leaves was not affected by the direction of gravity under continuous white light. In contrast, when plants were shifted to darkness, the leaves moved upwards, suggesting negative gravitropism. Analysis of the phosphoglucomutase and shoot gravitropism 2-1 mutants revealed that the sedimenting amyloplasts in the leaf petiole are important for gravity perception, as is the case in stems and roots. In addition, our detailed physiological analyses revealed a unique feature of leaf movement after the shift to darkness, i.e. movement could be divided into negative gravitropism and nastic movement. The orientation of rosette leaves is ascribed to a combination of these movements.

  2. A phospholipid uptake system in the model plant Arabidopsis thaliana.

    PubMed

    Poulsen, Lisbeth R; López-Marqués, Rosa L; Pedas, Pai R; McDowell, Stephen C; Brown, Elizabeth; Kunze, Reinhard; Harper, Jeffrey F; Pomorski, Thomas G; Palmgren, Michael

    2015-07-27

    Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control.

  3. Molecular Genetics of Root Thigmoresponsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Masson, Patrick H.

    2002-01-01

    The molecular mechanisms that allow plant roots to use gravity and touch as growth guides are investigated. We are using a molecular genetic strategy in Arabidopsis thaliana to study these processes. When Arabidopsis thaliana seedlings grow on tilted hard-agar surfaces, their roots develop a wavy pattern of growth which appears to derive from a succession of left-handed and right-handed circumnutation-like processes triggered by gravity and touch stimulation (Okada and Shimura, 1990; Rutherford et al., 1998; Rutherford and Masson, 1996). Interestingly, mutations that affect root waving on tilted hard-agar surfaces can be identified and characterized. Some of these mutations affect root gravitropism, while others appear to be responsible for the production of abnormal waves (no waves, compressed or square waves, coils) without affecting gravitropism. The specific objectives of this project were to functionally characterize two genes (WVD2 and WVD6) which are required for root waving on tilted agar surfaces, but not for root gravitropism. Specific objectives included a physiological and cytological analysis of the mutants, and molecular cloning and characterization of the corresponding genes. As summarized in this paper, we have reached these objectives. We have also identified and partially characterized other mutations that affect root skewing on hard-agar surfaces (sku5-1 and ago1), and have completed our work on the root-wave phenotype associated with mutations in genes of the tryptophan biosynthesis pathway (Lynn et al., 1999; Rutherford et al., 1998; Sedbrook et al., 2000, 2002). We briefly describe our progress on the cloning and characterization of WVD6, WVD2 and SKU5, and provide a list of papers (published, or in preparation) that derived from this grant. We also discuss the biological implications of our findings, with special emphasis on the analysis of WVD2.

  4. Skew in CG content near the transcription start site in Arabidopsis thaliana.

    PubMed

    Tatarinova, Tatiana; Brover, Vyacheslav; Troukhan, Maxim; Alexandrov, Nickolai

    2003-01-01

    We have discovered a novel statistical feature of Arabidopsis thaliana genome that remarkably correlates with a position of transcription start site--CG skew peak. We hypothesize that the phenomenon can be explained by the higher mutability of unprotected cytosines.

  5. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    SciTech Connect

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  7. Protists are an integral part of the Arabidopsis thaliana microbiome.

    PubMed

    Sapp, Melanie; Ploch, Sebastian; Fiore-Donno, Anna Maria; Bonkowski, Michael; Rose, Laura E

    2017-10-02

    Although protists occupy a vast range of habitats and are known to interact with plants among other things via disease suppression, competition or growth stimulation, their contributions to the "phytobiome" are not well described. To contribute to a more comprehensive picture of the plant holobiont, we examined cercozoan and oomycete taxa living in association with the model plant Arabidopsis thaliana grown in two different soils. Soil, roots, leaves and wooden toothpicks were analyzed before and after surface sterilization. Cercozoa were identified using 18S rRNA gene metabarcoding, whereas the Internal Transcribed Spacer (ITS1) was used to determine oomycetes. Subsequent analyses revealed strong spatial structuring of protist communities between compartments, although oomycetes appeared more specialized than Cercozoa. With regards to oomycetes, only members of the Peronosporales and taxa belonging to the genus Globisporangium were identified as shared members of the A. thaliana microbiome. This also applied to cercozoan taxa belonging to the Glissomonadida and Cercomonadida. We identified a strong influence by edaphic factors on the rhizosphere, but not for the phyllosphere. Distinct differences of Cercozoa found preferably in wood or fresh plant material imply specific niche adaptations. Our results highlight the importance of micro-eukaryotes for the plant holobiont. This article is protected by copyright. All rights reserved. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    NASA Astrophysics Data System (ADS)

    Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.

    2003-09-01

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.

  9. Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.; Matthews, S. W.

    1996-01-01

    Reproductive development in Arabidopsis thaliana (L.) Heynh. cv. Columbia plants was investigated under spaceflight conditions on shuttle mission STS-51. Plants launched just prior to initiation of the reproductive phase developed flowers and siliques during the 10-d flight. Approximately 500 flowers were produced in total by the 12 plants in both the ground control and spaceflight material, and there was no significant difference in the number of flowers in each size class. The flower buds and siliques of the spaceflight plants were not morphologically different from the ground controls. Pollen viability tests immediately post-flight using fluorescein diacetate indicated that about 35% of the pollen was viable in the spaceflight material. Light-microscopy observations on this material showed that the female gametophytes also had developed normally to maturity. However, siliques from the spaceflight plants contained empty, shrunken ovules, and no evidence of pollen transfer to stigmatic papillae was found by light microscopy immediately post-flight or by scanning electron microscopy on fixed material. Short stamen length and indehiscent anthers were observed in the spaceflight material, and a film-like substance inside the anther that connected to the tapetum appeared to restrict the release of pollen from the anthers. These observations indicate that given appropriate growing conditions, early reproductive development in A. thaliana can occur normally under spaceflight conditions. On STS-51, reproductive development aborted due to obstacles in pollination or fertilization.

  10. Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.; Matthews, S. W.

    1996-01-01

    Reproductive development in Arabidopsis thaliana (L.) Heynh. cv. Columbia plants was investigated under spaceflight conditions on shuttle mission STS-51. Plants launched just prior to initiation of the reproductive phase developed flowers and siliques during the 10-d flight. Approximately 500 flowers were produced in total by the 12 plants in both the ground control and spaceflight material, and there was no significant difference in the number of flowers in each size class. The flower buds and siliques of the spaceflight plants were not morphologically different from the ground controls. Pollen viability tests immediately post-flight using fluorescein diacetate indicated that about 35% of the pollen was viable in the spaceflight material. Light-microscopy observations on this material showed that the female gametophytes also had developed normally to maturity. However, siliques from the spaceflight plants contained empty, shrunken ovules, and no evidence of pollen transfer to stigmatic papillae was found by light microscopy immediately post-flight or by scanning electron microscopy on fixed material. Short stamen length and indehiscent anthers were observed in the spaceflight material, and a film-like substance inside the anther that connected to the tapetum appeared to restrict the release of pollen from the anthers. These observations indicate that given appropriate growing conditions, early reproductive development in A. thaliana can occur normally under spaceflight conditions. On STS-51, reproductive development aborted due to obstacles in pollination or fertilization.

  11. AraPheno: a public database for Arabidopsis thaliana phenotypes

    PubMed Central

    Seren, Ümit; Grimm, Dominik; Fitz, Joffrey; Weigel, Detlef; Nordborg, Magnus; Borgwardt, Karsten; Korte, Arthur

    2017-01-01

    Natural genetic variation makes it possible to discover evolutionary changes that have been maintained in a population because they are advantageous. To understand genotype–phenotype relationships and to investigate trait architecture, the existence of both high-resolution genotypic and phenotypic data is necessary. Arabidopsis thaliana is a prime model for these purposes. This herb naturally occurs across much of the Eurasian continent and North America. Thus, it is exposed to a wide range of environmental factors and has been subject to natural selection under distinct conditions. Full genome sequencing data for more than 1000 different natural inbred lines are available, and this has encouraged the distributed generation of many types of phenotypic data. To leverage these data for meta analyses, AraPheno (https://arapheno.1001genomes.org) provide a central repository of population-scale phenotypes for A. thaliana inbred lines. AraPheno includes various features to easily access, download and visualize the phenotypic data. This will facilitate a comparative analysis of the many different types of phenotypic data, which is the base to further enhance our understanding of the genotype–phenotype map. PMID:27924043

  12. Competitive ability not kinship affects growth of Arabidopsis thaliana accessions.

    PubMed

    Masclaux, Frédéric; Hammond, Robert L; Meunier, Joël; Gouhier-Darimont, Caroline; Keller, Laurent; Reymond, Philippe

    2010-01-01

    In many organisms, individuals behave more altruistically towards relatives than towards unrelated individuals. Here, we conducted a study to determine if the performance of Arabidopsis thaliana is influenced by whether individuals are in competition with kin or non-kin. We selected seven pairs of genetically distinct accessions that originated from local populations throughout Europe. We measured the biomass of one focal plant surrounded by six kin or non-kin neighbours in in vitro growth experiments and counted the number of siliques produced per pot by one focal plant surrounded by four kin or non-kin neighbours. The biomass and number of siliques of a focal plant were not affected by the relatedness of the neighbour. Depending on the accession, a plant performed better or worse in a pure stand than when surrounded by non-kin plants. In addition, whole-genome microarray analyses revealed that there were no genes differentially expressed between kin and non-kin conditions. In conclusion, our study does not provide any evidence for a differential response to kin vs non-kin in A. thaliana. Rather, the outcome of the interaction between kin and non-kin seems to depend on the strength of the competitive abilities of the accessions.

  13. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  14. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.

    PubMed

    Vansuyt, Gérard; Robin, Agnès; Briat, Jean-François; Curie, Catherine; Lemanceau, Philippe

    2007-04-01

    Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its increased reductase activity, suggesting that this activity was not involved in the iron uptake from pyoverdine. A mutant knock-out iron transporter IRT1 showed lower iron and chlorophyll contents when supplemented with Fe-EDTA than the wild type but not when supplemented with Fe-pyoverdine, indicating that, in contrast to iron from EDTA, iron from pyoverdine was not incorporated through the IRT1 transporter. Altogether these data suggest that iron from Fe-pyoverdine was not incorporated in planta through the strategy I, which is based on reductase activity and IRT1 transporter. This is supported by the presence of pyoverdine in planta as shown by enzyme-linked immunosorbent assay and by tracing 15N of 15N-pyoverdine.

  15. Aspartate-Derived Amino Acid Biosynthesis in Arabidopsis thaliana.

    PubMed

    Jander, Georg; Joshi, Vijay

    2009-01-01

    The aspartate-derived amino acid pathway in plants leads to the biosynthesis of lysine, methionine, threonine, and isoleucine. These four amino acids are essential in the diets of humans and other animals, but are present in growth-limiting quantities in some of the world's major food crops. Genetic and biochemical approaches have been used for the functional analysis of almost all Arabidopsis thaliana enzymes involved in aspartate-derived amino acid biosynthesis. The branch-point enzymes aspartate kinase, dihydrodipicolinate synthase, homoserine dehydrogenase, cystathionine gamma synthase, threonine synthase, and threonine deaminase contain well-studied sites for allosteric regulation by pathway products and other plant metabolites. In contrast, relatively little is known about the transcriptional regulation of amino acid biosynthesis and the mechanisms that are used to balance aspartate-derived amino acid biosynthesis with other plant metabolic needs. The aspartate-derived amino acid pathway provides excellent examples of basic research conducted with A. thaliana that has been used to improve the nutritional quality of crop plants, in particular to increase the accumulation of lysine in maize and methionine in potatoes.

  16. Histochemical staining of Arabidopsis thaliana secondary cell wall elements.

    PubMed

    Pradhan Mitra, Prajakta; Loqué, Dominique

    2014-05-13

    Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40-50%), hemicellulose (25-30%), and lignin (20-30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.

  17. Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana.

    PubMed

    Malinova, Irina; Steup, Martin; Fettke, Joerg

    2011-08-15

    Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases, DPE2 and PHS2 (or, in all other species, Pho2). In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids. In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were

  18. A fractionation procedure for identifying novel proteins induced by chill stress in Arabidopsis thaliana.

    PubMed

    Sun, Liwen; Wang, Shichen; Xi, Jinghui; Yang, Shuo; Liu, Xiangguo; Chai, Xin; Xin, Hongbao; An, Baiyi; Hao, Dongyun

    2009-08-01

    Extraction of plant proteins using typical extraction buffers leaves insoluble debris that cannot be investigated by conventional 2-DE technologies. In this paper, we present a scalable, off-line procedure for extraction of Arabidopsis thaliana homogenates that can be used in combination with both in-gel digestion and mass spectrometry. Based on sequential NaCl gradients and strong detergent fractionation, this new strategy allowed detection of 11 novel proteins from Arabidopsis thaliana that were altered in response to chilling stress.

  19. Partial Purification and Characterization of RNase P from Arabidopsis Thaliana Tissue.

    DTIC Science & Technology

    2000-01-01

    Sequence homology is indicated by 9 Source Subcellular Density Nuclease RNA Protienase Locale CsCI (g/ml/ Sensitive Subunit Sensitive Spinach chloroplasts...PARTIAL PURIFICATION AND CHARACTERIZATION OF RNASE P FROM ARABIDOPSIS THALIANA TISSUE A Thesis Presented in Partial Fulfillment of the Requirement...ptRNA) molecules to give mature 5’ ends has been isolated from Arabidopsis thaliana tissue. The RNase P activity was isolated by ammonium sulfate

  20. Natural variation in herbivore-induced volatiles in Arabidopsis thaliana

    PubMed Central

    Snoeren, Tjeerd A. L.; Broekgaarden, Colette; Mumm, Roland; Dicke, Marcel; Bouwmeester, Harro J.

    2010-01-01

    To study whether natural variation in Arabidopsis thaliana could be used to dissect the genetic basis of responses to herbivory in terms of induced volatile emissions, nine accessions were characterized upon herbivory by biting-chewing Pieris rapae caterpillars or after treatment with the phytohormone jasmonic acid (JA). Analysis of 73 compounds in the headspace showed quantitative differences in the emission rates of several individual compounds among the accessions. Moreover, variation in the emission of volatile compounds after JA treatment was reflected in the behaviour of the parasitoid Diadegma semiclausum when they were offered the headspace volatiles of several combinations of accessions in two-choice experiments. Accessions also differ in transcript levels of genes that are associated with the emission of plant volatiles. The genes BSMT1 and Cyp72A13 could be connected to the emission of methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), respectively. Overall, Arabidopsis showed interesting phenotypic variations with respect to the volatile blend emitted in response to herbivory that can be exploited to identify genes and alleles that underlie this important plant trait. PMID:20488836

  1. The RNA-binding protein repertoire of Arabidopsis thaliana

    PubMed Central

    Marondedze, Claudius; Thomas, Ludivine; Serrano, Natalia L.; Lilley, Kathryn S.; Gehring, Chris

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses. PMID:27405932

  2. Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana.

    PubMed Central

    Kliebenstein, Daniel J; Figuth, Antje; Mitchell-Olds, Thomas

    2002-01-01

    The ability of a single genotype to generate different phenotypes in disparate environments is termed phenotypic plasticity, which reflects the interaction of genotype and environment on developmental processes. However, there is controversy over the definition of plasticity genes. The gene regulation model states that plasticity loci influence trait changes between environments without altering the means within a given environment. Alternatively, the allelic sensitivity model argues that plasticity evolves due to selection of phenotypic values expressed within particular environments; hence plasticity must be controlled by loci expressed within these environments. To identify genetic loci controlling phenotypic plasticity and address this controversy, we analyzed the plasticity of glucosinolate accumulation under methyl jasmonate (MeJa) treatment in Arabidopsis thaliana. We found genetic variation influencing multiple MeJa signal transduction pathways. Analysis of MeJa responses in the Landsberg erecta x Columbia recombinant inbred lines identified a number of quantitative trait loci (QTL) that regulate plastic MeJa responses. All significant plasticity QTL also impacted the mean trait value in at least one of the two "control" or "MeJa" environments, supporting the allelic sensitivity model. Additionally, we present an analysis of MeJa and salicylic acid cross-talk in glucosinolate regulation and describe the implications for glucosinolate physiology and functional understanding of Arabidopsis MeJa signal transduction. PMID:12196411

  3. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves

    PubMed Central

    Ryffel, Florian; Helfrich, Eric JN; Kiefer, Patrick; Peyriga, Lindsay; Portais, Jean-Charles; Piel, Jörn; Vorholt, Julia A

    2016-01-01

    The phyllosphere, which is defined as the parts of terrestrial plants above the ground, is a large habitat for different microorganisms that show a high extent of adaption to their environment. A number of hypotheses were generated by culture-independent functional genomics studies to explain the competitiveness of specialized bacteria in the phyllosphere. In contrast, in situ data at the metabolome level as a function of bacterial colonization are lacking. Here, we aimed to obtain new insights into the metabolic interplay between host and epiphytes upon colonization of Arabidopsis thaliana leaves in a controlled laboratory setting using environmental metabolomics approaches. Quantitative nuclear magnetic resonance (NMR) and imaging high-resolution mass spectrometry (IMS) methods were used to identify Arabidopsis leaf surface compounds and their possible involvement in the epiphytic lifestyle by relative changes in compound pools. The dominant carbohydrates on the leaf surfaces were sucrose, fructose and glucose. These sugars were significantly and specifically altered after epiphytic leaf colonization by the organoheterotroph Sphingomonas melonis or the phytopathogen Pseudomonas syringae pv. tomato, but only to a minor extent by the methylotroph Methylobacterium extorquens. In addition to carbohydrates, IMS revealed surprising alterations in arginine metabolism and phytoalexin biosynthesis that were dependent on the presence of bacteria, which might reflect the consequences of bacterial activity and the recognition of not only pathogens but also commensals by the plant. These results highlight the power of environmental metabolomics to aid in elucidating the molecular basis underlying plant–epiphyte interactions in situ. PMID:26305156

  4. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    PubMed

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.

  5. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  6. Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana

    PubMed Central

    He, Chongsheng; Huang, Hai; Xu, Lin

    2013-01-01

    Polycomb group (PcG) proteins act in an evolutionarily conserved epigenetic pathway that regulates chromatin structures in plants and animals, repressing many developmentally important genes by modifying histones. PcG proteins can form at least two multiprotein complexes: Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2, respectively). The functions of Arabidopsis thaliana PRCs have been characterized in multiple stages of development and have diverse roles in response to environmental stimuli. Recently, the mechanism that precisely regulates Arabidopsis PcG activity was extensively studied. In this review, we summarize recent discoveries in the regulations of PcG at the three different layers: the recruitment of PRCs to specific target loci, the polyubiquitination and degradation of PRC2, and the antagonism of PRC2 activity by the Trithorax group proteins. Current knowledge indicates that the powerful activity of the PcG pathway is strictly controlled for specific silencing of target genes during plant development and in response to environmental stimuli. PMID:24312106

  7. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction.

    PubMed

    Coimbra, Sílvia; Almeida, João; Junqueira, Vítor; Costa, Mário Luís; Pereira, Luís Gustavo

    2007-01-01

    Some of the most important changes that occur in plants during sexual reproduction involve the transition from a sporophytic to a gametophytic type of development. In this paper, these changes were evaluated for Arabidopsis thaliana. The results obtained clearly show differences in the pattern of distribution of specific arabinogalactan protein (AGP) sugar epitopes, during anther and ovule development. AGPs are hydroxyproline-rich glycoproteins that are massively glycosylated and ubiquitous in plants. The molecular mechanism of action of AGPs is still unknown, mainly due to the difficulties posed by the complex saccharide chains. However, the complex structure of the sugar fraction of AGPs makes them a potential source of signalling molecules. The selective labelling obtained with AGP mAbs JIM8, JIM13, MAC207, and LM2, during Arabidopsis pollen and pistil development, suggests that some AGPs can work as markers for gametophytic cell differentiation. Specific labelling of the first gametophytic cells in the pistil, the strong labelling of the secretory cells of the embryo sac, the synergid cells, and the labelling of the integument micropylar cells, apparently outlining the pollen tube pathway into its final target, the embryo sac, have all been shown. In the anthers, the specific labelling of gametophytic cells, and of the male gametes that travel along the pollen tube, may indicate AGP epitopes acting as signals for the pollen tube to reach its final destiny. The specific labelling of cells destined to go into programmed cell death is also discussed.

  8. A metal-accumulator mutant of Arabidopsis thaliana.

    PubMed Central

    Delhaize, E

    1996-01-01

    A mutation designated man1 (for manganese accumulator) was found to cause Arabidopsis thaliana seedlings to accumulate a range of metals. The man1 mutation segregated as a single recessive locus located on chromosome 3. When grown on soil, mutant seedlings accumulated Mn (7.5 times greater than wild type), Cu (4.6 times greater than wild type), Zn (2.8 times greater than wild type), and Mg (1.8 times greater than wild type) in leaves. In addition to these metals, the man1 mutant accumulated 2.7-fold more S in leaves, primarily in the oxidized form, than wild-type seedlings. Analysis of seedlings grown by hydroponic culture showed a similar accumulation of metals in leaves of man1 mutants. Roots of man1 mutants also accumulated metals, but unlike leaves they accumulated 10-fold more total Fe (symplasmic and apoplasmic combined) than wild-type roots. Roots of man1 mutants possessed greater (from 1.8- to 20-fold) ferric-chelate reductase activity than wild-type seedings, and this activity was not responsive to changes of Mn nutrition in either genotype. Taken together, these results suggest that the man1 mutation disrupts the regulation of metal-ion uptake or homeostasis in Arabidopsis. PMID:8754685

  9. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana

    PubMed Central

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes PMID:27399695

  10. Supercooling capacity of seeds and seedlings in Arabidopsis thaliana.

    PubMed

    Vernon, P; Vannier, G; Arondel, V

    1999-09-01

    The influence of the water content of seeds and seedlings of Arabidopsis thaliana (Ecotype Columbia:2) on their supercooling capacity was investigated. Equilibration of the seeds to various air relative humidities resulted in final moisture contents ranging from 8 to 82% (dry weight basis). No supercooling point could be detected when the water content remained below 32.5%, and in seeds at just above this moisture level ice crystals started to form at -26 degrees C. However, cooling partly affected the germination of seeds down to a water content of 26.5%. Upon imbibition, the supercooling point of the seeds remained around -21.6 degrees C and rose sharply to -14.7 degrees C when visible germination started. It remained around -13 degrees C during the following 96 h while the water content of the seedlings increased from 155 to 870%. Hydrated seeds (above 32.5% water content), germinated seeds, and seedlings of Arabidopsis cannot survive being frozen. Copyright 1999 Academic Press.

  11. Caesium-affected gene expression in Arabidopsis thaliana.

    PubMed

    Sahr, Tobias; Voigt, Gabriele; Paretzke, Herwig G; Schramel, Peter; Ernst, Dieter

    2005-03-01

    * Excessive caesium can be toxic to plants. Here we investigated Cs uptake and caesium-induced gene expression in Arabidopsis thaliana. * Accumulation was measured in plants grown for 5 wk on agar supplemented with nontoxic and up to toxic levels of Cs. Caesium-induced gene expression was studied by suppression-subtractive hybridization (SSH) and RT-PCR. * Caesium accumulated in leaf rosettes dependent upon the external concentration in the growth media, whereas the potassium concentration decreased in rosettes. At a concentration of 850 microM, Cs plants showed reduced development, and withered with an increase in concentration to 1 mM Cs. SSH resulted in the isolation of 73 clones that were differentially expressed at a Cs concentration of 150 microM. Most of the genes identified belong to groups of genes encoding proteins in stress defence, detoxification, transport, homeostasis and general metabolism, and proteins controlling transcription and translation. * The present study identified a number of marker genes for Cs in Arabidopsis grown under nontoxic Cs concentrations, indicating that Cs acts as an abiotic stress factor.

  12. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.

    PubMed

    Li, Lei; Nelson, Clark J; Trösch, Josua; Castleden, Ian; Huang, Shaobai; Millar, A Harvey

    2017-02-01

    We applied (15)N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with (15)N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome. © 2017 American Society of Plant Biologists. All rights reserved.

  13. Acclimation responses of Arabidopsis thaliana to sustained phosphite treatments

    PubMed Central

    Berkowitz, Oliver

    2013-01-01

    Phosphite () induces a range of physiological and developmental responses in plants by disturbing the homeostasis of the macronutrient phosphate. Because of its close structural resemblance to phosphate, phosphite impairs the sensing, membrane transport, and subcellular compartmentation of phosphate. In addition, phosphite induces plant defence responses by an as yet unknown mode of action. In this study, the acclimation of Arabidopsis thaliana plants to a sustained phosphite supply in the growth medium was investigated and compared with plants growing under varying phosphate supplies. Unlike phosphate, phosphite did not suppress the formation of lateral roots in several Arabidopsis accessions. In addition, the expression of well-documented phosphate-starvation-induced genes, such as miRNA399d and At4, was not repressed by phosphite accumulation, whilst the induction of PHT1;1 and PAP1 was accentuated. Thus, a mimicking of phosphate by phosphite was not observed for these classical phosphate-starvation responses. Metabolomic analysis of phosphite-treated plants showed changes in several metabolite pools, most prominently those of aspartate, asparagine, glutamate, and serine. These alterations in amino acid pools provide novel insights for the understanding of phosphite-induced pathogen resistance. PMID:23404904

  14. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana

    PubMed Central

    Guo, Changjiang; Du, Jianchang; Wang, Long; Yang, Sihai; Mauricio, Rodney; Tian, Dacheng; Gu, Tingting

    2016-01-01

    Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome. PMID:27965694

  15. Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana.

    PubMed

    Fujioka, S; Choi, Y H; Takatsuto, S; Yokota, T; Li, J; Chory, J; Sakurai, A

    1996-12-01

    Endogenous brassinosteroids in the shoots of Arabidopsis thaliana were investigated. Castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol were identified by GC-MS. The co-occurrence of 6-deoxo-brassinosteroids and 6-oxo-brassinosteroids suggests that there are both early and late C6-oxidation pathways of brassinosteroids in A. thaliana.

  16. Crystallization and preliminary X-ray analysis of immunophilin-like FKBP42 from Arabidopsis thaliana

    SciTech Connect

    Eckhoff, Andreas; Granzin, Joachim; Kamphausen, Thilo; Büldt, Georg; Schulz, Burkhard; Weiergräber, Oliver H.

    2005-04-01

    The crystallization of FKBP42, a multi-domain member of the FK506-binding protein family, from the plant A. thaliana is reported. Two fragments of FKBP42 from Arabidopsis thaliana covering differing lengths of the molecule have been expressed, purified and crystallized. For each construct, crystals belonging to two different space groups were obtained and subjected to preliminary X-ray analysis.

  17. An autophosphorylation site database for leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    We conducted a family-wide study to identify and characterize sites of autophosphorylation in 73 representative LRR RLKs of the 223 member LRR RLK family in Arabidopsis thaliana. His-tagged constructs of intact cytoplasmic domains (CDs) for 73 of 223 A. thaliana LRR RLKs were cloned into E. coli BL-...

  18. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. 1

    PubMed Central

    Meyer, Christiane; Feyerabend, Martin; Weiler, Elmar W.

    1989-01-01

    Using the novel radioligand, [3H]-9′-nor-fusicoccin-8′-alcohol, high affinity binding sites for fusicoccin were characterized in preparations from leaves of Arabidopsis thaliana (L.) Heynh. The binding site copartitioned with the plasmalemma marker, vanadate-sensitive K+, Mg2+-ATPase, when microsomal fractions were further purified by aqueous two-phase partitioning in polyethylene glycol-dextran phase systems and sedimented at an equilibrium density of 1.17 grams per cubic centimeter in continuous sucrose density gradients, as did the ATPase marker. The binding of [3H]-9′-nor-fusicoccin-8′-alcohol was saturable and Scatchard analysis revealed a biphasic plot with two apparent dissociation constants (KD), KD1 = 1.5 nanomolar and KD2 = 42 nanomolar, for the radioligand. Binding was optimal at pH 6, thermolabile, and was reduced by 70% when the membrane vesicles were pretreated with trypsin. The data are consistent with the presence of one or several binding proteins for fusicoccin at the plasma membrane of A. thaliana. Binding of the radioligand was unaffected by pretreatment of the sites with various alkylating and reducing agents, but was reduced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, diethylpyrocarbonate, chloramine T, and periodate. A number of detergents were tested to find optimum conditions for solubilization. Nonanoyl-N-methylglucamide (50 millimolar) solubilized 70% of the radioligand-binding protein complex in undissociated form. Photoaffinity labeling of membrane preparations with a tritiated azido analog of fusicoccin resulted in the labeling of a 34 ± 1 kilodalton polypeptide. Labeling of this polypeptide, presumably the fusicoccin-binding protein, was severely reduced in the presence of unlabeled fusicoccin. PMID:16666603

  19. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.

    PubMed

    Peltier, Jean-Benoit; Cai, Yang; Sun, Qi; Zabrouskov, Vladimir; Giacomelli, Lisa; Rudella, Andrea; Ytterberg, A Jimmy; Rutschow, Heidi; van Wijk, Klaas J

    2006-01-01

    This study presents an analysis of the stromal proteome in its oligomeric state extracted from highly purified chloroplasts of Arabidopsis thaliana. 241 proteins (88% with predicted cTP), mostly assembled in oligomeric complexes, were identified by mass spectrometry with emphasis on distinguishing between paralogues. This is critical because different paralogues in a gene family often have different subcellular localizations and/or different expression patterns and functions. The native protein masses were determined for all identified proteins. Comparison with the few well characterized stromal complexes from A. thaliana confirmed the accuracy of the native mass determination, and by extension, the usefulness of the native mass data for future in-depth protein interaction studies. Resolved protein interactions are discussed and compared with an extensive collection of native mass data of orthologues in other plants and bacteria. Relative protein expression levels were estimated from spot intensities and also provided estimates of relative concentrations of individual proteins. No such quantification has been reported so far. Surprisingly proteins dedicated to chloroplast protein synthesis, biogenesis, and fate represented nearly 10% of the total stroma protein mass. Oxidative pentose phosphate pathway, glycolysis, and Calvin cycle represented together about 75%, nitrogen assimilation represented 5-7%, and all other pathways such as biosynthesis of e.g. fatty acids, amino acids, nucleotides, tetrapyrroles, and vitamins B(1) and B(2) each represented less than 1% of total protein mass. Several proteins with diverse functions outside primary carbon metabolism, such as the isomerase ROC4, lipoxygenase 2 involved in jasmonic acid biosynthesis, and a carbonic anhydrase (CA1), were surprisingly abundant in the range of 0.75-1.5% of the total stromal mass. Native images with associated information are available via the Plastid Proteome Database.

  20. Gene Transposition Causing Natural Variation for Growth in Arabidopsis thaliana

    PubMed Central

    Vlad, Daniela; Rappaport, Fabrice; Simon, Matthieu; Loudet, Olivier

    2010-01-01

    A major challenge in biology is to identify molecular polymorphisms responsible for variation in complex traits of evolutionary and agricultural interest. Using the advantages of Arabidopsis thaliana as a model species, we sought to identify new genes and genetic mechanisms underlying natural variation for shoot growth using quantitative genetic strategies. More quantitative trait loci (QTL) still need be resolved to draw a general picture as to how and where in the pathways adaptation is shaping natural variation and the type of molecular variation involved. Phenotypic variation for shoot growth in the Bur-0 × Col-0 recombinant inbred line set was decomposed into several QTLs. Nearly-isogenic lines generated from the residual heterozygosity segregating among lines revealed an even more complex picture, with major variation controlled by opposite linked loci and masked by the segregation bias due to the defective phenotype of SG3 (Shoot Growth-3), as well as epistasis with SG3i (SG3-interactor). Using principally a fine-mapping strategy, we have identified the underlying gene causing phenotypic variation at SG3: At4g30720 codes for a new chloroplast-located protein essential to ensure a correct electron flow through the photosynthetic chain and, hence, photosynthesis efficiency and normal growth. The SG3/SG3i interaction is the result of a structural polymorphism originating from the duplication of the gene followed by divergent paralogue's loss between parental accessions. Species-wide, our results illustrate the very dynamic rate of duplication/transposition, even over short periods of time, resulting in several divergent—but still functional—combinations of alleles fixed in different backgrounds. In predominantly selfing species like Arabidopsis, this variation remains hidden in wild populations but is potentially revealed when divergent individuals outcross. This work highlights the need for improved tools and algorithms to resolve structural variation

  1. Actin cytoskeleton in Arabidopsis thaliana under blue and red light.

    PubMed

    Krzeszowiec, Weronika; Rajwa, Bartek; Dobrucki, Jurek; Gabryś, Halina

    2007-05-01

    Actin cytoskeleton is the basis of chloroplast-orientation movements. These movements are activated by blue light in the leaves of terrestrial angiosperms. Red light has been shown to affect the spatial reorganization of F-actin in water plants, where chloroplast movements are closely connected with cytoplasmic streaming. The aim of the present study was to determine whether blue light, which triggers characteristic responses of chloroplasts, i.e. avoidance and accumulation, also influences F-actin organization in the mesophyll cells of Arabidopsis thaliana. Actin filaments in fixed mesophyll tissue were labelled with Alexa Fluor 488-conjugated phalloidin. The configuration of actin filaments, expressed as a form factor (4 pi x area/perimeter(2)), was determined for all actin formations which were measured in fluorescence confocal images. In the present study, we compare form-factor distributions and the median form factors for strong and weak, blue- and red-irradiated tissues. Spatial organization of the F-actin network did not undergo any changes which could be attributed specifically to blue light. Actin patterns were similar in blue-irradiated wild-type plants and phot2 (phototropin 2) mutants which lack the avoidance response of chloroplasts. However, significant differences in the shape and distribution of F-actin formations were observed between mesophyll cells of phot2 mutants irradiated with strong and weak red light. These differences were absent in wild-type leaves. Actin does not appear to be the main target for the blue-light chloroplast-orientation signal. The modes of actin involvement in chloroplast translocations are different in water and terrestrial angiosperms. The results suggest that co-operation occurs between blue- and red-light photoreceptors in the control of the actin cytoskeleton architecture in Arabidopsis.

  2. Unusual case of apparent hypermutation in Arabidopsis thaliana.

    PubMed

    Sasaki, Taku; Naumann, Ulf; Forai, Petar; Matzke, Antonius J M; Matzke, Marjori

    2012-12-01

    The dms4 (defective in meristem silencing 4) mutant of Arabidopsis thaliana is unique in having defects in both RNA-directed DNA methylation (RdDM) and plant development. DMS4 is an evolutionarily conserved, putative transcription factor of the Iwr1 (interacts with RNA polymerase II) type. DMS4 interacts with Pol II and also with RNA polymerases IV and V, which function in RdDM. Interactions with multiple polymerases may account for the diverse phenotypic effects of dms4 mutations. To dissect further the roles of DMS4 in RdDM and development, we performed a genetic suppressor screen using the dms4-1 allele, which contains in the sixth intron a splice site acceptor mutation that alters splicing and destroys the open reading frame. Following mutagenesis of dms4-1 seeds using ethyl methanesulfonate (EMS), we retrieved four dominant intragenic suppressor mutations that restored DMS4 function and wild-type phenotypes. Three of the four intragenic suppressor mutations created new splice site acceptors, which resulted in reestablishment of the wild-type open reading frame. Remarkably, the intragenic suppressor mutations were recovered at frequencies ranging from 35 to 150 times higher than expected for standard EMS mutagenesis in Arabidopsis. Whole-genome sequencing did not reveal an elevated mutation frequency genome-wide, indicating that the apparent hypermutation was confined to four specific sites in the dms4 gene. The localized high mutation frequency correlated with restoration of DMS4 function implies an efficient mechanism for targeted mutagenesis or selection of more fit revertant cells in the shoot apical meristem, thereby rapidly restoring a wild-type phenotype that is transmitted to future generations.

  3. CAMTA 1 regulates drought responses in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. Results In camta1, root development was abolished showing high-susceptibility to induced osmotic stress resulting in small wrinkled rosette leaves and stunted primary root. In camta1 under drought condition, we identified growth retardation, poor WUE, low photosystem II efficiency, decline in RWC and higher sensitivity to drought with reduced survivability. The microarray analysis of drought treated camta1 revealed that CAMTA1 regulates “drought recovery” as most indicative pathway along with other stress response, osmotic balance, apoptosis, DNA methylation and photosynthesis. Interestingly, majority of positively regulated genes were related to plasma membrane and chloroplast. Further, our analysis indicates that CAMTA1 regulates several stress responsive genes including RD26, ERD7, RAB18, LTPs, COR78, CBF1, HSPs etc. and promoter of these genes were enriched with CAMTA recognition cis-element. CAMTA1 probably regulate drought recovery by regulating expression of AP2-EREBP transcription factors and Abscisic acid response. Conclusion CAMTA1 rapidly changes broad spectrum of responsive genes of membrane integrity and photosynthetic machinery by generating ABA response for challenging drought stress. Our results demonstrate the important role of CAMTA1 in regulating drought response in Arabidopsis, thus could be genetically engineered for improving drought tolerance in crop. PMID:23547968

  4. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  5. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  6. Inflorescence abnormalities occur with overexpression of Arabidopsis lyrata FT in the fwa mutant of Arabidopsis thaliana.

    PubMed

    Kawanabe, Takahiro; Fujimoto, Ryo

    2011-10-01

    Arabidopsis thaliana is a quantitative long-day plant with the timing of the floral transition being regulated by both endogenous signals and multiple environmental factors. fwa is a late-flowering mutant, and this phenotype is due to ectopic FWA expression caused by hypomethylation at the FWA locus. The floral transition results in the activation of the floral development process, the key regulators being the floral meristem identity genes, AP1 (APETALA1) and LFY (LEAFY). In this study, we describe inflorescence abnormalities in plants overexpressing the Arabidopsis lyrata FT (AlFT) and A. thaliana FWA (AtFWA) genes simultaneously. The inflorescence abnormality phenotype was present in only a proportion of plants. All plants overexpressing both AlFT and AtFWA flowered earlier than fwa, suggesting that the inflorescence abnormality and earlier flowering time are caused independently. The inflorescence abnormality phenotype was similar to that of the double mutant of ap1 and lfy, and AP1 and LFY genes were down-regulated in the abnormal inflorescences. From these results, we suggest that not only does ectopic AtFWA expression inhibit AtFT/AlFT function to delay flowering but that overexpression of AtFWA and AlFT together inhibits AP1 and LFY function to produce abnormal inflorescences. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors

    PubMed Central

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2017-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented. PMID:28119722

  8. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors.

    PubMed

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2016-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented.

  9. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    SciTech Connect

    Janoudi, A.K.; Poff, K.L. )

    1993-04-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of densensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 [mu]mol m[sup [minus]2] s[sup [minus]1]. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 [mu]mol m[sup [minus]2] s[sup [minus]1] than at 0.3 [mu]mol m[sup [minus]2] s[sup [minus]1]. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. 11 refs., 6 figs.

  10. Characterization of adaptation in phototropism of Arabidopsis thaliana

    SciTech Connect

    Janoudi, A.K.; Poff, K.L. )

    1991-02-01

    Phototropic curvature has been measured for etiolated Arabidopsis thaliana seedlings with and without a preirradiation. A bilateral preirradiation with 450-nm light at a fluence greater than about 0.1 micromole per square meter causes a rapid densensitization to a subsequent 450-nanometer unilateral irradiation at 0.5 micromole per square meter. Following a refractory period, the capacity to respond phototropically recovers to the predesensitization level, and the response is then enhanced. The length of the refractory period is between 10 and 20 minutes. Both the time needed for recovery and the extent of enhancement increase with increasing fluence of the bilateral preirradiation. Based on the relative spectral sensitivities of desensitization and enhancement, these responses can be separated. Desensitization is induced by blue light but not by red light. Enhancement, however, is induced by both blue and red light. Thus, enhancement can be induced without desensitization but only vice versa. Both desensitization and enhancement affect only the magnitude of the response and do not affect the fluence threshold.

  11. Phototropin Mediated Relocation of Myosins in Arabidopsis thaliana.

    PubMed

    Krzeszowiec, Weronika; Gabryś, Halina

    2007-09-01

    The mechanism of the light-dependent movements of chloroplasts is based on actin and myosin but its details are largely unknown. The movements are activated by blue light in terrestrial angiosperms. The aim of the present study was to determine the role of myosin associated with the chloroplast surface in the light-induced chloroplast responses in Arabidopsis thaliana. The localization of myosins was investigated under blue light intensities generating avoidance and accumulation responses of chloroplasts. The localization was compared in wild type plants and in phot2 mutant lacking the avoidance response. Wild type and phot2 mutant plants were irradiated with strong (36 microEm(-2)s(-1)) and/or weak (0.8 microEm(-2)s(-1)) blue light. The leaf tissue was immunolabeled with antimyosin antibodies. Different arrangements of myosins were observed in the mesophyll depending on the fluence rate in wild type plants. In tissue irradiated with weak blue light myosins were associated with chloroplast envelopes. In contrast, in tissue irradiated with strong blue light chloroplasts were almost myosin-free. The effect did not occur in red light and in the phot2 mutant. Myosin displacement is blue light specific, i.e., it is associated with the activation of a specific blue-light photoreceptor. We suggest that the reorganization of myosins is essential for chloroplast movement. Myosins appear to be the final step of the signal transduction pathway starting with phototropin2 and leading to chloroplast movements.

  12. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana.

    PubMed

    Kawanabe, Takahiro; Ishikura, Sonoko; Miyaji, Naomi; Sasaki, Taku; Wu, Li Min; Itabashi, Etsuko; Takada, Satoko; Shimizu, Motoki; Takasaki-Yasuda, Takeshi; Osabe, Kenji; Peacock, W James; Dennis, Elizabeth S; Fujimoto, Ryo

    2016-10-25

    Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis in Arabidopsis thaliana, we used mutant genes that have roles in DNA methylation. Hybrids between C24 and Columbia-0 (Col) without RNA polymerase IV (Pol IV) or methyltransferase I (MET1) function did not reduce the level of biomass heterosis (as evaluated by rosette diameter). Hybrids with a mutation in decrease in dna methylation 1 (ddm1) showed a decreased heterosis level. Vegetative heterosis in the ddm1 mutant hybrid was reduced but not eliminated; a complete reduction could result if there was a change in methylation at all loci critical for generating the level of heterosis, whereas if only a proportion of the loci have methylation changes there may only be a partial reduction in heterosis.

  13. An enlarged cell wall proteome of Arabidopsis thaliana rosettes.

    PubMed

    Hervé, Vincent; Duruflé, Harold; San Clemente, Hélène; Albenne, Cécile; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2016-12-01

    Plant cells are surrounded by cell walls playing many roles during development and in response to environmental constraints. Cell walls are mainly composed of polysaccharides (cellulose, hemicelluloses and pectins), but they also contain proteins which are critical players in cell wall remodeling processes. Today, the cell wall proteome of Arabidopsis thaliana, a major dicot model plant, comprises more than 700 proteins predicted to be secreted (cell wall proteins-CWPs) identified in different organs or in cell suspension cultures. However, the cell wall proteome of rosettes is poorly represented with only 148 CWPs identified after extraction by vacuum infiltration. This new study allows enlarging its coverage. A destructive method starting with the purification of cell walls has been performed and two experiments have been compared. They differ by the presence/absence of protein separation by a short 1D-electrophoresis run prior to tryptic digestion and different gradient programs for peptide separation before mass spectrometry analysis. Altogether, the rosette cell wall proteome has been significantly enlarged to 361 CWPs, among which 213 newly identified in rosettes and 57 newly described. The identified CWPs fall in four major functional classes: 26.1% proteins acting on polysaccharides, 11.1% oxido-reductases, 14.7% proteases and 11.7% proteins possibly related to lipid metabolism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lagging adaptation to warming climate in Arabidopsis thaliana

    PubMed Central

    Wilczek, Amity M.; Cooper, Martha D.; Korves, Tonia M.; Schmitt, Johanna

    2014-01-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species’ native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species’ native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  15. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  16. Pollen and ovule development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.; Matthews, S. W.; Cummins, D. B.; Tucker, S. C.

    1995-01-01

    The development of pollen and ovules in Arabidopsis thaliana on the space shuttle 'Endeavour' (STS-54) was investigated. Plants were grown on nutrient agar for 14 days prior to loading into closed plant growth chambers that received light and temperature control inside the Plant Growth Unit flight hardware on the shuttle middeck. After 6 days in spaceflight the plants were retrieved and immediately dissected and processed for light and electron microscope observation. Reproductive development aborted at an early stage. Pistils were collapsed and ovules inside were seen to he empty. No viable pollen was observed from STS-54 plants; young microspores were deformed and empty. At a late stage, the cytoplasm of the pollen contracted and became disorganized, but the pollen wall developed and the exine appeared normal. The tapetum in the flight flowers degenerated at early stages. Ovules from STS-54 flight plants stopped growing and the integuments and nucellus collapsed and degenerated. The megasporocytes appeared abnormal and rarely underwent meiosis. Apparently they enlarged, or occasionally produced a dyad or tetrad, to assume the form of a female gametophyte with the single nucleus located in an egglike cell that lacks a cell wall. Synergids, polar nuclei, and antipodals were not observed. The results demonstrate the types of lesions occurring in plant reproductive material under spaceflight conditions.

  17. Herbicide safener-inducible gene expression in Arabidopsis thaliana.

    PubMed

    De Veylder, L; Van Montagu, M; Inzé, D

    1997-05-01

    The potential use of a new chemical-inducible gene expression system in Arabidopsis thaliana has been examined. The system is based on the maize In2-2 promoter which is activated by benzenesulfonamide herbicide safeners. Plants transformed with the beta-glucuronidase (gus) reporter gene under the control of the In2-2 promoter were grown in the presence of different safeners and the induced GUS activity pattern was studied histochemically. In the absence of safeners, the In2-2 promoter was not active. Application of different safeners induced distinct gus expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. Plants maintained continuously on inducing concentrations of the safeners were retarded in growth. The growth inhibition effects of the Sa5 safener could be overcome in a sulfonylurea-resistant background. In2-2 promoter activity could also be induced by the sulfonylurea herbicide chlorsulfuron. In the sulfonylurea-resistant background, which derives from herbicide-resistant acetolactate synthase activity, induction of the In2-2 promoter by chlorsulfuron was lower. Furthermore, branched-chain amino acids, known to inhibit acetolactate synthase activity, also induced In2-2 promoter activity. Our data suggest a strong correlation between In2-2 expression and inhibition of the acetolactate synthase activity.

  18. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    NASA Astrophysics Data System (ADS)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  19. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  20. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana

    PubMed Central

    Paudel, Gagan; Bilova, Tatiana; Schmidt, Rico; Greifenhagen, Uta; Berger, Robert; Tarakhovskaya, Elena; Stöckhardt, Stefanie; Balcke, Gerd Ulrich; Humbeck, Klaus; Brandt, Wolfgang; Sinz, Andrea; Vogt, Thomas; Birkemeyer, Claudia; Wessjohann, Ludger; Frolov, Andrej

    2016-01-01

    Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought. PMID:27856706

  1. Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild.

    PubMed

    Rutter, Matthew T; Shaw, Frank H; Fenster, Charles B

    2010-06-01

    Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.

  2. Quantitative trait loci for floral morphology in Arabidopsis thaliana.

    PubMed Central

    Juenger, T; Purugganan, M; Mackay, T F

    2000-01-01

    A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these same traits in the Landsberg erecta x Columbia recombinant inbred line population. There was significant genetic variation for all traits in both the sample of naturally occurring ecotypes and in the Ler x Col recombinant inbred line population. In addition, broad-sense genetic correlations among the traits were positive and high. A composite interval mapping (CIM) analysis detected 18 significant QTL affecting at least one floral character. Eleven QTL were associated with several floral traits, supporting either pleiotropy or tight linkage as major determinants of flower morphological integration. We propose several candidate genes that may underlie these QTL on the basis of positional information and functional arguments. Genome-wide QTL mapping is a promising tool for the discovery of candidate genes controlling morphological development, the detection of novel phenotypic effects for known genes, and in generating a more complete understanding of the genetic basis of floral development. PMID:11063709

  3. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    PubMed

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei.

  4. Subcellular Distribution of Glutathione Precursors in Arabidopsis thaliana

    PubMed Central

    Koffler, Barbara Eva; Maier, Romana; Zechmann, Bernd

    2011-01-01

    Abstract Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) – the first enzyme of glutathione synthesis – causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells. PMID:22050910

  5. Internet Resources for Gene Expression Analysis in Arabidopsis thaliana.

    PubMed

    Hehl, Reinhard; Bülow, Lorenz

    2008-09-01

    The number of online databases and web-tools for gene expression analysis in Arabidopsis thaliana has increased tremendously during the last years. These resources permit the database-assisted identification of putative cis-regulatory DNA sequences, their binding proteins, and the determination of common cis-regulatory motifs in coregulated genes. DNA binding proteins may be predicted by the type of cis-regulatory motif. Further questions of combinatorial control based on the interaction of DNA binding proteins and the colocalization of cis-regulatory motifs can be addressed. The database-assisted spatial and temporal expression analysis of DNA binding proteins and their target genes may help to further refine experimental approaches. Signal transduction pathways upstream of regulated genes are not yet fully accessible in databases mainly because they need to be manually annotated. This review focuses on the use of the AthaMap and PathoPlant((R)) databases for gene expression regulation analysis and discusses similar and complementary online databases and web-tools. Online databases are helpful for the development of working hypothesis and for designing subsequent experiments.

  6. NMR solution structure of ATTp, an Arabidopsis thaliana trypsin inhibitor.

    PubMed

    Zhao, Qin; Chae, Young Kee; Markley, John L

    2002-10-15

    The three-dimensional structure of the precursor form of the Arabidopsis thaliana trypsin inhibitor (ATT(p), GenBank entry Z46816), a 68-residue (approximately 7.5 kDa) rapeseed class proteinase inhibitor, has been determined in solution at pH 5.0 and 25 degrees C by multinuclear magnetic resonance spectroscopy. The protein contains one alpha-helix and two strands of antiparallel beta-sheet, with a type IV beta-turn connecting the two strands. The alpha-helix and the inhibitory loop are connected to the beta-sheet through three disulfide bridges; a fourth disulfide bridge connects the N- and C-termini. The overall structural topology of ATT(p) is similar to those of the sweet tasting protein brazzein (rmsd of 3.0 A) and the antifungal protein Rs-Afp1 [a knottin protein from radish (Raphanus sativus), rmsd of 2.7 A]. The precursor segment in ATT(p) is disordered, as visualized by the final 20-conformer ensemble and as confirmed by (15)N heteronuclear NOE analysis. The overall fold of ATT(p) is distinct from those of other classes of serine proteinase inhibitors except in the inhibitor loop; therefore, it represents a new inhibitor fold.

  7. Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana.

    PubMed

    Dubrovsky, J G; Rost, T L; Colón-Carmona, A; Doerner, P

    2001-11-01

    The first morphogenetic events of lateral root primordium (LRP) formation in the Arabidopsis thaliana (L.) Heynh. pericycle occur soon after cells of the primary root complete elongation. Pericycle cells in direct contact with underlying protoxylem cells participate in LRP formation. Two types of LRP initiation were found, longitudinal uni- and bi-cellular. These occur when a single or two pericycle cells within a file, respectively, become founder cells for the entire longitudinal extent of the LRP. Histochemical and cytological analysis suggests that three is the minimum number of cells required to initiate an LRP. In young primordia comprising less than 32 cells, the average cell-doubling time was 3.7 h, indicating a drastic acceleration of cell cycle progression after lateral root initiation. Early in LRP development, cell growth is limited and therefore cytokinesis leads to a reduction of cell volume, similar to cleavage division cycles during animal and plant embryogenesis. The striking coordination of proliferation between pericycle cells in adjacent files in direct contact with the underlying protoxylem implies that intercellular signaling mechanisms act in the root apical meristem or later in development.

  8. Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids

    PubMed Central

    Seymour, Danelle K.; Chae, Eunyoung; Grimm, Dominik G.; Martín Pizarro, Carmen; Habring-Müller, Anette; Vasseur, François; Rakitsch, Barbara; Borgwardt, Karsten M.

    2016-01-01

    The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance. PMID:27803326

  9. Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids.

    PubMed

    Seymour, Danelle K; Chae, Eunyoung; Grimm, Dominik G; Martín Pizarro, Carmen; Habring-Müller, Anette; Vasseur, François; Rakitsch, Barbara; Borgwardt, Karsten M; Koenig, Daniel; Weigel, Detlef

    2016-11-15

    The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.

  10. Crystal structure of Arabidopsis thaliana SNC1 TIR domain.

    PubMed

    Hyun, Kyung-Gi; Lee, Yeon; Yoon, Jungmin; Yi, Hankuil; Song, Ji-Joon

    2016-12-02

    Plant immune response is initiated by Resistance proteins (R proteins). Toll/interleukin-1 receptor (TIR) domain in R proteins, which is responsible for the dimerization but has limited conservation in their primary structures. Suppressor of npr1-1, constitutive 1 (SNC1), a TIR-containing R protein, is involved in autoimmunity of plant, but the binding partner of SNC1 via the TIR domain and its specific cognate effector protein remain elusive. Here, we present the crystal structure of the TIR domain of Arabidopsis thaliana SNC1 (AtSNC1-TIR). The structure shows that AtSNC1-TIR domain is similar to those of other plant TIR domains including AtTIR, L6 and RPS4. Structural and sequence analysis on AtSNC1-TIR revealed that almost all conserved amino acids are located in the core of the structure, while the amino acids on the surface are highly variable, implicating that each TIR domain utilizes the variable surface for interacting its binding partner. In addition, the interaction between AtSNC1-TIR proteins in the crystal suggests two possible dimerization modes of AtSNC1-TIR domain. This study provides structural platform to investigate AtSNC1-TIR mediated signaling pathway of plant immune responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    PubMed Central

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris

    2017-01-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  12. GraPhoBox: Gravitropism and phototropism in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Buizer, K.

    2007-09-01

    The morphology of plants is directed by the directional growth of roots and shoots. Gravity and light direction are the two major environmental stimuli important for directional growth. The 'GraPhoBox' experiment, flown on the Dutch DELTA mission to the ISS in April 2004, tries to elucidate the different effects of gravitropism and phototropism on plants, and their combined effects on plant morphology. Wild-type Arabidopsis thaliana (L.), phototropic-deficient mutants phot1 and gravitropic-deficient mutant pgm1 seeds were germinated in microgravity and in Earth gravity, in low light conditions and darkness. The angle of directional growth of roots and shoots was then assessed. Light is -even in the absense of gravity- the most important environmental cue for directional growth of shoots, while for roots gravity is by far the most important cue, and light is only a very minor factor due to their poor phototropic capacity. Compared to roots, shoots are deviated more than roots in microgravity and therefore less gravity-dependent. All results together suggests that environmental cues are differently percepted by roots and shoots which also adapt differently. Furthermore, environmental cues are probably transferred little or not to the opposite side of the plant.

  13. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen.

    PubMed

    Ge, Weina; Song, Yun; Zhang, Cuijun; Zhang, Yafang; Burlingame, Alma L; Guo, Yi

    2011-12-01

    Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value≤0.01) in pollen germinated for 6h compared with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth.

  14. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Janoudi, A. K.; Poff, K. L.

    1993-01-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.

  15. Characterization of adaptation in phototropism of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1991-01-01

    Phototropic curvature has been measured for etiolated Arabidopsis thaliana seedlings with and without a preirradiation. A bilateral preirradiation with 450-nm light at a fluence greater than about 0.1 micromole per square meter causes a rapid desensitization to a subsequent 450-nanometer unilateral irradiation at 0.5 micromole per square meter. Following a refractory period, the capacity to respond phototropically recovers to the predesensitization level, and the response is then enhanced. The length of the refractory period is between 10 and 20 minutes. Both the time needed for recovery and the extent of enhancement increase with increasing fluence of the bilateral preirradiation. Based on the relative spectral sensitivities of desensitization and enhancement, these responses can be separated. Desensitization is induced by blue light but not by red light. Enhancement, however, is induced by both blue and red light. Thus, enhancement can be induced without desensitization but not vice versa. Both desensitization and enhancement affect only the magnitude of the response and do not affect the fluence threshold.

  16. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation

    PubMed Central

    Riegler, Heike; Geserick, Claudia; Zrenner, Rita

    2011-01-01

    A central step in nucleoside and nucleobase salvage pathways is the hydrolysis of nucleosides to their respective nucleobases. In plants this is solely accomplished by nucleosidases (EC 3.2.2.x). To elucidate the importance of nucleosidases for nucleoside degradation, general metabolism, and plant growth, thorough phenotypic and biochemical analyses were performed using Arabidopsis thaliana T-DNA insertion mutants lacking expression of the previously identified genes annotated as uridine ribohydrolases (URH1 and URH2). Comprehensive functional analyses of single and double mutants demonstrated that both isoforms are unimportant for seedling establishment and plant growth, while one participates in uridine degradation. Rather unexpectedly, nucleoside and nucleotide profiling and nucleosidase activity screening of soluble crude extracts revealed a deficiency of xanthosine and inosine hydrolysis in the single mutants, with substantial accumulation of xanthosine in one of them. Mixing of the two mutant extracts, and by in vitro activity reconstitution using a mixture of recombinant URH1 and URH2 proteins, both restored activity, thus providing biochemical evidence that at least these two isoforms are needed for inosine and xanthosine hydrolysis. This mutant study demonstrates the utility of in vivo systems for the examination of metabolic activities, with the discovery of the new substrate xanthosine and elucidation of a mechanism for expanding the nucleosidase substrate spectrum. PMID:21599668

  17. Human intrinsic factor expressed in the plant Arabidopsis thaliana.

    PubMed

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba; Moestrup, Søren K; Petersen, Torben E; Jensen, Erik Ø; Berglund, Lars

    2003-08-01

    Intrinsic factor (IF) is the gastric protein that promotes the intestinal uptake of vitamin B12. Gastric IF from animal sources is used in diagnostic tests and in vitamin pills. However, administration of animal IF to humans becomes disadvantageous because of possible pathogenic transmission and contamination by other B12 binders. We tested the use of recombinant plants for large-scale production of pathogen-free human recombinant IF. Human IF was successfully expressed in the recombinant plant Arabidopsis thaliana. Extract from fresh plants possessed high B12-binding capacity corresponding to 70 mg IF per 1 kg wet weight. The dried plants still retained 60% of the IF activity. The purified IF preparation consisted of a 50-kDa glycosylated protein with the N-terminal sequence of mature IF. Approximately one-third of the protein was cleaved at the internal site em leader PSNP downward arrow GPGP. The key properties of the preparation obtained were identical to those of native IF: the binding curves of vitamin B12 to recombinant IF and gastric IF were the same, as were those for a B12 analogue cobinamide, which binds to IF with low affinity. The absorbance spectra of the vitamin bound to recombinant IF and gastric IF were alike, as was the interaction of recombinant and native IF with the specific receptor cubilin. The data presented show that recombinant plants have a great potential as a large-scale source of human IF for analytical and therapeutic purposes.

  18. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation.

    PubMed

    Vanhoudt, Nathalie; Horemans, Nele; Wannijn, Jean; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde

    2014-03-01

    As the environment is inevitably exposed to ionizing radiation from natural and anthropogenic sources, it is important to evaluate gamma radiation induced stress responses in plants. The objective of this research is therefore to investigate radiation effects in Arabidopsis thaliana on individual and subcellular level by exposing 2-weeks-old seedlings for 7 days to total doses of 3.9 Gy, 6.7 Gy, 14.8 Gy and 58.8 Gy and evaluating growth, photosynthesis, chlorophyll a, chlorophyll b and carotenoid concentrations and antioxidative enzyme capacities. While the capacity of photosystem II (PSII measured as Fv/Fm) remained intact, plants started optimizing their photosynthetic process at the lower radiation doses by increasing the PSII efficiency (φPSII) and the maximal electron transport rate (ETRmax) and by decreasing the non-photochemical quenching (NPQ). At the highest radiation dose, photosynthetic parameters resembled those of control conditions. On subcellular level, roots showed increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) capacities under gamma irradiation but catalase (CAT), syringaldazine peroxidase (SPX) and guaiacol peroxidase (GPX) activities, on the other hand, decreased. In the leaves no alterations were observed in SOD, CAT and SPX capacities, but GPX was highly affected. Based on these results it seems that roots are more sensitive for oxidative stress under gamma radiation exposure than leaves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress

    PubMed Central

    Abercrombie, Jason M; Halfhill, Matthew D; Ranjan, Priya; Rao, Murali R; Saxton, Arnold M; Yuan, Joshua S; Stewart, C Neal

    2008-01-01

    Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were strongly repressed in response to As (V) stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V) induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V) as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research. PMID:18684332

  20. Lagging adaptation to warming climate in Arabidopsis thaliana.

    PubMed

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-03

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.

  1. Multiple paths to similar germination behavior in Arabidopsis thaliana.

    PubMed

    Burghardt, Liana T; Edwards, Brianne R; Donohue, Kathleen

    2016-02-01

    Germination timing influences plant fitness, and its sensitivity to temperature may cause it to change as climate shifts. These changes are likely to be complex because temperatures that occur during seed maturation and temperatures that occur post-dispersal interact to define germination timing. We used the model organism Arabidopsis thaliana to determine how flowering time (which defines seed-maturation temperature) and post-dispersal temperature influence germination and the expression of genetic variation for germination. Germination responses to temperature (germination envelopes) changed as seeds aged, or after-ripened, and these germination trajectories depended on seed-maturation temperature and genotype. Different combinations of genotype, seed-maturation temperature, and after-ripening produced similar germination envelopes. Likewise, different genotypes and seed-maturation temperatures combined to produce similar germination trajectories. Differences between genotypes were most likely to be observed at high and low germination temperatures. The germination behavior of some genotypes responds weakly to maternal temperature but others are highly plastic. We hypothesize that weak dormancy induction could synchronize germination of seeds dispersed at different times. By contrast, we hypothesize that strongly responsive genotypes may spread offspring germination over several possible germination windows. Considering germination responses to temperature is important for predicting phenology expression and evolution in future climates.

  2. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana.

    PubMed Central

    Deikman, J.; Hammer, P. E.

    1995-01-01

    Arabidopsis thaliana plants treated with exogenous cytokinins accumulate anthocyanin pigments. We have characterized this response because it is potentially useful as a genetic marker for cytokinin responsiveness. Levels of mRNAs for four genes of the anthocyanin biosynthesis pathway, phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) were shown to increase coordinately in response to benzyladenine (BA). However, nuclear run-on transcription experiments suggested that although CHS and DFR are controlled by BA at the transcriptional level, PAL1 and CHI are controlled by BA posttranscriptionally. CHS mRNA levels increased within 2 h of BA spray application, and peaked by 3 h. Levels of PAL1 mRNA did not increase within 6 h of BA spray. We also showed that PAL1, CHS, CHI, and DFR mRNA levels fluctuate during a 24-h period and appear to be controlled by a circadian clock. The relation between cytokinin regulation and light regulation of CHS gene transcription is discussed. PMID:12228453

  3. Molecule mechanism of stem cells in Arabidopsis thaliana.

    PubMed

    Zhang, Wenjin; Yu, Rongming

    2014-07-01

    Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  4. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  5. Adaptation response of Arabidopsis thaliana to random positioning

    NASA Astrophysics Data System (ADS)

    Kittang, A.-I.; Winge, P.; van Loon, J. J. W. A.; Bones, A. M.; Iversen, T.-H.

    2013-10-01

    Arabidopsis thaliana seedlings were exposed on a Random Positioning Machine (RPM) under light conditions for 16 h and the samples were analysed using microarray techniques as part of a preparation for a space experiment on the International Space Station (ISS). The results demonstrated a moderate to low regulation of 55 genes (<0.2% of the analysed genes). Genes encoding proteins associated with the chaperone system (e.g. heat shock proteins, HSPs) and enzymes in the flavonoid biosynthesis were induced. Most of the repressed genes were associated with light and sugar responses. Significant up-regulation of selected HSP genes was found by quantitative Real-Time PCR in 1 week old plants after the RPM exposure both in light and darkness. Higher quantity of DPBA (diphenylboric acid 2-amino-ethyl ester) staining was observed in the whole root and in the root elongation zone of the seedlings exposed on the RPM by use of fluorescent microscopy, indicating higher flavonoid content. The regulated genes and an increase of flavonoids are related to several stresses, but increased occurrence of HSPs and flavonoids are also representative for normal growth (e.g. gravitropism). The response could be a direct stress response or an integrated response of the two signal pathways of light and gravity resulting in an overall light response.

  6. Interactions among Genes Regulating Ovule Development in Arabidopsis Thaliana

    PubMed Central

    Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S.

    1997-01-01

    The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development. PMID:9093862

  7. Morphological, physiological and molecular genetic characterization ofArabidopsis himalaica, with reference toA. thaliana.

    PubMed

    Tsukaya, H; Yokoyama, J; Ikeda, H; Kuroiwa, H; Kuroiwa, T; Iwatsuki, K

    1997-03-01

    Arabidopsis himalaica (Edgeworth) O.E. Schulz, a poorly characterized species typical of HimalayanArabidopsis, was analyzed in terms of its morphology, physiology, chromosome number and molecular genetics, in comparison withA. thaliana which is the standard species in the genusArabidopsis. From view point of developmental genetics, several features which are specific toA. himalaica seem not to be derived by single-gene mutations inA. thaliana. Phylogenetic analyses based onrbcL sequences suggested that genusArabidopsis is not monophyletic. The detailed characterization ofA. himalaica should provide clues to understand the trait of evolution of particular features of Himalayan species ofArabidopsis and their genetic basis.

  8. Purification of a. beta. -amylase that accumulates in Arabidopsis thaliana mutants defective in starch metabolism. [Arabidopsis thaliana

    SciTech Connect

    Monroe, J.D.; Preiss, J. )

    1990-11-01

    Amylase activity is elevated 5- to 10-fold in leaves of several different Arabidopsis thaliana mutants defective in starch metabolism when they are grown under a 12-hour photoperiod. Activity is also increased when plants are grown under higher light intensity. It was previously determined that the elevated activity was an extrachloroplastic {beta}-(exo)amylase. Due to the location of this enzyme outside the chloroplast, its function is not known. The enzyme was purified to homogeneity from leaves of both a starchless mutant deficient in plastid phosphoglucomutase and from the wild type using polyethylene glycol fractionation and cyclohexaamylose affinity chromatography. The molecular mass of the {beta}-amylase from both sources was 55,000 daltons as determined by denaturing gel electrophoresis. Gel filtration studies indicated that the enzyme was a monomer. The specific activities of the purified protein from mutant and wild-type sources, their substrate specificities, and K{sub m} for amylopectin were identical. Based on these results it was concluded that the mutant contained an increased level of {beta}-amylase protein. Enzyme neutralization studies using a polyclonal antiserum raised to purified {beta}-amylase showed that in each of two starchless mutants, one starch deficient mutant and one starch overproducing mutant, the elevated amylase activity was due to elevated {beta}-amylase protein.

  9. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    PubMed Central

    Gupta, Aarti; Dixit, Sandeep K.; Senthil-Kumar, Muthappa

    2016-01-01

    Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by

  10. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  11. The Hidden Geometries of the Arabidopsis thaliana Epidermis

    PubMed Central

    Staff, Lee; Hurd, Patricia; Reale, Lara; Seoighe, Cathal; Rockwood, Alyn; Gehring, Chris

    2012-01-01

    The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col.) adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 µm2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length∶width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area∶perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT) were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5°) for the largest angles and 110° (± 5°) for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (≥500 µm2) tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of ‘geometrical rules’. PMID:22984433

  12. Alanine Aminotransferase Variants Conferring Diverse NUE Phenotypes in Arabidopsis thaliana

    PubMed Central

    McAllister, Chandra H.; Good, Allen G.

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5’-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed. PMID:25830496

  13. A New Anti-Aging Lysophosphatidic Acid from Arabidopsis thaliana.

    PubMed

    Sun, Yujuan; Wang, Yanhui; Wang, Guangfa; Xiang, Lan; Qi, Jianhua

    2017-02-09

    Aging is a risk factor of age-related diseases. With the increasing number of patients, serious consequences, and heavy economic burden, demands for drugs used to treat age-related diseases have increased. As such, anti-aging substances should be isolated to develop drugs for the prevention and treatment of age-related diseases. In this study, a methanol extract of immature Arabidopsis thaliana seeds with coat was separated by using a K6001 yeast bioassay system. In order to investigate the action mechanism, four mutants, namely, Δuth1, Δskn7, Δsod1, and Δsod2 with K6001 background were employed and the anti-oxidative stress assay was performed. One new anti-aging lysophosphatidic acid (LPA) was obtained, and its structural and stereochemical characteristics were elucidated through spectroscopy and chemical derivatization. LPA can extend the replicative lifespan of K6001 at 10 and 30 µM (p < 0.001 and p < 0.01, respectively). This finding was comparable to the effect of resveratrol, a well-known anti-aging substance. However, the anti-aging activity of the compound on the four mutants was diminished. In the anti-oxidative stress assay, LPA improved the oxidative resistance of yeast cells. The new LPA may exert its anti-aging effect by improving the anti-oxidative ability of yeast cells. The genes of UTH1, SKN7, and SOD may also be involved in the action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana.

    PubMed

    Takahashi, Yoshihiro; Cong, Runzi; Sagor, G H M; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2010-09-01

    The genome of Arabidopsis thaliana contains five genes (AtPAO1 to AtPAO5) encoding polyamine oxidase (PAO) which is an enzyme responsible for polyamine catabolism. To understand the individual roles of the five AtPAOs, here we characterized their tissue-specific and space-temporal expression. AtPAO1 seems to have a specific function in flower organ. AtPAO2 was expressed in shoot meristem and root tip of seedlings, and to a higher extent in the later growth stage within restricted parts of the organs, such as shoot meristem, leaf petiole and also in anther. The expression of AtPAO3 was constitutive, but highest in flower organ. AtPAO3 promoter activity was detected in cotyledon, distal portion of root, boundary region of mature rosette leaf and in filaments of flower. AtPAO4 was expressed at higher level all over young seedlings including roots, and in the mature stage its expression was ubiquitous with rather lower level in stem. AtPAO5 expression was observed in the whole plant body throughout various growth stages. Its highest expression was in flowers, particularly in sepals, but not in petals. Furthermore, we determined the substrate specificity of AtPAO1 to AtPAO4. None of the AtPAO enzymes recognized putrescine (Put). AtPAO2 and AtPAO3 showed almost similar substrate recognition patterns in which the most preferable substrate is spermidine (Spd) followed by less specificity to other tetraamines tested. AtPAO4 seemed to be spermine (Spm)-specific. More interestingly, AtPAO1 preferred thermospermine (T-Spm) and norspermine (NorSpm) to Spm, but did not recognize Spd. Based on the results, the individual function of AtPAOs is discussed.

  15. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    PubMed

    McAllister, Chandra H; Good, Allen G

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.

  16. Transcriptional Regulation of Tetrapyrrole Biosynthesis in Arabidopsis thaliana

    PubMed Central

    Kobayashi, Koichi; Masuda, Tatsuru

    2016-01-01

    Biosynthesis of chlorophyll (Chl) involves many enzymatic reactions that share several first steps for biosynthesis of other tetrapyrroles such as heme, siroheme, and phycobilins. Chl allows photosynthetic organisms to capture light energy for photosynthesis but with simultaneous threat of photooxidative damage to cells. To prevent photodamage by Chl and its highly photoreactive intermediates, photosynthetic organisms have developed multiple levels of regulatory mechanisms to coordinate tetrapyrrole biosynthesis (TPB) with the formation of photosynthetic and photoprotective systems and to fine-tune the metabolic flow with the varying needs of Chl and other tetrapyrroles under various developmental and environmental conditions. Among a wide range of regulatory mechanisms of TPB, this review summarizes transcriptional regulation of TPB genes during plant development, with focusing on several transcription factors characterized in Arabidopsis thaliana. Key TPB genes are tightly coexpressed with other photosynthesis-associated nuclear genes and are induced by light, oscillate in a diurnal and circadian manner, are coordinated with developmental and nutritional status, and are strongly downregulated in response to arrested chloroplast biogenesis. LONG HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs, which are positive and negative transcription factors with a wide range of light signaling, respectively, target many TPB genes for light and circadian regulation. GOLDEN2-LIKE transcription factors directly regulate key TPB genes to fine-tune the formation of the photosynthetic apparatus with chloroplast functionality. Some transcription factors such as FAR-RED ELONGATED HYPOCOTYL3, REVEILLE1, and scarecrow-like transcription factors may directly regulate some specific TPB genes, whereas other factors such as GATA transcription factors are likely to regulate TPB genes in an indirect manner. Comprehensive transcriptional analyses of TPB genes and detailed characterization of

  17. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  18. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  19. Crystallization of DIR1, a LTP2-like resistance signalling protein from Arabidopsis thaliana

    SciTech Connect

    Lascombe, Marie-Bernard; Buhot, Nathalie; Bakan, Bénédicte; Marion, Didier; Blein, Jean Pierre; Lamb, Chris J.; Prangé, Thierry

    2006-07-01

    DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} with one molecule per asymmetric unit. DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} with one molecule per asymmetric unit. The crystals diffract to a resolution of 1.6 Å.

  20. Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds

    PubMed Central

    Alonso-Ramírez, Ana; Rodríguez, Dolores; Reyes, David; Jiménez, Jesús Angel; Nicolás, Gregorio; López-Climent, María; Gómez-Cadenas, Aurelio

    2009-01-01

    Salicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis. PMID:19820299

  1. Halomethane production in plants: Structure of the biosynthetic SAM-dependent halide methyltransferase from Arabidopsis thaliana**

    PubMed Central

    Schmidberger, Jason W.; James, Agata B.; Edwards, Robert; Naismith, James H.; O’Hagan, David

    2012-01-01

    A product structure of the halomethane producing enzyme in plants (Arabidopsis thaliana) is reported and a model for presentation of chloride/bromide ion to the methyl group of S-adenosyl-L-methionine (SAM) is presented to rationalise nucleophilic halide attack for halomethane production, gaseous natural products that are produced globally. PMID:20376845

  2. Crystallization of DIR1, a LTP2-like resistance signalling protein from Arabidopsis thaliana

    PubMed Central

    Lascombe, Marie-Bernard; Buhot, Nathalie; Bakan, Bénédicte; Marion, Didier; Blein, Jean Pierre; Lamb, Chris J.; Prangé, Thierry

    2006-01-01

    DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P212121 with one molecule per asymmetric unit. The crystals diffract to a resolution of 1.6 Å. PMID:16820699

  3. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    EPA Science Inventory

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  4. Isolation of cDNAs encoding GTP cyclohydrolase II from Arabidopsis thaliana.

    PubMed

    Kobayashi, M; Sugiyama, M; Yamamoto, K

    1995-07-28

    A GTP cyclohydrolase II-encoding gene from Arabidopsis thaliana was isolated through functional complementation of a mutant of Escherichia coli, BSV18, deficient in this protein. The derived amino-acid sequence constitutes a polypeptide of 27 kDa and shows 37-58% identity with previously published sequences of Escherichia coli, Bacillus subtilis, Photobacterium leiognathi and P. phosphoreum.

  5. A functional genomic analysis of Arabidopsis thaliana PP2C clade D

    USDA-ARS?s Scientific Manuscript database

    In the reference dicot plant Arabidopsis thaliana, the PP2C family of P-protein phosphatases includes the products of 80 genes that have been separated into 10 multi-protein clades plus six singletons. Clade D includes the products of nine genes distributed among 3 chromosomes (PPD1, At3g12620; PPD2...

  6. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    EPA Science Inventory

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  7. Measuring circadian oscillations of cytosolic-free calcium in Arabidopsis thaliana.

    PubMed

    Hearn, Timothy J; Webb, Alex A R

    2014-01-01

    Circadian oscillations of cytosolic-free calcium can be measured in plants by observing luminescence of the bioluminescent calcium binding protein aequorin. Here we describe the use of intensified photon-counting CCD cameras to measure circadian oscillations in aequorin bioluminescence from Arabidopsis thaliana.

  8. Alleviation of Copper Toxicity in Arabidopsis Thaliana and Zinnia Elegans by Silicon Addition

    USDA-ARS?s Scientific Manuscript database

    While the role of silicon in plants has been studied for over 150 years, and this element can mitigate the effects of certain heavy metals, its role in Cu metabolism is unclear. Therefore, the role of Si in plant response to Cu stress was investigated in Arabidopsis thaliana L. (Heyn) and Zinnia el...

  9. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress

    PubMed Central

    Barah, Pankaj; Jayavelu, Naresh D.; Mundy, John; Bones, Atle M.

    2013-01-01

    In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment. PMID:24409190

  10. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress.

    PubMed

    Barah, Pankaj; Jayavelu, Naresh D; Mundy, John; Bones, Atle M

    2013-01-01

    In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment.

  11. Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress.

    PubMed

    Rastogi, Anshu; Yadav, Deepak Kumar; Szymańska, Renata; Kruk, Jerzy; Sedlářová, Michaela; Pospíšil, Pavel

    2014-02-01

    In the present study, singlet oxygen (¹O₂) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase-deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced ¹O₂ formation under high light illumination as monitored by electron paramagnetic resonance spin-trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high-pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra-weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient ¹O₂ scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants. © 2013 John Wiley & Sons Ltd.

  12. Intertribal hybrid plants produced from crossing Arabidopsis thaliana with apomictic Boechera.

    PubMed

    Lohe, Allan R; Perotti, Enrico

    2012-08-01

    Arabidopsis thaliana and Boechera belong to different tribes of the Brassicaceae and last shared a common ancestor 13-35 million years ago. A. thaliana reproduces sexually but some Boechera accessions reproduce by apomixis (asexual reproduction by seed). The two species are reproductively isolated, preventing introgression of the trait(s) controlling apomixis from Boechera into A. thaliana and their molecular characterisation. To identify if "escapers" from such hybridisation barriers exist, we crossed diploid or tetraploid A. thaliana mothers carrying a conditional male sterile mutation with a triploid Boechera apomict. These cross-pollinations generated zygotes and embryos. Most aborted or suffered multiple developmental defects at all stages of growth, but some seed matured and germinated. Seedlings grew slowly but eventually some developed into mature plants that were novel synthetic allopolyploid hybrids. With one exception, intertribal hybrids contained three Boechera plus either one or two A. thaliana genomes (depending on maternal ploidy) and were male and female sterile. The exception was a semi-fertile, sexual partial hybrid with one Boechera plus two A. thaliana genomes. The synthesis of "escapers" that survive rigorous early developmental challenges in crosses between A. thaliana and Boechera demonstrates that the inviability form of postzygotic reproductive isolation separating these distantly related species is not impenetrable. The recovery of a single semi-fertile partial hybrid also demonstrates that hybrid sterility, another form of postzygotic reproductive isolation, can be overcome between these species.

  13. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives

    PubMed Central

    Schlaeppi, Klaus; Dombrowski, Nina; Oter, Ruben Garrido; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2014-01-01

    Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales. PMID:24379374

  14. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives.

    PubMed

    Schlaeppi, Klaus; Dombrowski, Nina; Oter, Ruben Garrido; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2014-01-14

    Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼ 35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales.

  15. The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana

    PubMed Central

    Wang, Kai; Sipilä, Timo P.; Overmyer, Kirk

    2016-01-01

    The genetic model plant Arabidopsis thaliana (arabidopsis) has been instrumental to recent advances in our understanding of the molecular function of the plant immune system. However, this work has not yet included plant associated and phytopathogenic yeasts largely due to a lack of yeast species known to interact with arabidopsis. The plant phylloplane is a significant habitat for neutral-residents, plant-growth and health-promoting species, and latent-pathogenic species. However, yeast phylloplane residents of arabidopsis remain underexplored. To address this, resident yeasts from the phyllosphere of wild arabidopsis collected in field conditions have been isolated and characterized. A total of 95 yeast strains representing 23 species in 9 genera were discovered, including potentially psychrophilic and pathogenic strains. Physiological characterization revealed thermotolerance profiles, sensitivity to the arabidopsis phytoalexin camalexin, the production of indolic compounds, and the ability to activate auxin responses in planta. These results indicate a rich diversity of yeasts present in the arabidopsis phylloplane and have created culture resources and information useful in the development of model systems for arabidopsis-yeast interactions. PMID:28004784

  16. Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells.

    PubMed

    Paves, H; Truve, E

    2007-01-01

    Chloroplasts alter their distribution within plant cells depending on the external light conditions. Myosin inhibitors 2,3-butanedione monoxime (BDM), N-ethylmaleimide (NEM), and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) were used to study the possible role of myosins in chloroplast photorelocation in Arabidopsis thaliana mesophyll cells. None of these agents had an effect on the chloroplast high-fluence-rate avoidance movement but all of the three myosin inhibitors blocked the accumulation movement of chloroplasts after a high-fluence-rate irradiation of the leaves. The results suggest that myosins have a role in A. thaliana chloroplast photorelocation.

  17. Phenotypic alterations in Arabidopsis thaliana plants caused by Rhodococcus fascians infection.

    PubMed

    de O Manes, Carmem-Lara; Beeckman, Tom; Ritsema, Tita; Van Montagu, Marc; Goethals, Koen; Holsters, Marcelle

    2004-04-01

    Arabidopsis thaliana (L.) Heynh. plants were challenged with Rhodococcus fascians at several developmental stages and using different inoculation procedures. A variety of morphological alterations was scored on the infected plants; some of them resembled phenotypes of A. thaliana mutants in their shoot apical meristem (SAM) organization. Infection with R. fascians did not affect SAM organization in wild type nor in SAM mutants. Anatomical studies on the new organs formed after infection with R. fascians demonstrated extensive bacterial colonization. Colonization and concomitant production of specific signals are the likely cause of malformations.

  18. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.

  19. A simple method for the addition of rotenone in Arabidopsis thaliana leaves.

    PubMed

    Maliandi, María V; Rius, Sebastián P; Busi, María V; Gomez-Casati, Diego F

    2015-01-01

    A simple and reproducible method for the treatment of Arabidopsis thaliana leaves with rotenone is presented. Rosette leaves were incubated with rotenone and Triton X-100 for at least 15 h. Treated leaves showed increased expression of COX19 and BCS1a, 2 genes known to be induced in Arabidopsis cell cultures after rotenone treatment. Moreover, rotenone/Triton X-100 incubated leaves presented an inhibition of oxygen uptake. The simplicity of the procedure shows this methodology is useful for studying the effect of the addition of rotenone to a photosynthetic tissue in situ.

  20. A simple method for the addition of rotenone in Arabidopsis thaliana leaves

    PubMed Central

    Maliandi, María V; Rius, Sebastián P; Busi, María V; Gomez-Casati, Diego F

    2015-01-01

    A simple and reproducible method for the treatment of Arabidopsis thaliana leaves with rotenone is presented. Rosette leaves were incubated with rotenone and Triton X-100 for at least 15 h. Treated leaves showed increased expression of COX19 and BCS1a, 2 genes known to be induced in Arabidopsis cell cultures after rotenone treatment. Moreover, rotenone/Triton X-100 incubated leaves presented an inhibition of oxygen uptake. The simplicity of the procedure shows this methodology is useful for studying the effect of the addition of rotenone to a photosynthetic tissue in situ. PMID:26357865

  1. Interaction of light and gravitropism with nutation of hypocotyls of Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Orbovic, V.; Poff, K. L.

    1997-01-01

    Etiolated seedlings of Arabidopsis thaliana nutated under conditions of physiological darkness while about ten percent of monitored individuals exhibited regular elliptical nutation, circumnutation. Pre-irradiation with red light prevented occurrence of circumnutation without having an effect on the average rate of the nutational movement. Phototropic response of seedlings to unilateral blue light appeared to be superimposed over nutation. Throughout gravitropism, some seedlings continued to exhibit nutation suggesting that these two processes are independently controlled. Based on these results, we suggest that nutation in Arabidopsis probably is not controlled by the mechanism predicted by the theory of gravitropic overshoots.

  2. Design, Implementation and Maintenance of a Model Organism Database for Arabidopsis thaliana

    PubMed Central

    Weems, Danforth; Miller, Neil; Garcia-Hernandez, Margarita; Huala, Eva

    2004-01-01

    The Arabidopsis Information Resource (TAIR) is a web-based community database for the model plant Arabidopsis thaliana. It provides an integrated view of genes, sequences, proteins, germplasms, clones, metabolic pathways, gene expression, ecotypes, polymorphisms, publications, maps and community information. TAIR is developed and maintained by collaboration between software developers and biologists. Biologists provide specification and use cases for the system, acquire, analyse and curate data, interact with users and test the software. Software developers design, implement and test the database and software. In this review, we briefly describe how TAIR was built and is being maintained. PMID:18629167

  3. Isolation and characterization of cDNAs encoding imidazoleglycerolphosphate dehydratase from Arabidopsis thaliana.

    PubMed Central

    Tada, S; Volrath, S; Guyer, D; Scheidegger, A; Ryals, J; Ohta, D; Ward, E

    1994-01-01

    cDNA clones encoding imidazoleglycerolphosphate dehydratase (IGPD; EC 4.2.1.19) from Arabidopsis thaliana were isolated by complementation of a bacterial auxotroph. The predicted primary translation product shared significant identity with the corresponding sequences from bacteria and fungi. As in yeast, the plant enzyme is monofunctional, lacking the histidinol phosphatase activity present in the Escherichia coli protein. IGPD mRNA was present in major organs at all developmental stages assayed. The Arabidopsis genome appears to contain two genes encoding this enzyme, based on DNA gel blot and polymerase chain reaction analysis. PMID:8066131

  4. Arabidopsis thaliana as a model species for xylem hydraulics: does size matter?

    PubMed

    Tixier, Aude; Cochard, Hervé; Badel, Eric; Dusotoit-Coucaud, Anaïs; Jansen, Steven; Herbette, Stéphane

    2013-05-01

    While Arabidopsis thaliana has been proposed as a model species for wood development, the potential of this tiny herb for studying xylem hydraulics remains unexplored and anticipated by scepticism. Inflorescence stems of A. thaliana were used to measure hydraulic conductivity and cavitation resistance, whereas light and electron microscopy allowed observations of vessels. In wild-type plants, measured and theoretical conductivity showed a significant correlation (R (2) = 0.80, P < 0.01). Moreover, scaling of vessel dimensions and intervessel pit structure of A. thaliana were consistent with structure-function relationships of woody plants. The reliability and resolution of the hydraulic methods applied to measure vulnerability to cavitation were addressed by comparing plants grown under different photoperiods or different mutant lines. Sigmoid vulnerability curves of A. thaliana indicated a pressure corresponding to 50% loss of hydraulic conductance (P 50) between -3 and -2.5MPa for short-day and long-day plants, respectively. Polygalacturonase mutants showed a higher P 50 value (-2.25MPa), suggesting a role for pectins in vulnerability to cavitation. The application of A. thaliana as a model species for xylem hydraulics provides exciting possibilities for (1) exploring the molecular basis of xylem anatomical features and (2) understanding genetic mechanisms behind xylem functional traits such as cavitation resistance. Compared to perennial woody species, however, the lesser amount of xylem in A. thaliana has its limitations.

  5. Arabidopsis thaliana as a model species for xylem hydraulics: does size matter?

    PubMed Central

    Tixier, Aude; Cochard, Hervé; Badel, Eric; Dusotoit-Coucaud, Anaïs; Jansen, Steven; Herbette, Stéphane

    2013-01-01

    While Arabidopsis thaliana has been proposed as a model species for wood development, the potential of this tiny herb for studying xylem hydraulics remains unexplored and anticipated by scepticism. Inflorescence stems of A. thaliana were used to measure hydraulic conductivity and cavitation resistance, whereas light and electron microscopy allowed observations of vessels. In wild-type plants, measured and theoretical conductivity showed a significant correlation (R 2 = 0.80, P < 0.01). Moreover, scaling of vessel dimensions and intervessel pit structure of A. thaliana were consistent with structure–function relationships of woody plants. The reliability and resolution of the hydraulic methods applied to measure vulnerability to cavitation were addressed by comparing plants grown under different photoperiods or different mutant lines. Sigmoid vulnerability curves of A. thaliana indicated a pressure corresponding to 50% loss of hydraulic conductance (P 50) between –3 and –2.5MPa for short-day and long-day plants, respectively. Polygalacturonase mutants showed a higher P 50 value (–2.25MPa), suggesting a role for pectins in vulnerability to cavitation. The application of A. thaliana as a model species for xylem hydraulics provides exciting possibilities for (1) exploring the molecular basis of xylem anatomical features and (2) understanding genetic mechanisms behind xylem functional traits such as cavitation resistance. Compared to perennial woody species, however, the lesser amount of xylem in A. thaliana has its limitations. PMID:23547109

  6. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana.

    PubMed

    Evans-Roberts, Katherine M; Mitchenall, Lesley A; Wall, Melisa K; Leroux, Julie; Mylne, Joshua S; Maxwell, Anthony

    2016-02-12

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana*

    PubMed Central

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S.; Maxwell, Anthony

    2016-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides. PMID:26663076

  8. Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence.

    PubMed Central

    Tourmente, S; Deragon, J M; Lafleuriel, J; Tutois, S; Pélissier, T; Cuvillier, C; Espagnol, M C; Picard, G

    1994-01-01

    A strategy based on random PCR amplification was used to isolate new repetitive elements of Arabidopsis thaliana. One of the random PCR product analyzed by this approach contained a tandem repetitive minisatellite sequence composed of 33 bp repeated units. The genomic locus corresponding to this PCR product was isolated by screening a lambda genomic library. New related loci were also isolated from the genomic library by screening with a 14 mer oligonucleotide representing a region conserved among the different repeated units. Alignment of the consensus sequence for each minisatellite locus allowed the definition of an Arabidopsis thaliana core sequence that shows strong sequence similarities with the human core sequence and with the generalized recombination signal Chi of Escherichia coli. The minisatellites were tested for their ability to detect polymorphism, and their chromosomal position was established. Images PMID:8078766

  9. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    SciTech Connect

    Bajaj, Mamta; Moriyama, Hideaki

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  10. Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence.

    PubMed

    Tourmente, S; Deragon, J M; Lafleuriel, J; Tutois, S; Pélissier, T; Cuvillier, C; Espagnol, M C; Picard, G

    1994-08-25

    A strategy based on random PCR amplification was used to isolate new repetitive elements of Arabidopsis thaliana. One of the random PCR product analyzed by this approach contained a tandem repetitive minisatellite sequence composed of 33 bp repeated units. The genomic locus corresponding to this PCR product was isolated by screening a lambda genomic library. New related loci were also isolated from the genomic library by screening with a 14 mer oligonucleotide representing a region conserved among the different repeated units. Alignment of the consensus sequence for each minisatellite locus allowed the definition of an Arabidopsis thaliana core sequence that shows strong sequence similarities with the human core sequence and with the generalized recombination signal Chi of Escherichia coli. The minisatellites were tested for their ability to detect polymorphism, and their chromosomal position was established.

  11. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana.

    PubMed

    Boavida, Leonor C; McCormick, Sheila

    2007-11-01

    Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen has been elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 80% and pollen tube lengths of hundreds of microns, with both Columbia and Landsberg erecta (Ler) ecotypes. We found that pollen germination and tube growth were dependent on pollen density in both liquid and solid medium. Pollen germination rates were not substantially affected by flower or plant age. The quartet1 mutation negatively affected pollen germination, especially in the Ler ecotype. This protocol will facilitate functional analyses of insertional mutants affecting male gametophyte function, and should allow detailed gene expression analyses during pollen tube growth. Arabidopsis thaliana can now be included on the list of plant species that are suitable models for physiological studies of pollen tube elongation and tip growth.

  12. Phosphate Uptake and Allocation – A Closer Look at Arabidopsis thaliana L. and Oryza sativa L.

    PubMed Central

    Młodzińska, Ewa; Zboińska, Magdalena

    2016-01-01

    This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil. PMID:27574525

  13. Molecular foundations of reproductive lethality in Arabidopsis thaliana.

    PubMed

    Muralla, Rosanna; Lloyd, Johnny; Meinke, David

    2011-01-01

    The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern

  14. The Genomic and Morphological Effects of Bisphenol A on Arabidopsis thaliana

    PubMed Central

    Frejd, Derek; Dunaway, Kiera; Hill, Jennifer; Van Maanen, Jesse

    2016-01-01

    The environmental toxin bisphenol A (BPA) is a known mammalian hormone disrupter but its effects on plants have not been well established. The effect of BPA on gene expression in Arabidopsis thaliana was determined using microarray analysis and quantitative gene PCR. Many hormone responsive genes showed changes in expression after BPA treatment. BPA disrupted flowering by a mechanism that may involve disruption of auxin signaling. The results presented here indicate that BPA is a plant hormone disrupter. PMID:27631104

  15. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting.

    PubMed

    Köhler, Claudia; Page, Damian R; Gagliardini, Valeria; Grossniklaus, Ueli

    2005-01-01

    The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.

  16. Visual markers for detecting gene conversion directly in the gametes of Arabidopsis thaliana.

    PubMed

    Berchowitz, Luke E; Copenhaver, Gregory P

    2009-01-01

    Measuring meiotic gene conversion is important both because of its role in the fundamental mechanisms of meiotic recombination and because of its influence on linkage relationships and allelic diversity in the genome. Historically, gene conversion has been most thoroughly examined in fungal organisms through the use of tetrad analysis. Here we describe a method for using tetrad analysis in the model plant Arabidopsis thaliana to detect and quantify gene conversion events - a resource unavailable in most other higher eukaryotic model systems.

  17. Genome-wide association mapping in plants exemplified for root growth in Arabidopsis thaliana.

    PubMed

    Slovak, Radka; Göschl, Christian; Seren, Ümit; Busch, Wolfgang

    2015-01-01

    Genome-wide association (GWA) mapping is a powerful technique to address the molecular basis of genotype to phenotype relationships and to map regulators of biological processes. This chapter presents a protocol for genome-wide association mapping in Arabidopsis thaliana using the user-friendly internet application GWAPP, and provides a specific protocol for acquiring root trait data suitable for GWA studies using the semi-automated, high-throughput phenotyping pipeline BRAT for early root growth.

  18. Crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase 2 from Arabidopsis thaliana

    PubMed Central

    Griffin, Michael D. W.; Billakanti, Jagan M.; Gerrard, Juliet A.; Dobson, Renwick C. J.; Pearce, F. Grant

    2011-01-01

    Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the first committed step of the lysine-biosynthetic pathway in plants and bacteria. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS2 from Arabidopsis thaliana are reported. Diffraction-quality protein crystals belonged to space group P21212. PMID:22102238

  19. Hydroxymethylated Dioxobilins in Senescent Arabidopsis thaliana Leaves: Sign of a Puzzling Biosynthetic Intermezzo of Chlorophyll Breakdown.

    PubMed

    Süssenbacher, Iris; Kreutz, Christoph R; Christ, Bastien; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-08-10

    1-Formyl-19-oxobilin-type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19-dioxobilin-type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild-type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs.

  20. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones.

    PubMed

    Miernyk, J A

    2001-07-01

    A total of 89 J-domain proteins were identified in the genome of the model flowering plant Arabidopsis thaliana. The deduced amino acid sequences of the J-domain proteins were analyzed for an assortment of structural features and motifs. Based on the results of sequence comparisons and structure and function predictions, 51 distinct families were identified. The families ranged in size from 1 to 6 members. Subcellular localizations of the A thaliana J-domain proteins were predicted; species were found in both the soluble and membrane compartments of all cellular organelles. Based on digital Northern analysis, the J-domain proteins could be separated into groups of low, medium, and moderate expression levels. This genomics-based analysis of the A thaliana J-domain proteins establishes a framework for detailed studies of biological function and specificity. It additionally provides a comprehensive basis for evolutionary comparisons.

  1. The role of ABC transporters in kin recognition in Arabidopsis thaliana

    PubMed Central

    Biedrzycki, Meredith L; Lakshmannan, Venkatachalam

    2011-01-01

    The ability to sense and respond to the surrounding rhizosphere including communications with neighboring plants and microbes is essential for plant survival. Recently, it has been established that several plant species including Arabidopsis thaliana have the ability to recognize rhizospheric neighbors based or their genetic identity. This study investigated the role of ABC transporters in kin recognition in A. thaliana based on previous evidence that root secretions are involved in the kin recognition response and that ABC transporters are responsible for secretion of a number of compounds. Three genes, AtPGP1, AtATH1 and AtATH10, are all implicated to be partially involved in the complex kin recognition response in A. thaliana based on this report. These findings highlight the importance of ABC transporters in understanding root secretions and plant-plant community interactions. PMID:21758011

  2. The role of ABC transporters in kin recognition in Arabidopsis thaliana.

    PubMed

    Biedrzycki, Meredith L; L, Venkatachalam; Bais, Harsh P

    2011-08-01

    The ability to sense and respond to the surrounding rhizosphere including communications with neighboring plants and microbes is essential for plant survival. Recently, it has been established that several plant species including Arabidopsis thaliana have the ability to recognize rhizospheric neighbors based or their genetic identity. This study investigated the role of ABC transporters in kin recognition in A. thaliana based on previous evidence that root secretions are involved in the kin recognition response and that ABC transporters are responsible for secretion of a number of compounds. Three genes, AtPGP1, ATATH1 and ATATH10, are all implicated to be partially involved in the complex kin recognition response in A. thaliana based on this report. These findings highlight the importance of ABC transporters in understanding root secretions and plant-plant community interactions. 

  3. Relationships between Arabidopsis thaliana and soil bacterial communities

    USDA-ARS?s Scientific Manuscript database

    Rhizosphere microbial communities are impacted by resident plant species and have reciprocal effects on their host plants. In this study, we collected resident soil from five wild populations of Arabidopsis in the United States and Europe in an effort to characterize the soil microbiome that co-exis...

  4. Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity.

    PubMed

    Cooper, A J; Latunde-Dada, A O; Woods-Tör, A; Lynn, J; Lucas, J A; Crute, I R; Holub, E B

    2008-06-01

    A biotrophic parasite often depends on an intrinsic ability to suppress host defenses in a manner that will enable it to infect and successfully colonize a susceptible host. If the suppressed defenses otherwise would have been effective against alternative pathogens, it follows that primary infection by the "suppressive" biotroph potentially could enhance susceptibility of the host to secondary infection by avirulent pathogens. This phenomenon previously has been attributed to true fungi such as rust (basidiomycete) and powdery mildew (ascomycete) pathogens. In our study, we observed broad-spectrum suppression of host defense by the oomycete Albugo candida (white blister rust) in the wild crucifer Arabidopsis thaliana and a domesticated relative, Brassica juncea. A. candida subsp. arabidopsis suppressed the "runaway cell death" phenotype of the lesion mimic mutant lsd1 in Arabidopsis thaliana in a sustained manner even after subsequent inoculation with avirulent Hyaloperonospora arabidopsis (Arabidopsis thaliana downy mildew). In sequential inoculation experiments, we show that preinfection by virulent Albugo candida can suppress disease resistance in cotyledons to several downy mildew pathogens, including contrasting examples of genotype resistance to H. arabidopsis in Arabidopsis thaliana that differ in the R protein and modes of defense signaling used to confer the resistance; genotype specific resistance in B. juncea to H. parasitica (Brassica downy mildew; isolates derived from B. juncea); species level (nonhost) resistance in both crucifers to Bremia lactucae (lettuce downy mildew) and an isolate of the H. parasitica race derived from Brassica oleracea; and nonhost resistance in B. juncea to H. arabidopsis. Broad-spectrum powdery mildew resistance conferred by RPW8 also was suppressed in Arabidopsis thaliana to two morphotypes of Erysiphe spp. following pre-infection with A. candida subsp. arabidopsis.

  5. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum.

    PubMed

    Khoudi, Habib; Maatar, Yafa; Brini, Faïçal; Fourati, Amine; Ammar, Najoua; Masmoudi, Khaled

    2013-01-01

    Phosphogypsum (PG) is a by-product of the phosphorus-fertiliser industry and represents an environmental concern since it contains pollutants such as cadmium (Cd). We have recently shown that the overexpression of a proton pump gene (TaVP1) in transgenic tobacco (Nicotiana tabacum) led to an enhanced Cd tolerance and accumulation. The aim of this study was to evaluate the potential of transgenic Arabidopsis thaliana plants harbouring the TaVP1 gene to phytoremediate phosphogypsum. A pot experiment was carried out under greenhouse conditions. Transgenic A. thaliana plants harbouring the TaVP1 gene were grown on various substrates containing phosphogypsum (0, 25, 50 and 100 %) for 40 days. At the end of the growth period, we examined the growth (germination, root length, fresh weight) and physiological parameters (chlorophyll and protein contents, catalase activity and proteolysis) as well as the cadmium, Mg, Ca, and P contents of the A. thaliana plants. In order to evaluate Cd tolerance of the A. thaliana lines harbouring the TaVP1 gene, an in vitro experiment was also carried out. One week-old seedlings were transferred to Murashige and Skoog agar plates containing various concentrations of cadmium; the germination, total leaf area and root length were determined. The growth and physiological parameters of all A. thaliana plants were significantly altered by PG. The germination capacity, root growth and biomass production of wild-type (WT) plants were more severely inhibited by PG compared with the TaVP1 transgenic A. thaliana lines. In addition, TaVP1 transgenic A. thaliana plants maintained a higher antioxidant capacity than the WT. Interestingly, elemental analysis of leaf material derived from plants grown on PG revealed that the transgenic A. thaliana line accumulated up to ten times more Cd than WT. Despite its higher Cd content, the transgenic A. thaliana line performed better than the WT counterpart. In vitro evaluation of Cd tolerance showed that TaVP1

  6. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station.

    PubMed

    Link, B M; Durst, S J; Zhou, W; Stankovic, B

    2003-01-01

    The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum.

    PubMed

    Morán-Diez, Eugenia; Rubio, Belén; Domínguez, Sara; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2012-04-15

    Trichoderma harzianum is a fungus used as biocontrol agent using its antagonistic abilities against phytopathogenic fungi, although it has also direct effects on plants, increasing or accelerating their growth and resistance to diseases and the tolerance to abiotic stresses. We analyzed Arabidopsis thaliana gene expression changes after 24 h of incubation in the presence of T. harzianum T34 using the Affymetrix GeneChip Arabidopsis ATH1. Because this microarray contains more than 22,500 probe sets representing approximately 24,000 genes, we were able to construct a global picture of the molecular physiology of the plant at 24 h of T. harzianum-Arabidopsis interaction. We identified several differentially expressed genes that are involved in plant responses to stress, regulation of transcription, signal transduction or plant metabolism. Our data support the hypothesis that salicylic acid- and jasmonic acid-related genes were down-regulated in A. thaliana after 24 h of incubation in the presence of T. harzianum T34, while several genes related to abiotic stress responses were up-regulated. These systemic changes elicited by T. harzianum in Arabidopsis are discussed.

  8. Comparison of Flowering Time Genes in Brassica Rapa, B. Napus and Arabidopsis Thaliana

    PubMed Central

    Osborn, T. C.; Kole, C.; Parkin, IAP.; Sharpe, A. G.; Kuiper, M.; Lydiate, D. J.; Trick, M.

    1997-01-01

    The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis. PMID:9215913

  9. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Durst, S. J.; Zhou, W.; Stankovic, B.

    2003-01-01

    The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics.

    PubMed

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F X

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db.

  11. Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development. Results In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family. Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant

  12. A role for PCNA2 in translesion synthesis by Arabidopsis thaliana DNA polymerase eta.

    PubMed

    Kunz, Bernard A

    2008-10-01

    Eukaryotic DNA polymerase eta (Poleta) confers ultraviolet (UV) resistance by catalyzing translesion synthesis (TLS) past UV photoproducts. Poleta has been studied extensively in budding yeast and mammalian cells, where its interaction with monoubiquitylated proliferating cell nuclear antigen (PCNA) is necessary for its biological activity. Recently, in collaboration with other investigators, our laboratory demonstrated that Arabidopsis thaliana Poleta is required for UV resistance in plants. Furthermore, the purified enzyme can perform TLS opposite a cyclobutane pyrimidine dimer and interacts with PCNA. Intriguingly, the biological activity of Poleta in a heterologous yeast assay depends on co-expression with Arabidopsis PCNA2 and Poleta sequences implicated in binding PCNA or ubiquitin. We suggest that interaction of Arabidopsis Poleta with ubiquitylated PCNA2 is required for TLS past UV photoproducts by Poleta.

  13. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  14. Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana

    PubMed Central

    Streitner, Corinna; Simpson, Craig G.; Shaw, Paul; Danisman, Selahattin; Brown, John W.S.; Staiger, Dorothee

    2013-01-01

    Alternative splicing (AS) gives rise to multiple mRNA isoforms from the same gene, providing possibilities to regulate gene expression beyond the level of transcription. In a recent paper in Nucleic Acids Research we used a high resolution RT-PCR based panel to study changes in AS patterns in plants with altered levels of an hnRNP-like RNA-binding protein in Arabidopsis thaliana. Furthermore, we detected significant changes in AS patterns between different Arabidopsis ecotypes. Here we investigated how small changes in ambient temperature affect AS. We found significant changes in AS for 12 of 28 investigated events (43%) upon transfer of Arabidopsis plants from 20°C to 16°C and for 6 of the 28 investigated events (21%) upon transfer from 20°C to 24°C. PMID:23656882

  15. Composition and function of P bodies in Arabidopsis thaliana

    PubMed Central

    Maldonado-Bonilla, Luis D.

    2014-01-01

    mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB) are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation, and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis. PMID:24860588

  16. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana.

    PubMed

    De Vos, Martin; Jander, Georg

    2009-11-01

    Myzus persicae (green peach aphid) feeding on Arabidopsis thaliana induces a defence response, quantified as reduced aphid progeny production, in infested leaves but not in other parts of the plant. Similarly, infiltration of aphid saliva into Arabidopsis leaves causes only a local increase in aphid resistance. Further characterization of the defence-eliciting salivary components indicates that Arabidopsis recognizes a proteinaceous elicitor with a size between 3 and 10 kD. Genetic analysis using well-characterized Arabidopsis mutants shows that saliva-induced resistance against M. persicae is independent of the known defence signalling pathways involving salicylic acid, jasmonate and ethylene. Among 78 Arabidopsis genes that were induced by aphid saliva infiltration, 52 had been identified previously as aphid-induced, but few are responsive to the well-known plant defence signalling molecules salicylic acid and jasmonate. Quantitative PCR analyses confirm expression of saliva-induced genes. In particular, expression of a set of O-methyltransferases, which may be involved in the synthesis of aphid-repellent glucosinolates, was significantly up-regulated by both M. persicae feeding and treatment with aphid saliva. However, this did not correlate with increased production of 4-methoxyindol-3-ylmethylglucosinolate, suggesting that aphid salivary components trigger an Arabidopsis defence response that is independent of this aphid-deterrent glucosinolate.

  17. Generation of VHH antibodies against the Arabidopsis thaliana seed storage proteins.

    PubMed

    De Meyer, Thomas; Eeckhout, Dominique; De Rycke, Riet; De Buck, Sylvie; Muyldermans, Serge; Depicker, Ann

    2014-01-01

    Antibodies and antibody derived fragments are excellent tools for the detection and purification of proteins. However, only few antibodies targeting Arabidopsis seed proteins are currently available. Here, we evaluate the process to make antibody libraries against crude protein extracts and more particularly to generate a VHH phage library against native Arabidopsis thaliana seed proteins. After immunising a dromedary with a crude Arabidopsis seed extract, we cloned the single-domain antigen-binding fragments from their heavy-chain only antibodies in a phage display vector and selected nanobodies (VHHs) against native Arabidopsis seed proteins. For 16 VHHs, the corresponding antigens were identified by affinity purification and MS/MS analysis. They were shown to bind the major Arabidopsis seed storage proteins albumin and globulin (14 to albumin and 2 to globulin). All 16 VHHs were suitable primary reagents for the detection of the Arabidopsis seed storage proteins by ELISA. Furthermore, several of the anti-albumin VHHs were used successfully for storage protein localisation via electron microscopy. The easy cloning, selection and production, together with the demonstrated functionality and applicability, strongly suggest that the VHH antibody format will play a more prominent role in future protein research, in particular for the study of native proteins.

  18. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    PubMed Central

    2013-01-01

    Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted

  19. Optimized method for growing in vitro Arabidopsis thaliana pollen tubes.

    PubMed

    Borassi, Cecilia; Di Giorgio, Juliana Pérez; Scarpin, María R; Muschietti, Jorge; Estevez, José M

    2015-01-01

    Pollen tubes elongate by tip growth toward the ovule to deliver the sperm cells during fertilization. Since pollen tubes from several species can be grown in vitro maintaining their polarity, pollen tube growth is a suitable model system to study cell polarity and tip growth. A. thaliana pollen tubes germinated in vitro for 6 h can reach up to 800 μm. By studying the phenotype of mutants of T-DNA insertion lines, genes involved in pollen tube growth can be identified. Moreover, components involved in the regulation of pollen tube growth such as calcium ions and reactive oxygen species (ROS) can be analyzed.

  20. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  1. Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana.

    PubMed

    Martos, Soledad; Gallego, Berta; Cabot, Catalina; Llugany, Mercè; Barceló, Juan; Poschenrieder, Charlotte

    2016-08-01

    According to the elemental defense hypothesis the accumulation of trace elements by plants may substitute for organic defenses, while the joint effects hypothesis proposes that trace elements and organic defenses can have additive or synergistic effects against pathogens or herbivores. To evaluate these hypotheses the response of the pathosystem Alternaria brassicicola-Arabidopsis thaliana to control (2μM) and surplus (12μM) Zn was evaluated using the camalexin deficient mutant pad3-1 and mtp1-1, a mutant with impaired Zn vacuolar storage, along with the corresponding wildtypes. In vitro, a 50% inhibition of fungal growth was achieved by 440μM Zn. A. thaliana leaves could accumulate equivalent concentrations without harm. In fact, surplus Zn enhanced the resistance of A. thaliana to fungal attack in Columbia (Col-0), Wassilewskija (WS), and mtp1-1. However, surplus Zn was unable to protect pad3-1 demonstrating that Zn cannot substitute for camalexin, the main organic defense in A. thaliana. High, non phytotoxic leaf Zn concentrations enhanced the resistance to A. brassicicola of A. thaliana genotypes able to produce camalexin. This was mainly due to Zn-induced enhancement of the JA/ETH signaling pathway leading to enhanced PAD3 expression. These results support the joint effects hypothesis and highlight the importance of adequate Zn supply for reinforced pathogen resistance.

  2. Evidence for proteolytic processing of tobacco mosaic virus movement protein in Arabidopsis thaliana.

    PubMed

    Hughes, R K; Perbal, M C; Maule, A J; Hull, R

    1995-01-01

    Two ecotypes of Arabidopsis thaliana were transformed with the gene encoding tobacco mosaic virus (TMV) movement protein (P30). P30 accumulated largely in a subcellular fraction containing cell wall components and as a soluble protein. The protein migrated in denaturing gels with an M(r) of 30K, significantly faster than P30 (M(r) approximately 34K) accumulating after expression in transgenic tobacco, Escherichia coli or Spodoptera frugiperda cells, or after virus multiplication in tobacco. The P30 from A. thaliana infected with TMV for 14 days comigrated with that from E. coli, but that from A. thaliana infected for 49 days was of the smaller size. The use of antisera specific for the N- or C-termini of P30 showed that in A. thaliana P30 was proteolytically processed at the N-terminus, a region essential for P30 function. The failure of these plants to complement a TMV P30 mutant indicated that processed P30 was nonfunctional, although the processing was not so rapid that it prevented the development of systemic infections with wild type TMV. The absence of detectable P30 phosphorylation in A. thaliana demonstrated that phosphorylation was not essential for movement protein function and suggested that this species may use proteolytic cleavage of the N-terminus as an alternative strategy to tobacco for deactivating P30.

  3. Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana.

    PubMed

    Aquea, Felipe; Timmermann, Tania; Herrera-Vásquez, Ariel

    2017-01-29

    Chemical inhibition of chromatin regulators provides an effective approach to investigate the roles of chromatin modifications in plant and animals. In this work, chemical inhibition of the Arabidopsis histone acetyltransferase activity by γ-butyrolactone (MB-3), the inhibitor of the catalytic activity of mammalian GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is evaluated. Arabidopsis seedlings were germinated in LS medium supplemented with different concentrations of MB-3, and inhibition in the root length and yellowed leaves were observed. The yellowed leaves phenotype of the plants grown in 100 μM of MB-3 was reverted when plants were additionally treated with 1 μM of TSA, a histone deacetylase inhibitor. Using an immunoblot assay with specific antibodies revealed a reduction of H3K14 acetylation levels at 3 and 24 h post-treatment. At 24 h post-treatment a reduction of H3K9 acetylation levels was observed. Targets of GCN5 related to stress were downregulated at 3 h post-treatment but no change was observed in target genes related to developmental transition. Our results indicate that MB-3 is a chemical inhibitor of the histone acetyltransferase in Arabidopsis and suggest that this inhibitor could function in other plants species. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana.

    PubMed

    Veiga, Rita S L; Faccio, Antonella; Genre, Andrea; Pieterse, Corné M J; Bonfante, Paola; van der Heijden, Marcel G A

    2013-11-01

    The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non-mycorrhizal plants. The interaction of such non-host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non-mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual-compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non-host/AMF interactions and the biological basis of AM incompatibility. © 2013 John Wiley & Sons Ltd.

  5. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana.

    PubMed

    De Muyt, Arnaud; Pereira, Lucie; Vezon, Daniel; Chelysheva, Liudmila; Gendrot, Ghislaine; Chambon, Aurélie; Lainé-Choinard, Sandrine; Pelletier, Georges; Mercier, Raphaël; Nogué, Fabien; Grelon, Mathilde

    2009-09-01

    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.

  6. Proteome mapping of mature pollen of Arabidopsis thaliana.

    PubMed

    Holmes-Davis, Rachel; Tanaka, Charlene K; Vensel, William H; Hurkman, William J; McCormick, Sheila

    2005-12-01

    The male gametophyte of Arabidopsis is a three-celled pollen grain that is thought to contain almost all the mRNAs needed for germination and rapid pollen tube growth. We generated a reference map of the Arabidopsis mature pollen proteome by using multiple protein extraction techniques followed by 2-DE and ESI-MS/MS. We identified 135 distinct proteins from a total of 179 protein spots. We found that half of the identified proteins are involved in metabolism (20%), energy generation (17%), or cell structure (12%); these percentages are similar to those determined for the pollen transcriptome and this similarity is consistent with the idea that in addition to the mRNAs, the mature pollen grain contains proteins necessary for germination and rapid pollen tube growth. We identified ten proteins of unknown function, three of which are flower- or pollen-specific, and we identified nine proteins whose RNAs were absent from the transcriptome, seven of which are involved in metabolism, energy generation, or cell wall structure. Our work complements and extends recent analyses of the pollen transcriptome.

  7. HISTONE DEACETYLASE 6 Represses Pathogen Defense Responses in Arabidopsis thaliana.

    PubMed

    Wang, Yizhong; Hu, Qin; Wu, Zhenjiang; Wang, Hui; Han, Shiming; Jin, Ye; Zhou, Jin; Zhang, Zhengfeng; Jiang, Jiafu; Shen, Yun; Shi, Huazhong; Yang, Wannian; Shi, Huazhong

    2017-08-02

    Plant defense mechanisms are suppressed in the absence of pathogen attack to prevent wasted energy and growth inhibition. However, how defense responses are repressed is not well understood. Histone Deacetylase 6 (HDA6) is a negative regulator of gene expression, and its role in pathogen defense response in plants is not known. In this study, a novel allele of hda6 (designated as shi5) with spontaneous defense response was isolated from a forward genetics screening in Arabidopsis. The shi5 mutant exhibited increased resistance to hemi-biotrophic bacterial pathogen Pst DC3000, constitutively activated expression of pathogen responsive genes including PR1, PR2, etc, and increased histone acetylation levels at the promoters of most tested genes that were up-regulated in shi5. In both wild type and shi5 plants, the expression and histone acetylation of these genes were upregulated by pathogen infection. HDA6 was found to bind to the promoters of these genes under both normal growth conditions and pathogen infection. Our research suggests that HDA6 is a general repressor of pathogen defense response and plays important roles in inhibiting and modulating the expression of pathogen responsive genes in Arabidopsis. This article is protected by copyright. All rights reserved.

  8. [Expression of Arabidopsis thaliana thioesterase gene in Pichia pastoris].

    PubMed

    Hao, Zhaocheng; Wang, Tengfei; Li, Zhongkui; Hao, Zikai; Dai, Kun; Wang, Ruiming

    2015-01-01

    Thioesterase catalyzes the hydrolysis of acyl-ACP and saturated fatty acyl chain. It plays a key role in the accumulation of medium chain fatty acids in vivo. In this study, to construct an engineering strain to produce MCFAs, the Arabidopsis acyl-ACP thioesterase gene AtFatA was amplified by PCR from cDNA of arabidopsis and double digested by EcoR I/Xba I, then linked to the plasmid digested with same enzymes to get the recombinant plasmid pPICZaA-AtFatA. We transformed the gene into Pichia pastoris GS115 by electroporation and screened positive colonies by YPD medium with Zeocin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the recombinant enzyme had a molecular of 45 kDa band which was consistent with the predicted molecular mass and we constructed the expression system of gene AtFatA in fungus for the first time. Under shake-flask conditions, Gas Chromatograph-Mass Spectrometer-computer results indicated that recombinant strain produced 51% more extracellular free MCFAs than the wild and its yield reached 28.7% of all extracellular fatty acids. This figure is 10% higher than the control group. The result provides a new way to produce MCFAs.

  9. SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana.

    PubMed

    Zamariola, Linda; De Storme, Nico; Vannerum, Katrijn; Vandepoele, Klaas; Armstrong, Susan J; Franklin, F Christopher H; Geelen, Danny

    2014-03-01

    In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two-step manner. At meiosis I, the meiosis-specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T-DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.

  10. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana

    PubMed Central

    Atanasov, Kostadin E.; Barboza-Barquero, Luis; Tiburcio, Antonio F.; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  11. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    PubMed

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  12. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    PubMed

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  13. Characterization of the cDNA and gene coding for the biotin synthase of Arabidopsis thaliana.

    PubMed Central

    Weaver, L M; Yu, F; Wurtele, E S; Nikolau, B J

    1996-01-01

    Biotin, an essential cofactor, is synthesized de novo only by plants and some microbes. An Arabidopsis thaliana expressed sequence tag that shows sequence similarity to the carboxyl end of biotin synthase from Escherichia coli was used to isolate a near-full-length cDNA. This cDNA was shown to code for the Arabidopsis biotin synthase by its ability to complement a bioB mutant of E. coli. Site-specific mutagenesis indicates that residue threonine-173, which is highly conserved in biotin synthases, is important for catalytic competence of the enzyme. The primary sequence of the Arabidopsis biotin synthase is most similar to biotin synthases from E. coli, Serratia marcescens, and Saccharomyces cerevisiae (about 50% sequence identity) and more distantly related to the Bacillus sphaericus enzyme (33% sequence identity). The primary sequence of the amino terminus of the Arabidopsis biotin synthase may represent an organelle-targeting transit peptide. The single Arabidopsis gene coding for biotin synthase, BIO2, was isolated and sequenced. The biotin synthase coding sequence is interrupted by five introns. The gene sequence upstream of the translation start site has several unusual features, including imperfect palindromes and polypyrimidine sequences, which may function in the transcriptional regulation of the BIO2 gene. PMID:8819873

  14. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat). Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack. PMID:21392399

  15. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana.

    PubMed Central

    Finnegan, E J; Dennis, E S

    1993-01-01

    A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana. Images PMID:8389441

  16. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  17. Engineering and kinetic characterisation of two glucosyltransferases from Arabidopsis thaliana.

    PubMed

    Weis, Markus; Lim, Eng-Kiat; Bruce, Neil C; Bowles, Dianna J

    2008-05-01

    This study describes the characterisation of a chimeric mutant derived from two arabidopsis glucosyltransferases, 71C1 and 71C3. A chimera, N1C3, was constructed to contain the N-terminal domain of 71C1 and the C-terminal domain of 71C3. The chimera and the wild-type GTs displayed a similar Km towards the acceptor scopoletin. However, N1C3 had a Km near identical to 71C3 towards UDP-glucose, but was three-fold lower than that of 71C1. The results suggest that the acceptor and sugar donor are recognised independently by the N- and C-terminal domain of the GTs respectively, and provide a foundation for the future design of glucosyltransferase biocatalysts through assembling domains with different affinity towards the acceptor and donor.

  18. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    SciTech Connect

    Campell, B.R.; Persinger, S.M.; Town, C.D. )

    1989-04-01

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines.

  19. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.

    PubMed

    Dong, Wei; Stockwell, Virginia O; Goyer, Aymeric

    2015-12-01

    Thiamin is an essential nutrient in the human diet. Severe thiamin deficiency leads to beriberi, a lethal disease which is common in developing countries. Thiamin biofortification of staple food crops is a possible strategy to alleviate thiamin deficiency-related diseases. In plants, thiamin plays a role in the response to abiotic and biotic stresses, and data from the literature suggest that boosting thiamin content could increase resistance to stresses. Here, we tested an engineering strategy to increase thiamin content in Arabidopsis. Thiamin is composed of a thiazole ring linked to a pyrimidine ring by a methylene bridge. THI1 and THIC are the first committed steps in the synthesis of the thiazole and pyrimidine moieties, respectively. Arabidopsis plants were transformed with a vector containing the THI1-coding sequence under the control of a constitutive promoter. Total thiamin leaf content in THI1 plants was up approximately 2-fold compared with the wild type. THI1-overexpressing lines were then crossed with pre-existing THIC-overexpressing lines. Resulting THI1 × THIC plants accumulated up to 3.4- and 2.6-fold more total thiamin than wild-type plants in leaf and seeds, respectively. After inoculation with Pseudomonas syringae, THI1 × THIC plants had lower populations than the wild-type control. However, THI1 × THIC plants subjected to various abiotic stresses did not show any visible or biochemical changes compared with the wild type. We discuss the impact of engineering thiamin biosynthesis on the nutritional value of plants and their resistance to biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium.

    PubMed

    Fu, Jianxin; Yang, Liwen; Dai, Silan

    2014-07-01

    In Arabidopsis, circadian clock genes play important roles in photoperiod pathway by regulating the daytime expression of CONSTANS (CO), but related reports for chrysanthemum are notably limited. In this study, we isolated eleven circadian clock genes, which lie in the three interconnected negative and positive feedback loops in a wild diploid chrysanthemum, Chrysanthemum lavandulifolium. With the exception of ClELF3, ClPRR1 and ClPRR73, most of the circadian clock genes are expressed more highly in leaves than in other tested tissues. The diurnal rhythms of these circadian clock genes are similar to those of their homologs in Arabidopsis. ClELF3 and ClZTL are constitutively expressed at all time points in both assessed photoperiods. The expression succession from morning to night of the PSEUDO RESPONSE REGULATOR (PRR) gene family occurs in the order ClPRR73/ClPRR37, ClPRR5, and then ClPRR1. ClLHY is expressed during the dawn period, and ClGIs is expressed during the dusk period. The peak expression levels of ClFKF1 and ClGIs are synchronous in the inductive photoperiod. However, in the non-inductive night break (NB) condition or non-24 h photoperiod, the peak expression level of ClFKF1 is significantly changed, indicating that ClFKF1 itself or the synchronous expression of ClFKF1 and ClGIs might be essential to initiate the flowering of C. lavandulifolium. This study provides the first extensive evaluation of circadian clock genes, and it presents a useful foundation for dissecting the functions of circadian clock genes in C. lavandulifolium. Copyright © 2014. Published by Elsevier Masson SAS.

  1. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets

    PubMed Central

    Wang, Xiu-Jie; Reyes, José L; Chua, Nam-Hai; Gaasterland, Terry

    2004-01-01

    Background A class of eukaryotic non-coding RNAs termed microRNAs (miRNAs) interact with target mRNAs by sequence complementarity to regulate their expression. The low abundance of some miRNAs and their time- and tissue-specific expression patterns make experimental miRNA identification difficult. We present here a computational method for genome-wide prediction of Arabidopsis thaliana microRNAs and their target mRNAs. This method uses characteristic features of known plant miRNAs as criteria to search for miRNAs conserved between Arabidopsis and Oryza sativa. Extensive sequence complementarity between miRNAs and their target mRNAs is used to predict miRNA-regulated Arabidopsis transcripts. Results Our prediction covered 63% of known Arabidopsis miRNAs and identified 83 new miRNAs. Evidence for the expression of 25 predicted miRNAs came from northern blots, their presence in the Arabidopsis Small RNA Project database, and massively parallel signature sequencing (MPSS) data. Putative targets functionally conserved between Arabidopsis and O. sativa were identified for most newly identified miRNAs. Independent microarray data showed that the expression levels of some mRNA targets anti-correlated with the accumulation pattern of their corresponding regulatory miRNAs. The cleavage of three target mRNAs by miRNA binding was validated in 5' RACE experiments. Conclusions We identified new plant miRNAs conserved between Arabidopsis and O. sativa and report a wide range of transcripts as potential miRNA targets. Because MPSS data are generated from polyadenylated RNA molecules, our results suggest that at least some miRNA precursors are polyadenylated at certain stages. The broad range of putative miRNA targets indicates that miRNAs participate in the regulation of a variety of biological processes. PMID:15345049

  2. Evidence for parallel adaptation to climate across the natural range of Arabidopsis thaliana

    PubMed Central

    Stearns, Frank W; Fenster, Charles B

    2013-01-01

    How organisms adapt to different climate habitats is a key question in evolutionary ecology and biological conservation. Species distributions are often determined by climate suitability. Consequently, the anthropogenic impact on earth's climate is of key concern to conservation efforts because of our relatively poor understanding of the ability of populations to track and evolve to climate change. Here, we investigate the ability of Arabidopsis thaliana to occupy climate space by quantifying the extent to which different climate regimes are accessible to different A. thaliana genotypes using publicly available data from a large-scale genotyping project and from a worldwide climate database. The genetic distance calculated from 149 single-nucleotide polymorphisms (SNPs) among 60 lineages of A. thaliana was compared to the corresponding climate distance among collection localities calculated from nine different climatic factors. A. thaliana was found to be highly labile when adapting to novel climate space, suggesting that populations may experience few constraints when adapting to changing climates. Our results also provide evidence of a parallel or convergent evolution on the molecular level supporting recent generalizations regarding the genetics of adaptation. PMID:23919166

  3. Technical advance: stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system

    NASA Technical Reports Server (NTRS)

    Love, J.; Scott, A. C.; Thompson, W. F.; Brown, C. S. (Principal Investigator)

    2000-01-01

    We show that the tightly regulated tetracycline-sensitive Top10 promoter system (Weinmann et al. Plant J. 1994, 5, 559-569) is functional in Arabidopsis thaliana. A pure breeding A. thaliana line (JL-tTA/8) was generated which expressed a chimeric fusion of the tetracycline repressor and the activation domain of Herpes simplex virus (tTA), from a single transgenic locus. Plants from this line were crossed with transgenics carrying the ER-targeted green fluorescent protein coding sequence (mGFP5) under control of the Top10 promoter sequence. Progeny from this cross displayed ER-targeted GFP fluorescence throughout the plant, indicating that the tTA-Top10 promoter interaction was functional in A. thaliana. GFP expression was repressed by 100 ng ml-1 tetracycline, an order of magnitude lower than the concentration used previously to repress expression in Nicotiana tabacum. Moreover, the level of GFP expression was controlled by varying the concentration of tetracycline in the medium, allowing a titred regulation of transgenic activity that was previously unavailable in A. thaliana. The kinetics of GFP activity were determined following de-repression of the Top10:mGFP5 transgene, with a visible ER-targeted GFP signal appearing from 24 to 48 h after de-repression.

  4. Raphanusanin-mediated resistance to pathogens is light dependent in radish and Arabidopsis thaliana.

    PubMed

    Moehninsi; Miura, Kenji; Yamada, Kosumi; Shigemori, Hideyuki

    2014-09-01

    Raphanusanin (Ra) is a light-induced inhibitor of hypocotyl growth that responds to unilateral blue light illumination in radish seedlings. We have previously shown that Ra regulates genes that are involved in common defense mechanisms. Many genes that are induced by Ra are also positively regulated by early blue light. To extend the understanding of the role of Ra in pathogen defense, we evaluated the effects of Ra on radish and Arabidopsis thaliana (A. thaliana) infected with the necrotrophic pathogen Botrytis cinerea (B. cinerea) and biotrophic pathogen Pseudomonas syringae (P. syringae). Radish and A. thaliana were found to be resistant to both pathogens when treated with Ra, depending on the concentration used. Interestingly, Ra-mediated resistance to P. syringae is dependent on light because Ra-treated seedlings exhibited enhanced susceptibility to P. syringae infection when grown in the dark. In addition to regulating the biotic defense response, Ra inhibited seed germination and root elongation and enhanced the growth of root hairs in the presence of light in radish and A. thaliana. Our data suggest that Ra regulates the expression of a set of genes involved in defense signaling pathways and plays a role in pathogen defense and plant development. Our results show that light may be generally required not only for the accumulation of Ra but also for its activation during the pathogen defense response.

  5. Evidence for parallel adaptation to climate across the natural range of Arabidopsis thaliana.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2013-07-01

    How organisms adapt to different climate habitats is a key question in evolutionary ecology and biological conservation. Species distributions are often determined by climate suitability. Consequently, the anthropogenic impact on earth's climate is of key concern to conservation efforts because of our relatively poor understanding of the ability of populations to track and evolve to climate change. Here, we investigate the ability of Arabidopsis thaliana to occupy climate space by quantifying the extent to which different climate regimes are accessible to different A. thaliana genotypes using publicly available data from a large-scale genotyping project and from a worldwide climate database. The genetic distance calculated from 149 single-nucleotide polymorphisms (SNPs) among 60 lineages of A. thaliana was compared to the corresponding climate distance among collection localities calculated from nine different climatic factors. A. thaliana was found to be highly labile when adapting to novel climate space, suggesting that populations may experience few constraints when adapting to changing climates. Our results also provide evidence of a parallel or convergent evolution on the molecular level supporting recent generalizations regarding the genetics of adaptation.

  6. Technical advance: stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system

    NASA Technical Reports Server (NTRS)

    Love, J.; Scott, A. C.; Thompson, W. F.; Brown, C. S. (Principal Investigator)

    2000-01-01

    We show that the tightly regulated tetracycline-sensitive Top10 promoter system (Weinmann et al. Plant J. 1994, 5, 559-569) is functional in Arabidopsis thaliana. A pure breeding A. thaliana line (JL-tTA/8) was generated which expressed a chimeric fusion of the tetracycline repressor and the activation domain of Herpes simplex virus (tTA), from a single transgenic locus. Plants from this line were crossed with transgenics carrying the ER-targeted green fluorescent protein coding sequence (mGFP5) under control of the Top10 promoter sequence. Progeny from this cross displayed ER-targeted GFP fluorescence throughout the plant, indicating that the tTA-Top10 promoter interaction was functional in A. thaliana. GFP expression was repressed by 100 ng ml-1 tetracycline, an order of magnitude lower than the concentration used previously to repress expression in Nicotiana tabacum. Moreover, the level of GFP expression was controlled by varying the concentration of tetracycline in the medium, allowing a titred regulation of transgenic activity that was previously unavailable in A. thaliana. The kinetics of GFP activity were determined following de-repression of the Top10:mGFP5 transgene, with a visible ER-targeted GFP signal appearing from 24 to 48 h after de-repression.

  7. Aseptic Culture Systems of Radopholus similis for In Vitro Assays on Musa spp. and Arabidopsis thaliana.

    PubMed

    Elsen, A; Lens, K; Nguyet, D T; Broos, S; Stoffelen, R; De Waele, D

    2001-06-01

    Radopholus similis is one of the most damaging nematodes in bananas. Chemical control is currently the most-used method, but nematode control through genetic improvement is widely encouraged. The objective of this study was to establish an aseptic culture system for R. similis and determine whether R. similis can infect and reproduce on in vitro banana plantlets and in vitro Arabidopsis thaliana. In the study's first part, a suitable aseptic culture system was developed using alfalfa callus. Radopholus similis could penetrate and reproduce in the callus. Six weeks after inoculation with 25 females, the reproduction ratio was 26.3 and all vermiform stages were present. The reproduction ratio increased to 223.2 after 12 weeks. Results of a greenhouse test showed that R. similis did not lose its pathogenicity after culturing on alfalfa callus. In the study's second part, the infection and reproduction of the nematodes cultured on the callus were studied on both in vitro banana plantlets and A. thaliana. Radopholus similis infected and reproduced on both banana and A. thaliana. Furthermore, nematode damage was observed in the root systems of both hosts. These successful infections open new perspectives for rapid in vitro screening for resistance in banana cultivars and anti-nematode proteins expressed in A. thaliana.

  8. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana

    PubMed Central

    Durvasula, Arun; Fulgione, Andrea; Gutaker, Rafal M.; Alacakaptan, Selen Irez; Flood, Pádraic J.; Neto, Célia; Tsuchimatsu, Takashi; Picó, F. Xavier; Alonso-Blanco, Carlos

    2017-01-01

    Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120–90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species. PMID:28473417

  9. In Arabidopsis thaliana codon volatility scores reflect GC3 composition rather than selective pressure

    PubMed Central

    2012-01-01

    Background Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. Results We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). Conclusions Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection. PMID:22805311

  10. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization.

    PubMed

    Mandyam, Keerthi G; Roe, Judith; Jumpponen, Ari

    2013-04-01

    We surveyed the non-mycorrhizal model plant Arabidopsis thaliana microscopically for its ability to form dark septate endophyte (DSE) symbioses in field, greenhouse, and laboratory studies. The laboratory studies were also used to estimate host growth responses to 34 Periconia macrospinosa and four Microdochium sp. isolates. Consistent with broad host range observed in previous experiments, field-, greenhouse-, and laboratory-grown A. thaliana were colonized by melanized inter- and intracellular hyphae and microsclerotia or chlamydospores indicative of DSE symbiosis. Host responses to colonization were variable and depended on the host ecotype. On average, two A. thaliana accessions (Col-0 and Cvi-0) responded negatively, whereas one (Kin-1) was unresponsive, a conclusion consistent with our previous analyses with forbs native to the field site where the fungi originate. Despite the average negative responses, examples of positive responses were also observed, a conclusion also congruent with earlier studies. Our results suggest that A. thaliana has potential as a model for more detailed dissection of the DSE symbiosis. Furthermore, our data suggest that host responses are controlled by variability in the host and endophyte genotypes.

  11. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.

    PubMed

    Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde

    2012-03-01

    Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.

  12. Purification and enzymatic characterization of alcohol dehydrogenase from Arabidopsis thaliana.

    PubMed

    Cheng, Fangfang; Hu, Tao; An, Yan; Huang, Jianqin; Xu, Yingwu

    2013-08-01

    Alcohol dehydrogenases (ADH) catalyze the interconversion between alcohols and aldehydes with the reduction of nicotinamide adenine dinucleotide (NAD(+)) to NADH. In this study, for the first time we report an over-expression and purification strategy for the Arabidosis thaliana ADH (AtADH), and characterize its enzymatic properties. AtADH was expressed in an Escherichia coli system, the polyhistidine-tag was removed after the recombinant AtADH protein was purified by metal chelating affinity chromatography. Activity assays demonstrated that AtADH has distinct enzymatic properties when compared with many well-known ADHs. It held peak activity at pH 10.5 and showed broad substrate selectivity for primary and secondary alcohols. The kinetic Km parameters for both ethanol and coenzyme were in the order of mM. This relative low affinity may reflect the need of the plant to maintain a supply of NAD(+) in nature. Different from yeast ADH, AtADH showed almost the same activity for short straight chain alcohols and reduced activity for secondary alcohols. This broad spectrum in alcohol selection and the observed higher catalytic activity (high Vmax (EtOH)) may result from the requirement of the single enzyme to accommodate many substrates. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana

    PubMed Central

    Su, Fangchu; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that develop from the ovary. The fertilization, development and maturation of fruits are crucial for plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this study, we used Arabidopsis thaliana as a model organism and attempted to identify novel genes related to fruit-associated biological processes. Specifically, using validated genes, we applied a shortest-path-based method to identify several novel genes in a large network constructed using the protein-protein interactions observed in Arabidopsis thaliana. The described analyses indicate that several of the discovered genes are associated with fruit fertilization, development and maturation in Arabidopsis thaliana. PMID:27434024

  14. ACR11 is an Activator of Plastid-Type Glutamine Synthetase GS2 in Arabidopsis thaliana.

    PubMed

    Osanai, Takashi; Kuwahara, Ayuko; Otsuki, Hitomi; Saito, Kazuki; Yokota Hirai, Masami

    2017-03-06

    Glutamine synthetase (GS) is an important enzyme for nitrogen assimilation, and GS2, encoded by GLN2, is the only plastid-type GS in Arabidopsis thaliana. A co-expression analysis suggested that the expression level of the gene encoding a uridylyltransferase-like protein, ACR11, is strongly correlated with GLN2 expression levels. Here we showed that the recombinant ACR11 protein increased GS2 activity in vitro by reducing the Km values of its substrate glutamine. A T-DNA insertion mutant of ACR11 exhibited a reduced GS activity under low nitrate conditions and reduced glutamine levels. Biochemical analyses revealed that ACR11 and GS2 interacted both in vitro and in vivo. These data demonstrate that ACR11 is an activator of GS2, giving it a mechanistic role in the nitrogen assimilation of A. thaliana.

  15. Characterization of a heat-stable protein with antimicrobial activity from Arabidopsis thaliana.

    PubMed

    Park, Seong-Cheol; Lee, Jung Ro; Shin, Sun-Oh; Park, Yoonkyung; Lee, Sang Yeol; Hahm, Kyung-Soo

    2007-10-26

    A heat-stable protein with antimicrobial activity was isolated from Arabidopsis thaliana plants by buffer-soluble extraction and two chromatographic procedures. The results of MALDI-TOF analysis revealed that the isolated protein shares high sequence identity with aspen SP1. To determine the exact antimicrobial properties of this protein, a cDNA encoding the protein was isolated from an A. thaliana leaf cDNA library and named AtHS1. AtHS1 mRNA was induced by exposure to external stresses, such as salicylic acid and jasmonic acid. We also analyzed the antimicrobial activity of recombinant AtHS1 expressed in Escherichia coli. This protein inhibited pathogenic fungal strains, except for Phytophthora infestans and Phytophthora nicotianae, and it exhibited antibacterial activity against E. coli and Staphylococcus aureus. These results suggest that AtHS1 shows good potential for use as a natural material in the study of antimicrobial agents.

  16. An analysis of microsatellite loci in Arabidopsis thaliana: mutational dynamics and application.

    PubMed Central

    Symonds, V Vaughan; Lloyd, Alan M

    2003-01-01

    Microsatellite loci are among the most commonly used molecular markers. These loci typically exhibit variation for allele frequency distribution within a species. However, the factors contributing to this variation are not well understood. To expand on the current knowledge of microsatellite evolution, 20 microsatellite loci were examined for 126 accessions of the flowering plant, Arabidopsis thaliana. Substantial variability in mutation pattern among loci was found, most of which cannot be explained by the assumptions of the traditional stepwise mutation model or infinite alleles model. Here it is shown that the degree of locus diversity is strongly correlated with the number of contiguous repeats, more so than with the total number of repeats. These findings support a strong role for repeat disruptions in stabilizing microsatellite loci by reducing the substrate for polymerase slippage and recombination. Results of cluster analyses are also presented, demonstrating the potential of microsatellite loci for resolving relationships among accessions of A. thaliana. PMID:14668396

  17. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.

    PubMed

    Dave, Anuja; Vaistij, Fabián E; Gilday, Alison D; Penfield, Steven D; Graham, Ian A

    2016-04-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.

  18. Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. Such regulation can provide information concerning the function of a gene in a developmental context as well as avoid potential harmful effects due to overexpression. A gfp construct under the control of a copper-inducible promoter was introduced into Arabidopsis thaliana (L.) Heynh. and the regulatory parameters of this inducible promoter were determined. Here, we describe the time-course of up- and down-regulation of GFP expression in response to copper level, the optimal regulatory levels of copper, and the tissue specificity of expression in three transgenic lines. We conclude that the copper-inducible promoter system may be useful in regulating the time and location of gene expression in A. thaliana.

  19. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana

    PubMed Central

    Zhu, Lu; Zheng, Chen; Liu, Ruixia; Song, Aiping; Zhang, Zhaohe; Xin, Jingjing; Jiang, Jiafu; Chen, Sumei; Zhang, Fei; Fang, Weimin; Chen, Fadi

    2016-01-01

    The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation. PMID:26819087

  20. Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. Such regulation can provide information concerning the function of a gene in a developmental context as well as avoid potential harmful effects due to overexpression. A gfp construct under the control of a copper-inducible promoter was introduced into Arabidopsis thaliana (L.) Heynh. and the regulatory parameters of this inducible promoter were determined. Here, we describe the time-course of up- and down-regulation of GFP expression in response to copper level, the optimal regulatory levels of copper, and the tissue specificity of expression in three transgenic lines. We conclude that the copper-inducible promoter system may be useful in regulating the time and location of gene expression in A. thaliana.

  1. Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    PubMed Central

    Kawaguchi, Kosuke; Yurimoto, Hiroya; Oku, Masahide; Sakai, Yasuyoshi

    2011-01-01

    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels. PMID:21966472

  2. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    PubMed

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  3. Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport.

    PubMed

    Spyrakis, Francesca; Bruno, Stefano; Bidon-Chanal, Axel; Luque, Francisco Javier; Abbruzzetti, Stefania; Viappiani, Cristiano; Dominici, Paola; Mozzarelli, Andrea

    2011-05-01

    Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana. Copyright © 2011 Wiley Periodicals, Inc.

  4. Characterization of a thermostable β-glucuronidase from Thermotoga maritima expressed in Arabidopsis thaliana.

    PubMed

    Xu, Jing; Tian, Yong-Sheng; Peng, Ri-He; Zhu, Bo; Gao, Jian-Jie; Yao, Quan-Hong

    2012-09-01

    TmGUSI, a gene identical to that encoding a thermostable β-glucuronidase in the hyperthermophilic anaerobe Thermotoga maritima, has been synthesized using a PCR-based two-step DNA synthesis and codon optimization for plants, and expressed in both Escherichia coli and Arabidopsis thaliana. TmGUSI expressed in transformed E. coli cells exhibited maximum hydrolytic activity at 65 °C and pH 6.5 and retained more than 80% activity after incubation at 85 °C for 30 min. TmGUSI activity in transgenic A. thaliana plants containing TmGUSI was also stable over the temperature range 65-80 °C. Our data suggest that β-glucuronidase from T. maritima can serve as a useful thermostable marker in higher plants.

  5. Analysis of tobamovirus multiplication in Arabidopsis thaliana mutants defective in TOM2A homologues.

    PubMed

    Fujisaki, Koki; Kobayashi, Soko; Tsujimoto, Yayoi; Naito, Satoshi; Ishikawa, Masayuki

    2008-06-01

    The TOM2A gene of Arabidopsis thaliana encodes a four-pass transmembrane protein that is required for efficient multiplication of a tobamovirus, TMV-Cg. In this study, the involvement of three TOM2A homologues in tobamovirus multiplication in A. thaliana was examined. T-DNA insertion mutations in the three homologues, separately or in combination, did not affect TMV-Cg multiplication, whereas, in the tom2a genetic background, some combinations reduced it. This result suggests that the TOM2A homologues are functional in enhancing TMV-Cg multiplication, but their contribution is much less than TOM2A. Interestingly, the multiplication of another tobamovirus, Tomato mosaic virus, was not drastically affected by any combinations of the mutations in TOM2A and its homologues as far as we examined.

  6. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana

    PubMed Central

    Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana. PMID:26179579

  7. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-Chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana.

  8. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid

    PubMed Central

    Dave, Anuja; Vaistij, Fabián E.; Gilday, Alison D.; Penfield, Steven D.; Graham, Ian A.

    2016-01-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT. PMID:26873978

  9. Patterns of polymorphism at the self-incompatibility locus in 1,083 Arabidopsis thaliana genomes.

    PubMed

    Tsuchimatsu, Takashi; Goubet, Pauline M; Gallina, Sophie; Holl, Anne-Catherine; Fobis-Loisy, Isabelle; Bergès, Hélène; Marande, William; Prat, Elisa; Meng, Dazhe; Long, Quan; Platzer, Alexander; Nordborg, Magnus; Vekemans, Xavier; Castric, Vincent

    2017-04-04

    Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic re-sequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and inter-haplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. 'Relict' A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Inter-haplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during post-glacial colonization.

  10. Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings

    SciTech Connect

    Steinitz, B.; Ren, Z.; Poff, K.L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wavelengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. The authors advise care in the use of green safelights for studies of phototropism.

  11. (+)-Thalianatriene and (-)-Retigeranin B Catalyzed by Sesterterpene Synthases from Arabidopsis thaliana.

    PubMed

    Shao, Jie; Chen, Qing-Wen; Lv, Hua-Jun; He, Juan; Liu, Zhi-Feng; Lu, Yan-Na; Liu, Hai-Li; Wang, Guo-Dong; Wang, Yong

    2017-04-07

    Two GFPPS linked (+)-thalianatriene (1) and (-)-retigeranin B (2) sesterterpene synthase genes were identified from the genome of Arabidopsis thaliana. 1 possesses an unprecedented 11-6-5 tricyclic ring system, while 2 contains a characteristic 5-5-5-6-5 pentacyclic ring system. Their structures were determined by extensive NMR spectroscopy, chemical derivatization, and X-ray crystallography. The variable-temp NMR measurement of 3, a diepoxy-bearing derivative of 1, enables us to completely assign the NMR signals of the two conformers as 3a (67%, UUU) and 3b (33%, UUD). A plausible biosynthesis mechanism of 1 was proposed.

  12. Direct and residual effects of cadmium on the growth and elemental composition of Arabidopsis thaliana

    SciTech Connect

    Moser, T.J.; Tingey, D.; Rodecap, K.D.

    1986-01-01

    Experiments were conducted to determine the direct (first generation) and residual (second generation) phytotoxicity of a range of cadmium concentrations on Arabidopsis thaliana. Plants were grown under greenhouse conditions in double-container, vermiculite-hydroponic plot-culture systems. First generation plants were continuously exposed to nutrient solutions ranging from 0 to 100 micrometers CdCl/sub 2/. Biomass in the first generation plants decreased in response to nutrient solution containing increasing Cd concentrations. The 100 micrometers Cd treatment significantly reduced rosette, raceme and mature seed biomass. The progeny from the first-generation plants revealed no significant residual effects as far as growth and elemental composition are concerned.

  13. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  14. Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Best, T. R.; Poff, K. L.

    1989-01-01

    Phototropic and gravitropic curvature by hypocotyls of Arabidopsis thaliana is minimal when the side of the hook with the cotyledons attached is positioned toward the direction of tropistic curvature, and maximal when that side of the hook is positioned away from the direction of tropistic curvature. Based on these data, it is proposed that the position of the hook with attached cotyledons affects curvature and not stimulus perception. A randomly oriented population of plants exhibited considerable heterogeneity in tropistic curvature. This heterogeneity arises at least in part from the dependence of curvature on the position of the hook.

  15. Genome-Wide Profiling of Histone Modifications and Histone Variants in Arabidopsis thaliana and Marchantia polymorpha.

    PubMed

    Yelagandula, Ramesh; Osakabe, Akihisa; Axelsson, Elin; Berger, Frederic; Kawashima, Tomokazu

    2017-01-01

    Histone modifications and histone variants barcode the genome and play major roles in epigenetic regulations. Chromatin immunoprecipitation (ChIP) coupled with next-generation sequencing (NGS) is a well-established method to investigate the landscape of epigenetic marks at a genomic level. Here, we describe procedures for conducting ChIP, subsequent NGS library construction, and data analysis on histone modifications and histone variants in Arabidopsis thaliana. We also describe an optimized nuclear isolation procedure to prepare chromatin for ChIP in the liverwort, Marchantia polymorpha, which is the emerging model plant ideal for evolutionary studies.

  16. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana.

    PubMed

    Hoff, T; Frandsen, G I; Rocher, A; Mundy, J

    1998-07-09

    Aldehyde oxidases and xanthine dehydrogenases/oxidases belong to the molybdenum cofactor dependent hydroxylase class of enzymes. Zymograms show that Arabidopsis thaliana has at least three different aldehyde oxidases and one xanthine oxidase. Three different cDNA clones encoding putative aldehyde oxidases (AtAO1, 2, 3) were isolated. An aldehyde oxidase is the last step in abscisic acid (ABA) biosynthesis. AtAO1 is mainly expressed in seeds and roots which might reflect that it is involved in ABA biosynthesis.

  17. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings 1

    PubMed Central

    Steinitz, Benjamin; Ren, Zhangling; Poff, Kenneth L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wave-lengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. We advise care in the use of green `safelights' for studies of phototropism. PMID:16664021

  18. The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana.

    PubMed

    Urbina, Daniela C; Silva, Herman; Meisel, Lee A

    2006-01-01

    Thapsigargin, a specific inhibitor of most animal intracellular SERCA-type Ca2+ pumps present in the sarcoplasmic/endoplasmic reticulum, was originally isolated from the roots of the Mediterranean plant Thapsia gargancia L. Here, we demonstrate that this root-derived compound is capable of altering root gravitropism in Arabidopsis thaliana. Thapsigargin concentrations as low as 0.1 microM alter root gravitropism whereas under similar conditions cyclopiazonic acid does not. Furthermore, a fluorescently conjugated thapsigargin (BODIPY FL thapsigargin) suggests that target sites for thapsigargin are located in intracellular organelles in the root distal elongation zone and the root cap, regions known to regulate root gravitropism.

  19. Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana.

    PubMed

    Sánchez-Moreiras, Adela M; Martínez-Peñalver, Ana; Reigosa, Manuel J

    2011-06-15

    Measurements of chlorophyll a fluorescence, nutrient and trace elements, total protein content and malonyldialdehyde in leaves of Arabidopsis thaliana between 1 and 192 h after treatment with 0, 1 or 3 mM 2-3H-benzoxazolinone (BOA), together with imaging of chlorophyll a fluorescence and of the distributions of hydrogen peroxide and superoxide anion, suggested that the primary phytotoxic action of BOA is the induction of premature senescence, and that oxidative stress is a secondary effect that sets in a day or two later.

  20. In-Planta Expression: Searching for the Genuine Chromophores of Cryptochrome-3 from Arabidopsis thaliana.

    PubMed

    Gärtner, Wolfgang

    2017-01-01

    Göbel et al. present in this issue an exemplary study of identification of chromophores from Arabidopsis thaliana cryptochrome-3. Usually taken for granted, proteins and cofactors, respective chromophores, from heterologous expression are considered identical to material isolated from their genuine host. Cryptochromes carry two chromophores, an antenna cofactor and a functional flavin chromophore, both noncovalently embedded into the protein. In particular the antenna chromophore is loosely bound and often lost during protein purification. The authors identify from plant-extracted Cry3 unambiguously N(5) ,N(10) -methenyltetrahydrofolate as antenna chromophore and flavin adenine dinucleotide as the functional chromophore. © 2017 The American Society of Photobiology.

  1. Characterization of dwarf GA mutants of arabidopsis thaliana

    SciTech Connect

    Talon, M.; Zeevaart, J.A.D. ); Koornneef, M. )

    1990-05-01

    The presence of three separate gibberellin (GA) pathways in wild-type Arabidopsis was established by analysis of the endogenous GAs by GC-MS: (1) The 13-hydroxylation pathway (GA{sub 51}, GA{sub 44}, GA{sub 19}, GA{sub 17}, GA{sub 20}, GA{sub 1}, GA{sub 29}, and GA{sub 8}); (2) the 3{sup {beta}}, 13- pathway (GA{sub 12}, GA{sub 15}, GA{sub 24}, GA{sub 25}, GA{sub 9}, and GA{sub 51}), and (3) the 3{beta}-hydroxylation pathway (GA{sub 37}, GA{sub 27}, GA{sub 36}, GA{sub 13}, GA{sub 4}, and GA{sub 34}). The GA-responsive mutants {und ga-1}, {und ga-2}, {und ga-3}, {und ga-4}, and {und ga-5}, as well as the GA-insensitive mutant {und gai} showed altered GA metabolism which resulted in accumulation, reduction, or lack of specific GAs. These data, together with results from feeding experiments with GAs and precursors, provide evidence for the steps in the pathways blocked in each mutant.

  2. Nitrogen control of developmental phase transitions in Arabidopsis thaliana.

    PubMed

    Vidal, Elena A; Moyano, Tomás C; Canales, Javier; Gutiérrez, Rodrigo A

    2014-10-01

    Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Arabidopsis thaliana as a model organism in systems biology.

    PubMed

    Van Norman, Jaimie M; Benfey, Philip N

    2009-01-01

    Significant progress has been made in identification of genes and gene networks involved in key biological processes. Yet, how these genes and networks are coordinated over increasing levels of biological complexity, from cells to tissues to organs, remains unclear. To address complex biological questions, biologists are increasingly using high-throughput tools and systems biology approaches to examine complex biological systems at a global scale. A system is a network of interacting and interdependent components that shape the system's unique properties. Systems biology studies the organization of system components and their interactions, with the idea that unique properties of that system can be observed only through study of the system as a whole. The application of systems biology approaches to questions in plant biology has been informative. In this review, we give examples of how systems biology is currently being used in Arabidopsis to investigate the transcriptional networks regulating root development, the metabolic response to stress, and the genetic regulation of metabolic variability. From these studies, we are beginning obtain sufficient data to generate more accurate models for system function. Further investigation of plant systems will require data gathering from specific cells and tissues, continued improvement in metabolic technologies, and novel computational methods for data visualization and modeling.

  4. Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana

    PubMed Central

    Mao, Jingjing; Manik, S. M. Nuruzzaman; Shi, Sujuan; Chao, Jiangtao; Jin, Yirong; Wang, Qian; Liu, Haobao

    2016-01-01

    Calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) network is one of the vital regulatory mechanisms which decode calcium signals triggered by environmental stresses. Although the complicated regulation mechanisms and some novel functions of CBL-CIPK signaling network in plants need to be further elucidated, numerous advances have been made in its roles involved in the abiotic stresses. This review chiefly introduces the progresses about protein interaction, classification and expression pattern of different CBLs and CIPKs in Arabidopsis thaliana, summarizes the physiological roles of CBL-CIPK pathway while pointing out some new research ideas in the future, and finally presents some unique perspectives for the further study. The review might provide new insights into the functional characterization of CBL-CIPK pathway in Arabidopsis, and contribute to a deeper understanding of CBL-CIPK network in other plants or stresses. PMID:27618104

  5. Noise-plasticity correlations of gene expression in the multicellular organism Arabidopsis thaliana.

    PubMed

    Hirao, Koudai; Nagano, Atsushi J; Awazu, Akinori

    2015-12-21

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions (called gene expression "noise" or phenotype "fluctuation"). In yeast and Escherichia coli, positive correlations have been found between such gene expression noise and "plasticity" with environmental variations. To determine the universality of such correlations in both unicellular and multicellular organisms, we focused on the relationships between gene expression "noise" and "plasticity" in Arabidopsis thaliana, a multicellular model organism. In recent studies on yeast and E. coli, only some gene groups with specific properties of promoter architecture, average expression levels, and functions exhibited strong noise-plasticity correlations. However, we found strong noise-plasticity correlations for most gene groups in Arabidopsis; additionally, promoter architecture, functional essentiality of genes, and circadian rhythm appeared to have only a weak influence on the correlation strength. The differences in the characteristics of noise-plasticity correlations may result from three-dimensional chromosomal structures and/or circadian rhythm.

  6. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots

    PubMed Central

    Dong, Bin; Yang, Xiaochen; Zhu, Shaobin; Bassham, Diane C.; Fang, Ning

    2015-01-01

    Super-resolution fluorescence microscopy has generated tremendous success in revealing detailed subcellular structures in animal cells. However, its application to plant cell biology remains extremely limited due to numerous technical challenges, including the generally high fluorescence background of plant cells and the presence of the cell wall. In the current study, stochastic optical reconstruction microscopy (STORM) imaging of intact Arabidopsis thaliana seedling roots with a spatial resolution of 20–40 nm was demonstrated. Using the super-resolution images, the spatial organization of cortical microtubules in different parts of a whole Arabidopsis root tip was analyzed quantitatively, and the results show the dramatic differences in the density and spatial organization of cortical microtubules in cells of different differentiation stages or types. The method developed can be applied to plant cell biological processes, including imaging of additional elements of the cytoskeleton, organelle substructure, and membrane domains. PMID:26503365

  7. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya; Han, Minwoo; Kusano, Miyako; Khandelia, Himanshu; Saito, Kazuki; Shin, Ryoung

    2017-02-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium were investigated. Through chemical library screening, 14 chemicals were isolated as ‘cesium accumulators’ in Arabidopsis thaliana. Of those, methyl cysteinate, a derivative of cysteine, was found to function within the plant to accumulate externally supplemented cesium. Moreover, metabolite profiling demonstrated that cesium treatment increased cysteine levels in Arabidopsis. The cesium accumulation effect was not observed for other cysteine derivatives or amino acids on the cysteine metabolic pathway tested. Our results suggest that methyl cysteinate, potentially metabolised from cysteine, binds with cesium on the surface of the roots or inside plant cells and improve phytoaccumulation.

  8. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    SciTech Connect

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  9. Chloroplast Distribution in Arabidopsis thaliana (L.) Depends on Light Conditions during Growth.

    PubMed Central

    Trojan, A.; Gabrys, H.

    1996-01-01

    Chloroplasts of Arabidopsis thaliana move in response to blue light. Sensitivity to light and the range of fluence rates to which the chloroplasts respond were found to be comparable to those of other higher plants studied. We investigated typical chloroplast distributions in Arabidopsis grown under three different light conditions:standard-light conditions, similar to natural light intensities; weak-light intensities, close to the compensation point of photosynthesis; and strong-light intensities, close to the saturation of the light-response curve of photosynthesis. We observed a striking difference in chloroplast arrangement in darkness between plants grown under weak- and strong-light conditions. There was a slight difference after weak-light pretreatment, and the arrangements of chloroplasts after strong-light pretreatment in both plant groups were very similar. These results support the ecological significance of chloroplast movements. PMID:12226297

  10. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana.

    PubMed

    Rovere, Federica Della; Fattorini, Laura; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2016-05-03

    Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.

  11. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana. Progress report

    SciTech Connect

    Not Available

    1991-12-31

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  12. The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome.

    PubMed

    Petersson, Ulrika A; Kieselbach, Thomas; García-Cerdán, José G; Schröder, Wolfgang P

    2006-11-13

    Peroxiredoxins have been discovered in many organisms ranging from eubacteria to mammals, and their known biological functions include both oxidant defense and signal transduction. The genome of Arabidopsis thaliana encodes for ten individual peroxiredoxins, of which four are located in the chloroplast. The best-characterized member of the chloroplast peroxiredoxins is 2-Cys Prx that is associated with the stroma side of the thylakoid membrane and is considered to participate in antioxidant defense and protection of photosynthesis. This study addressed the chloroplast peroxiredoxin Prx Q and showed that its subcellular location is the lumen of the thylakoid membrane. To get insight in the biological function of the Prx Q protein of Arabidopsis, the protein levels of the Prx Q protein in thylakoid membranes were studied under different light conditions and oxidative stress. A T-DNA knockout mutant of Prx Q did not show any visible phenotype and had normal photosynthetic performance with a slightly increased oxygen evolving activity.

  13. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    PubMed Central

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya; Han, Minwoo; Kusano, Miyako; Khandelia, Himanshu; Saito, Kazuki; Shin, Ryoung

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium were investigated. Through chemical library screening, 14 chemicals were isolated as ‘cesium accumulators’ in Arabidopsis thaliana. Of those, methyl cysteinate, a derivative of cysteine, was found to function within the plant to accumulate externally supplemented cesium. Moreover, metabolite profiling demonstrated that cesium treatment increased cysteine levels in Arabidopsis. The cesium accumulation effect was not observed for other cysteine derivatives or amino acids on the cysteine metabolic pathway tested. Our results suggest that methyl cysteinate, potentially metabolised from cysteine, binds with cesium on the surface of the roots or inside plant cells and improve phytoaccumulation. PMID:28230101

  14. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings.

    PubMed Central

    Brusslan, J A; Tobin, E M

    1992-01-01

    We found a transient increase in the amount of mRNA for four nuclear genes encoding chloroplast proteins during early development of Arabidopsis thaliana. This increase began soon after germination as cotyledons emerged from the seed coat; it occurred in total darkness and was not affected by external factors, such as gibberellins or light treatments used to stimulate germination. Three members of the cab gene family and the rbcS-1A gene exhibited this expression pattern. Because timing of the increase coincided with cotyledon emergence and because it occurred independently of external stimuli, we suggest that this increase represents developmental regulation of these genes. Further, 1.34 kilobases of the cab1 promoter was sufficient to confer this expression pattern on a reporter gene in transgenic Arabidopsis seedlings. The ability of the cab genes to respond to phytochrome preceded this developmental increase, showing that these two types of regulation are independent. Images PMID:1380166

  15. Abscisic Acid Elicits the Water-Stress Response in Root Hairs of Arabidopsis thaliana1

    PubMed Central

    Schnall, Jennifer A.; Quatrano, Ralph S.

    1992-01-01

    Water stress has been shown to cause root hairs to become short and bulbous. Because abscisic acid (ABA) mediates a variety of water-stress responses, we investigated the response of Arabidopsis thaliana root hairs to ABA. When wild-type root hairs were treated with ABA, they exhibited the water-stress response. The Arabidopsis mutants abi1 and abi2, which are insensitive to ABA at the seedling stage, did not display the root hair response. These data suggest that ABA may mediate the response of root hairs to water stress. The drought response of root hairs resulting in an inhibition of tip growth will provide an easy screen to select mutations that are insensitive to ABA and/or involved in tip growth. Images Figure 1 PMID:16652949

  16. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Zhao, Yafei; Eggermont, Lore; Van Hove, Jonas; Al Atalah, Bassam; Van Damme, Els J M

    2016-10-04

    A small group of F-box proteins consisting of a conserved F-box domain linked to a domain homologous to the glycan-binding protein has been identified within the genome of Arabidopsis thaliana. Previously, the so-called F-box-Nictaba protein, encoded by the gene At2g02360, was shown to be a functional lectin which binds N-acetyllactosamine structures. Here, we present a detailed qRT-PCR expression analysis of F-box-Nictaba in Arabidopsis plants upon different stresses and hormone treatments. Expression of the F-box-Nictaba gene was enhanced after plant treatment with salicylic acid and after plant infection with the virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). β-glucuronidase histochemical staining of transgenic Arabidopsis plants displayed preferential activity of the At2g02360 promoter in trichomes present on young rosette leaves. qRT-PCR analyses confirmed high expression of F-box-Nictaba in leaf trichomes. A. thaliana plants overexpressing the gene showed less disease symptoms after Pst DC3000 infection with reduced bacterial colonization compared to infected wild type and F-box-Nictaba knock-out plants. Our data show that the Arabidopsis F-box-Nictaba gene is a stress-inducible gene responsive to SA, bacterial infection and heat stress, and is involved in salicylic acid related plant defense responses. This knowledge enriched our understanding of the physiological importance of F-box-Nictaba, and can be used to create plants with better performance in changing environmental conditions.

  17. Molecular Signatures in Arabidopsis thaliana in Response to Insect Attack and Bacterial Infection

    PubMed Central

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M.

    2013-01-01

    Background Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. Results The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Conclusions Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and

  18. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana.

    PubMed

    Ferro, Myriam; Salvi, Daniel; Brugière, Sabine; Miras, Stéphane; Kowalski, Solène; Louwagie, Mathilde; Garin, Jérôme; Joyard, Jacques; Rolland, Norbert

    2003-05-01

    The development of chloroplasts and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting envelope membranes. To provide the most exhaustive view of the protein repertoire of chloroplast envelope membranes, we analyzed this membrane system using proteomics. To this purpose, we first developed a procedure to prepare highly purified envelope membranes from Arabidopsis chloroplasts. We then extracted envelope proteins using different methods, i.e. chloroform/methanol extraction and alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to least hydrophobic ones. Liquid chromatography tandem mass spectrometry analyses were then performed on each envelope membrane subfraction, leading to the identification of more than 100 proteins. About 80% of the identified proteins are known to be, or are very likely, located in the chloroplast envelope. The validation of localization in the envelope of two phosphate transporters exemplifies the need for a combination of strategies to perform the most exhaustive identification of genuine chloroplast envelope proteins. Interestingly, some of the identified proteins are found to be Nalpha-acetylated, which indicates the accurate location of the N terminus of the corresponding mature protein. With regard to function, more than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are a) involved in ion and metabolite transport, b) components of the protein import machinery, and c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism, or proteins involved in responses to oxidative stress, were associated with envelope membranes. Almost one-third of the proteins we identified have no known function. The present work helps understanding chloroplast envelope metabolism at

  19. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana

    PubMed Central

    Sawa, Mariko; Kay, Steve A.

    2011-01-01

    Plants perceive environmental signals such as day length and temperature to determine optimal timing for the transition from vegetative to floral stages. Arabidopsis flowers under long-day conditions through the CONSTANS (CO)–FLOWERING LOCUS T (FT) regulatory module. It is thought that the environmental cues for photoperiodic control of flowering are initially perceived in the leaves. We have previously shown that GIGANTEA (GI) regulates the timing of CO expression, together with FLAVIN-BINDING, KELCH REPEAT, F BOX protein 1. Normally, CO and FT are expressed exclusively in vascular bundles, whereas GI is expressed in various tissues. To better elucidate the role of tissue-specific expression of GI in the flowering pathway, we established transgenic lines in which GI is expressed exclusively in mesophyll, vascular bundles, epidermis, shoot apical meristem, or root. We found that GI expressed in either mesophyll or vascular bundles rescues the late-flowering phenotype of the gi-2 loss-of-function mutant under both short-day and long-day conditions. Interestingly, GI expressed in mesophyll or vascular tissues increases FT expression without up-regulating CO expression under short-day conditions. Furthermore, we examined the interaction between GI and FT repressors in mesophyll. We found that GI can bind to three FT repressors: SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO (TEM)1, and TEM2. Finally, our chromatin immunoprecipitation experiments showed that GI binds to FT promoter regions that are near the SVP binding sites. Taken together, our data further elucidate the multiple roles of GI in the regulation of flowering time. PMID:21709243

  20. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    PubMed

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights

  1. Subcellular localization of ubiquitin and ubiquitinated proteins in Arabidopsis thaliana.

    PubMed

    Beers, E P; Moreno, T N; Callis, J

    1992-08-05

    Ubiquitin is a highly conserved, 76-amino acid, eukaryotic protein. Its widely accepted role as a proteolytic cofactor depends on its unique ability to covalently ligate to other cellular proteins. While there is good evidence for the existence of such ubiquitinated proteins in the cytosolic and nuclear compartments, relatively little is known about the presence of free ubiquitin and ubiquitinated proteins in other subcellular compartments. This is especially true of higher plants, which have not previously been the subject of extensive biochemical subcellular localizations of ubiquitinated proteins. We extracted cell wall proteins and purified nuclei, vacuoles, chloroplasts, and microsomes from chlorophyllous tissues of Arabidopsis. Immunoblot analyses were used to compare the profiles of ubiquitinated proteins from purified subcellular fractions to those from unfractionated extracts. Purified nuclei contained, in addition to a complex mixture of high molecular mass ubiquitinated proteins, a strongly immunoreactive 28-kDa protein. In the apoplastic extract, we did not detect any ubiquitinated proteins enriched above the background level of those due to cytosolic contamination. Vacuoles appeared to contribute significantly to the ubiquitinated proteins present in the whole protoplast extract. At least three high molecular mass ubiquitinated proteins were unique to the vacuolar extract. Chloroplast stromal proteins did not react specifically with anti-ubiquitin antibodies. When microsomal ubiquitinated proteins were compared to those found in a whole protoplast extract, a distinct pattern was evident. Microsomal ubiquitinated proteins were not visible in the 10,000 x g supernatant used to prepare the 100,000 x g pellet, indicating that they were probably low abundance proteins in the protoplast extract.

  2. Sucrose helps regulate cold acclimation of Arabidopsis thaliana

    PubMed Central

    Rekarte-Cowie, Iona; Ebshish, Omar S.; Mohamed, Khalifa S.; Pearce, Roger S.

    2008-01-01

    A test was carried out to see if sucrose could regulate cold-acclimation-associated gene expression in Arabidopsis. In plants and excised leaves, sucrose caused an increase in GUS activity, as a reporter for the activity of the cold-responsive COR78 promoter. This increase was transient at 21 °C but lasted for at least 4 d at 4 °C in continuous darkness. However, at 4 °C with a 16 h photoperiod, GUS activity was similarly high with solutions lacking sucrose or with different concentrations of sucrose. In peeled lower epidermis in the cold dark environment, 40 mM sucrose increased COR78 transcript abundance to substantially above that in the controls, but sorbitol had no effect. Similarly to the cold and dark conditions, sucrose increased COR78 transcript abundance in the epidermis in the warm light and warm dark environments, but not in a cold light environment. Sucrose had much less effect on COR78 transcript abundance in leaves without the lower epidermis. Thus sucrose regulates expression of COR78, possibly mainly in the epidermis, at the level of transcription. Furthermore, 40 mM sucrose at 4 °C for 24 h in constant darkness was sufficient to give the same GUS activity as in fully acclimated plants of the same age in a 16 h photoperiod, although by 48 h, GUS activity had become intermediate between control and fully cold-acclimated plants. Thus sucrose has a regulatory role in the acclimation of whole plants to cold and this may be important during diurnal dark periods. PMID:18980951

  3. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine.

    PubMed

    Cassin, Gaëlle; Mari, Stéphane; Curie, Catherine; Briat, Jean-François; Czernic, Pierre

    2009-01-01

    Nicotianamine (NA) is a non-protein amino acid derivative synthesized from S-adenosyl L-methionine able to bind several metal ions such as iron, copper, manganese, zinc, or nickel. In plants, NA appears to be involved in iron availability and is essential for the plant to complete its biological cycle. In graminaceous plants, NA is also the precursor in the biosynthesis of phytosiderophores. Arabidopsis lines accumulating 4- and 100-fold more NA than wild-type plants were used in order to evaluate the impact of such an NA overaccumulation on iron homeostasis. The expression of iron-regulated genes including the IRT1/FRO2 iron uptake system is highly induced at the transcript level under both iron-sufficient and iron-deficient conditions. Nevertheless, NA overaccumulation does not interfere with the iron uptake mechanisms since the iron levels are similar in the NA-overaccumulating line and wild-type plants in both roots and leaves under both sufficient and deficient conditions. This observation also suggests that the translocation of iron from the root to the shoot is not affected in the NA-overaccumulating line. However, NA overaccumulation triggers an enhanced sensitivity to iron starvation, associated with a decrease in iron availability. This study draws attention to a particular phenotype where NA in excess paradoxically leads to iron deficiency, probably because of an increase of the NA apoplastic pool sequestering iron. This finding strengthens the notion that extracellular NA in the apoplast could be a major checkpoint to control plant iron homeostasis.

  4. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine

    PubMed Central

    Cassin, Gaëlle; Mari, Stéphane; Curie, Catherine; Briat, Jean-François; Czernic, Pierre

    2009-01-01

    Nicotianamine (NA) is a non-protein amino acid derivative synthesized from S-adenosyl L-methionine able to bind several metal ions such as iron, copper, manganese, zinc, or nickel. In plants, NA appears to be involved in iron availability and is essential for the plant to complete its biological cycle. In graminaceous plants, NA is also the precursor in the biosynthesis of phytosiderophores. Arabidopsis lines accumulating 4- and 100-fold more NA than wild-type plants were used in order to evaluate the impact of such an NA overaccumulation on iron homeostasis. The expression of iron-regulated genes including the IRT1/FRO2 iron uptake system is highly induced at the transcript level under both iron-sufficient and iron-deficient conditions. Nevertheless, NA overaccumulation does not interfere with the iron uptake mechanisms since the iron levels are similar in the NA-overaccumulating line and wild-type plants in both roots and leaves under both sufficient and deficient conditions. This observation also suggests that the translocation of iron from the root to the shoot is not affected in the NA-overaccumulating line. However, NA overaccumulation triggers an enhanced sensitivity to iron starvation, associated with a decrease in iron availability. This study draws attention to a particular phenotype where NA in excess paradoxically leads to iron deficiency, probably because of an increase of the NA apoplastic pool sequestering iron. This finding strengthens the notion that extracellular NA in the apoplast could be a major checkpoint to control plant iron homeostasis. PMID:19188276

  5. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana.

    PubMed

    Molina, Isabel; Ohlrogge, John B; Pollard, Mike

    2008-02-01

    Mature seeds of Arabidopsis thaliana and Brassica napus contain complex mixtures of aliphatic monomers derived from non-extractable lipid polyesters. Most of the monomers are deposited in the seed coat, and their compositions suggest the presence of both cutin and suberin layers. The location of these polyesters within the seed coat, and their contributions to permeability of the seed coat and other functional properties are unknown. Polyester deposition was followed over Brassica seed development and distinct temporal patterns of monomer accumulation were observed. Octadecadiene-1,18-dioate, the major leaf cutin monomer, was transiently deposited. In contrast, the saturated dicarboxylates maintained a constant level during seed desiccation, whereas the fatty alcohols and saturated omega-hydroxy fatty acids continually increased. Dissection and analysis of Brassica seed coats showed that suberization is not specific to the chalaza. Analysis of the Arabidopsis ap2-7 mutant suggested that suberin monomers are preferentially associated with the outer integument. Several Arabidopsis knockout mutant lines for genes involved in polyester biosynthesis (att1, fatB and gpat5) were examined for seed monomer load and composition. The variance in polyester monomers of these mutants is correlated with dye penetration assays. Furthermore, stable transgenic plants expressing promoter::YFP fusions showed ATT1 promoter activity in the inner integument, whereas GPAT5 promoter is active in the outer integument. Together, the Arabidopsis data indicated that there is a suberized layer associated with the outer integument and a cutin-like polyester layer associated with the inner seed coat.

  6. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    PubMed

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  7. Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Knee, E. M.; Hangarter, R. P.; Knee, M.

    2000-01-01

    Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Etylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana. We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 microliters l-1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.

  8. Protein-Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery.

    PubMed

    Richardson, Lynn G L; Howard, Alexander S M; Khuu, Nicholas; Gidda, Satinder K; McCartney, Andrew; Morphy, Brett J; Mullen, Robert T

    2011-01-01

    The endosomal sorting complex required for transport (ESCRT) consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB) biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that the Arabidopsis ESCRT interactome possesses a number of protein-protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional role(s) as part of the ESCRT machinery in Arabidopsis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants.

  9. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection.

    PubMed

    Choi, Bosung; Ghosh, Ritesh; Gururani, Mayank Anand; Shanmugam, Gnanendra; Jeon, Junhyun; Kim, Jonggeun; Park, Soo-Chul; Jeong, Mi-Jeong; Han, Kyung-Hwan; Bae, Dong-Won; Bae, Hanhong

    2017-05-30

    Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.

  10. Physiological effects of constitutive expression of Oilseed Rape Mosaic Tobamovirus (ORMV) movement protein in Arabidopsis thaliana.

    PubMed

    Mansilla, Carmen; Aguilar, Isabel; Martínez-Herrera, David; Sánchez, Flora; Ponz, Fernando

    2006-12-01

    Movement proteins (MPs) are non-cell autonomous viral-encoded proteins that assist viruses in their cell-to-cell movement. The MP encoded by Tobamoviruses is the best characterized example among MPs of non-tubule-inducing plant RNA viruses. The MP of Oilseed Rape Mosaic Tobamovirus (ORMV) was transgenically expressed in Arabidopsis thaliana, ecotype RLD, under the expression of the 35S promoter from Cauliflower Mosaic Virus. Transgenic lines were obtained in sense and antisense orientations. One of the sense transgenic lines was further characterized turning out to carry one copy of the transgene inserted in the terminal region of the right arm of chromosome 1. The constitutive expression of ORMV-MP induced mild physiological effects in Arabidopsis. Plants of the transgenic line allowed a faster systemic movement of the phloem tracer carboxyfluorescein. The tracer was unloaded differentially in different flower parts, revealing differential effects of ORMV-MP on phloem unloading in sink organs. On the other hand, transgenic Arabidopsis did not show any effect on biomass partitioning or sugar availability, effects reported for equivalent transgenic solanaceous plants expressing the MP of Tobacco Mosaic Virus, another Tobamovirus. Finally, the transgenic Arabidopsis plants were susceptible to ORMV infection, although showing milder overall symptoms than non-transgenic controls. The results highlight the relevance of the specific host-virus system, in the physiological outcome of the molecular interactions established by MPs.

  11. Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Knee, E. M.; Hangarter, R. P.; Knee, M.

    2000-01-01

    Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Etylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana. We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 microliters l-1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.

  12. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana.

    PubMed

    Siwinska, Joanna; Kadzinski, Leszek; Banasiuk, Rafal; Gwizdek-Wisniewska, Anna; Olry, Alexandre; Banecki, Bogdan; Lojkowska, Ewa; Ihnatowicz, Anna

    2014-10-18

    Scopoletin and its glucoside scopolin are important secondary metabolites synthesized in plants as a defense mechanism against various environmental stresses. They belong to coumarins, a class of phytochemicals with significant biological activities that is widely used in medical application and cosmetics industry. Although numerous studies showed that a variety of coumarins occurs naturally in several plant species, the details of coumarins biosynthesis and its regulation is not well understood. It was shown previously that coumarins (predominantly scopolin and scopoletin) occur in Arabidopsis thaliana (Arabidopsis) roots, but until now nothing is known about natural variation of their accumulation in this model plant. Therefore, the genetic architecture of coumarins biosynthesis in Arabidopsis has not been studied before. Here, the variation in scopolin and scopoletin content was assessed by comparing seven Arabidopsis accessions. Subsequently, a quantitative trait locus (QTL) mapping was performed with an Advanced Intercross Recombinant Inbred Lines (AI-RILs) mapping population EstC (Est-1 × Col). In order to reveal the genetic basis of both scopolin and scopoletin biosynthesis, two sets of methanol extracts were made from Arabidopsis roots and one set was additionally subjected to enzymatic hydrolysis prior to quantification done by high-performance liquid chromatography (HPLC). We identified one QTL for scopolin and five QTLs for scopoletin accumulation. The identified QTLs explained 13.86% and 37.60% of the observed phenotypic variation in scopolin and scopoletin content, respectively. In silico analysis of genes located in the associated QTL intervals identified a number of possible candidate genes involved in coumarins biosynthesis. Together, our results demonstrate for the first time that Arabidopsis is an excellent model for studying the genetic and molecular basis of natural variation in coumarins biosynthesis in plants. It additionally provides a basis

  13. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana

    PubMed Central

    Wayne, Laura L.; Browse, John

    2013-01-01

    Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA. PMID:24555099

  14. Demographic and Genetic Patterns of Variation among Populations of Arabidopsis thaliana from Contrasting Native Environments

    PubMed Central

    Montesinos, Alicia; Tonsor, Stephen J.; Alonso-Blanco, Carlos; Picó, F. Xavier

    2009-01-01

    Background Understanding the relationship between environment and genetics requires the integration of knowledge on the demographic behavior of natural populations. However, the demographic performance and genetic composition of Arabidopsis thaliana populations in the species' native environments remain largely uncharacterized. This information, in combination with the advances on the study of gene function, will improve our understanding on the genetic mechanisms underlying adaptive evolution in A. thaliana. Methodology/Principal Findings We report the extent of environmental, demographic, and genetic variation among 10 A. thaliana populations from Mediterranean (coastal) and Pyrenean (montane) native environments in northeast Spain. Geographic, climatic, landscape, and soil data were compared. Demographic traits, including the dynamics of the soil seed bank and the attributes of aboveground individuals followed over a complete season, were also analyzed. Genetic data based on genome-wide SNP markers were used to describe genetic diversity, differentiation, and structure. Coastal and montane populations significantly differed in terms of environmental, demographic, and genetic characteristics. Montane populations, at higher altitude and farther from the sea, are exposed to colder winters and prolonged spring moisture compared to coastal populations. Montane populations showed stronger secondary seed dormancy, higher seedling/juvenile mortality in winter, and initiated flowering later than coastal populations. Montane and coastal regions were genetically differentiated, montane populations bearing lower genetic diversity than coastal ones. No significant isolation-by-distance pattern and no shared multilocus genotypes among populations were detected. Conclusions/Significance Between-region variation in climatic patterns can account for differences in demographic traits, such as secondary seed dormancy, plant mortality, and recruitment, between coastal and montane A

  15. Nitrile-specifier Proteins Involved in Glucosinolate Hydrolysis in Arabidopsis thaliana*S⃞

    PubMed Central

    Kissen, Ralph; Bones, Atle M.

    2009-01-01

    Glucosinolates are plant secondary metabolites present in Brassicaceae plants such as the model plant Arabidopsis thaliana. Intact glucosinolates are believed to be biologically inactive, whereas degradation products after hydrolysis have multiple roles in growth regulation and defense. The degradation of glucosinolates is catalyzed by thioglucosidases called myrosinases and leads by default to the formation of isothiocyanates. The interaction of a protein called epithiospecifier protein (ESP) with myrosinase diverts the reaction toward the production of epithionitriles or nitriles depending on the glucosinolate structure. Here we report the identification of a new group of nitrile-specifier proteins (AtNSPs) in A. thaliana able to generate nitriles in conjunction with myrosinase and a more detailed characterization of one member (AtNSP2). Recombinant AtNSP2 expressed in Escherichia coli was used to test its impact on the outcome of glucosinolate hydrolysis using a gas chromatography-mass spectrometry approach. AtNSP proteins share 30–45% sequence homology with A. thaliana ESP. Although AtESP and AtNSP proteins can switch myrosinase-catalyzed degradation of 2-propenylglucosinolate from isothiocyanate to nitrile, only AtESP generates the corresponding epithionitrile. Using the aromatic benzylglucosinolate, recombinant AtNSP2 is also able to direct product formation to the nitrile. Analysis of glucosinolate hydrolysis profiles of transgenic A. thaliana plants overexpressing AtNSP2 confirms its nitrile-specifier activity in planta. In silico expression analysis reveals distinctive expression patterns of AtNSPs, which supports a biological role for these proteins. In conclusion, we show that AtNSPs belonging to a new family of A. thaliana proteins structurally related to AtESP divert product formation from myrosinase-catalyzed glucosinolate hydrolysis and, thereby, likely affect the biological consequences of glucosinolate degradation. We discuss similarities and

  16. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana.

    PubMed

    Degrave, A; Fagard, M; Perino, C; Brisset, M N; Gaubert, S; Laroche, S; Patrit, O; Barny, M-A

    2008-08-01

    Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role.

  17. Comparative genome analyses of Arabidopsis spp.: Inferring chromosomal rearrangement events in the evolutionary history of A. thaliana

    PubMed Central

    Yogeeswaran, Krithika; Frary, Amy; York, Thomas L.; Amenta, Alison; Lesser, Andrew H.; Nasrallah, June B.; Tanksley, Steven D.; Nasrallah, Mikhail E.

    2005-01-01

    Comparative genome analysis is a powerful tool that can facilitate the reconstruction of the evolutionary history of the genomes of modern-day species. The model plant Arabidopsis thaliana with its n = 5 genome is thought to be derived from an ancestral n = 8 genome. Pairwise comparative genome analyses of A. thaliana with polyploid and diploid Brassicaceae species have suggested that rapid genome evolution, manifested by chromosomal rearrangements and duplications, characterizes the polyploid, but not the diploid, lineages of this family. In this study, we constructed a low-density genetic linkage map of Arabidopsis lyrata ssp. lyrata (A. l. lyrata; n = 8, diploid), the closest known relative of A. thaliana (MRCA ∼5 Mya), using A. thaliana-specific markers that resolve into the expected eight linkage groups. We then performed comparative Bayesian analyses using raw mapping data from this study and from a Capsella study to infer the number and nature of rearrangements that distinguish the n = 8 genomes of A. l. lyrata and Capsella from the n = 5 genome of A. thaliana. We conclude that there is strong statistical support in favor of the parsimony scenarios of 10 major chromosomal rearrangements separating these n = 8 genomes from A. thaliana. These chromosomal rearrangement events contribute to a rate of chromosomal evolution higher than previously reported in this lineage. We infer that at least seven of these events, common to both sets of data, are responsible for the change in karyotype and underlie genome reduction in A. thaliana. PMID:15805492

  18. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa.

    PubMed

    Abel, Steffen; Savchenko, Tatyana; Levy, Maggie

    2005-12-20

    Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice. We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (approximately 10.3) and frequency of serine residues (approximately 11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. Comparative phylogenetic analyses indicate that the major IQD gene lineages originated before the monocot

  19. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa

    PubMed Central

    Abel, Steffen; Savchenko, Tatyana; Levy, Maggie

    2005-01-01

    Background Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice. Results We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3) and frequency of serine residues (~11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. Conclusion Comparative phylogenetic analyses indicate that the major IQD gene lineages originated before the

  20. Effect of endocrine disruptor nonylphenol on physiologic features and proteome during growth in Arabidopsis thaliana.

    PubMed

    Chen, Bing-Sheng; Yen, Jui-Hung

    2013-04-01

    We studied the effects of nonylphenol (NP) on physiological features and proteome of Arabidopsis (Arabidopsis thaliana) during growth. Shoot biomass, root biomass and root length were decreased after 10d of NP treatment, especially in high NP concentration treatment (10 and 50 mg L(-1)). Levels of chlorophyll decreased but proline increased in leaves. NP caused oxidative stress; malondialdehyde content was increased with NP treatment, and the activities of ascorbate peroxidase, catalase, CuZnSOD and MnSOD were induced in leaves. The proteome of leaf tissue was analyzed by 2-D gel electrophoresis and mass spectrometry. NP might adversely affect the CO2 assimilation, signal transduction, the endomembrane system and photosynthetic oxygen evolution. NP affects the proteome and physiologic and morphological features of A. thaliana during growth at the concentration can be observed in the environment. Because plants might be exposed to NP for a long time in the surroundings, more attention needs to be paid to the effect of NP on plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  2. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves.

    PubMed Central

    Pérez-Pérez, José Manuel; Serrano-Cartagena, José; Micol, José Luis

    2002-01-01

    To ascertain whether intraspecific variability might be a source of information as regards the genetic controls underlying plant leaf morphogenesis, we analyzed variations in the architecture of vegetative leaves in a large sample of Arabidopsis thaliana natural races. A total of 188 accessions from the Arabidopsis Information Service collection were grown and qualitatively classified into 14 phenotypic classes, which were defined according to petiole length, marginal configuration, and overall lamina shape. Accessions displaying extreme and opposite variations in the above-mentioned leaf architectural traits were crossed and their F(2) progeny was found to be not classifiable into discrete phenotypic classes. Furthermore, the leaf trait-based classification was not correlated with estimates on the genetic distances between the accessions being crossed, calculated after determining variations in repeat number at 22 microsatellite loci. Since these results suggested that intraspecific variability in A. thaliana leaf morphology arises from an accumulation of mutations at quantitative trait loci (QTL), we studied a mapping population of recombinant inbred lines (RILs) derived from a Landsberg erecta-0 x Columbia-4 cross. A total of 100 RILs were grown and the third and seventh leaves of 15 individuals from each RIL were collected and morphometrically analyzed. We identified a total of 16 and 13 QTL harboring naturally occurring alleles that contribute to natural variations in the architecture of juvenile and adult leaves, respectively. Our QTL mapping results confirmed the multifactorial nature of the observed natural variations in leaf architecture. PMID:12399398

  3. Allelopathic Monoterpenes Interfere with Arabidopsis thaliana Cuticular Waxes and Enhance Transpiration

    PubMed Central

    Kussmann, Petra; Knop, Mona; Kriegs, Bettina; Gresens, Frank; Eichert, Thomas; Ulbrich, Andreas; Marx, Friedhelm; Fabricius, Heinz; Goldbach, Heiner; Noga, Georg

    2007-01-01

    Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited. In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes. The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function. PMID:19516993

  4. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Khurana, J. P.; Poff, K. L.

    1992-01-01

    The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.

  5. DNA fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana accessions.

    PubMed

    Simon, Matthieu; Simon, Adeline; Martins, Fréderic; Botran, Lucy; Tisné, Sébastien; Granier, Fabienne; Loudet, Olivier; Camilleri, Christine

    2012-03-01

    One of the main strengths of Arabidopsis thaliana as a model species is the impressive number of public resources available to the scientific community. Exploring species genetic diversity--and therefore adaptation--relies on collections of individuals from natural populations taken from diverse environments. Nevertheless, due to a few mislabeling events or genotype mixtures, some variants available in stock centers have been misidentified, causing inconsistencies and limiting the potential of genetic analyses. To improve the identification of natural accessions, we genotyped 1311 seed stocks from our Versailles Arabidopsis Stock Center and from other collections to determine their molecular profiles at 341 single nucleotide polymorphism markers. These profiles were used to compare genotypes at both the intra- and inter-accession levels. We confirmed previously described inconsistencies and revealed new ones, and suggest likely identities for accessions whose lineage had been lost. We also developed two new tools: a minimal fingerprint computation to quickly verify the identity of an accession, and an optimized marker set to assist in the identification of unknown or mixed accessions. These tools are available on a dedicated web interface called ANATool (https://www.versailles.inra.fr/ijpb/crb/anatool) that provides a simple and efficient means to verify or determine the identity of A. thaliana accessions in any laboratory, without the need for any specific or expensive technology. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  6. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Khurana, J. P.; Poff, K. L.

    1992-01-01

    The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.

  7. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  8. Gravitational stress-induced changes in the phosphoproteom of Arabidopsis thaliana cell cultures

    NASA Astrophysics Data System (ADS)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Schuetz, Wolfgang; Madlung, Johannes; Fladerer, Claudia; Nordheim, Alfred; Costa, Alex; Barjaktarovic, Zarko

    Callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly (P¡0.05) in amount after 2h of hypergravity (18 up-, 10 down-regulated) could be identified. The corre-sponding proteins were largely involved in stress responses, including detoxification of reactive oxygen species (ROS; Barjaktaroviá et al., J. Exptl. Bot. 58:4357 (2007)). In the present study, c we extended these investigations to phosphorylated proteins. For this purpose, callus cell cul-tures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded most reliable data. First changes, however, were visible as early as 10 min after start of treatment. Out of the protein spots altered in phosphorylation, we were able to identify 24 from those responding to random positioning and 12 which responded to 8 g. The respective proteins are involved in scavenging and detoxification of ROS (32Most recent data obtained from parabolic flights indicate that exposure times to g of as little as 20 s are sufficient to alter the phosphorylation of proteins pattern. This is accompanied by changes in the cellular Ca2+ and H2O2 contents.

  9. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase.

    PubMed

    Wang, Jian-Guo; Lee, Patrick K-M; Dong, Yu-Hui; Pang, Siew Siew; Duggleby, Ronald G; Li, Zheng-Ming; Guddat, Luke W

    2009-03-01

    Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is the first enzyme in the biosynthetic pathway of the branched-chain amino acids. It catalyzes the conversion of two molecules of pyruvate into 2-acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate into 2-aceto-2-hydroxybutyrate. AHAS requires the cofactors thiamine diphosphate (ThDP), Mg(2+) and FAD for activity. The herbicides that target this enzyme are effective in protecting a broad range of crops from weed species. However, resistance in the field is now a serious problem worldwide. To address this, two new sulfonylureas, monosulfuron and monosulfuron ester, have been developed as commercial herbicides in China. These molecules differ from the traditional sulfonylureas in that the heterocyclic ring attached to the nitrogen atom of the sulfonylurea bridge is monosubstituted rather than disubstituted. The structures of these compounds in complex with the catalytic subunit of Arabidopsis thaliana AHAS have been determined to 3.0 and 2.8 A, respectively. In both complexes, these molecules are bound in the tunnel leading to the active site, such that the sole substituent of the heterocyclic ring is buried deepest and oriented towards the ThDP. Unlike the structures of Arabidopsis thaliana AHAS in complex with the classic disubstituted sulfonylureas, where ThDP is broken, this cofactor is intact and present most likely as the hydroxylethyl intermediate.

  10. Natural diversity in flowering responses of Arabidopsis thaliana caused by variation in a tandem gene array.

    PubMed

    Rosloski, Sarah Marie; Jali, Sathya Sheela; Balasubramanian, Sureshkumar; Weigel, Detlef; Grbic, Vojislava

    2010-09-01

    Tandemly arrayed genes that belong to gene families characterize genomes of many organisms. Gene duplication and subsequent relaxation of selection can lead to the establishment of paralogous cluster members that may evolve along different trajectories. Here, we report on the structural variation in MADS AFFECTING FLOWERING 2 (MAF2) gene, one member of the tandemly duplicated cluster of MADS-box-containing transcription factors in Arabidopsis thaliana. The altered gene structure at the MAF2 locus is present as a moderate-frequency polymorphism in Arabidopsis and leads to the extensive diversity in transcript patterns due to alternative splicing. Rearrangements at the MAF2 locus are associated with an early flowering phenotype in BC(5) lines. The lack of suppression of flowering time in a MAF2-insertion line expressing the MAF2-specific artificial miRNA suggests that these MAF2 variants are behaving as loss-of-function alleles. The variation in gene architecture is also associated with segregation distortion, which may have facilitated the spread and the establishment of the corresponding alleles throughout the Eurasian range of the A. thaliana population.

  11. Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase

    SciTech Connect

    Wang, Jian-Guo; Lee, Patrick K.-M.; Dong, Yu-Hui; Pang, Siew Siew; Duggleby, Ronald G.; Li, Zheng-Ming; Guddat, Luke W.

    2009-08-17

    Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is the first enzyme in the biosynthetic pathway of the branched-chain amino acids. It catalyzes the conversion of two molecules of pyruvate into 2-acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate into 2-aceto-2-hydroxybutyrate. AHAS requires the cofactors thiamine diphosphate (ThDP), Mg{sup 2+} and FAD for activity. The herbicides that target this enzyme are effective in protecting a broad range of crops from weed species. However, resistance in the field is now a serious problem worldwide. To address this, two new sulfonylureas, monosulfuron and monosulfuron ester, have been developed as commercial herbicides in China. These molecules differ from the traditional sulfonylureas in that the heterocyclic ring attached to the nitrogen atom of the sulfonylurea bridge is monosubstituted rather than disubstituted. The structures of these compounds in complex with the catalytic subunit of Arabidopsis thaliana AHAS have been determined to 3.0 and 2.8 {angstrom}, respectively. In both complexes, these molecules are bound in the tunnel leading to the active site, such that the sole substituent of the heterocyclic ring is buried deepest and oriented towards the ThDP. Unlike the structures of Arabidopsis thaliana AHAS in complex with the classic disubstituted sulfonylureas, where ThDP is broken, this cofactor is intact and present most likely as the hydroxylethyl intermediate.

  12. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness

    PubMed Central

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-01-01

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI: http://dx.doi.org/10.7554/eLife.05604.001 PMID:25867014

  13. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing.

    PubMed

    Ryder, Peter; McHale, Marcus; Fort, Antoine; Spillane, Charles

    2017-03-13

    RNA-guided endonuclease-mediated targeted mutagenesis using the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system has been successful at targeting specific loci for modification in plants. While polyploidy is an evolutionary mechanism enabling plant adaptation, the analysis of gene function in polyploid plants has been limited due to challenges associated with generating polyploid knockout mutants for all gene copies in polyploid plant lines. This study investigated whether CRISPR/Cas9 mediated targeted mutagenesis can generate nulliplex tetraploid mutant lines in Arabidopsis thaliana, while also comparing the relative efficiency of targeted mutagenesis in tetraploid (4x) versus diploid (2x) backgrounds. Using CRISPR/Cas9 genome editing to generate knockout alleles of the TTG1 gene, we demonstrate that homozygous nulliplex mutants can be directly generated in tetraploid Arabidopsis thaliana plants. CRISPR/Cas9 genome editing now provides a route to more efficient generation of polyploid mutants for improving understanding of genome dosage effects in plants.

  14. Effect of simulated microgravity on auxin polar transport in inflorescence axis of Arabidopsis thaliana.

    PubMed

    Oka, M; Ueda, J; Miyamoto, K; Yamamoto, R; Hoson, T; Kamisaka, S

    1995-12-01

    The morphology, growth and development of higher plants are strongly influenced by environmental stimuli on the earth, which affect the changes in the dynamics of plant hormones in plants. Qualitative and quantitative changes in plant hormones are the most important internal factor to regulate plant growth and development. Among them, auxin (IAA) is of most significant. There are numerous reports concerning the physiological roles of auxin in plant growth and development (Matthysse and Scott 1984). One of the characteristics of auxin is to have the ability of polar transport along the vector of gravity on the earth (Schneider and Wightman 1978), suggesting that the activity of auxin polar transport is also important for the growth and development of plants. It has recently been reported that the normal activity of auxin polar transport in inflorescence axis of Arabidopsis thaliana was required for flower formation (Okada et al. 1991, Ueda et al. 1992). Considering the above evidence together with the fact that gravity affects the morphology, growth and development of higher plants, gravity might affect the qualitative and quantitative changes in plant hormones including the activity of auxin polar transport. In this paper, we report the effect of microgravity condition simulated by a three-dimensional (3-D) or a horizontal clinostat on the activity of auxin polar transport in inflorescence axis of Arabidopsis thaliana.

  15. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana.

    PubMed

    Ihsan, Muhammad Z; Ahmad, Samina J N; Shah, Zahid Hussain; Rehman, Hafiz M; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M; Ahmad, Jam N

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana.

  16. The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background Throughout their lives plants produce new organs from groups of pluripotent cells called meristems, located at the tips of the shoot and the root. The size of the shoot meristem is tightly controlled by a feedback loop, which involves the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA (CLV) proteins. This regulatory circuit is further fine-tuned by morphogenic signals such as hormones and sugars. Results Here we show that a family of four plant-specific proteins, encoded by the FANTASTIC FOUR (FAF) genes, has the potential to regulate shoot meristem size in Arabidopsis thaliana. FAF2 and FAF4 are expressed in the centre of the shoot meristem, overlapping with the site of WUS expression. Consistent with a regulatory interaction between the FAF gene family and WUS, our experiments indicate that the FAFs can repress WUS, which ultimately leads to an arrest of meristem activity in FAF overexpressing lines. The finding that meristematic expression of FAF2 and FAF4 is under negative control by CLV3 further supports the hypothesis that the FAFs are modulators of the genetic circuit that regulates the meristem. Conclusion This study reports the initial characterization of the Arabidopsis thaliana FAF gene family. Our data indicate that the FAF genes form a plant specific gene family, the members of which have the potential to regulate the size of the shoot meristem by modulating the CLV3-WUS feedback loop. PMID:21176196

  17. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana

    PubMed Central

    Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422

  18. In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants.

    PubMed

    Aubourg, S; Boudet, N; Kreis, M; Lecharny, A

    2000-03-01

    In the sequences released by the Arabidopsis Genome Initiative (AGI), we discovered a new and unexpectedly large family of orphan genes (127 genes by 01.08.99), named AtPCMP. The distribution of the AtPCMP genes on the five chromosomes suggests that the genome of Arabidopsis thaliana contains more than 200 genes of this family (1% of the whole genome). The deduced AtPCMP proteins are characterized by a surprising combinatorial organization of sequence motifs. The amino-terminal domain is made of a succession of three conserved motifs which generate an important diversity. These proteins are classified into three subfamilies based on the length and nature of their carboxy-terminal domain constituted by 1-6 motifs. All the motifs characterized have an important level of conservation in both sequence and spacing. A specific signature of this large family is defined. The presence of ESTs in databases and the detection of clones in A. thaliana cDNA libraries indicate that most of the genes of this family are expressed. The absence of similar sequences outside the plant kingdom strongly suggests that this unusually large orphan family is unique to plants. Features, the genesis, the potential function and the evolution of this plant combinatorial and modular protein family are discussed.

  19. Survival of Cd-exposed Arabidopsis thaliana: are these plants reproductively challenged?

    PubMed

    Keunen, Els; Truyens, Sascha; Bruckers, Liesbeth; Remans, Tony; Vangronsveld, Jaco; Cuypers, Ann

    2011-10-01

    Plants exposed to cadmium (Cd) show morphological and physiological disorders. To increase our knowledge regarding Cd-induced signalling, most often the effects of acute exposure are investigated. However, this does not allow in-depth analysis of morphological effects. Therefore, we chronically exposed Arabidopsis thaliana plants to environmentally realistic Cd concentrations (5 or 10 μM) and, using a described phenotypic framework methodology, we determined the impact of Cd on the plant's ability to complete its life cycle and produce germinative seeds. Visible Cd-induced morphological changes were observed within a short exposure period, with chlorotic and anthocyanous leaf colouring occurring dose-dependently. Although rosette growth was severely reduced in Cd-exposed plants, all plants were able to emerge inflorescences and produce siliques containing germinative seeds, thus confirming the non-lethality of the used Cd concentrations. Although the growth inhibition of Cd-exposed plants was dependent on the dose, both concentrations had similar effects on inflorescence height and silique counts. In conclusion, vegetative growth of plants chronically exposed to Cd is inhibited in a concentration-dependent manner. However, the effect on plant regeneration is clearly stress-determined but independent on the Cd concentration applied. In Arabidopsis thaliana, vegetative and reproductive growth are differentially influenced by Cd. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. An improved agar-plate method for studying root growth and response of Arabidopsis thaliana.

    PubMed

    Xu, Weifeng; Ding, Guochang; Yokawa, Ken; Baluška, František; Li, Qian-Feng; Liu, Yinggao; Shi, Weiming; Liang, Jiansheng; Zhang, Jianhua

    2013-01-01

    Arabidopsis thaliana is a widely used model plant for plant biology research. Under traditional agar-plate culture system (TPG, traditional plant-growing), both plant shoots and roots are exposed to illumination, and roots are grown in sucrose-added medium. This is not a natural environment for the roots and may cause artifact responses. We have developed an improved agar-plate culture system (IPG, improved plant-growing) where shoots are illuminated but roots are grown in darkness without sucrose addition. Compared to TPG, IPG produced plants with significantly less total root length, lateral root length and root hair density, although their primary roots were longer. Root gravitropism, PIN2 (an auxin efflux carrier) abundance, H⁺ efflux or Ca²⁺ influx in root apexes, were weaker in IPG-grown roots than those in TPG-grown roots. We conclude that IPG offers a more natural way to study the root growth and response of Arabidopsis thaliana.

  1. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.

    PubMed

    Shanmugam, Varanavasiappan; Lo, Jing-Chi; Wu, Chia-Lin; Wang, Shan-Li; Lai, Chong-Cheong; Connolly, Erin L; Huang, Jing-Ling; Yeh, Kuo-Chen

    2011-04-01

    To avoid zinc (Zn) toxicity, plants have developed a Zn homeostasis mechanism to cope with Zn excess in the surrounding soil. In this report, we uncovered the difference of a cross-homeostasis system between iron (Fe) and Zn in dealing with Zn excess in the Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera and nonhyperaccumulator Arabidopsis thaliana. Arabidopsis halleri shows low expression of the Fe acquisition and deficiency response-related genes IRT1 and IRT2 compared with A. thaliana. In A. thaliana, lowering the expression of IRT1 and IRT2 through the addition of excess Fe to the medium increases Zn tolerance. Excess Zn induces significant Fe deficiency in A. thaliana and reduces Fe accumulation in shoots. By contrast, the accumulation of Fe in shoots of A. halleri was stable under various Zn treatments. Root ferric chelate reductase (FRO) activity and expression of FIT are low in A. halleri compared with A. thaliana. Overexpressing a ZIP family member IRT3 in irt1-1, rescues the Fe-deficient phenotype. A fine-tuned Fe homeostasis mechanism in A. halleri maintains optimum Fe level by Zn-regulated ZIP transporters and prevents high Zn uptake through Fe-regulated metal transporters, and in part be responsible for Zn tolerance.

  2. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana.

    PubMed

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides.

  3. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana.

    PubMed Central

    Verbruggen, N; Villarroel, R; Van Montagu, M

    1993-01-01

    In Arabidopsis thaliana (L.) Heynh. proline can account for up to 20% of the free amino acid pool after salt stress. Proline accumulation occurs in plants mainly by de novo synthesis from glutamate. The last step of the proline biosynthetic pathway is catalyzed by pyrroline-5-carboxylate (P5C) reductase. A gene (AT-P5C1) encoding this enzyme in A. thaliana has been cloned and sequenced. Expression of AT-P5C1 in Escherichia coli resulted in the complementation of a proC mutant to prototrophy. A comparison of the AT-P5C1 primary and secondary structures with those of six P5C reductase of other organisms is presented. With the exception of several functionally important amino acid residues, little conservation in the primary structure is seen; much greater similarity exists in the putative secondary structure. The AT-P5C1 protein is probably cytosolic. Under normal growth conditions, the P5C reductase mRNA level was significantly higher in roots and ripening seeds than in green tissue. A salt treatment of A. thaliana plants resulted in a 5-fold induction of the AT-P5C1 transcript, suggesting osmoregulation of the AT-P5C1 promoter region. Moreover, a time-course experiment indicated that this induction precedes proline accumulation. PMID:8022935

  4. Phenotypic Effects of Salt and Heat Stress over Three Generations in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha). Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana. PMID:24244719

  5. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834

  6. Verticillium Suppression Is Associated with the Glucosinolate Composition of Arabidopsis thaliana Leaves

    PubMed Central

    Witzel, Katja; Hanschen, Franziska S.; Schreiner, Monika; Krumbein, Angelika; Ruppel, Silke; Grosch, Rita

    2013-01-01

    The soil-borne fungal pathogen Verticillium longisporum is able to penetrate the root of a number of plant species and spread systemically via the xylem. Fumigation of Verticillium contaminated soil with Brassica green manure is used as an environmentally friendly method for crop protection. Here we present a study focused on the potential role of glucosinolates and their breakdown products of the model plant Arabidopsis thaliana in suppressing growth of V. longisporum. For this purpose we analysed the glucosinolate composition of the leaves and roots of a set of 19 key accessions of A. thaliana. The effect of volatile glucosinolate hydrolysis products on the in vitro growth of the pathogen was tested by exposing the fungus to hydrated lyophilized plant tissue. Volatiles released from leaf tissue were more effective than from root tissue in suppressing mycelial growth of V. longisporum. The accessions varied in their efficacy, with the most effective suppressing mycelial growth by 90%. An analysis of glucosinolate profiles and their enzymatic degradation products revealed a correlation between fungal growth inhibition and the concentration of alkenyl glucosinolates, particularly 2-propenyl (2Prop) glucosinolate, respectively its hydrolysis products. Exposure of the fungus to purified 2Prop glucosinolate revealed that its suppressive activity was correlated with its concentration. Spiking of 2Prop glucosinolate to leaf material of one of the least effective A. thaliana accessions led to fungal growth suppression. It is suggested that much of the inhibitory effect observed for the tested accessions can be explained by the accumulation of 2Prop glucosinolate. PMID:24039726

  7. Effects of Preconditioning and Temperature During Germination of 73 Natural Accessions of Arabidopsis thaliana

    PubMed Central

    SCHMUTHS, HEIKE; BACHMANN, KONRAD; WEBER, W. EBERHARD; HORRES, RALF; HOFFMANN, MATTHIAS H.

    2006-01-01

    • Background and Aims Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined. • Methods Seeds from parental plants grown at 14 and at 22 °C were screened for germination (protrusion of radicle) and establishment (greening of cotyledons) at three different temperatures (10, 18 and 26 °C). Seventy-three accessions from across the entire distribution range of A. thaliana were included. • Key Results Multifactorial analyses of variances revealed significant differences in the effects of genotypes, preconditioning, temperature treatment, and their interactions on duration of germination and establishment. Reaction norms showed an enormous range of plasticity among the preconditioning and different germination temperatures. Correlations of percentage total germination and establishment after 38 d with the geographical origin of accessions were only significant for 14 °C preconditioning but not for 22 °C preconditioning. Correlations with temperature and precipitation on the origin of the accessions were mainly found at the lower germination temperatures (10 and 18 °C) and were absent at higher germination temperatures (26 °C). • Conclusions Overall, the data show huge variation of germination and establishment among natural accessions of A. thaliana and might serve as a valuable source for further germination and plasticity studies. PMID:16464878

  8. Transcriptome Analysis of Arabidopsis thaliana in Response to Plasmodiophora brassicae during Early Infection

    PubMed Central

    Zhao, Ying; Bi, Kai; Gao, Zhixiao; Chen, Tao; Liu, Huiquan; Xie, Jiatao; Cheng, Jiasen; Fu, Yanping; Jiang, Daohong

    2017-01-01

    Clubroot disease is a serious threat to cruciferous plants worldwide, especially to oilseed rape. However, knowledge on pathogenic molecular mechanisms and host interaction is limited. We presume that the recognition between Arabidopsis thaliana and Plasmodiophora brassicae occurs at the early stage of infection and within a relatively short period. In this study, we demonstrated changes on gene expression and pathways in A. thaliana during early infection with P. brassicae using transcriptome analysis. We identified 1,903 and 1,359 DEGs at 24 and 48 h post-inoculation (hpi), respectively. Flavonoids and the lignin synthesis pathways were enhanced, glucosinolates, terpenoids, and proanthocyanidins accumulated and many hormonal- and receptor-kinase related genes were expressed, caused by P. brassicae infection during its early phase. Therefore, the early interaction between A. thaliana and P. brassicae plays an important role in the entire infection process. The results provide a new contribution to a better understanding of the interaction between host plants and P. brassicae, as well as the development of future measures for the prevention of clubroot. PMID:28484434

  9. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution

    PubMed Central

    Liu, Chang; Wang, Congmao; Wang, George; Becker, Claude; Zaidem, Maricris; Weigel, Detlef

    2016-01-01

    The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5′ and 3′ ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5′ and 3′ ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies. PMID:27225844

  10. Polyamine Homeostasis in Wild Type and Phenolamide Deficient Arabidopsis thaliana Stamens

    PubMed Central

    Fellenberg, Christin; Ziegler, Jörg; Handrick, Vinzenz; Vogt, Thomas

    2012-01-01

    Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis thaliana pollen grains. Tapetum localized spermidine hydroxycinnamic acid transferase (SHT) is essential for the biosynthesis of these anther specific tris-conjugated spermidine derivatives. Sht knockout lines show a strong reduction of hydroxycinnamic acid amides (HCAAs). The effect of HCAA-deficient anthers on the level of free PAs was measured by a new sensitive and reproducible method using 9-fluorenylmethyl chloroformate (FMOC) and fluorescence detection by HPLC. PA concentrations can be accurately determined even when very limited amounts of plant material, as in the case of A. thaliana stamens, are available. Analysis of free PAs in wild type stamens compared to sht deficient mutants and transcript levels of key PA biosynthetic genes revealed a highly controlled regulation of PA homeostasis in A. thaliana anthers. PMID:22912643

  11. Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana.

    PubMed

    Torki, M; Mandaron, P; Mache, R; Falconet, D

    2000-01-25

    Pectin, as one of the major components of plant cell wall, has been implicated in many developmental processes occurring during plant growth. Among the different enzymes known to participate in the pectin structure modifications, polygalacturonase (PG) activity has been shown to be associated with fruit ripening, organ abscission and pollen grain development. Until now, sequence analyses of the deduced polypeptides of the plant PG genes allowed their grouping into three clades corresponding to genes involved in one of these three activities. In this study, we report the sequence of three genomic clones encoding PG in Arabidopsis thaliana. These genes, together with 16 other genes present in the databases form a large gene family, ubiquitously expressed, present on the five chromosomes with at least two gene clusters on chromosomes II and V, respectively. Phylogenetic analyses suggest that the A. thaliana gene family contains five classes of genes, with three of them corresponding to the previously defined clades. Comparison of positions and numbers of introns among the A. thaliana genes reveals structural conservation between genes belonging to the same class. The pattern of intron losses that could have given rise to the PG gene family is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a spliced mRNA. Following this event of intron loss, the acquisition of introns in novel positions is consistent with a mechanism of intron gain at proto-splice sites.

  12. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks.

    PubMed

    Costas, Celina; de la Paz Sanchez, Maria; Stroud, Hume; Yu, Yanchun; Oliveros, Juan Carlos; Feng, Suhua; Benguria, Alberto; López-Vidriero, Irene; Zhang, Xiaoyu; Solano, Roberto; Jacobsen, Steven E; Gutierrez, Crisanto

    2011-03-01

    Genome integrity requires faithful chromosome duplication. Origins of replication, the genomic sites at which DNA replication initiates, are scattered throughout the genome. Their mapping at a genomic scale in multicellular organisms has been challenging. In this study we profiled origins in Arabidopsis thaliana by high-throughput sequencing of newly synthesized DNA and identified ~1,500 putative origins genome-wide. This was supported by chromatin immunoprecipitation and microarray (ChIP-chip) experiments to identify ORC1- and CDC6-binding sites. We validated origin activity independently by measuring the abundance of nascent DNA strands. The midpoints of most A. thaliana origin regions are preferentially located within the 5' half of genes, enriched in G+C, histone H2A.Z, H3K4me2, H3K4me3 and H4K5ac, and depleted in H3K4me1 and H3K9me2. Our data help clarify the epigenetic specification of DNA replication origins in A. thaliana and have implications for other eukaryotes.

  13. Human Norovirus and Its Surrogates Induce Plant Immune Response in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Markland, Sarah M; Bais, Harsh; Kniel, Kalmia E

    2017-08-01

    Human norovirus is the leading cause of foodborne illness worldwide with the majority of outbreaks linked to fresh produce and leafy greens. It is essential that we thoroughly understand the type of relationship and interactions that take place between plants and human norovirus to better utilize control strategies to reduce transmission of norovirus in the field onto plants harvested for human consumption. In this study the expression of gene markers for the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways was measured and compared in romaine lettuce (Lactuca sativa) and Arabidopsis thaliana Col-0 plants that were inoculated with Murine Norovirus-1, Tulane Virus, human norovirus GII.4, or Hank's Balanced Salt Solution (control). Genes involving both the SA and JA pathways were expressed in both romaine lettuce and A. thaliana for all three viruses, as well as controls. Studies, including gene expression of SA- and JA-deficient A. thaliana mutant lines, suggest that the JA pathway is more likely involved in the plant immune response to human norovirus. This research provides the first pieces of information regarding how foodborne viruses interact with plants in the preharvest environment.

  14. Herbivory and abiotic factors affect population dynamics of Arabidopsis thaliana in a sand dune area.

    PubMed

    Arany, A Mosleh; de Jong, T J; van der Meijden, E

    2005-09-01

    Population dynamics of the annual plant Arabidopsis thaliana (L.) Heynh. were studied in a natural habitat of this species on the coastal dunes of the Netherlands. The main objective was to elucidate factors controlling population dynamics and the relative importance of factors affecting final population density. Permanent plots were established and plants were mapped to obtain data on survival and reproductive performance of each individual, with special attention to herbivore damage. In experimental plots we studied how watering, addition of nutrients, artificial disturbance, and natural herbivores affected survival and growth. Mortality was low during autumn and early winter and high at the time of stem elongation, between February and April. A key factor analysis showed a high correlation between mortality from February to April and total mortality. The specialist weevils Ceutorhyncus atomus and C. contractus (Curculionidae) were identified as the major insect herbivores on A. thaliana, reducing seed production by more than 40 %. These herbivores acted in a plant size-dependent manner, attacking a greater fraction of the fruits on large plants. While mortality rates were not affected by density, fecundity decreased with density, although the effect was small. Adding water reduced mortality in rosette and flowering plant stages. Soil disturbance did not increase seed germination, but did have a significant positive effect on survival of rosette and flowering plants. Seed production of A. thaliana populations varied greatly between years, leading to population fluctuations, with a small role for density-dependent fecundity and plant size-dependent herbivory.

  15. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen.

    PubMed

    Rodriguez-Enriquez, M J; Mehdi, S; Dickinson, H G; Grant-Downton, R T

    2013-01-01

    In addition to its importance in studies of plant reproduction and fertility, pollen is as widely employed as a model system of cell growth and development. This work demands robust, reproducible methods to induce pollen germination and morphologically normal growth of pollen tubes in vitro. Despite numerous advantages of Arabidopsis thaliana as a model plant, such experiments on pollen germination and pollen tube growth have often proved challenging. Our new method employs a physical cellulosic membrane, overlying an agarose substrate. By modulating the substrate composition, we provide important insights into the mechanisms promoting pollen growth both in vitro and in vivo. This effective new technical approach to A. thaliana pollen germination and tube growth results in swift, consistent and unprecedented levels of germination to over 90%. It can also promote rapid growth of long, morphologically normal pollen tubes. This technical development demonstrates that exogenous spermidine and a cellulosic substrate are key factors in stimulating germination. It has potential to greatly assist the study of reproduction in A. thaliana and its closest relatives, not only for the study of germination levels and pollen tube growth dynamics by microscopy, but also for biochemical and molecular analysis of germinating pollen.

  16. APS kinase from Arabidopsis thaliana: genomic organization, expression, and kinetic analysis of the recombinant enzyme.

    PubMed

    Lee, S; Leustek, T

    1998-06-09

    The gene encoding 5'-adenylylsulfate (APS) kinase (EC 2.7.1.25) (APK) was cloned from Arabidopsis thaliana. There is a single APK locus in A. thaliana. The coding sequence of the gene is composed of 7 exons, interrupted by 6 introns. A transcriptional initiation site was detected 120 bp 5' of the initiation codon. APK mRNA is slightly more abundant in leaves than in roots of A. thaliana and its level does not change in response to sulfur starvation. The APK protein, synthesized in vitro, is able to enter isolated intact chloroplasts. Recombinant APS kinase shows maximal activity at 10 microM APS with 5 mM ATP, but it is inhibited at APS concentrations above 10 microM. The inhibition is alleviated at higher ATP concentrations. Reciprocal plot analysis showed that the theoretical Vmax is approximately 1.2 mumol min-1 mg-1 at 25 degrees C, pH 8.0; the K(m) values are 3.6 microM APS and 1.8 mM ATP.

  17. Altered invertase activities of symptomatic tissues on Beet severe curly top virus (BSCTV) infected Arabidopsis thaliana.

    PubMed

    Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan

    2013-09-01

    Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.

  18. Molecular cloning and characterization of a subtilisin-like protease from Arabidopsis thaliana.

    PubMed

    Li, D H; Xi, H; Yu, X B; Cai, Y P

    2015-12-09

    The Arabidopsis thaliana genome encodes 56 subtilisin-like serine proteases (subtilases). In order to evaluate the protease activity of a previously uncharacterized subtilase, designated as AtSBT1.9, we cloned its full-length cDNA from A. thaliana seedlings. An AtSBT1.9 mature peptide coding sequence was inserted into the bacterial expression vector, pMAL-c2x, and the recombinant vector was transformed into Escherichia coli BL21 (DE3). The recombinant AtSBT1.9 tagged by maltose binding protein (MBP) was induced as a 117.5-kDa protein in the soluble form in E. coli BL21 (DE3). MBP-AtSBT1.9 was expressed at a level of 11% (w/w) of the bacterial total protein. Protein purification using Amylose Resin revealed a recombinant AtSBT1.9 protease activity of 9.23 U/mg protein at pH 7 and 25°C. Maximal activity occurred over a broad pH (7-8) and temperature (25°-42°C) optimal range. Validation of AtSBT1.9 protease activity would help in characterizing its in vivo function in A. thaliana.

  19. Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition

    PubMed Central

    Biedrzycki, Meredith L; Venkatachalam, L

    2011-01-01

    Recent reports have demonstrated that Arabidopsis thaliana has the ability to alter its growth differentially when grown in the presence of secretions from other A. thaliana plants that are kin or strangers; however, little knowledge has been gained as to the physiological processes involved in these plant-plant interactions. Therefore, we examined the root transcriptome of A. thaliana plants exposed to stranger vs. kin secretions to determine genes involved in these processes. We conducted a whole transcriptome analysis on root tissues and categorized genes with significant changes in expression. Genes from four categories of interest based on significant changes in expression were identified as ATP/GST transporter, auxin/auxin related, secondary metabolite and pathogen response genes. Multiple genes in each category were tested and results indicated that pathogen response genes were involved in the kin recognition response. Plants were then infected with Pseudomonas syringe pv. Tomato DC3000 to further examine the role of these genes in plants exposed to own, kin and stranger secretions in pathogen resistance. This study concluded that multiple physiological pathways are involved in the kin recognition. The possible implication of this study opens up a new dialog in terms of how plant-plant interactions change under a biotic stress. PMID:21900741

  20. Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition.

    PubMed

    Biedrzycki, Meredith L; L, Venkatachalam; Bais, Harsh P

    2011-10-01

    Recent reports have demonstrated that Arabidopsis thaliana has the ability to alter its growth differentially when grown in the presence of secretions from other A. thaliana plants that are kin or strangers, however, little knowledge has been gained as to the physiological processes involved in these plant-plant interactions. Therefore, we examined the root transcriptome of A. thaliana plants exposed to stranger versus kin secretions to determine genes involved in these processes. We conducted a whole transcriptome analysis on root tissues and categorized genes with significant changes in expression. Genes from four categories of interest based on significant changes in expression were identified as ATP/GST transporter, auxin/auxin related, secondary metabolite and pathogen response genes. Multiple genes in each category were tested and results indicated that pathogen response genes were involved in the kin recognition response. Plants were then infected with Pseudomonas syringe pv. Tomato DC3000 to further examine the role of these genes in plants exposed to own, kin and stranger secretions in pathogen resistance. This study concluded that multiple physiological pathways are involved in the kin recognition. The possible implication of this study opens up a new dialogue in terms of how plant-plant interactions change under a biotic stress.

  1. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana.

    PubMed

    Zhu, Qian-Hao; Stephen, Stuart; Taylor, Jennifer; Helliwell, Chris A; Wang, Ming-Bo

    2014-01-01

    Short noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c. 20% of the annotated A. thaliana genes. Several noncoding natural antisense transcripts responsive to F. oxysporum infection were found in genes implicated in disease defense. While the majority of the novel transcriptionally active regions (TARs) were adjacent to annotated genes and could be an extension of the annotated transcripts, 159 novel intergenic TARs, including 20 F. oxysporum-responsive lncTARs, were identified. Ten F. oxysporum-induced lncTARs were functionally characterized using T-DNA insertion or RNA-interference knockdown lines, and five were demonstrated to be related to disease development. Promoter analysis suggests that some of the F. oxysporum-induced lncTARs are direct targets of transcription factor(s) responsive to pathogen attack. Our results demonstrated that strand-specific RNA sequencing is a powerful tool for uncovering hidden levels of transcriptome and that IncRNAs are important components of the antifungal networks in A. thaliana. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis.

    PubMed

    Yamaguchi, S; Sun, T p; Kawaide, H; Kamiya, Y

    1998-04-01

    The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2-1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2-1 mutant. Taken together, our results show that the GA2 locus encodes KS.

  3. Translocation of Bacillus thuringiensis in Phaseolus vulgaris tissues and vertical transmission in Arabidopsis thaliana.

    PubMed

    García-Suárez, R; Verduzco-Rosas, L A; Del Rincón-Castro, M C; Délano-Frier, J P; Ibarra, J E

    2017-04-01

    To demonstrate the ability of Bacillus thuringiensis to penetrate as spore-crystal complex to the internal tissues of bean plants, and keep its insecticidal activity. To test the vertical transmission of the spore-crystal complex in Arabidopsis thaliana. The experimental strain was transformed with the pMUTIN-gfp plasmid which labelled the spores of B. thuringiensis HD-73 with the GFP protein. Once the rhizosphere of the bean plants was inoculated with the labelled strain, the bacterium was recovered from leaves, stems, and petioles. Furthermore, toxicity of treated plants was significantly higher than control plants when bio-assayed on cabbage looper larvae. The labelled strain was recovered from the dead insects. When the rhizosphere of A. thaliana plants was inoculated with the labelled strain, mature seeds from these plants were surface-sterilized and grown under in vitro conditions. The labelled strain was recovered from the seedlings. We showed that B. thuringiensis subsp. kurstaki (HD-73) in the rhizosphere can translocate to upper tissues of bean plants, and keep its insecticidal activity. Transmission of the labelled B. thuringiensis strain passed to the next generation of A. thaliana. The role of B. thuringiensis as a potential facultative endophyte bacterium and the possible biotechnological repercussions are discussed. © 2017 The Society for Applied Microbiology.

  4. Unique Features of the m6A Methylome in Arabidopsis thaliana

    PubMed Central

    Duan, Hongchao; Dore, Louis C; Lu, Zhike; Liu, Jun; Chen, Kai; Jia, Guifang; Bergelson, Joy; He, Chuan

    2014-01-01

    Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m6A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m6A in plant development. Here, we profile m6A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m6A is a highly conserved modification of mRNA in plants. Distinct from mammals, m6A in A. thaliana is enriched not only around the stop codon and within 3′ untranslated regions (3′ UTRs), but also around the start codon. Gene ontology analysis indicates that the unique distribution pattern of m6A in A. thaliana is associated with plant-specific pathways involving the chloroplast. We also discover a positive correlation between m6A deposition and the mRNA abundance, suggesting a regulatory role of m6A in plant gene expression. PMID:25430002

  5. Carpeloidy in flower evolution and diversification: a comparative study in Carica papaya and Arabidopsis thaliana

    PubMed Central

    Ronse De Craene, Louis; Tréhin, Christophe; Morel, Patrice; Negrutiu, Ioan

    2011-01-01

    Background and Aims Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution. Methods Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana. Key Results In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved. Conclusions We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis. PMID:21504912

  6. Carpeloidy in flower evolution and diversification: a comparative study in Carica papaya and Arabidopsis thaliana.

    PubMed

    Ronse De Craene, Louis; Tréhin, Christophe; Morel, Patrice; Negrutiu, Ioan

    2011-06-01

    Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel-stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution. Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana. In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved. We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis.

  7. Activity and Crystal Structure of Arabidopsis thalianaUDP-N-Acetylglucosamine Acyltransferase

    SciTech Connect

    Joo, Sang Hoon; Chung, Hak Suk; Raetz, Christian R.H.; Garrett, Teresa A.

    2012-08-31

    The UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase, encoded by lpxA, catalyzes the first step of lipid A biosynthesis in Gram-negative bacteria, the (R)-3-hydroxyacyl-ACP-dependent acylation of the 3-OH group of UDP-GlcNAc. Recently, we demonstrated that the Arabidopsis thaliana orthologs of six enzymes of the bacterial lipid A pathway produce lipid A precursors with structures similar to those of Escherichia coli lipid A precursors [Li, C., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 11387-11392]. To build upon this finding, we have cloned, purified, and determined the crystal structure of the A. thaliana LpxA ortholog (AtLpxA) to 2.1 {angstrom} resolution. The overall structure of AtLpxA is very similar to that of E. coli LpxA (EcLpxA) with an {alpha}-helical-rich C-terminus and characteristic N-terminal left-handed parallel {beta}-helix (L{beta}H). All key catalytic and chain length-determining residues of EcLpxA are conserved in AtLpxA; however, AtLpxA has an additional coil and loop added to the L{beta}H not seen in EcLpxA. Consistent with the similarities between the two structures, purified AtLpxA catalyzes the same reaction as EcLpxA. In addition, A. thaliana lpxA complements an E. coli mutant lacking the chromosomal lpxA and promotes the synthesis of lipid A in vivo similar to the lipid A produced in the presence of E. coli lpxA. This work shows that AtLpxA is a functional UDP-GlcNAc acyltransferase that is able to catalyze the same reaction as EcLpxA and supports the hypothesis that lipid A molecules are biosynthesized in Arabidopsis and other plants.

  8. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae

    PubMed Central

    Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi

    2017-01-01

    Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections. PMID:28152090

  9. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae.

    PubMed

    Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi; Lim, Boon Leong

    2017-01-01

    Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections.

  10. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions

    PubMed Central

    Sarasketa, Asier; González-Moro, María Begoña; González-Murua, Carmen; Marino, Daniel

    2014-01-01

    Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH4 +), together with nitrate (NO3 –), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 + assimilation requires less energy than that of NO3 –, many plants display toxicity symptoms when grown with NH4 + as the sole N source. However, in addition to species-specific ammonium toxicity, intraspecific variability has also been shown. Thus, the aim of this work was to study the intraspecific ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Plants were grown with either 1mM NO3 – or NH4 + as the N source, and several parameters related to ammonium tolerance and assimilation were determined. Overall, high variability was observed in A. thaliana shoot growth under both forms of N nutrition. From the parameters determined, tissue ammonium content was the one with the highest impact on shoot biomass, and interestingly this was also the case when N was supplied as NO3 –. Enzymes of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N source affected their activity. Glutamate dehydrogenase (GDH) aminating activity was, in general, higher in NH4 +-fed plants. In contrast, GDH deaminating activity was higher in NO3 –-fed plants, suggesting a differential role for this enzyme as a function of the N form supplied. Overall, NH4 + accumulation seems to be an important player in Arabidopsis natural variability in ammonium tolerance rather than the cell NH4 + assimilation capacity. PMID:25205573

  11. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana

    PubMed Central

    Su, Fan; Jacquard, Cédric; Villaume, Sandra; Michel, Jean; Rabenoelina, Fanja; Clément, Christophe; Barka, Essaid A.; Dhondt-Cordelier, Sandrine; Vaillant-Gaveau, Nathalie

    2015-01-01

    Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana

  12. The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background

    PubMed Central

    Méndez-Vigo, Belén; Martínez-Zapater, José M.; Alonso-Blanco, Carlos

    2013-01-01

    The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time. PMID:23382706

  13. Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress.

    PubMed

    Sperdouli, I; Moustakas, M

    2012-01-01

    Using chlorophyll (chl) fluorescence imaging, we studied the effect of mild (MiDS), moderate (MoDS) and severe (SDS) drought stress on photosystem II (PSII) photochemistry of 4-week-old Arabidopsis thaliana. Spatio-temporal heterogeneity in all chl fluorescence parameters was maintained throughout water stress. After exposure to drought stress, maximum quantum yield of PSII photochemistry (F(v)/F(m)) and quantum efficiency of PSII photochemistry (Φ(PSΙΙ)) decreased less in the proximal (base) than in the distal (tip) leaf. The chl fluorescence parameter F(v) /F(m) decreased less after MoDS than MiDS. Under MoDS, the antioxidant mechanism of A. thaliana leaves seemed to be sufficient in scavenging reactive oxygen species, as evident by the decreased lipid peroxidation, the more excitation energy dissipated by non-photochemical quenching (NPQ) and decreased excitation pressure (1-q(p)). Arabidopsis leaves appear to function normally under MoDS, but do not seem to have particular metabolic tolerance mechanisms under MiDS and SDS, as revealed by the level of lipid peroxidation and decreased quantum yield for dissipation after down-regulation in PSII (Φ(NPQ)), indicating that energy dissipation by down-regulation did not function and electron transport (ETR) was depressed. The simultaneous increased quantum yield of non-regulated energy dissipation (Φ(NO)) indicated that both the photochemical energy conversion and protective regulatory mechanism were insufficient. The non-uniform photosynthetic pattern under drought stress may reflect different zones of leaf anatomy and mesophyll development. The data demonstrate that the effect of different degrees of drought stress on A. thaliana leaves show spatio-temporal heterogeneity, implying that common single time point or single point leaf analyses are inadequate. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Low Temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidopsis thaliana, a Chilling-Tolerant Plant.

    PubMed Central

    Jarillo, J. A.; Leyva, A.; Salinas, J.; Martinez-Zapater, J. M.

    1993-01-01

    mRNA encoding alcohol dehydrogenase (ADH) increases in etiolated seedlings and leaves of Arabidopsis thaliana (L.) Heynh. upon exposure to low temperature. The analysis of this response after water stress and abscisic acid (ABA) treatments in Arabidopsis wild type and ABA-deficient and -insensitive mutants indicates that cold accumulation of ADH mRNA could be induced by both anaerobic metabolism and increase of ABA concentration resulting from low temperature exposure. By using one Arabidopsis ADH null mutant, we show that ADH activity is not required for successful development of freezing tolerance in this species. PMID:12231733

  15. Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait

    PubMed Central

    Iakovidis, Michail; Teixeira, Paulo J. P. L.; Exposito-Alonso, Moises; Cowper, Matthew G.; Law, Theresa F.; Liu, Qingli; Vu, Minh Chau; Dang, Troy Minh; Corwin, Jason A.; Weigel, Detlef; Dangl, Jeffery L.; Grant, Sarah R.

    2016-01-01

    We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors. PMID:27412712

  16. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions

    USDA-ARS?s Scientific Manuscript database

    The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown un...

  17. Arabidopsis thaliana Glyoxalase 2-1 Is Required during Abiotic Stress but Is Not Essential under Normal Plant Growth

    PubMed Central

    Devanathan, Sriram; Erban, Alexander; Perez-Torres, Rodolfo; Kopka, Joachim; Makaroff, Christopher A.

    2014-01-01

    The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions. PMID:24760003

  18. Effect of clinorotation on the leaf mesophyll structure and pigment content in Arabidopsis thaliana L. and Pisum sativum L.

    PubMed

    Adamchuk, N I

    2004-07-01

    Properties of mesophyll cells and photosynthetic membranes of Arabidopsis thaliana (L.) Heynh. and Pisum sativum (L.) plants grown in a horizontal clinostat and in control conditions were compared. Obtained data have show that under clinorotation conditions seedlings have experienced the following cell morphology changes structural chloroplast rearrangement in palisade cells, pigment content alteration, and cell aging acceleration.

  19. Fractionation of Synteny in a Genomic Region Containing Tandemly Duplicated Genes Across Glycine max, Medicago truncatula and Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Extended comparison of gene sequences found on homeologous soybean BACs to Medicago truncatula and Arabidopsis thaliana genomic sequences demonstrated a network of synteny within conserved regions interrupted by gene addition and/or deletions. Consolidation of gene order among all three species prov...

  20. ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity1[C][W

    PubMed Central

    Bueso, Eduardo; Muñoz-Bertomeu, Jesús; Campos, Francisco; Brunaud, Veronique; Martínez, Liliam; Sayas, Enric; Ballester, Patricia; Yenush, Lynne; Serrano, Ramón

    2014-01-01

    Seed longevity is crucial for agriculture and plant genetic diversity, but it is limited by cellular damage during storage. Seeds are protected against aging by cellular defenses and by structures such as the seed coat. We have screened an activation-tagging mutant collection of Arabidopsis (Arabidopsis thaliana) and selected four dominant mutants with improved seed longevity (isl1-1D to isl4-1D) under both natural and accelerated aging conditions. In the isl1-1D mutant, characterized in this work, overexpression of the transcription factor ARABIDOPSIS THALIANA HOMEOBOX25 (ATHB25; At5g65410) increases the expression of GIBBERELLIC ACID3-OXIDASE2, encoding a gibberellin (GA) biosynthetic enzyme, and the levels of GA1 and GA4 are higher (3.2- and 1.4-fold, respectively) in the mutant than in the wild type. The morphological and seed longevity phenotypes of the athb25-1D mutant were recapitulated in transgenic plants with moderate (4- to 6-fold) overexpression of ATHB25. Simultaneous knockdown of ATHB25, ATHB22, and ATHB31 expression decreases seed longevity, as does loss of ATHB25 and ATHB22 function in a double mutant line. Seeds from wild-type plants treated with GA and from a quintuple DELLA mutant (with constitutive GA signaling) are more tolerant to aging, providing additional evidence for a role of GA in seed longevity. A correlation was observed in several genotypes between seed longevity and mucilage formation at the seed surface, suggesting that GA may act by reinforcing the seed coat. This mechanism was supported by the observation of a maternal effect in reciprocal crosses between the wild type and the athb25-1D mutant. PMID:24335333

  1. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background We have previously shown that lipophilic components (LPC) of the brown seaweed Ascophyllum nodosum (ANE) improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s) of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH) gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ) representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5%) in comparison with untreated plants. A total of 463 genes (2%) were up regulated while 650 genes (3%) were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition. PMID:23171218

  2. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    PubMed

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  3. ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for Gibberellins in seed longevity.

    PubMed

    Bueso, Eduardo; Muñoz-Bertomeu, Jesús; Campos, Francisco; Brunaud, Veronique; Martínez, Liliam; Sayas, Enric; Ballester, Patricia; Yenush, Lynne; Serrano, Ramón

    2014-02-01

    Seed longevity is crucial for agriculture and plant genetic diversity, but it is limited by cellular damage during storage. Seeds are protected against aging by cellular defenses and by structures such as the seed coat. We have screened an activation-tagging mutant collection of Arabidopsis (Arabidopsis thaliana) and selected four dominant mutants with improved seed longevity (isl1-1D to isl4-1D) under both natural and accelerated aging conditions. In the isl1-1D mutant, characterized in this work, overexpression of the transcription factor ARABIDOPSIS THALIANA HOMEOBOX25 (ATHB25; At5g65410) increases the expression of GIBBERELLIC ACID3-OXIDASE2, encoding a gibberellin (GA) biosynthetic enzyme, and the levels of GA1 and GA4 are higher (3.2- and 1.4-fold, respectively) in the mutant than in the wild type. The morphological and seed longevity phenotypes of the athb25-1D mutant were recapitulated in transgenic plants with moderate (4- to 6-fold) overexpression of ATHB25. Simultaneous knockdown of ATHB25, ATHB22, and ATHB31 expression decreases seed longevity, as does loss of ATHB25 and ATHB22 function in a double mutant line. Seeds from wild-type plants treated with GA and from a quintuple DELLA mutant (with constitutive GA signaling) are more tolerant to aging, providing additional evidence for a role of GA in seed longevity. A correlation was observed in several genotypes between seed longevity and mucilage formation at the seed surface, suggesting that GA may act by reinforcing the seed coat. This mechanism was supported by the observation of a maternal effect in reciprocal crosses between the wild type and the athb25-1D mutant.

  4. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    PubMed

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  5. Disintegration of microtubules in Arabidopsis thaliana and bladder cancer cells by isothiocyanates

    PubMed Central

    Øverby, Anders; Bævre, Mette S.; Thangstad, Ole P.; Bones, Atle M.

    2015-01-01

    Isothiocyanates (ITCs) from biodegradation of glucosinolates comprise a group of electrophiles associated with growth-inhibitory effects in plant- and mammalian cells. The underlying modes of action of this feature are not fully understood. Clarifying this has involved mammalian cancer cells due to ITCs' chemopreventive potential. The binding of ITCs to tubulins has been reported as a mechanism by which ITCs induce cell cycle arrest and apoptosis. In the present study we demonstrate that ITCs disrupt microtubules in Arabidopsis thaliana contributing to the observed inhibited growth phenotype. We also confirmed this in rat bladder cancer cells (AY-27) suggesting that cells from plant and animals share mechanisms by which ITCs affect growth. Exposure of A. thaliana to vapor-phase of allyl ITC (AITC) inhibited growth and induced a concurrent bleaching of leaves in a dose-dependent manner. Transcriptional analysis was used to show an upregulation of heat shock-genes upon AITC-treatment. Transgenic A. thaliana expressing GFP-marked α-tubulin was employed to show a time- and dose-dependent disintegration of microtubules by AITC. Treatment of AY-27 with ITCs resulted in a time- and dose-dependent decrease of cell proliferation and G2/M-arrest. AY-27 transiently transfected to express GFP-tagged α-tubulin were treated with ITCs resulting in a loss of microtubular filaments and the subsequent formation of apoptotic bodies. In conclusion, our data demonstrate an ITC-induced mechanism leading to growth inhibition in A. thaliana and rat bladder cancer cells, and expose clues to the mechanisms underlying the physiological role of glucosinolates in vivo. PMID:25657654

  6. The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds.

    PubMed

    Molina, Isabel; Bonaventure, Gustavo; Ohlrogge, John; Pollard, Mike

    2006-12-01

    Mature seeds of Arabidopsis thaliana and Brassica napus contain a complex mixture of aliphatic monomers derived from the non-extractable lipid polyesters deposited by various seed tissues. Methods of polyester depolymerization of solvent-extracted seeds and analysis of aliphatic monomers were compared. Sodium methoxide-catalyzed depolymerization, followed by GC analysis of the acetylated monomers, was developed for routine quantitative analysis suitable for 0.5g seed samples. In Arabidopsis seeds, the major C16 and C18 monomers identified included omega-hydroxy fatty acids and alpha,omega-dicarboxylic acids derived from palmitate, oleate and linoleate, and 9,10,18-trihydroxyoctadecenoic acid. Among monomers which can collectively be considered likely to be derived from suberin, docosan-1-ol, docosane-1,22-diol, 22-hydroxydocosanoic acid, 24-hydroxytetracosanoic acid, tetracosane-1,24-dioic acid and ferulic acid were the major species. Compared to Arabidopsis, Brassica seeds showed a roughly similar proportion of monomer classes, with the exception that alkan-1ols were 3-fold higher. Also, there were much less C24 aliphatic species and significant amounts of C14-C16 alkan-1ols, including iso- and anteiso-methyl branched compounds. Dissection and analysis of mature Brassica seeds showed that the trihydroxy C18:1 fatty acid was found mainly in the embryo, while ferulate, fatty alcohols and C22 and C24 species were specific to the seed coat plus endosperm.

  7. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    PubMed

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  8. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana.

    PubMed

    Nelson, David C; Flematti, Gavin R; Riseborough, Julie-Anne; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M

    2010-04-13

    Karrikins are a class of seed germination stimulants identified in smoke from wildfires. Microarray analysis of imbibed Arabidopsis thaliana seeds was performed to identify transcriptional responses to KAR(1) before germination. A small set of genes that are regulated by KAR(1), even when germination is prevented by the absence of gibberellin biosynthesis or light, were identified. Light-induced genes, putative HY5-binding targets, and ABRE-like promoter motifs were overrepresented among KAR(1)-up-regulated genes. KAR(1) transiently induced the light signal transduction transcription factor genes HY5 and HYH. Germination of afterripened Arabidopsis seed was triggered at lower fluences of red light when treated with KAR(1). Light-dependent cotyledon expansion and inhibition of hypocotyl elongation were enhanced in the presence of germination-active karrikins. HY5 is important for the Arabidopsis hypocotyl elongation, but not seed germination, response to karrikins. These results reveal a role for karrikins in priming light responses in the emerging seedling, and suggest that the influence of karrikins on postfire ecology may not be limited to germination recruitment.

  9. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana

    PubMed Central

    Janda, Martin; Šašek, Vladimír; Chmelařová, Hana; Andrejch, Jan; Nováková, Miroslava; Hajšlová, Jana; Burketová, Lenka; Valentová, Olga

    2015-01-01

    Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research, we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly suppresses the transcription of the pathogenesis related (PR-1) gene, which is generally accepted as the SA pathway marker. In the presented study, we have investigated the site of n-butanol action in the SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38). Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1) revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not decrease the nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes the metabolic fingerprinting while t-butanol had no effect. We found groups of the plant metabolites, influenced differently by SA and n-butanol treatment. Thus, we proposed several metabolites as markers for n-butanol action. PMID:25741350

  10. Genetic analysis of a host determination mechanism of bromoviruses in Arabidopsis thaliana.

    PubMed

    Fujisaki, Koki; Iwahashi, Fukumatsu; Kaido, Masanori; Okuno, Tetsuro; Mise, Kazuyuki

    2009-03-01

    Brome mosaic virus (BMV) and Spring beauty latent virus (SBLV) are closely related, tripartite RNA plant viruses. In Arabidopsis thaliana, BMV shows limited multiplication whereas SBLV efficiently multiplies. Such distinct multiplication abilities have been observed commonly in all Arabidopsis accessions tested. We used this model system to analyze the molecular mechanism of viral resistance in plants at the species level. Unlike SBLV, BMV multiplication was limited even in protoplasts and a reassortment assay indicated that at least viral RNA1 and/or RNA2 determine such distinct infectivities. By screening Arabidopsis mutants with altered defense responses, we found that BMV multiplies efficiently in cpr5-2 mutant plants. This mutation specifically enhanced BMV multiplication in protoplasts, which depended on the functions of RNA1 and RNA2. In the experiment using DNA vectors to express BMV replication proteins encoded by RNA1 and RNA2, BMV RNA3 accumulation in cpr5-2 protoplasts was similar to that in wild-type Col-0 protoplasts, despite significant reduction of accumulation levels of replication proteins, suggesting that cpr5-2 mutation could enhance BMV multiplication independently of increased accumulation, therefore enhanced translation and stabilization, of the replication proteins.

  11. An improved method for the visualization of conductive vessels in Arabidopsis thaliana inflorescence stems

    PubMed Central

    Jupa, Radek; Didi, Vojtěch; Hejátko, Jan; Gloser, Vít

    2015-01-01

    Dye perfusion is commonly used for the identification of conductive elements important for the study of xylem development as well as precise hydraulic estimations. The tiny size of inflorescence stems, the small amount of vessels in close arrangement, and high hydraulic resistivity delimit the use of the method for quantification of the water conductivity of Arabidopsis thaliana, one of the recently most extensively used plant models. Here, we present an extensive adjustment to the method in order to reliably identify individual functional (conductive) vessels. Segments of inflorescence stems were sealed in silicone tubes to prevent damage and perfused with a dye solution. Our results showed that dyes often used for staining functional xylem elements (safranin, fuchsine, toluidine blue) failed with Arabidopsis. In contrast, Fluorescent Brightener 28 dye solution perfused through segments stained secondary cell walls of functional vessels, which were clearly distinguishable in native cross sections. When compared to identification based on the degree of development of secondary cell walls, identification with the help of dye perfusion revealed a significantly lower number of functional vessels and values of theoretical hydraulic conductivity. We found that lignified but not yet functional vessels form a substantial portion of the xylem in apical and basal segments of Arabidopsis and, thus, significantly affect the analyzed functional parameters of xylem. The presented methodology enables reliable identification of individual functional vessels, allowing thus estimations of hydraulic conductivities to be improved, size distributions and vessel diameters to be refined, and data variability generally to be reduced. PMID:25914701

  12. Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener.

    PubMed

    Skipsey, Mark; Knight, Kathryn M; Brazier-Hicks, Melissa; Dixon, David P; Steel, Patrick G; Edwards, Robert

    2011-09-16

    Plants respond to synthetic chemicals by eliciting a xenobiotic response (XR) that enhances the expression of detoxifying enzymes such as glutathione transferases (GSTs). In agrochemistry, the ability of safeners to induce an XR is used to increase herbicide detoxification in cereal crops. Based on the responsiveness of the model plant Arabidopsis thaliana to the rice safener fenclorim (4,6-dichloro-2-phenylpyrimidine), a series of related derivatives was prepared and tested for the ability to induce GSTs in cell suspension cultures. The XR in Arabidopsis could be divided into rapid and slow types depending on subtle variations in the reactivity (electrophilicity) and chemical structure of the derivatives. In a comparative microarray study, Arabidopsis cultures were treated with closely related compounds that elicited rapid (fenclorim) and slow (4-chloro-6-methyl-2-phenylpyrimidine) XRs. Both chemicals induced major changes in gene expression, including a coordinated suppression in cell wall biosynthesis and an up-regulation in detoxification pathways, whereas only fenclorim selectively induced sulfur and phenolic metabolism. These transcriptome studies suggested several linkages between the XR and oxidative and oxylipin signaling. Confirming links with abiotic stress signaling, suppression of glutathione content enhanced GST induction by fenclorim, whereas fatty acid desaturase mutants, which were unable to synthesize oxylipins, showed an attenuated XR. Examining the significance of these studies to agrochemistry, only those fenclorim derivatives that elicited a rapid XR proved effective in increasing herbicide tolerance (safening) in rice.

  13. Xenobiotic Responsiveness of Arabidopsis thaliana to a Chemical Series Derived from a Herbicide Safener*

    PubMed Central

    Skipsey, Mark; Knight, Kathryn M.; Brazier-Hicks, Melissa; Dixon, David P.; Steel, Patrick G.; Edwards, Robert

    2011-01-01

    Plants respond to synthetic chemicals by eliciting a xenobiotic response (XR) that enhances the expression of detoxifying enzymes such as glutathione transferases (GSTs). In agrochemistry, the ability of safeners to induce an XR is used to increase herbicide detoxification in cereal crops. Based on the responsiveness of the model plant Arabidopsis thaliana to the rice safener fenclorim (4,6-dichloro-2-phenylpyrimidine), a series of related derivatives was prepared and tested for the ability to induce GSTs in cell suspension cultures. The XR in Arabidopsis could be divided into rapid and slow types depending on subtle variations in the reactivity (electrophilicity) and chemical structure of the derivatives. In a comparative microarray study, Arabidopsis cultures were treated with closely related compounds that elicited rapid (fenclorim) and slow (4-chloro-6-methyl-2-phenylpyrimidine) XRs. Both chemicals induced major changes in gene expression, including a coordinated suppression in cell wall biosynthesis and an up-regulation in detoxification pathways, whereas only fenclorim selectively induced sulfur and phenolic metabolism. These transcriptome studies suggested several linkages between the XR and oxidative and oxylipin signaling. Confirming links with abiotic stress signaling, suppression of glutathione content enhanced GST induction by fenclorim, whereas fatty acid desaturase mutants, which were unable to synthesize oxylipins, showed an attenuated XR. Examining the significance of these studies to agrochemistry, only those fenclorim derivatives that elicited a rapid XR proved effective in increasing herbicide tolerance (safening) in rice. PMID:21778235

  14. Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana.

    PubMed

    Yun, Choong-Soo; Yamamoto, Tomio; Nozawa, Akira; Tozawa, Yuzuru

    2008-04-01

    Arabidopsis thaliana lacks the flavone biosynthetic pathway, probably because of a lack or low activity of a flavone synthase. To establish this biosynthetic pathway in Arabidopsis, we subjected this model plant to transformation with the parsley gene for flavone synthase type I (FNS-I). Transgenic seedlings expressing FNS-I were cultured in liquid medium with or without naringenin, and plant extracts were then analyzed by high-performance liquid chromatography. In contrast to wild-type seedlings, the transgenic seedlings accumulated substantial amounts of apigenin, which is produced from naringenin by FNS-I, and the apigenin level correlated with the abundance of FNS-I mRNA in three different transgenic lines. These results indicate that the FNS-I transgene produces a functional enzyme that catalyzes the conversion of naringenin to apigenin in Arabidopsis. These FNS-I transgenic lines should prove useful in investigating the in vivo functions of enzymes that mediate the synthesis of the wide variety of flavones found in other plants.

  15. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana.

    PubMed

    Dyson, Beth C; Miller, Matthew A E; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G; Goodacre, Royston; Lunn, John E; Johnson, Giles N

    2016-09-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing.

  16. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana

    PubMed Central

    Fleurdépine, Sophie; Deragon, Jean-Marc; Devic, Martine; Guilleminot, Jocelyne; Bousquet-Antonelli, Cécile

    2007-01-01

    Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3′-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity. PMID:17459889

  17. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana.

    PubMed

    Tejos, Ricardo; Rodriguez-Furlán, Cecilia; Adamowski, Maciej; Sauer, Michael; Norambuena, Lorena; Friml, Jiří

    2017-07-07

    Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We used a microarray-based approach to find regulators of the auxin-induced PIN relocation in Arabidopsis thaliana root, and identified a subset of a family of phosphatidylinositol transfer proteins (PITPs), the PATELLINs (PATLs). Here, we show that PATLs are expressed in partially overlapping cell types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests that PATLs play a redundant and crucial role in polarity and patterning in Arabidopsis. © 2017. Published by The Company of Biologists Ltd.

  18. The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana.

    PubMed

    Łabuz, Justyna; Hermanowicz, Paweł; Gabryś, Halina

    2015-10-01

    Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

    PubMed Central

    Bejai, Sarosh

    2013-01-01

    ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants were compromised in the upregulation of herbivory-induced genes and displayed a semi-dwarf phenotype. Herbivory bioassays showed that larvae of S. littoralis fed on ml3 mutant plants gained more weight compared to larvae fed on wild-type plants while larvae of P. xylostella did not show any significant difference. Virus-induced gene silencing of ML3 expression in plants compromised in jasmonic acid (JA) and salicylic acid (SA) signalling revealed a complex role of ML3 in JA/defence signalling affecting both JA- and SA-dependent responses. The data suggest that ML3 is involved in herbivory-mediated responses in Arabidopsis and that it has a potential role in herbivory-associated molecular pattern recognition. PMID:23314818

  20. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    PubMed Central

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  1. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    PubMed Central

    Orsini, Francesco; D'Urzo, Matilde Paino; Inan, Gunsu; Serra, Sara; Oh, Dong-Ha; Mickelbart, Michael V.; Consiglio, Federica; Jeong, Jae Cheol; Yun, Dae-Jin; Bohnert, Hans J.; Bressan, Ray A.; Maggio, Albino

    2010-01-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. PMID:20595237

  2. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana.

    PubMed

    Fridborg, Ingela; Johansson, Anna; Lagensjö, Johanna; Leelarasamee, Natthanon; Floková, Kristyna; Tarkowská, Danuse; Meijer, Johan; Bejai, Sarosh

    2013-02-01

    ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants were compromised in the upregulation of herbivory-induced genes and displayed a semi-dwarf phenotype. Herbivory bioassays showed that larvae of S. littoralis fed on ml3 mutant plants gained more weight compared to larvae fed on wild-type plants while larvae of P. xylostella did not show any significant difference. Virus-induced gene silencing of ML3 expression in plants compromised in jasmonic acid (JA) and salicylic acid (SA) signalling revealed a complex role of ML3 in JA/defence signalling affecting both JA- and SA-dependent responses. The data suggest that ML3 is involved in herbivory-mediated responses in Arabidopsis and that it has a potential role in herbivory-associated molecular pattern recognition.

  3. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana.

    PubMed

    Piisilä, Maria; Keceli, Mehmet A; Brader, Günter; Jakobson, Liina; Jõesaar, Indrek; Sipari, Nina; Kollist, Hannes; Palva, E Tapio; Kariola, Tarja

    2015-02-13

    The Arabidopsis thaliana F-box protein MORE AXILLARY GROWTH2 (MAX2) has previously been characterized for its role in plant development. MAX2 appears essential for the perception of the newly characterized phytohormone strigolactone, a negative regulator of polar auxin transport in Arabidopsis. A reverse genetic screen for F-box protein mutants altered in their stress responses identified MAX2 as a component of plant defense. Here we show that MAX2 contributes to plant resistance against pathogenic bacteria. Interestingly, max2 mutant plants showed increased susceptibility to the bacterial necrotroph Pectobacterium carotovorum as well as to the hemi-biotroph Pseudomonas syringae but not to the fungal necrotroph Botrytis cinerea. max2 mutant phenotype was associated with constitutively increased stomatal conductance and decreased tolerance to apoplastic ROS but also with alterations in hormonal balance. Our results suggest that MAX2 previously characterized for its role in regulation of polar auxin transport in Arabidopsis, and thus plant development also significantly influences plant disease resistance. We conclude that the increased susceptibility to P. syringae and P. carotovorum is due to increased stomatal conductance in max2 mutants promoting pathogen entry into the plant apoplast. Additional factors contributing to pathogen susceptibility in max2 plants include decreased tolerance to pathogen-triggered apoplastic ROS and alterations in hormonal signaling.

  4. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    DOE PAGES

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; ...

    2016-02-09

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria andmore » chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. Finally, we conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.« less

  5. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana

    PubMed Central

    Nelson, David C.; Flematti, Gavin R.; Riseborough, Julie-Anne; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Smith, Steven M.

    2010-01-01

    Karrikins are a class of seed germination stimulants identified in smoke from wildfires. Microarray analysis of imbibed Arabidopsis thaliana seeds was performed to identify transcriptional responses to KAR1 before germination. A small set of genes that are regulated by KAR1, even when germination is prevented by the absence of gibberellin biosynthesis or light, were identified. Light-induced genes, putative HY5-binding targets, and ABRE-like promoter motifs were overrepresented among KAR1-up-regulated genes. KAR1 transiently induced the light signal transduction transcription factor genes HY5 and HYH. Germination of afterripened Arabidopsis seed was triggered at lower fluences of red light when treated with KAR1. Light-dependent cotyledon expansion and inhibition of hypocotyl elongation were enhanced in the presence of germination-active karrikins. HY5 is important for the Arabidopsis hypocotyl elongation, but not seed germination, response to karrikins. These results reveal a role for karrikins in priming light responses in the emerging seedling, and suggest that the influence of karrikins on postfire ecology may not be limited to germination recruitment. PMID:20351290

  6. An improved method for the visualization of conductive vessels in Arabidopsis thaliana inflorescence stems.

    PubMed

    Jupa, Radek; Didi, Vojtěch; Hejátko, Jan; Gloser, Vít

    2015-01-01

    Dye perfusion is commonly used for the identification of conductive elements important for the study of xylem development as well as precise hydraulic estimations. The tiny size of inflorescence stems, the small amount of vessels in close arrangement, and high hydraulic resistivity delimit the use of the method for quantification of the water conductivity of Arabidopsis thaliana, one of the recently most extensively used plant models. Here, we present an extensive adjustment to the method in order to reliably identify individual functional (conductive) vessels. Segments of inflorescence stems were sealed in silicone tubes to prevent damage and perfused with a dye solution. Our results showed that dyes often used for staining functional xylem elements (safranin, fuchsine, toluidine blue) failed with Arabidopsis. In contrast, Fluorescent Brightener 28 dye solution perfused through segments stained secondary cell walls of functional vessels, which were clearly distinguishable in native cross sections. When compared to identification based on the degree of development of secondary cell walls, identification with the help of dye perfusion revealed a significantly lower number of functional vessels and values of theoretical hydraulic conductivity. We found that lignified but not yet functional vessels form a substantial portion of the xylem in apical and basal segments of Arabidopsis and, thus, significantly affect the analyzed functional parameters of xylem. The presented methodology enables reliable identification of individual functional vessels, allowing thus estimations of hydraulic conductivities to be improved, size distributions and vessel diameters to be refined, and data variability generally to be reduced.

  7. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates

    PubMed Central

    Micallef, Shirley A.; Shiaris, Michael P.; Colón-Carmona, Adán

    2009-01-01

    Plant species is considered to be one of the most important factors in shaping rhizobacterial communities, but specific plant–microbe interactions in the rhizosphere are still not fully understood. Arabidopsis thaliana, for which a large number of naturally occurring ecotype accessions exist, lacks mycorrhizal associations and is hence an ideal model for rhizobacterial studies. Eight Arabidopsis accessions were found to exert a marked selective influence on bacteria associated with their roots, as determined by terminal-restriction fragment length polymorphism (T-RFLP) and ribosomal intergenic spacer analysis (RISA). Community differences in species composition and relative abundance were both significant (P <0.001). The eight distinct and reproducible accession-dependent community profiles also differed from control bulk soil. Root exudates of these variants were analysed by high performance liquid chromatography (HPLC) to try to establish whether the unique rhizobacterial assemblages among accessions could be attributed to plant-regulated chemical changes in the rhizosphere. Natural variation in root exudation patterns was clearly exhibited, suggesting that differences in exudation patterns among accessions could be influencing bacterial assemblages. Other factors such as root system architecture are also probably involved. Finally, to investigate the Arabidopsis rhizosphere further, the phylogenetic diversity of rhizobacteria from accession Cvi-0 is described. PMID:19342429

  8. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana.

    PubMed

    Ling, Qihua; Huang, Weihua; Jarvis, Paul

    2011-02-01

    The SPAD-502 meter is a hand-held device that is widely used for the rapid, accurate and non-destructive measurement of leaf chlorophyll concentrations. It has been employed extensively in both research and agricultural applications, with a range of different plant species. However, its utility has not been fully exploited in relation to the most intensively studied model organism for plant science research, Arabidopsis thaliana. Measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional to the amount of chlorophyll present in the leaf. In order to convert these values into absolute units of chlorophyll concentration, calibration curves must be derived and utilized. Here, we present calibration equations for Arabidopsis that can be used to convert SPAD values into total chlorophyll per unit leaf area (nmol/cm(2); R(2) = 0.9960) or per unit fresh weight of leaf tissue (nmol/mg; R(2) = 0.9809). These relationships were derived using a series of Arabidopsis chloroplast biogenesis mutants that exhibit chlorophyll deficiencies of varying severity, and were verified by the subsequent analysis of senescent or light-stressed leaves. Our results revealed that the converted SPAD values differ from photometric measurements of solvent-extracted chlorophyll by just ~6% on average.

  9. Defence Responses of Arabidopsis thaliana to Infection by Pseudomonas syringae Are Regulated by the Circadian Clock

    PubMed Central

    Bhardwaj, Vaibhav; Meier, Stuart; Petersen, Lindsay N.; Ingle, Robert A.; Roden, Laura C.

    2011-01-01

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. PMID:22066021

  10. Expression of a Translationally Fused TAP-Tagged Plasma Membrane Proton Pump in Arabidopsis thaliana

    PubMed Central

    2015-01-01

    The Arabidopsis thaliana plasma membrane proton ATPase genes, AHA1 and AHA2, are the two most highly expressed isoforms of an 11 gene family and are collectively essential for embryo development. We report the translational fusion of a tandem affinity-purification tag to the 5′ end of the AHA1 open reading frame in a genomic clone. Stable expression of TAP-tagged AHA1 in Arabidopsis rescues the embryonic lethal phenotype of endogenous double aha1/aha2 knockdowns. Western blots of SDS-PAGE and Blue Native gels show enrichment of AHA1 in plasma membrane fractions and indicate a hexameric quaternary structure. TAP-tagged AHA1 rescue lines exhibited reduced vertical root growth. Analysis of the plasma membrane and soluble proteomes identified several plasma membrane-localized proteins with alterred abundance in TAP-tagged AHA1 rescue lines compared to wild type. Using affinity-purification mass spectrometry, we uniquely identified two additional AHA isoforms, AHA9 and AHA11, which copurified with TAP-tagged AHA1. In conclusion, we have generated transgenic Arabidopsis lines in which a TAP-tagged AHA1 transgene has complemented all essential endogenous AHA1 and AHA2 functions and have shown that these plants can be used to purify AHA1 protein and to identify in planta interacting proteins by mass spectrometry. PMID:24397334

  11. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability.

    PubMed

    Karthikeyan, Athikkattuvalasu S; Jain, Ajay; Nagarajan, Vinay K; Sinilal, Bhaskaran; Sahi, Shivendra V; Raghothama, Kashchandra G

    2014-04-01

    Phosphate (Pi) deficiency triggers local Pi sensing-mediated inhibition of primary root growth and development of root hairs in Arabidopsis (Arabidopsis thaliana). Generation of activation-tagged T-DNA insertion pools of Arabidopsis expressing the luciferase gene (LUC) under high-affinity Pi transporter (Pht1;4) promoter, is an efficient approach for inducing genetic variations that are amenable for visual screening of aberrations in Pi deficiency responses. Putative mutants showing altered LUC expression during Pi deficiency were identified and screened for impairment in local Pi deficiency-mediated inhibition of primary root growth. An isolated mutant was analyzed for growth response, effects of Pi deprivation on Pi content, primary root growth, root hair development, and relative expression levels of Pi starvation-responsive (PSR) genes, and those implicated in starch metabolism and Fe and Zn homeostasis. Pi deprived local phosphate sensing impaired (lpsi) mutant showed impaired primary root growth and attenuated root hair development. Although relative expression levels of PSR genes were comparable, there were significant increases in relative expression levels of IRT1, BAM3 and BAM5 in Pi deprived roots of lpsi compared to those of the wild-type. Better understanding of molecular responses of plants to Pi deficiency or excess will help to develop suitable remediation strategies for soils with excess Pi, which has become an environmental concern. Hence, lpsi mutant will serve as a valuable tool in identifying molecular mechanisms governing adaptation of plants to Pi deficiency.

  12. The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Provart, Nicholas J; Ligterink, Wilco; Hilhorst, Henk W M

    2011-01-01

    The combination of robust physiological models with "omics" studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants.

  13. The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    PubMed Central

    Maia, Julio; Dekkers, Bas J. W.; Provart, Nicholas J.; Ligterink, Wilco; Hilhorst, Henk W. M.

    2011-01-01

    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants. PMID:22195004

  14. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    PubMed Central

    Benz, Martin

    2017-01-01

    Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi) differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi. PMID:28149680

  15. PHYTOCHROME B and HISTONE DEACETYLASE 6 Control Light-Induced Chromatin Compaction in Arabidopsis thaliana

    PubMed Central

    Pavlova, Penka; Clifton, Rachel; Pontvianne, Frédéric; Snoek, L. Basten; Millenaar, Frank F.; Schulkes, Roeland Kees; van Driel, Roel; Voesenek, Laurentius A. C. J.; Spillane, Charles; Pikaard, Craig S.; Fransz, Paul; Peeters, Anton J. M.

    2009-01-01

    Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process. PMID:19730687

  16. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.

    PubMed

    Bhardwaj, Vaibhav; Meier, Stuart; Petersen, Lindsay N; Ingle, Robert A; Roden, Laura C

    2011-01-01

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.

  17. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    PubMed Central

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; Stavoe, Andrea K.; Sinkler, Christopher A.; Brandizzi, Federica; Malmstrom, Carolyn M.; Osteryoung, Katherine W.

    2016-01-01

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1. PMID:26862170

  18. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment.

    PubMed

    Larkin, Robert M; Stefano, Giovanni; Ruckle, Michael E; Stavoe, Andrea K; Sinkler, Christopher A; Brandizzi, Federica; Malmstrom, Carolyn M; Osteryoung, Katherine W

    2016-02-23

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.

  19. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its

  20. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana.

    PubMed

    Narsai, Reena; Castleden, Ian; Whelan, James

    2010-11-24

    Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its regulation. Both plants are shown

  1. Reproductive Toxicity and Life History Study of Silver Nanoparticle Effect, Uptake and Transport in Arabidopsis thaliana

    PubMed Central

    Geisler-Lee, Jane; Brooks, Marjorie; Gerfen, Jacob R.; Wang, Qiang; Fotis, Christin; Sparer, Anthony; Ma, Xingmao; Berg, R. Howard; Geisler, Matt

    2014-01-01

    Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs) on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at macroscopic and microscopic scales. Both gross phenotypes (in contrast to microscopic phenotypes) and routes of transport and accumulation were investigated from roots to shoots. Wild type Arabidopsis growing in soil, regularly irrigated with 75 μg/L of AgNPs, did not show any obvious morphological change. However, their vegetative development was prolonged by two to three days and their reproductive growth shortened by three to four days. In addition, the germination rates of offspring decreased drastically over three generations. These findings confirmed that AgNPs induce abiotic stress and cause reproductive toxicity in Arabidopsis. To trace transport of AgNPs, this study also included an Arabidopsis reporter line genetically transformed with a green fluorescent protein and grown in an optical transparent medium with 75 μg/L AgNPs. AgNPs followed three routes: (1) At seven days after planting (DAP) at S1.0 (stages defined by Boyes et al. 2001 [41]), AgNPs attached to the surface of primary roots and then entered their root tips; (2) At 14 DAP at S1.04, as primary roots grew longer, AgNPs gradually moved into roots and entered new lateral root primordia and root hairs; (3) At 17 DAP at S1.06 when the Arabidopsis root system had developed multiple lateral roots, AgNPs were present in vascular tissue and throughout the whole plant from root to shoot. In some cases, if cotyledons of the Arabidopsis seedlings were immersed in melted transparent medium, then AgNPs were taken up by and accumulated in stomatal guard cells. These findings in Arabidopsis are the first to document specific routes and rates of AgNP uptake in vivo and in situ.

  2. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana

    PubMed Central

    Soto-Burgos, Junmarie

    2017-01-01

    Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis. PMID:28783755

  3. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana.

    PubMed

    Soto-Burgos, Junmarie; Bassham, Diane C

    2017-01-01

    Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.

  4. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    PubMed Central

    Tocquin, Pierre; Corbesier, Laurent; Havelange, Andrée; Pieltain, Alexandra; Kurtem, Emile; Bernier, Georges; Périlleux, Claire

    2003-01-01

    Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes. PMID:12556248

  5. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    PubMed

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  6. Over-expression of superoxide dismutase exhibits lignification of vascular structures in Arabidopsis thaliana.

    PubMed

    Gill, Tejpal; Sreenivasulu, Yelam; Kumar, Sanjay; Ahuja, Paramvir Singh

    2010-06-15

    The present study demonstrated that over-expression of copper-zinc superoxide dismutase (Cu/Zn-SOD), an important enzyme scavenging reactive oxygen species, improved vascular structures through lignification and imparted tolerance to salt stress (NaCl) in Arabidopsis thaliana (Arabidopsis; accession Col-0). Transgenic plants of Arabidopsis were developed by over-expressing cytosolic Cu/Zn-SOD from Potentilla atrosanguinea under CaMV35S promoter via Agrobacterium tumefaciens mediated transformation. Homozygous T(3) lines were analyzed for morphological, anatomical and molecular differences in response to salt stress. The transgenic plants showed higher germination and survival percentage, larger root length, larger rosette area and the higher number of leaves as compared to the wild type (WT) under NaCl stress. Anatomical studies of the inflorescence stem revealed significant thickening of inter-vesicular cambium in transgenics under NaCl stress as compared to the (i) WT and the transgenics raised in the absence of NaCl stress, as well as (ii) WT raised under NaCl stress. This thickening was possibly due to lignification as evidenced by the confocal microscopy. Also, the up-regulation of transcripts of critical genes of lignin biosynthesis, phenylalanine ammonia-lyase1 (PAL1) and peroxidase (PRXR9GE) in the transgenics supported lignification of vascular tissue under the above stated conditions. Results have been discussed on the possible implication of over-expression of PaSOD in lignification of vascular structure under NaCl stress in Arabidopsis. Copyright 2010 Elsevier GmbH. All rights reserved.

  7. Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana.

    PubMed

    Veronese, Paola; Narasimhan, Meena L; Stevenson, Rebecca A; Zhu, Jian-K; Weller, Stephen C; Subbarao, Krishna V; Bressan, Ray A

    2003-09-01

    Verticillium dahliae Klebahn is a soil-borne fungal pathogen causing vascular diseases. The pathogen penetrates the host through the roots, spreads through the xylem, and systemically colonizes both resistant and susceptible genotypes. To elucidate the genetic and molecular bases of plant-Verticillium interactions, we have developed a pathosystem utilizing Arabidopsis thaliana and an isolate of V. dahliae pathogenic to both cruciferous and non-cruciferous crops. Relative tolerance (based on symptom severity) but no immunity was found in a survey of Arabidopsis ecotypes. Anthocyanin accumulation, stunting, and chlorosis were common symptoms. Specific responses of the more susceptible ecotype Columbia were induction of early flowering and dying. The more tolerant ecotype C-24 was characterized by pathogen-induced delay of transition to flowering and mild chlorosis symptoms. Genetic analysis indicated that a single dominant locus, Verticillium dahliae-tolerance (VET1), likely functioning also as a negative regulator of the transition to flowering, was able to convey increased tolerance. VET1 was mapped on chromosome IV. The differential symptom responses observed between ecotypes were not correlated with different rates of fungal tissue colonization or with differential transcript accumulation of PR-1 and PDF1.2 defense genes whose activation was not detected during the Arabidopsis-V. dahliae interaction. Impairment in salicylic acid (SA)- or jasmonic acid (JA)-dependent signaling did not cause hypersensitivity to the fungal infection, whereas ethylene insensitivity led to reduced chlorosis and ABA deficiency to reduced anthocyanin accumulation. The results of this study clearly indicated that the ability of V. dahliae to induce disease symptoms is also connected to the genetic control of development and life span in Arabidopsis.

  8. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression.

    PubMed

    Wang, Zhenyu; Xu, Lina; Zhao, Jian; Wang, Xiangke; White, Jason C; Xing, Baoshan

    2016-06-07

    CuO nanoparticles (NPs) (20, 50 mg L(-1)) inhibited seedling growth of different Arabidopsis thaliana ecotypes (Col-0, Bay-0, and Ws-2), as well as the germination of their pollens and harvested seeds. For most of growth parameters (e.g., biomass, relative growth rate, root morphology change), Col-0 was the more sensitive ecotype to CuO NPs compared to Bay-0 and Ws-2. Equivalent Cu(2+) ions and CuO bulk particles had no effect on Arabidopsis growth. After CuO NPs (50 mg L(-1)) exposure, Cu was detected in the roots, leaves, flowers and harvested seeds of Arabidopsis, and its contents were significantly higher than that in CuO bulk particles (50 mg L(-1)) and Cu(2+) ions (0.15 mg L(-1)) treatments. Based on X-ray absorption near-edge spectroscopy analysis (XANES), Cu in the harvested seeds was confirmed as being mainly in the form of CuO (88.8%), which is the first observation on the presence of CuO NPs in the plant progeny. Moreover, after CuO NPs exposure, two differentially expressed genes (C-1 and C-3) that regulated root growth and reactive oxygen species generation were identified, which correlated well with the physiological root inhibition and oxidative stress data. This current study provides direct evidence for the negative effects of CuO NPs on Arabidopsis, including accumulation and parent-progeny transfer of the particles, which may have significant implications with regard to the risk of NPs to food safety and security.

  9. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  10. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot

    PubMed Central

    Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke

    2016-01-01

    The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana. PMID:27910895

  11. Differential responses of Arabidopsis thaliana accessions to atmospheric nitrogen dioxide at ambient concentrations

    PubMed Central

    Takahashi, Misa; Morikawa, Hiromichi

    2014-01-01

    To better understand the response of plants to atmospheric nitrogen dioxide (NO2), we investigated biomass accumulation in 3 accessions of Arabidopsis thaliana: C24, Columbia (Col-0), and Landsberg erecta (Ler). Plants were grown in NO2-free air for 1 week after sowing, followed by 3 (Col-0 and Ler) to 4 (C24) weeks in air with or without NO2 (10 or 50 ppb). NO2 treatment increased the biomass of all 3 accessions to varying extents. Treatment with 10 ppb NO2 increased shoot biomass in C24, Col-0, and Ler by 3.2-, 1.4-, and 2.3-fold, respectively, compared with control. Treatment with 50 ppb gave similar increases, except in C24 (2.7-fold). The physiological, evolutionary, and genetic significance of these results are discussed below. PMID:24675109

  12. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana.

    PubMed

    Bouché, Frédéric; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2016-01-04

    Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.flor-id.org. The hand-curated database contains information on 306 genes and links to 1595 publications gathering the work of >4500 authors. Gene/protein functions and interactions within the flowering pathways were inferred from the analysis of related publications, included in the database and translated into interactive manually drawn snapshots.

  13. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    SciTech Connect

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  14. A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.

    PubMed

    Li, Jiexun; Li, Xin; Su, Hua; Chen, Hsinchun; Galbraith, David W

    2006-08-15

    One of the most important goals of biological investigation is to uncover gene functional relations. In this study we propose a framework for extraction and integration of gene functional relations from diverse biological data sources, including gene expression data, biological literature and genomic sequence information. We introduce a two-layered Bayesian network approach to integrate relations from multiple sources into a genome-wide functional network. An experimental study was conducted on a test-bed of Arabidopsis thaliana. Evaluation of the integrated network demonstrated that relation integration could improve the reliability of relations by combining evidence from different data sources. Domain expert judgments on the gene functional clusters in the network confirmed the validity of our approach for relation integration and network inference.

  15. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    SciTech Connect

    Khurana, J.P.; Ren, Zhangling; Steinitz, B.; Parks, B.; Best, T.R.; Poff, K.L. )

    1989-10-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  16. Role of carotenoids in first positive phototropism of etiolated Arabidopsis thaliana seedlings

    SciTech Connect

    Orbovic, V.; Poff, K.L. )

    1991-05-01

    A mutant of Arabidopsis thaliana, chosen for is pale cotyledon phenotype in dark grown material, has been obtained from Klaus Apel (ETH-Zentrum, Zurich, Switzerland). Fluence response curves for this putative carotenoidless mutant and its wild-type parent have been measured. The shape of the fluence response curve for the pale mutant is similar to that of its wild-type parent. However, the amplitude of curvature by the mutant is considerably lower than curvature of the wild-type. If the amplitude of the curvature is enhanced with a red light pre-irradiation, peaks of the two photoreceptor pigments, P{sub I} and P{sub II} can be seen in both the pale mutant and its wild-type parent. Based on these data, the authors conclude that neither photoreceptor pigment is altered in the pale mutant.

  17. Hopf Bifurcations in a Model for Circadian Rhythms in Arabidopsis Thaliana

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Tagg, Randall

    2011-03-01

    Arabidopsis thaliana is a plant used for many fundamental studies, including circadian rhythms. Numerically integrating the 7-equation kinetic model of Locke et al. [J. Theor. Bio. 234 (2005) 383], we have mapped regions of parameter space where circadian expression of key mRNA and proteins undergoes limit cycle oscillation. We seek to relate this to the work of Fukuda et al. [Phys. Rev. Lett. 99 (2007) 098102], where a coupled system of cells individually described by Stuart-Landau equations is used phenomenologically to describe experimentally observed spatio-temporal patterns in the plant leaves. To that end we have done a weakly nonlinear analysis of the system of kinetic equations. We also comment on possible experimental directions to further connect the kinetic models to dynamics in this multi-cellular system.

  18. Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana

    PubMed Central

    O'Neill, C M; Morgan, C; Hattori, C; Brennan, M; Rosas, U; Tschoep, H; Deng, P X; Baker, D; Wells, R; Bancroft, I

    2012-01-01

    We report the quantitative genetic analysis of seed oil quality and quantity in six Arabidopsis thaliana recombinant inbred populations, in which the parent accessions were from diverse geographical origins, and were selected on the basis of variation for seed oil content and lipid composition. Although most of the biochemical steps involved in lipid biosynthesis are known and the key genes have been identified, the regulation of the processes that results in the final oil composition and total amount is not understood. By using physically anchored markers it was possible to compare results across populations. A total of 219 quantitative trait loci (QTLs) were identified, of which 81 were significant at P<0.001. Some of these colocalise with QTLs identified previously, but many novel QTLs were also identified. The results highlight the importance of studying traits in multiple populations, which will lead to a better understanding of the contribution that natural variation makes to the genetic architecture of a phenotype. PMID:21731053

  19. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy.

    PubMed

    Castro-Camus, E; Palomar, M; Covarrubias, A A

    2013-10-09

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz