Science.gov

Sample records for arabidopsis transmembrane bzip

  1. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks

    PubMed Central

    Llorca, Carles Marco; Berendzen, Kenneth Wayne; Malik, Waqas Ahmed; Mahn, Stefan; Piepho, Hans-Peter; Zentgraf, Ulrike

    2015-01-01

    The function of the bZIP transcription factors is strictly dependent on their ability to dimerize. Heterodimerization has proven to be highly specific and is postulated to operate as a combinatorial mechanism allowing the generation of a large variety of dimers with unique qualities by specifically combining a small set of monomers; an assumption that has not yet been tested systematically. Here, the interaction pattern and the transactivation properties of 16 Arabidopsis thaliana bZIPs are examined in transiently transformed Arabidopsis protoplasts to deliver a perspective on the relationship between bZIP dimerization and function. An interaction matrix of bZIPs belonging to the C, G, H, and S1 bZIP groups was resolved by Bimolecular Fluorescent Complementation (BiFC) coupled to quantitative flow cytometric analysis, while an extensive GUS reporter gene assay was carried out to determine the effect of different bZIP pairs on the expression of four different known bZIP-targeted promoters. Statistical data treatment and complementary bioinformatic analysis were performed to substantiate the biological findings. According to these results, the 16 bZIPs interact in three isolated networks, within which their members dimerize non-specifically and exhibit a significant level of functional redundancy. A coherent explanation for these results is supported by in silico analysis of differences in the length, structure and composition of their leucine zippers and appears to explain their dimerization specificity and dynamics observed in vivo quite well. A model in which the bZIP networks act as functional units is proposed. PMID:26452049

  2. Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development[C][W][OA

    PubMed Central

    Hsieh, Wen-Ping; Hsieh, Hsu-Liang; Wu, Shu-Hsing

    2012-01-01

    Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16, a basic region/Leu zipper motif transcription factor, by G-box DNA affinity chromatography. We confirmed that bZIP16 has G-box–specific binding activity. Analysis of bzip16 mutants revealed that bZIP16 is a negative regulator in light-mediated inhibition of cell elongation but a positive regulator in light-regulated seed germination. Transcriptome analysis supported that bZIP16 is primarily a transcriptional repressor regulating light-, gibberellic acid (GA)–, and abscisic acid (ABA)–responsive genes. Chromatin immunoprecipitation analysis revealed that bZIP16 could directly target ABA-responsive genes and RGA-LIKE2, a DELLA gene in the GA signaling pathway. bZIP16 could also indirectly repress the expression of PHYTOCHROME INTERACTING FACTOR3-LIKE5, which encodes a basic helix-loop-helix protein coordinating hormone responses during seed germination. By repressing the expression of these genes, bZIP16 functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development. PMID:23104829

  3. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression.

    PubMed

    Veerabagu, Manikandan; Kirchler, Tobias; Elgass, Kirstin; Stadelhofer, Bettina; Stahl, Mark; Harter, Klaus; Mira-Rodado, Virtudes; Chaban, Christina

    2014-10-01

    As the first and rate-limiting enzyme of proline degradation, PROLINE DEHYDROGENASE1 (PDH1) is tightly regulated during plant stress responses, including induction under hypoosmolarity and repression under water deficit. The plant receptor histidine kinases AHKs, elements of the two-component system (TCS) in Arabidopsis thaliana, are proposed to function in water stress responses by regulating different stress-responsive genes. However, little information is available concerning AHK phosphorelay-mediated downstream signaling. Here we show that the Arabidopsis type-B response regulator 18 (ARR18) functions as a positive osmotic stress response regulator in Arabidopsis seeds and affects the activity of the PDH1 promoter, known to be controlled by C-group bZIP transcription factors. Moreover, direct physical interaction of ARR18 with bZIP63 was identified and shown to be dependent on phosphorylation of the conserved aspartate residue in the ARR18 receiver domain. We further show that bZIP63 itself functions as a negative regulator of seed germination upon osmotic stress. Using reporter gene assays in protoplasts, we demonstrated that ARR18 interaction negatively interferes with the transcriptional activity of bZIP63 on the PDH1 promoter. Our findings provide new insight into the function of ARR18 and bZIP63 as antagonistic regulators of gene expression in Arabidopsis.

  4. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana.

    PubMed

    Lozano-Sotomayor, Paulina; Chávez Montes, Ricardo A; Silvestre-Vañó, Marina; Herrera-Ubaldo, Humberto; Greco, Raffaella; Pablo-Villa, Jeanneth; Galliani, Bianca M; Diaz-Ramirez, David; Weemen, Mieke; Boutilier, Kim; Pereira, Andy; Colombo, Lucia; Madueño, Francisco; Marsch-Martínez, Nayelli; de Folter, Stefan

    2016-11-01

    Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.

  5. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis.

    PubMed

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Liu, Ji; Jia, Jizeng; Kong, Xiuying

    2015-04-01

    The basic region/leucine zipper (bZIP) transcription factors (TFs) play vital roles in the response to abiotic stress. However, little is known about the function of bZIP genes in wheat abiotic stress. In this study, we report the isolation and functional characterization of the TabZIP60 gene. Three homologous genome sequences of TabZIP60 were isolated from hexaploid wheat and mapped to the wheat homoeologous group 6. A subcellular localization analysis indicated that TabZIP60 is a nuclear-localized protein that activates transcription. Furthermore, TabZIP60 gene transcripts were strongly induced by polyethylene glycol, salt, cold and exogenous abscisic acid (ABA) treatments. Further analysis showed that the overexpression of TabZIP60 in Arabidopsis resulted in significantly improved tolerances to drought, salt, freezing stresses and increased plant sensitivity to ABA in seedling growth. Meanwhile, the TabZIP60 was capable of binding ABA-responsive cis-elements that are present in promoters of many known ABA-responsive genes. A subsequent analysis showed that the overexpression of TabZIP60 led to enhanced expression levels of some stress-responsive genes and changes in several physiological parameters. Taken together, these results suggest that TabZIP60 enhances multiple abiotic stresses through the ABA signaling pathway and that modifications of its expression may improve multiple stress tolerances in crop plants.

  6. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development

    PubMed Central

    Van Leene, Jelle; Blomme, Jonas; Kulkarni, Shubhada R; Cannoot, Bernard; De Winne, Nancy; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Vercruysse, Leen; Vanden Bossche, Robin; Heyndrickx, Ken S; Vanneste, Steffen; Goossens, Alain; Gevaert, Kris; Vandepoele, Klaas; Gonzalez, Nathalie; Inzé, Dirk; De Jaeger, Geert

    2016-01-01

    Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development. PMID:27660483

  7. bZIP17 and bZIP60 Regulate the Expression of BiP3 and Other Salt Stress Responsive Genes in an UPR-Independent Manner in Arabidopsis thaliana.

    PubMed

    Henriquez-Valencia, Carlos; Moreno, Adrian A; Sandoval-Ibañez, Omar; Mitina, Irina; Blanco-Herrera, Francisca; Cifuentes-Esquivel, Nicolas; Orellana, Ariel

    2015-08-01

    Plants can be severely affected by salt stress. Since these are sessile organisms, they have developed different cellular responses to cope with this problem. Recently, it has been described that bZIP17 and bZIP60, two ER-located transcription factors, are involved in the cellular response to salt stress. On the other hand, bZIP60 is also involved in the unfolded protein response (UPR), a signaling pathway that up-regulates the expression of ER-chaperones. Coincidentally, salt stress produces the up-regulation of BiP, one of the main chaperones located in this organelle. Then, it has been proposed that UPR is associated to salt stress. Here, by using insertional mutant plants on bZIP17 and bZIP60, we show that bZIP17 regulate the accumulation of the transcript for the chaperone BiP3 under salt stress conditions, but does not lead to the accumulation of UPR-responding genes such as the chaperones Calnexin, Calreticulin, and PDIL under salt treatments. In contrast, DTT, a known inducer of UPR, leads to the up-regulation of all these chaperones. On the other hand, we found that bZIP60 regulates the expression of some bZIP17 target genes under conditions were splicing of bZIP60 does not occur, suggesting that the spliced and unspliced forms of bZIP60 play different roles in the physiological response of the plant. Our results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.

  8. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    PubMed

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses.

  9. Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis.

    PubMed

    Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; Urano, Daisuke; Trusov, Yuri; Sheahan, Michael B; McCurdy, David W; Assmann, Sarah M; Jones, Alan M; Botella, José R

    2015-02-01

    Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex comprises one Gα, one Gβ, and one Gγ subunit. However, in addition to the canonical Gγ subunits (class A), plants also possess two unusual, plant-specific classes of Gγ subunits (classes B and C) that have not yet been found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (class B), which is important for membrane anchoring of the protein; the presence of such subunits gives rise to a flexible sub-population of Gβ/γ heterodimers that are not necessarily restricted to the plasma membrane. Plants also contain class C Gγ subunits, which are twice the size of canonical Gγ subunits, with a predicted transmembrane domain and a large cysteine-rich extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology have been unequivocally demonstrated. Here, we provide compelling evidence that AGG3, a class C Gγ subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.

  10. Evidence for an unusual transmembrane configuration of AGG3, a Class C Gγ Subunit, of Arabidopsis

    PubMed Central

    Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; Urano, Daisuke; Trusov, Yuri; McCurdy, David W.; Assmann, Sarah M.; Jones, Alan M.; Botella, Jose R.

    2015-01-01

    SUMMARY Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex is comprised of one Gα, one Gβ and one Gγ subunit. However, in addition to the canonical Gγ subunits (Class A), plants also possess two unusual, plant-specific classes of Gγ subunits (Classes B and C) not yet found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (Class B) which is important for membrane anchoring of the protein, and thus give rise to a flexible subpopulation of Gβ/γ heterodimers that is not necessarily restricted to the plasma membrane. Even more interesting, plants also contain Class C Gγ subunits which are twice the size of canonical Gγs, with a predicted transmembrane domain, and a large cysteine-rich, extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology has been unequivocally demonstrated. Here, we provide compelling evidence that AGG3, a Class C Ggamma subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular. PMID:25430066

  11. Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis

    SciTech Connect

    Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; Urano, Daisuke; Trusov, Yuri; Sheahan, Michael B.; McCurdy, David W.; Assmann, Sarah M.; Jones, Alan M.; Botella, Jose R.

    2014-12-22

    Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex is comprised of one Gα, one Gβ and one Gγ subunit. However, in addition to the canonical Gγ subunits (Class A), plants also possess two unusual, plant-specific classes of Gγ subunits (Classes B and C) not yet found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (Class B) which is important for membrane anchoring of the protein, and thus give rise to a flexible subpopulation of Gβ/γ heterodimers that is not necessarily restricted to the plasma membrane. Even more interesting, plants also contain Class C Gγ subunits which are twice the size of canonical Gγs, with a predicted transmembrane domain, and a large cysteine-rich, extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology has been unequivocally demonstrated. Finally, we provide compelling evidence that AGG3, a Class C Ggamma subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.

  12. Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis

    DOE PAGES

    Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; ...

    2014-12-22

    Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex is comprised of one Gα, one Gβ and one Gγ subunit. However, in addition to the canonical Gγ subunits (Class A), plants also possess two unusual, plant-specific classes of Gγ subunits (Classes B and C) not yet found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (Class B) which is important for membrane anchoring of the protein, and thus give rise to a flexible subpopulation of Gβ/γ heterodimers that is notmore » necessarily restricted to the plasma membrane. Even more interesting, plants also contain Class C Gγ subunits which are twice the size of canonical Gγs, with a predicted transmembrane domain, and a large cysteine-rich, extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology has been unequivocally demonstrated. Finally, we provide compelling evidence that AGG3, a Class C Ggamma subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.« less

  13. The IRE1/bZIP60 pathway and Bax inhibitor 1 suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis and Nicotiana benthamiana plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...

  14. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  15. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  16. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1.

    PubMed

    Tsujimoto, Yayoi; Numaga, Takuro; Ohshima, Kiyoshi; Yano, Masa-Aki; Ohsawa, Ryuji; Goto, Derek B; Naito, Satoshi; Ishikawa, Masayuki

    2003-01-15

    The tom2-1 mutation of Arabidopsis thaliana reduces the efficiency of intracellular multiplication of tobamoviruses. The tom2-1 mutant was derived from fast-neutron-irradiated seeds, and the original mutant line also carries ttm1, a dominant modifier that increases tobamovirus multiplication efficiency in a tobamovirus-strain-specific manner in the tom2-1 genetic background. Here, we show that the tom2-1 mutation involved a deletion of approximately 20 kb in the nuclear genome. The deleted region included two genes named TOM2A and TOM2B that were both associated with the tom2-1 phenotype, whereas ttm1 corresponded to the translocation of part of the deleted region that included intact TOM2B but not TOM2A. TOM2A encodes a 280 amino acid putative four-pass transmembrane protein with a C-terminal farnesylation signal, while TOM2B encodes a 122 amino acid basic protein. The split-ubiquitin assay demonstrated an interaction of TOM2A both with itself and with TOM1, an integral membrane protein of A.thaliana presumed to be an essential constituent of tobamovirus replication complex. The data presented here suggest that TOM2A is also an integral part of the tobamovirus replication complex.

  17. Transmembrane Topologies of Ca2+-permeable Mechanosensitive Channels MCA1 and MCA2 in Arabidopsis thaliana.

    PubMed

    Kamano, Shumpei; Kume, Shinichiro; Iida, Kazuko; Lei, Kai-Jian; Nakano, Masataka; Nakayama, Yoshitaka; Iida, Hidetoshi

    2015-12-25

    Sensing mechanical stresses, including touch, stretch, compression, and gravity, is crucial for growth and development in plants. A good mechanosensor candidate is the Ca(2+)-permeable mechanosensitive (MS) channel, the pore of which opens to permeate Ca(2+) in response to mechanical stresses. However, the structure-function relationships of plant MS channels are poorly understood. Arabidopsis MCA1 and MCA2 form a homotetramer and exhibit Ca(2+)-permeable MS channel activity; however, their structures have only been partially elucidated. The transmembrane topologies of these ion channels need to be determined in more detail to elucidate the underlying regulatory mechanisms. We herein determined the topologies of MCA1 and MCA2 using two independent methods, the Suc2C reporter and split-ubiquitin yeast two-hybrid methods, and found that both proteins are single-pass type I integral membrane proteins with extracellular N termini and intracellular C termini. These results imply that an EF hand-like motif, coiled-coil motif, and plac8 motif are all present in the cytoplasm. Thus, the activities of both channels can be regulated by intracellular Ca(2+) and protein interactions.

  18. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein.

    PubMed

    Yamanaka, T; Ohta, T; Takahashi, M; Meshi, T; Schmidt, R; Dean, C; Naito, S; Ishikawa, M

    2000-08-29

    Host-encoded factors play an important role in virus multiplication, acting in concert with virus-encoded factors. However, information regarding the host factors involved in this process is limited. Here we report the map-based cloning of an Arabidopsis thaliana gene, TOM1, which is necessary for the efficient multiplication of tobamoviruses, positive-strand RNA viruses infecting a wide variety of plants. The TOM1 mRNA is suggested to encode a 291-aa polypeptide that is predicted to be a multipass transmembrane protein. The Sos recruitment assay supported the hypothesis that TOM1 is associated with membranes, and in addition, that TOM1 interacts with the helicase domain of tobamovirus-encoded replication proteins. Taken into account that the tobamovirus replication complex is associated with membranes, we propose that TOM1 participates in the in vivo formation of the replication complex by serving as a membrane anchor.

  19. The dynamic of the splicing of bZIP60 and the proteins encoded by the spliced and unspliced mRNAs reveals some unique features during the activation of UPR in Arabidopsis thaliana.

    PubMed

    Parra-Rojas, Juan; Moreno, Adrian A; Mitina, Irina; Orellana, Ariel

    2015-01-01

    The unfolded protein response (UPR) is a signaling pathway that is activated when the workload of the endoplasmic reticulum (ER) is surpassed. IRE1 is a sensor involved in triggering the UPR and plays a key role in the unconventional splicing of an mRNA leading to the formation of a transcription factor that up-regulates the transcription of genes that play a role in restoring the homeostasis in the ER. In plants, bZIP60 is the substrate for IRE1; however, questions such as what is the dynamics of the splicing of bZIP60 and the fate of the proteins encoded by the spliced and unspliced forms of the mRNA, remain unanswered. In the present work, we analyzed the processing of bZIP60 by determining the levels of the spliced form mRNA in plants exposed to different conditions that trigger UPR. The results show that induction of ER stress increases the content of the spliced form of bZIP60 (bZIP60s) reaching a maximum, that depending on the stimuli, varied between 30 min or 2 hrs. In most cases, this was followed by a decrease in the content. In contrast to other eukaryotes, the splicing never occurred to full extent. The content of bZIP60s changed among different organs upon induction of the UPR suggesting that splicing is regulated differentially throughout the plant. In addition, we analyzed the distribution of a GFP-tagged version of bZIP60 when UPR was activated. A good correlation between splicing of bZIP60 and localization of the protein in the nucleus was observed. No fluorescence was observed under basal conditions, but interestingly, the fluorescence was recovered and found to co-localize with an ER marker upon treatment with an inhibitor of the proteasome. Our results indicate that the dynamics of bZIP60, both the mRNA and the protein, are highly dynamic processes which are tissue-specific and stimulus-dependent.

  20. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells.

    PubMed

    Seifertová, Daniela; Skůpa, Petr; Rychtář, Jan; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre I; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-03-15

    Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.

  1. Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis[C][W

    PubMed Central

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H. Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M.

    2009-01-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane–localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gβ subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism. PMID:19602625

  2. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  3. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants

    PubMed Central

    Mair, Andrea; Pedrotti, Lorenzo; Wurzinger, Bernhard; Anrather, Dorothea; Simeunovic, Andrea; Weiste, Christoph; Valerio, Concetta; Dietrich, Katrin; Kirchler, Tobias; Nägele, Thomas; Vicente Carbajosa, Jesús; Hanson, Johannes; Baena-González, Elena; Chaban, Christina; Weckwerth, Wolfram; Dröge-Laser, Wolfgang; Teige, Markus

    2015-01-01

    Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI: http://dx.doi.org/10.7554/eLife.05828.001 PMID:26263501

  4. A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response.

    PubMed

    Huang, Chengjian; Zhou, Jinghua; Jie, Yucheng; Xing, Hucheng; Zhong, Yingli; Yu, Weilin; She, Wei; Ma, Yushen; Liu, Zehang; Zhang, Ying

    2016-12-01

    bZIP transcription factors play key roles in plant growth, development, and stress signaling. A bZIP gene BnbZIP2 (GenBank accession number: KP642148) was cloned from ramie. BnbZIP2 has a 1416 base pair open reading frame, encoding a 471 amino acid protein containing a characteristic bZIP domain and a leucine zipper. BnbZIP2 shares high sequence similarity with bZIP factors from other plants. The BnbZIP2 protein is localized to both nuclei and cytoplasm. Transcripts of BnbZIP2 were found in various tissues in ramie, with significantly higher levels in female and male flowers. Its expression was induced by drought, high salinity, and abscisic acid treatments. Analysis of the cis-elements in promoters of BnbZIP2 identified cis-acting elements involved in growth, developmental processes, and a variety of stress responses. Transgenic Arabidopsis plants' overexpression of BnbZIP2 exhibited more sensitivity to drought and heavy metal Cd stress during seed germination, whereas more tolerance to high-salinity stress than the wild type during both seed germination and plant development. Thus, BnbZIP2 may act as a positive regulator in plants' response to high-salinity stress and be an important candidate gene for molecular breeding of salt-tolerant plants.

  5. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  6. Dominant gain-of-function mutations in transmembrane domain III of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis.

    PubMed

    Deslauriers, Stephen D; Alvarez, Ashley A; Lacey, Randy F; Binder, Brad M; Larsen, Paul B

    2015-10-01

    Prior work resulted in identification of an Arabidopsis mutant, eer5-1, with extreme ethylene response in conjunction with failure to induce a subset of ethylene-responsive genes, including AtEBP. EER5, which is a TREX-2 homolog that is part of a nucleoporin complex, functions as part of a cryptic aspect of the ethylene signaling pathway that is required for regulating the magnitude of ethylene response. A suppressor mutagenesis screen was carried out to identify second site mutations that could restore the growth of ethylene-treated eer5-1 to wild-type levels. A dominant gain-of-function mutation in the ethylene receptor ETHYLENE RESPONSE SENSOR 1 (ERS1) was identified, with the ers1-4 mutation being located in transmembrane domain III at a point nearly equivalent to the previously described etr1-2 mutation in the other Arabidopsis subfamily I ethylene receptor, ETHYLENE RESPONSE 1 (ETR1). Although both ers1-4 and etr1-2 partially suppress the ethylene hypersensitivity of eer5-1 and are at least in part REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)-dependent, ers1-4 was additionally found to restore the expression of AtEBP in ers1-4;eer5-1 etiolated seedlings after ethylene treatment in an EIN3-dependent manner. Our work indicates that ERS1-regulated expression of a subset of ethylene-responsive genes is related to controlling the magnitude of ethylene response, with hyperinduction of these genes correlated with reduced ethylene-dependent growth inhibition.

  7. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage

    PubMed Central

    Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  8. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.)

    PubMed Central

    Liang, Chengzhen; Meng, Zhaohong; Meng, Zhigang; Malik, Waqas; Yan, Rong; Lwin, Khin Myat; Lin, Fazhuang; Wang, Yuan; Sun, Guoqing; Zhou, Tao; Zhu, Tao; Li, Jianying; Jin, Shuangxia; Guo, Sandui; Zhang, Rui

    2016-01-01

    The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton. PMID:27713524

  9. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    PubMed Central

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon–intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll

  10. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response.

    PubMed

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon-intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll

  11. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    PubMed Central

    Azevedo, Herlânder; Azinheiro, Sarah Gaspar; Muñoz-Mérida, Antonio; Castro, Pedro Humberto; Huettel, Bruno; Aarts, Mark G.M.; Assunção, Ana G.L.

    2016-01-01

    Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO) under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors. PMID:26981422

  12. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  13. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte.

    PubMed

    Gibalová, Antónia; Steinbachová, Lenka; Hafidh, Said; Bláhová, Veronika; Gadiou, Zuzana; Michailidis, Christos; Műller, Karel; Pleskot, Roman; Dupľáková, Nikoleta; Honys, David

    2017-03-01

    KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.

  14. Identification of Two bZIP Transcription Factors Interacting with the Promoter of Soybean Rubisco Activase Gene (GmRCAα)

    PubMed Central

    Zhang, Jinyu; Du, Hongyang; Chao, Maoni; Yin, Zhitong; Yang, Hui; Li, Yakai; Huang, Fang; Yu, Deyue

    2016-01-01

    Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of Rubisco and thus plays an important role in photosynthesis. Although the RCA gene has been characterized in a variety of species, the molecular mechanism regulating its transcription remains unclear. Our previous studies on RCA gene expression in soybean suggested that expression of this gene is regulated by trans-acting factors. In the present study, we verified activity of the GmRCAα promoter in both soybean and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA expression library to identify transcription factors (TFs) interacting with the GmRCAα promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1, and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic stresses and during a 24-h period. Our study will help to advance elucidation of the network regulating GmRCAα transcription. PMID:27242832

  15. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection.

    PubMed

    Alves, Murilo S; Soares, Zamira G; Vidigal, Pedro M P; Barros, Everaldo G; Poddanosqui, Adriana M P; Aoyagi, Luciano N; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Fietto, Luciano G

    2015-11-01

    Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.

  16. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization.

    PubMed

    Wagner, S; Green, M R

    1993-10-15

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  17. Transmembrane signaling proteoglycans.

    PubMed

    Couchman, John R

    2010-01-01

    Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules.

  18. Recognition of bZIP proteins by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Perini, G; Wagner, S; Green, M R

    1995-08-17

    Human T-cell leukaemia virus type I (HTLV-I) Tax protein increases the DNA binding of many cellular transcription factors that contain a basic region-leucine zipper (bZIP) DNA-binding domain. bZIP domains comprise a leucine-rich dimerization motif and a basic region that mediates DNA contact. How Tax recognizes diverse bZIPs is not understood. Here we show that no specific sequence of the leucine zipper is required for a Tax response. In contrast, the basic region is essential for the Tax-mediated DNA-binding increase, which can be eliminated by single substitutions of several conserved amino acids. Surprisingly, Tax alters the relative affinity of a bZIP for different DNA binding sites. Thus, through recognition of the conserved basic region. Tax increases DNA binding and modifies DNA site selection. Tax provides a model for how a single auxiliary factor can regulate multiple sequence-specific DNA-binding proteins.

  19. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes

    PubMed Central

    Rodríguez-Martínez, José A; Reinke, Aaron W; Bhimsaria, Devesh; Keating, Amy E; Ansari, Aseem Z

    2017-01-01

    How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or ‘emergent’ sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers. These binding sites were biochemically validated by EMSA-FRET analysis and validated in vivo by ChIP-seq data from human cell lines. Focusing on ATF3, we observed distinct cognate site preferences conferred by different bZIP partners, and demonstrated that genome-wide binding of ATF3 is best explained by considering many dimers in which it participates. Importantly, our compendium of bZIP-DNA interactomes predicted bZIP binding to 156 disease associated SNPs, of which only 20 were previously annotated with known bZIP motifs. DOI: http://dx.doi.org/10.7554/eLife.19272.001 PMID:28186491

  20. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    PubMed Central

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  1. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  2. The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    PubMed Central

    Schrago, Carlos Guerra; dos Santos, Renato Vicentini; Mueller-Roeber, Bernd; Vincentz, Michel

    2008-01-01

    Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments. PMID:18698409

  3. The loss of circadian PAR bZip transcription factors results in epilepsy

    PubMed Central

    Gachon, Frédéric; Fonjallaz, Philippe; Damiola, Francesca; Gos, Pascal; Kodama, Tohru; Zakany, Jozsef; Duboule, Denis; Petit, Brice; Tafti, Mehdi; Schibler, Ueli

    2004-01-01

    DBP (albumin D-site-binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor) are the three members of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. All three of these transcriptional regulatory proteins accumulate with robust circadian rhythms in tissues with high amplitudes of clock gene expression, such as the suprachiasmatic nucleus (SCN) and the liver. However, they are expressed at nearly invariable levels in most brain regions, in which clock gene expression only cycles with low amplitude. Here we show that mice deficient for all three PAR bZip proteins are highly susceptible to generalized spontaneous and audiogenic epilepsies that frequently are lethal. Transcriptome profiling revealed pyridoxal kinase (Pdxk) as a target gene of PAR bZip proteins in both liver and brain. Pyridoxal kinase converts vitamin B6 derivatives into pyridoxal phosphate (PLP), the coenzyme of many enzymes involved in amino acid and neurotransmitter metabolism. PAR bZip-deficient mice show decreased brain levels of PLP, serotonin, and dopamine, and such changes have previously been reported to cause epilepsies in other systems. Hence, the expression of some clock-controlled genes, such as Pdxk, may have to remain within narrow limits in the brain. This could explain why the circadian oscillator has evolved to generate only low-amplitude cycles in most brain regions. PMID:15175240

  4. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron–Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment

    PubMed Central

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron–sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5’ untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron–sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy. PMID

  5. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    PubMed

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron-sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  6. Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice.

    PubMed

    Ali, Kishwar; Rai, R D; Tyagi, Aruna

    2016-05-01

    In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate several developmental processes and activate genes in response to biotic and abiotic stresses. Role of stress responsive bZIP transcription factors was studied in paddy in relation to different stages of development and water deficit stress (WDS) in a drought tolerant cultivar N22 and susceptible IR 64. Further, relative water content (RWC), membrane stability index (MSI) and abscisic acid (ABA) content were measured as indices of WDS at different stages of development and levels of stress. Expression of stress responsive bZIP transcription factors was directly correlated to developmental stage and WDS and indirectly to RWC, MSI and ABA content.

  7. [HTLV-1 bZIP Factor (HBZ): Roles in HTLV-1 Oncogenesis].

    PubMed

    Wu, Wencai; Cheng, Wenzhao; Chen, Mengyun; Xu, Lingling; Zhao, Tiejun

    2016-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus demonstrated to be associated with human disease. Infection by the HTLV-1 can cause T-cell leukemia (ATL) in adults. HTLV-1 bZIP factor (HBZ) is a viral protein encoded by the minus strand of the HTLV-1 provirus. Among the regulatory and accessory genes of HTLV-1, HBZ is the only gene that remains intact and which is expressed consistently in all patients with ATL. Moreover, HBZ has a critical role in the leukemogenesis of ATL. Here, we review the function of HBZ in the oncogenesis of HTLV-1 and its molecular mechanism of action.

  8. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  9. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR

    PubMed Central

    Yin, Wenbing; Amaike, Saori; Wohlbach, Dana J.; Gasch, Audrey P.; Chiang, Yi-Ming; Wang, Clay C.; Bok, JinWoo; Rohlfs, Marko; Keller, Nancy P.

    2012-01-01

    Summary The eukaryotic bZIP transcription factors are critical players in organismal response to environmental challenges. In fungi, the production of secondary metabolites (SMs) is hypothesized as one of the responses to environmental insults, e.g. attack by fungivorous insects, yet little data to support this hypothesis exists. Here we establish a mechanism of bZIP regulation of SMs through RsmA, a recently discovered YAP-like bZIP protein. RsmA greatly increases SM production by binding to two sites in the A. nidulans AflR promoter region, a C6 transcription factor known for activating production of the carcinogenic and anti-predation SM, sterigmatocystin (ST). Deletion of aflR in an overexpression rsmA (OE::rsmA) background not only eliminates ST production but also significantly reduces asperthecin synthesis. Furthermore, the fungivore, Folsomia candida, exhibited a distinct preference for feeding on wild type rather than an OE::rsmA strain. RsmA may thus have a critical function in mediating direct chemical resistance against predation. Taken together, these results suggest RsmA represents a bZIP pathway hardwired for defensive SM production. PMID:22283524

  10. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts

    PubMed Central

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  11. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.

    PubMed

    Sagor, G H M; Berberich, Thomas; Tanaka, Shun; Nishiyama, Manabu; Kanayama, Yoshinori; Kojima, Seiji; Muramoto, Koji; Kusano, Tomonobu

    2016-04-01

    Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.

  12. bZIP Transcription Factors in the Oomycete Phytophthora infestans with Novel DNA-Binding Domains Are Involved in Defense against Oxidative Stress

    PubMed Central

    Gamboa-Meléndez, Heber; Huerta, Apolonio I.

    2013-01-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs. PMID:23975888

  13. bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress.

    PubMed

    Gamboa-Meléndez, Heber; Huerta, Apolonio I; Judelson, Howard S

    2013-10-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.

  14. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  15. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes

    PubMed Central

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  16. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

    PubMed Central

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  17. HTLV-1 bZIP factor enhances TGF-β signaling through p300 coactivator.

    PubMed

    Zhao, Tiejun; Satou, Yorifumi; Sugata, Kenji; Miyazato, Paola; Green, Patrick L; Imamura, Takeshi; Matsuoka, Masao

    2011-08-18

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is etiologically associated with adult T-cell leukemia. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the provirus, is involved in both regulation of viral gene transcription and T-cell proliferation. We showed in this report that HBZ interacted with Smad2/3, and enhanced transforming growth factor-β (TGF-β)/Smad transcriptional responses in a p300-dependent manner. The N-terminal LXXLL motif of HBZ was responsible for HBZ-mediated TGF-β signaling activation. In a serial immunoprecipitation assay, HBZ, Smad3, and p300 formed a ternary complex, and the association between Smad3 and p300 was markedly enhanced in the presence of HBZ. In addition, HBZ could overcome the repression of the TGF-β response by Tax. Finally, HBZ expression resulted in enhanced transcription of Pdgfb, Sox4, Ctgf, Foxp3, Runx1, and Tsc22d1 genes and suppression of the Id2 gene; such effects were similar to those by TGF-β. In particular, HBZ induced Foxp3 expression in naive T cells through Smad3-dependent TGF-β signaling. Our results suggest that HBZ, by enhancing TGF-β signaling and Foxp3 expression, enables HTLV-1 to convert infected T cells into regulatory T cells, which is thought to be a critical strategy for virus persistence.

  18. The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development.

    PubMed Central

    Izawa, T; Foster, R; Nakajima, M; Shimamoto, K; Chua, N H

    1994-01-01

    Systematic protein-DNA binding studies have shown that plant basic leucine zipper (bZIP) proteins exhibit a differential binding specificity for ACGT motifs. Here, we show that the rice transcription activator-1 (RITA-1) displays a broad binding specificity for palindromic ACGT elements, being able to bind A-, C-, and G-box but not T-box elements. By using gel mobility shift assays with probes differing in sequences flanking the hexameric core, we identified high-affinity A-, C-, and G-box binding sites. Quantitative and competition DNA binding studies confirmed RITA-1 specificity for these sites. Using rice protoplasts as a transient expression system, we demonstrated that RITA-1 can transactivate reporter genes possessing high-affinity but not low-affinity RITA-1 binding sites. Our results established a direct relationship between in vivo transactivation and in vitro binding activity. Transient expression assays that demonstrated the ability of RITA-1 to transactivate a construct containing rita-1 5' flanking sequences suggest that the factor may be autoregulated. Histochemical analysis of transgenic rice plants showed that a rita-1-beta-glucuronidase transgene is expressed in aleurone and endosperm cells of developing rice seeds. We propose that RITA-1 plays a role in the regulation of rice genes expressed in developing rice seeds. PMID:7919992

  19. Biophysical and Mutational Analysis of the Putative bZIP Domain of Epstein-Barr Virus EBNA 3C

    PubMed Central

    West, Michelle J.; Webb, Helen M.; Sinclair, Alison J.; Woolfson, Derek N.

    2004-01-01

    Epstein-Barr virus nuclear antigen 3C (EBNA 3C) is essential for B-cell immortalization and functions as a regulator of viral and cellular transcription. EBNA 3C contains glutamine-rich and proline-rich domains and a region in the N terminus consisting of a stretch of basic residues followed by a run of leucine residues spaced seven amino acids apart. This N-terminal domain is widely believed to represent a leucine zipper dimerization motif (bZIP). We have performed the first structural and functional analysis of this motif and demonstrated that this domain is not capable of forming stable homodimers. Peptides encompassing the EBNA 3C zipper domain are approximately 54 to 67% α-helical in solution but cannot form dimers at physiologically relevant concentrations. Moreover, the EBNA 3C leucine zipper cannot functionally substitute for another homodimerizing zipper domain in domain-swapping experiments. Our data indicate, however, that the EBNA 3C zipper domain behaves as an atypical bZIP domain and is capable of self-associating to form higher-order α-helical oligomers. Using directed mutagenesis, we also identified a new role for the bZIP domain in maintaining the interaction between EBNA 3C and RBP-Jκ in vivo. Disruption of the helical nature of the zipper domain by the introduction of proline residues reduces the ability of EBNA 3C to inhibit EBNA 2 activation and interact with RBP-Jκ in vivo by 50%, and perturbation of the charge on the basic region completely abolishes this function of EBNA 3C. PMID:15308737

  20. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress

    PubMed Central

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses. PMID:27314020

  1. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    PubMed

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins.

  2. The contribution of the methyl groups on thymine bases to binding specificity and affinity by alanine-rich mutants of the bZIP motif.

    PubMed

    Kise, K J; Shin, J A

    2001-09-01

    We have used fluorescence anisotropy to measure in situ the thermodynamics of binding of alanine-rich mutants of the GCN4 basic region/leucine zipper (bZIP) to short DNA duplexes, in which thymines were replaced with uracils, in order to quantify the contributions of the C5 methyl group on thymines with alanine methyl side chains. We simplified the alpha-helical GCN4 bZIP by alanine substitution: 4A, 11A, and 18A contain four, 11, and 18 alanine mutations in their DNA-binding basic regions, respectively. Titration of fluorescein-labeled duplexes with increasing amounts of protein yielded dissociation constants in the low-to-mid nanomolar range for all bZIP mutants in complex with the AP-1 target site (5'-TGACTCA-3'); binding to the nonspecific control duplex was >1000-fold weaker. Small changes of <1 kcal/mol in binding free energies were observed for wild-type bZIP and 4A mutant to uracil-containing AP-1, whereas 11A and 18A bound almost equally well to native AP-1 and uracil-containing AP-1. These modest changes in binding affinities may reflect the multivalent nature of protein-DNA interactions, as our highly mutated proteins still exhibit native-like behavior. These protein mutations may compensate for changes in enthalpic and entropic contributions toward DNA-binding in order to maintain binding free energies similar to that of the native protein-DNA complex.

  3. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains.

    PubMed Central

    Kim, J; Struhl, K

    1995-01-01

    The AP-1 and ATF/CREB families of eukaryotic transcription factors are dimeric DNA-binding proteins that contain the bZIP structural motif. The AP-1 and ATF/CREB proteins are structurally related and recognize identical half-sites (TGAC), but they differ in their requirements for half-site spacing. AP-1 proteins such as yeast GCN4 preferentially bind to sequences with overlapping half-sites, whereas ATF/CREB proteins bind exclusively to sequences with adjacent half-sites. Here we investigate the distinctions between AP-1 and ATF/CREB proteins by determining the DNA-binding properties of mutant and hybrid proteins. First, analysis of GCN4-ATF1 hybrid proteins indicates that a short surface spanning the basic and fork regions of the bZIP domain is the major determinant of half-site spacing. Replacement of two GCN4 residues on this surface (Ala244 and Leu247) by their ATF1 counterparts largely converts GCN4 into a protein with ATF/CREB specificity. Secondly, analysis of a Fos derivative containing the GCN4 leucine zipper indicates that Fos represents a novel intermediate between AP-1 and ATF/CREB proteins. Thirdly, we examine the effects of mutations in the invariant arginine residue of GCN4 (Arg243) that contacts the central base pair(s) of the target sites. While most mutations abolish DNA binding, substitution of a histidine residue results in a GCN4 derivative with ATF/CREB binding specificity. These results suggest that the AP-1 and ATF/CREB proteins differ in positioning a short surface that includes the invariant arginine and that AP-1 proteins may represent a subclass (and perhaps evolutionary offshoot) of ATF/CREB proteins that can tolerate overlapping half-sites. Images PMID:7630732

  4. The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response.

    PubMed

    Kuhlmann, Markus; Horvay, Katja; Strathmann, Anne; Heinekamp, Thorsten; Fischer, Ute; Böttner, Stefan; Dröge-Laser, Wolfgang

    2003-03-07

    The tobacco (Nicotiana tabacum) bZIP transcription factor BZI-1 is involved in auxin-mediated growth responses and in establishing pathogen defenses. Transgenic plants expressing a dominant-negative BZI-1-DeltaN derivative, which lacks the N-terminal activation domain, showed altered vegetative growth. In particular auxin-induced rooting and formation of tobacco mosaic virus-induced hypersensitive response lesions are affected. BZI-1-related proteins described in various plant species share the conserved domains D1, D2, BD, and D4. To define those BZI-1 domains involved in transcription factor function, BZI-1 deletion derivatives were expressed in transgenic plants. The domains D1 or BD are crucial for BZI-1-DeltaN function in planta. The basic BD domain is mediating DNA binding of BZI-1. Yeast two-hybrid and in vitro binding studies reveal the ankyrin-repeat protein ANK1, which specifically interacts with a part of the BZI-1 protein (amino acids 73-222) encoding the D1 domain. ANK1 does not bind DNA or act as a co-activator of BZI-1-mediated transcription. Moreover, green fluorescence protein localization studies propose that ANK1 is acting mainly inside the cytosol. Transcription analysis reveals that ANK1 is ubiquitously expressed, but after pathogen attack transcription is transiently down-regulated. Along these lines, ANK1 homologous proteins in Arabidopsis thaliana have been reported to function in pathogen defense. We therefore propose that the D1 domain serves as an interaction surface for ANK1, which appears to regulate BZI-1 function in auxin signaling as well as pathogen response.

  5. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception.

    PubMed

    Chinchilla, Delphine; Bauer, Zsuzsa; Regenass, Martin; Boller, Thomas; Felix, Georg

    2006-02-01

    Flagellin, the main building block of the bacterial flagellum, acts as a pathogen-associated molecular pattern triggering the innate immune response in animals and plants. In Arabidopsis thaliana, the Leu-rich repeat transmembrane receptor kinase FLAGELLIN SENSITIVE2 (FLS2) is essential for flagellin perception. Here, we demonstrate the specific interaction of the elicitor-active epitope flg22 with the FLS2 protein by chemical cross-linking and immunoprecipitation. The functionality of this receptor was further tested by heterologous expression of the Arabidopsis FLS2 gene in tomato (Lycopersicon esculentum) cells. The perception of flg22 in tomato differs characteristically from that in Arabidopsis. Expression of Arabidopsis FLS2 conferred an additional flg22-perception system on the cells of tomato, which showed all of the properties characteristic of the perception of this elicitor in Arabidopsis. In summary, these results show that FLS2 constitutes the pattern-recognition receptor that determines the specificity of flagellin perception.

  6. Assembly of transmembrane proteins on oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Yunker, Peter; Landry, Corey; Chong, Shaorong; Weitz, David

    2015-03-01

    Transmembrane proteins are difficult to handle by aqueous solution-based biochemical and biophysical approaches, due to the hydrophobicity of transmembrane helices. Detergents can solubilize transmembrane proteins; however, surfactant coated transmembrane proteins are not always functional, and purifying detergent coated proteins in a micellar solution can be difficult. Motivated by this problem, we study the self-assembly of transmembrane proteins on oil-water interfaces. We found that the large water-oil interface of oil drops prevents nascent transmembrane proteins from forming non-functional aggregates. The oil provides a hydrophobic environment for the transmembrane helix, allowing the ectodomain to fold into its natural structure and orientation. Further, modifying the strength or valency of hydrophobic interactions between transmembrane proteins results in the self-assembly of spatially clustered, active proteins on the oil-water interface. Thus, hydrophobic interactions can facilitate, rather than inhibit, the assembly of transmembrane proteins.

  7. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici.

    PubMed

    Wang, Xiuna; Wu, Fan; Liu, Ling; Liu, Xingzhong; Che, Yongsheng; Keller, Nancy P; Guo, Liyun; Yin, Wen-Bing

    2015-08-01

    The bZIP transcription factors are conserved in all eukaryotes and play critical roles in organismal responses to environmental challenges. In filamentous fungi, several lines of evidence indicate that secondary metabolism (SM) is associated with oxidative stress mediated by bZIP proteins. Here we uncover a connection with a bZIP protein and oxidative stress induction of SM in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with the bZIP protein RsmA, involved in SM and the oxidative stress response in Aspergillus nidulans, identified PfZipA. Deletion of PfzipA resulted in a strain that displayed resistant to the oxidative reagents tert-butylhydroperoxide (tBOOH), diamide, and menadione sodium bisulfite (MSB), but increased sensitivity to H2O2 as compared to wild type (WT). Secondary metabolite production presented a complex pattern dependent on PfzipA and oxidative reagents. Without oxidative treatment, the ΔPfzipA strain produced less isosulochrin and ficipyroneA than WT; addition of tBOOH further decreased production of iso-A82775C and pestaloficiol M in ΔPfzipA; diamide treatment resulted in equivalent production of isosulochrin and ficipyroneA in the two strains; MSB treatment further decreased production of RES1214-1 and iso-A82775C but increased pestaloficiol M production in the mutant; and H2O2 treatment resulted in enhanced production of isosulochrin, RES1214-1 and pestheic acid but decreased ficipyroneA and pestaloficiol M in ΔPfzipA compared to WT. Our results suggest that PfZipA regulation of SM is modified by oxidative stress pathways and provide insights into a possible role of PfZipA in mediating SM synthesis in the endophytic lifestyle of P. fici.

  8. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.

    PubMed

    Kim, Won-Chan; Reca, Ida-Barbara; Kim, Yongsig; Park, Sunchung; Thomashow, Michael F; Keegstra, Kenneth; Han, Kyung-Hwan

    2014-03-01

    Mannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family. Earlier work has shown that CSLA9 is responsible for the majority of glucomannan synthesis in both primary and secondary cell walls of Arabidopsis inflorescence stems. Little is known about how expression of the CLSA9 gene is regulated. Sequence analysis of the CSLA9 promoter region revealed the presence of multiple copies of a cis-regulatory motif (M46RE) recognized by transcription factor MYB46, leading to the hypothesis that MYB46 (At5g12870) is a direct regulator of the mannan synthase CLSA9. We obtained several lines of experimental evidence in support of this hypothesis. First, the expression of CSLA9 was substantially upregulated by MYB46 overexpression. Second, electrophoretic mobility shift assay (EMSA) was used to demonstrate the direct binding of MYB46 to the promoter of CSLA9 in vitro. This interaction was further confirmed in vivo by a chromatin immunoprecipitation assay. Finally, over-expression of MYB46 resulted in a significant increase in mannan content. Considering the multifaceted nature of MYB46-mediated transcriptional regulation of secondary wall biosynthesis, we reasoned that additional transcription factors are involved in the CSLA9 regulation. This hypothesis was tested by carrying out yeast-one hybrid screening, which identified ANAC041 and bZIP1 as direct regulators of CSLA9. Transcriptional activation assays and EMSA were used to confirm the yeast-one hybrid results. Taken together, we report that transcription factors ANAC041, bZIP1 and MYB46 directly regulate the expression of CSLA9.

  9. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  10. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).

    PubMed

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K; Chinnusamy, Viswanathan; Bhat, Shripad R; Srinivasan, R

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.

  11. Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development

    PubMed Central

    2012-01-01

    Arabidopsis seedling development is controlled by many regulatory genes involved in multiple signaling pathways. The functional relationships of these genes working in multiple signaling cascades have started to be unraveled. Arabidopsis HY1/HO1 is a rate-limiting enzyme involved in biosynthesis of phytochrome chromophore. HY5 (a bZIP protein) promotes photomorphogenesis, however ZBF1/MYC2 (a bHLH protein) works as a negative regulator of photomorphogenic growth and light regulated gene expression. Further, MYC2 and HY1 have been shown to play important roles in jasmonic acid (JA) signaling pathways. Here, we show the genetic interactions of HY1 with two key transcription factor genes of light signaling, HY5 and MYC2, in Arabidopsis seedling development. Our studies reveal that although HY1 acts in an additive manner with HY5, it is epistatic to MYC2 in light-mediated seedling growth and gene expression. This study further demonstrates that HY1 additively or synergistically functions with HY5, however it works upstream to MYC2 in JA signaling pathways. Taken together, this study demonstrates the functional interrelations of HY1, MYC2 and HY5 in light and JA signaling pathways. PMID:22424472

  12. The yapA Encodes bZIP Transcription Factor Involved in Stress Tolerance in Pathogenic Fungus Talaromyces marneffei

    PubMed Central

    Dankai, Wiyada; Pongpom, Monsicha; Youngchim, Sirida; Cooper, Chester R.; Vanittanakom, Nongnuch

    2016-01-01

    Talaromyces marneffei, formerly Penicillium marneffei, is a thermally dimorphic fungus. It causes a fatal disseminated disease in patients infected with the human immunodeficiency virus (HIV). Studies on the stress defense mechanism of T. marneffei can lead to a better understanding of the pathogenicity and the progression of the disease due to this fungus. The basic leucine-zipper (bZip) transcription factor gene in Saccharomyces cerevisiae, named yap1 (yeast activating protein-1), is known as a crucial central regulator of stress responses including those caused by oxidative agents, cadmium, and drugs. An ortholog of yap1, designated yapA, was identified in T. marneffei. We found that the yapA gene was involved in growth and fungal cell development. The yapA deletion mutant exhibited delays in the rate of growth, germination, and conidiation. Surprisingly, the yapA gene was also involved in the pigmentation of T. marneffei. Moreover, the mutant was sensitive to oxidative stressors such as H2O2 and menadione, similar to S. cerevisiae yap1 mutant, as well as the nitrosative stressor NaNO2. In addition, the yapA mutant demonstrated significantly decreased survival in human macrophage THP-1 compared to wild-type and complemented strains. This study reveals the role of yapA in fungal growth, cell development, stress response, and potential virulence in T. marneffei. PMID:27706212

  13. Development of T cell lymphoma in HTLV-1 bZIP factor and Tax double transgenic mice.

    PubMed

    Zhao, Tiejun; Satou, Yorifumi; Matsuoka, Masao

    2014-07-01

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). ATL cells possess a CD4+ CD25+ phenotype, similar to that of regulatory T cells (Tregs). Tax has been reported to play a crucial role in the leukemogenesis of HTLV-1. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the viral genomic RNA, is expressed in all ATL cases and induces neoplastic and inflammatory disease in vivo. To test whether HBZ and Tax are both required for T cell malignancy, we generated HBZ/Tax double transgenic mice in which HBZ and Tax are expressed exclusively in CD4+ T cells. Survival was much reduced in HBZ/Tax double-transgenic mice compared with wild type littermates. Transgenic expression of HBZ and Tax induced skin lesions and T-cell lymphoma in mice, resembling diseases observed in HTLV-1 infected individuals. However, Tax single transgenic mice did not develop major health problems. In addition, memory CD4+ T cells and Foxp3+ Treg cells counts were increased in HBZ/Tax double transgenic mice, and their proliferation was enhanced. There was very little difference between HBZ single and HBZ/Tax double transgenic mice. Taken together, these results show that HBZ, in addition to Tax, plays a critical role in T-cell lymphoma arising from HTLV-1 infection.

  14. High-Yield Expression in E. coli and Refolding of the bZIP Domain of Activating Transcription Factor 5

    PubMed Central

    Ciaccio, Natalie A.; Moreno, Matthew L.; Bauer, Rachel L.; Laurence, Jennifer S.

    2008-01-01

    Activating Transcription Factor 5 (ATF5) recently has been demonstrated to play a critical role in promoting the survival of human glioblastoma cells. Interference with the function of ATF5 in an in vivo rat model caused glioma cell death in primary tumors but did not affect the status of normal cells surrounding the tumor, suggesting ATF5 may prove an ideal target for anti-cancer therapy. In order to examine ATF5 as a pharmaceutical target, the protein must be produced and purified to sufficient quantity to begin analyses. Here, a procedure for expressing and refolding the bZIP domain of ATF5 in sufficient yield and final concentration to permit assay development and structural characterization of this target using solution NMR is reported. Two-dimensional NMR and circular dichrosim analyses indicate the protein exists in the partially α-helical, monomeric x-form conformation with only a small fraction of ATF5 participating in formation of higher-order structure, presumably coiled-coil homodimerization. Despite the persistence of monomers in solution even at high concentration, an electrophoretic mobility shift assay showed that ATF5 is able to bind to the cAMP response element (CRE) DNA motif. Polyacrylamide gel electrophoresis and mass spectrometry were used to confirm that ATF5 can participate in homodimer formation and that this dimerization is mediated by disulfide bond formation. PMID:18718539

  15. TRAMPLE: the transmembrane protein labelling environment.

    PubMed

    Fariselli, Piero; Finelli, Michele; Rossi, Ivan; Amico, Mauro; Zauli, Andrea; Martelli, Pier Luigi; Casadio, Rita

    2005-07-01

    TRAMPLE (http://gpcr.biocomp.unibo.it/biodec/) is a web application server dedicated to the detection and the annotation of transmembrane protein sequences. TRAMPLE includes different state-of-the-art algorithms for the prediction of signal peptides, transmembrane segments (both beta-strands and alpha-helices), secondary structure and fast fold recognition. TRAMPLE also includes a complete content management system to manage the results of the predictions. Each user of the server has his/her own workplace, where the data can be stored, organized, accessed and annotated with documents through a simple web-based interface. In this manner, TRAMPLE significantly improves usability with respect to other more traditional web servers.

  16. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

    PubMed Central

    Corradi, Valentina; Vergani, Paola; Tieleman, D. Peter

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of “rational” approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287–288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287–288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel. PMID:26229102

  17. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  18. HTLV-1 bZIP Factor RNA and Protein Impart Distinct Functions on T-cell Proliferation and Survival.

    PubMed

    Mitobe, Yuichi; Yasunaga, Jun-ichirou; Furuta, Rie; Matsuoka, Masao

    2015-10-01

    Infection of T cells with human T-cell leukemia virus type-1 (HTLV-1) induces clonal proliferation and is closely associated with the onset of adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. Although Tax expression is frequently suppressed in HTLV-1-infected cells, the accessory gene, HTLV-1 bZIP factor (HBZ), is continuously expressed and has been implicated in HTLV-1 pathogenesis. Here, we report that transduction of mouse T cells with specific mutants of HBZ that distinguish between its RNA and protein activity results in differential effects on T-cell proliferation and survival. HBZ RNA increased cell number by attenuating apoptosis, whereas HBZ protein induced apoptosis. However, both HBZ RNA and protein promoted S-phase entry of T cells. We further identified that the first 50 bp of the HBZ coding sequence are required for RNA-mediated cell survival. Transcriptional profiling of T cells expressing wild-type HBZ, RNA, or protein revealed that HBZ RNA is associated with genes involved in cell cycle, proliferation, and survival, while HBZ protein is more closely related to immunological properties of T cells. Specifically, HBZ RNA enhances the promoter activity of survivin, an inhibitor of apoptosis, to upregulate its expression. Inhibition of survivin using YM155 resulted in impaired proliferation of several ATL cell lines as well as a T-cell line expressing HBZ RNA. The distinct functions of HBZ RNA and protein may have several implications for the development of strategies to control the proliferation and survival mechanisms associated with HTLV-1 infection and ATL.

  19. Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor.

    PubMed

    Li, Yan; Sun, Yan; Yang, Qingchuan; Fang, Feng; Kang, Junmei; Zhang, Tiejun

    2013-02-01

    A full-length cDNA of 1,537 nucleotides was cloned from Medicago sativa L. cv. "Zhongmu No. 1" by rapid amplification of cDNA ends. It was designated as MsZIP, encoding a protein of 340 amino acids. The protein molecular weight was 36.43 kDa, and the theoretical isoelectric point was 5.72. The MsZIP preferentially localized in nucleus and have signal peptide. Blast analysis revealed that MsZIP shared the highest homology with some bZIP proteins of M. truncatula. The transcript of MsZIP was strongly enriched in leaf compared with root and stem of mature alfalfa plants. MsZIP was strongly induced by 15 % PEG6000 (polyethylene glycol), 50 μM abscisic acid, 200 mM NaCl, 70 μM gibberellic acid, 5 mM salicylic acid and 200 μM methyl jasmonate. Physiological resistance parameters were measured in the transgenic tobacco. Malondialdehyde content, relative water content, soluble sugar content, soluble protein content and proline content in transgenic tobacco increased compared with non-transgenic tobacco under salt stress or drought stress. The results showed that accumulation of the MsZIP protein in the vegetative tissues of transgenic plants enhanced their tolerance to osmotic pressure stress. These results demonstrate a role for the MsZIP protein in stress protection and suggest the potential of the MsZIP gene for genetic engineering of salt tolerance and drought tolerance.

  20. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  1. Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase.

    PubMed

    Lu, Peilong; Ma, Dan; Yan, Chuangye; Gong, Xinqi; Du, Mingjian; Shi, Yigong

    2014-02-04

    Vitamin C, also known as ascorbate, is required in numerous essential metabolic reactions in eukaryotes. The eukaryotic ascorbate-dependent oxidoreductase cytochrome b561 (Cyt b561), a family of highly conserved transmembrane enzymes, plays an important role in ascorbate recycling and iron absorption. Although Cyt b561 was identified four decades ago, its atomic structure and functional mechanism remain largely unknown. Here, we report the high-resolution crystal structures of cytochrome b561 from Arabidopsis thaliana in both substrate-free and substrate-bound states. Cyt b561 forms a homodimer, with each protomer consisting of six transmembrane helices and two heme groups. The negatively charged substrate ascorbate, or monodehydroascorbate, is enclosed in a positively charged pocket on either side of the membrane. Two highly conserved amino acids, Lys(81) and His(106), play an essential role in substrate recognition and catalysis. Our structural and biochemical analyses allow the proposition of a general electron transfer mechanism for members of the Cyt b561 family.

  2. Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase

    PubMed Central

    Lu, Peilong; Ma, Dan; Yan, Chuangye; Gong, Xinqi; Du, Mingjian; Shi, Yigong

    2014-01-01

    Vitamin C, also known as ascorbate, is required in numerous essential metabolic reactions in eukaryotes. The eukaryotic ascorbate-dependent oxidoreductase cytochrome b561 (Cyt b561), a family of highly conserved transmembrane enzymes, plays an important role in ascorbate recycling and iron absorption. Although Cyt b561 was identified four decades ago, its atomic structure and functional mechanism remain largely unknown. Here, we report the high-resolution crystal structures of cytochrome b561 from Arabidopsis thaliana in both substrate-free and substrate-bound states. Cyt b561 forms a homodimer, with each protomer consisting of six transmembrane helices and two heme groups. The negatively charged substrate ascorbate, or monodehydroascorbate, is enclosed in a positively charged pocket on either side of the membrane. Two highly conserved amino acids, Lys81 and His106, play an essential role in substrate recognition and catalysis. Our structural and biochemical analyses allow the proposition of a general electron transfer mechanism for members of the Cyt b561 family. PMID:24449903

  3. Anchors aweigh: protein localization and transport mediated by transmembrane domains.

    PubMed

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S

    2013-10-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.

  4. TSTMP: target selection for structural genomics of human transmembrane proteins

    PubMed Central

    Varga, Julia; Dobson, László; Reményi, István; Tusnády, Gábor E.

    2017-01-01

    The TSTMP database is designed to help the target selection of human transmembrane proteins for structural genomics projects and structure modeling studies. Currently, there are only 60 known 3D structures among the polytopic human transmembrane proteins and about a further 600 could be modeled using existing structures. Although there are a great number of human transmembrane protein structures left to be determined, surprisingly only a small fraction of these proteins have ‘selected’ (or above) status according to the current version the TargetDB/TargetTrack database. This figure is even worse regarding those transmembrane proteins that would contribute the most to the structural coverage of the human transmembrane proteome. The database was built by sorting out proteins from the human transmembrane proteome with known structure and searching for suitable model structures for the remaining proteins by combining the results of a state-of-the-art transmembrane specific fold recognition algorithm and a sequence similarity search algorithm. Proteins were searched for homologues among the human transmembrane proteins in order to select targets whose successful structure determination would lead to the best structural coverage of the human transmembrane proteome. The pipeline constructed for creating the TSTMP database guarantees to keep the database up-to-date. The database is available at http://tstmp.enzim.ttk.mta.hu. PMID:27924015

  5. Anchors Aweigh: Protein Traffic Mediated by Transmembrane Domains

    PubMed Central

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S.

    2013-01-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in the cytosolic domains, TMD sorting determinants are not conserved amino-acid sequences but physical properties such as length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport. PMID:23806646

  6. Identification of Novel Components of the Unfolded Protein Response in Arabidopsis

    PubMed Central

    Hossain, Md. Amir; Henríquez-Valencia, Carlos; Gómez-Páez, Marcela; Medina, Joaquín; Orellana, Ariel; Vicente-Carbajosa, Jesús; Zouhar, Jan

    2016-01-01

    Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses. PMID:27242851

  7. Identification of Novel Components of the Unfolded Protein Response in Arabidopsis.

    PubMed

    Hossain, Md Amir; Henríquez-Valencia, Carlos; Gómez-Páez, Marcela; Medina, Joaquín; Orellana, Ariel; Vicente-Carbajosa, Jesús; Zouhar, Jan

    2016-01-01

    Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.

  8. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding.

    PubMed

    Aukerman, M J; Schmidt, R J; Burr, B; Burr, F A

    1991-02-01

    The opaque-2 (o2) locus in maize encodes a transcription factor involved in the regulation of zein storage proteins. We have shown previously that the O2 protein contains a leucine zipper domain that binds to promoters of 22-kD zein genes. In this paper we characterize an EMS-induced o2 allele, o2-676, that causes a 50% reduction in zein. We have found that the o2-676 mutant protein does not show specific recognition of zein promoter fragments because of the substitution of a lysine residue for an arginine residue within the bZIP domain of o2-676. This particular arginine is conserved within the bZIP domains of all mammalian, fungal, and plant DNA binding proteins of this class. The correlation between this mutation in o2 and the altered pattern of zein expression strongly suggests that O2 regulates transcription of certain members of the zein multigene family through direct interaction with the zein promoters and not through the transcriptional activation of some other regulator of zein gene expression.

  9. Enteropeptidase, a type II transmembrane serine protease.

    PubMed

    Zheng, X Long; Kitamoto, Yasunori; Sadler, J Evan

    2009-06-01

    Enteropeptidase, a type II transmembrane serine protease, is localized to the brush border of the duodenal and jejunal mucosa. It is synthesized as a zymogen (proenteropeptidase) that requires activation by another protease, either trypsin or possibly duodenase. Active enteropeptidase then converts the pancreatic precursor, trypsinogen, to trypsin by cleavage of the specific trypsinogen activation peptide, Asp-Asp-Asp-Asp-Lys- Ile that is highly conserved in vertebrates. Trypsin, in turn, activates other digestive zymogens such as chymotrypsinogen, proelastase, procarboxypeptidase and prolipase in the lumen of the gut. The important biological function of enteropeptidase is highlighted by the manifestation of severe diarrhea, failure to thrive, hypoproteinemia and edema as a result of congenital deficiency of enteropeptidase activity in the gut. Conversely, duodenopancreatic reflux of proteolytically active enteropeptidase may cause acute and chronic pancreatitis.

  10. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  11. Molecular mechanisms for generating transmembrane proton gradients.

    PubMed

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.

  12. Molecular mechanisms for generating transmembrane proton gradients

    PubMed Central

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  13. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer

    SciTech Connect

    Shen Huaishun; Cao Kaiming; Wang Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors.

  14. Measuring Mitochondrial Transmembrane Potential by TMRE Staining.

    PubMed

    Crowley, Lisa C; Christensen, Melinda E; Waterhouse, Nigel J

    2016-12-01

    Adenosine triphosphate (ATP) is the main source of energy for metabolism. Mitochondria provide the majority of this ATP by a process known as oxidative phosphorylation. This process involves active transfer of positively charged protons across the mitochondrial inner membrane resulting in a net internal negative charge, known as the mitochondrial transmembrane potential (ΔΨm). The proton gradient is then used by ATP synthase to produce ATP by fusing adenosine diphosphate and free phosphate. The net negative charge across a healthy mitochondrion is maintained at approximately -180 mV, which can be detected by staining cells with positively charged dyes such as tetramethylrhodamine ethyl ester (TMRE). TMRE emits a red fluorescence that can be detected by flow cytometry or fluorescence microscopy and the level of TMRE fluorescence in stained cells can be used to determine whether mitochondria in a cell have high or low ΔΨm. Cytochrome c is essential for producing ΔΨm because it promotes the pumping the protons into the mitochondrial intermembrane space as it shuttles electrons from Complex III to Complex IV along the electron transport chain. Cytochrome c is released from the mitochondrial intermembrane space into the cytosol during apoptosis. This impairs its ability to shuttle electrons between Complex III and Complex IV and results in rapid dissipation of ΔΨm. Loss of ΔΨm is therefore closely associated with cytochrome c release during apoptosis and is often used as a surrogate marker for cytochrome c release in cells.

  15. The Origins of Transmembrane Ion Channels

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  16. The infrared dichroism of transmembrane helical polypeptides.

    PubMed Central

    Axelsen, P H; Kaufman, B K; McElhaney, R N; Lewis, R N

    1995-01-01

    Polarized attenuated total internal reflectance techniques were applied to study the infrared dichroism of the amide I transition moment in two membrane-bound peptides that are known to form oriented transmembrane helices: gramicidin A in a supported phospholipid monolayer and Ac-Lys2-Leu24-Lys2-amide (L24) in oriented multibilayers. These studies were performed to test the ability of these techniques to determine the orientation of these peptides, to verify the value of optical parameters used to calculate electric field strengths, to examine the common assumptions regarding the amide I transition moment orientation, and to ascertain the effect of surface imperfections on molecular disorder. The two peptides exhibit marked differences in the shape and frequency of their amide I absorption bands. Yet both peptides are highly ordered and oriented with their helical axes perpendicular to the membrane surface. In the alpha-helix formed by L24, there is evidence for a mode with type E1 symmetry contributing to amide I, and the amide I transition moment must be more closely aligned with the peptide C=O (< 34 degrees) than earlier studies have suggested. These results indicate that long-standing assumptions about the orientation of amide I in a peptide require some revision, but that in general, infrared spectroscopy yields reliable information about the orientation of membrane-bound helical peptides. Images FIGURE 1 PMID:8599683

  17. Molecular archeological studies of transmembrane transport systems

    NASA Astrophysics Data System (ADS)

    Saier, Milton H.; Wang, Bin; Sun, Eric I.; Matias, Madeleine; Yen, Ming Ren

    We here review studies concerned with the evolutionary pathways taken for the appearance of complex transport systems. The transmembrane protein constituents of these systems generally arose by (1) intragenic duplications, (2) gene fusions, and (3) the superimposition of enzymes onto carriers. In a few instances, we have documented examples of “reverse” or “retrograde” evolution where complex carriers have apparently lost parts of their polypeptide chains to give rise to simpler channels. Some functional superfamilies of transporters that are energized by adenosine triphosphate (ATP) or phosphoenolpyruvate (PEP) include several independently evolving permease families. The ubiquitous ATP-binding cassette (ABC) superfamily couples transport to ATP hydrolysis where the ATPases are superimposed on at least three distinct, independently evolving families of permeases. The prokaryotic sugar transporting phosphotransferase system (PTS) uses homologous PEP-dependent general energy-coupling phosphoryl transfer enzymes superimposed on at least three independently arising families of permeases to give rise to complex group translocators that modify their sugar substrates during transport, releasing cytoplasmic sugar phosphates. We suggest that simple carriers evolved independently of the energizing enzymes, and that chemical energization of transport resulted from the physical and functional coupling of the enzymes to the carriers.

  18. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA.

    PubMed Central

    Metallo, S J; Paolella, D N; Schepartz, A

    1997-01-01

    The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization. PMID:9224594

  19. The transcriptional integrator CREB-binding protein mediates positive cross talk between nuclear hormone receptors and the hematopoietic bZip protein p45/NF-E2.

    PubMed Central

    Cheng, X; Reginato, M J; Andrews, N C; Lazar, M A

    1997-01-01

    Thyroid hormone (T3) and retinoic acid (RA) play important roles in erythropoiesis. We found that the hematopoietic cell-specific bZip protein p45/NF-E2 interacts with T3 receptor (TR) and RA receptor (RAR) but not retinoid X receptor. The interaction is between the DNA-binding domain of the nuclear receptor and the leucine zipper region of p45/NF-E2 but is markedly enhanced by cognate ligand. Remarkably, ligand-dependent transactivation by TR and RAR is markedly potentiated by p45/NF-E2. This effect of p45/NF-E2 is prevented by maf-like protein p18, which functions positively as a heterodimer with p45/NF-E2 on DNA. Potentiation of hormone action by p45/NF-E2 requires its activation domain, which interacts strongly with the multifaceted coactivator cyclic AMP response element protein-binding protein (CBP). The region of CBP which interacts with p45/NF-E2 is the same interaction domain that mediates inhibition of hormone-stimulated transcription by AP1 transcription factors. Overexpression of the bZip interaction domain of CBP specifically abolishes the positive cross talk between TR and p45/NF-E2. Thus, positive cross talk between p45/NF-E2 and nuclear hormone receptors requires direct protein-protein interactions between these factors and with CBP, whose integration of positive signals from two transactivation domains provides a novel mechanism for potentiation of hormone action in hematopoietic cells. PMID:9032267

  20. Exogenous agents that target transmembrane domains of proteins.

    PubMed

    Yin, Hang

    2008-01-01

    Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.

  1. Molecular mechanisms of intercellular communication: transmembrane signaling

    SciTech Connect

    Bitensky, M.W.; George, J.S.; Siegel, H.N.; McGregor, D.M.

    1982-01-01

    This short discussion of transmembrane signaling depicts a particular class of signaling devices whose functional characteristics may well be representative of broader classes of membrane switches. These multicomponent aggregates are characterized by tight organization of interacting components which function by conformational interactions to provide sensitive, amplified, rapid, and modulated responses. It is clear that the essential role of such switches in cell-cell interactions necessitated their appearance early in the history of the development of multicellular organisms. It also seems clear that once such devices made their appearance, the conformationally interactive moieties were firmly locked into a regulatory relationship. Since modification of interacting components could perturb or interfere with the functional integrity of the whole switch, genetic drift was only permitted at the input and outflow extremes. However, the GTP binding moiety and its interacting protein domains on contiguous portions of the receptor and readout components were highly conserved. The observed stringent evolutionary conservation of the molecular features of these membrane switches thus applies primarily to the central (GTP binding) elements. An extraordinary degree of variation was permitted within the domains of signal recognition and enzymatic output. Thus, time and evolution have adapted the central logic of the regulatory algorithm to serve a great variety of cellular purposes and to recognize a great variety of chemical and physical signals. This is exemplified by the richness of the hormonal and cellular dialogues found in primates such as man. Here the wealth of intercellular communiation can support the composition and performance of symphonies and the study of cellular immunology.

  2. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response.

    PubMed

    Hsieh, Tsai-Hung; Li, Chia-Wen; Su, Ruey-Chih; Cheng, Chiu-Ping; Sanjaya; Tsai, Yi-Chien; Chan, Ming-Tsair

    2010-05-01

    Abiotic stresses such as cold, water deficit, and salt stresses severely reduce crop productivity. Tomato (Solanum lycopersicum) is an important economic crop; however, not much is known about its stress responses. To gain insight into stress-responsive gene regulation in tomato plants, we identified transcription factors from a tomato cDNA microarray. An ABA-responsive element binding protein (AREB) was identified and named SlAREB. In tomato protoplasts, SlAREB transiently transactivated luciferase reporter gene expression driven by AtRD29A (responsive to dehydration) and SlLAP (leucine aminopeptidase) promoters with exogenous ABA application, which was suppressed by the kinase inhibitor staurosporine, indicating that an ABA-dependent post-translational modification is required for the transactivation ability of SlAREB protein. Electrophoretic mobility shift assays showed that the recombinant DNA-binding domain of SlAREB protein is able to bind AtRD29A and SlLAP promoter regions. Constitutively expressed SlAREB increased tolerance to water deficit and high salinity stresses in both Arabidopsis and tomato plants, which maintained PSII and membrane integrities as well as water content in plant bodies. Overproduction of SlAREB in Arabidopsis thaliana and tomato plants regulated stress-related genes AtRD29A, AtCOR47, and SlCI7-like dehydrin under ABA and abiotic stress treatments. Taken together, these results show that SlAREB functions to regulate some stress-responsive genes and that its overproduction improves plant tolerance to water deficit and salt stress.

  3. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins.

    PubMed

    Chum, Tomáš; Glatzová, Daniela; Kvíčalová, Zuzana; Malínský, Jan; Brdička, Tomáš; Cebecauer, Marek

    2016-01-01

    Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.

  4. TOPPER: topology prediction of transmembrane protein based on evidential reasoning.

    PubMed

    Deng, Xinyang; Liu, Qi; Hu, Yong; Deng, Yong

    2013-01-01

    The topology prediction of transmembrane protein is a hot research field in bioinformatics and molecular biology. It is a typical pattern recognition problem. Various prediction algorithms are developed to predict the transmembrane protein topology since the experimental techniques have been restricted by many stringent conditions. Usually, these individual prediction algorithms depend on various principles such as the hydrophobicity or charges of residues. In this paper, an evidential topology prediction method for transmembrane protein is proposed based on evidential reasoning, which is called TOPPER (topology prediction of transmembrane protein based on evidential reasoning). In the proposed method, the prediction results of multiple individual prediction algorithms can be transformed into BPAs (basic probability assignments) according to the confusion matrix. Then, the final prediction result can be obtained by the combination of each individual prediction base on Dempster's rule of combination. The experimental results show that the proposed method is superior to the individual prediction algorithms, which illustrates the effectiveness of the proposed method.

  5. A deterministic algorithm for constrained enumeration of transmembrane protein folds.

    SciTech Connect

    Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.

    2004-07-01

    A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.

  6. Characterization of Disease-Associated Mutations in Human Transmembrane Proteins

    PubMed Central

    Molnár, János; Szakács, Gergely; Tusnády, Gábor E.

    2016-01-01

    Transmembrane protein coding genes are commonly associated with human diseases. We characterized disease causing mutations and natural polymorphisms in transmembrane proteins by mapping missense genetic variations from the UniProt database on the transmembrane protein topology listed in the Human Transmembrane Proteome database. We found characteristic differences in the spectrum of amino acid changes within transmembrane regions: in the case of disease associated mutations the non-polar to non-polar and non-polar to charged amino acid changes are equally frequent. In contrast, in the case of natural polymorphisms non-polar to charged amino acid changes are rare while non-polar to non-polar changes are common. The majority of disease associated mutations result in glycine to arginine and leucine to proline substitutions. Mutations to positively charged amino acids are more common in the center of the lipid bilayer, where they cause more severe structural and functional anomalies. Our analysis contributes to the better understanding of the effect of disease associated mutations in transmembrane proteins, which can help prioritize genetic variations in personal genomic investigations. PMID:26986070

  7. Molecular Signatures in Arabidopsis thaliana in Response to Insect Attack and Bacterial Infection

    PubMed Central

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M.

    2013-01-01

    Background Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. Results The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Conclusions Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and

  8. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  9. A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination in Arabidopsis.

    PubMed

    Tezuka, Kenji; Taji, Teruaki; Hayashi, Takahisa; Sakata, Yoichi

    2013-03-01

    Abscisic acid (ABA) signal transduction during Arabidopsis seed development and germination requires a Group A bZIP transcription factor encoded by ABA INSENSITIVE5 (ABI5). In addition to the basic leucine zipper DNA binding domain, Group A bZIPs are characterized by three N-terminal conserved regions (C1, C2 and C3) and one C-terminal conserved region (C4). These conserved regions are considered to play roles in ABI5 functions; however, except for the phosphorylation site, the importance of the highly conserved amino acids is unclear. Here, we report a novel abi5 recessive allele (abi5-9) that encodes an intact ABI5 protein with one amino acid substitution (A214G) in the C3 domain. The abi5-9 plants showed ABA insensitivity during germination and could germinate on medium containing 175 mM NaCl or 500 mM mannitol. Em1 and Em6--both encoding late embryogenesis abundant (LEA) proteins and directly targeted by ABI5 regulation--were expressed at very low levels in abi5-9 plants compared with the wild type. In yeast, the abi5-9 protein exhibited greatly reduced interaction with ABI3 compared with ABI5. These data suggest that Ala214 in ABI5 contributes to the function of ABI5 via its interaction with ABI3.

  10. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa.

    PubMed

    Wang, Zhi; Su, Guoxia; Li, Min; Ke, Qingbo; Kim, Soo Young; Li, Hongbing; Huang, Jin; Xu, Bingcheng; Deng, Xi-Ping; Kwak, Sang-Soo

    2016-12-01

    Arabidopsis ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3 (ABF3), a bZIP transcription factor, plays an important role in regulating multiple stress responses in plants. Overexpressing AtABF3 increases tolerance to various stresses in several plant species. Alfalfa (Medicago sativa L.), one of the most important perennial forage crops worldwide, has high yields, high nutritional value, and good palatability and is widely distributed in irrigated and semi-arid regions throughout the world. However, drought and salt stress pose major constraints to alfalfa production. In this study, we developed transgenic alfalfa plants (cv. Xinjiang Daye) expressing AtABF3 under the control of the sweetpotato oxidative stress-inducible SWPA2 promoter (referred to as SAF plants) via Agrobacterium tumefaciens-mediated transformation. After drought stress treatment, we selected two transgenic lines with high expression of AtABF3, SAF5 and SAF6, for further characterization. Under normal conditions, SAF plants showed smaller leaf size compared to non-transgenic (NT) plants, while no other morphological changes were observed. Moreover, SAF plants exhibited enhanced drought stress tolerance and better growth under drought stress treatment, which was accompanied by a reduced transpiration rate and lower reactive oxygen species contents. In addition, SAF plants showed an increased tolerance to salt and oxidative stress. Therefore, these transgenic AtABF3 alfalfa plants might be useful for breeding forage crops with enhanced tolerance to environmental stress for use in sustainable agriculture on marginal lands.

  11. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings.

    PubMed

    Cookson, Sarah Jane; Yadav, Umesh Prasad; Klie, Sebastian; Morcuende, Rosa; Usadel, Björn; Lunn, John Edward; Stitt, Mark

    2016-04-01

    To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover.

  12. Altered selectivity in an Arabidopsis metal transporter.

    PubMed

    Rogers, E E; Eide, D J; Guerinot, M L

    2000-10-24

    Plants require metals for essential functions ranging from respiration to photosynthesis. These metals also contribute to the nutritional value of plants for both humans and livestock. Additionally, plants have the ability to accumulate nonessential metals such as cadmium and lead, and this ability could be harnessed to remove pollutant metals from the environment. Designing a transporter that specifically accumulates certain cations while excluding others has exciting applications in all of these areas. The Arabidopsis root membrane protein IRT1 is likely to be responsible for uptake of iron from the soil. Like other Fe(II) transporters identified to date, IRT1 transports a variety of other cations, including the essential metals zinc and manganese as well as the toxic metal cadmium. By heterologous expression in yeast, we show here that the replacement of a glutamic acid residue at position 103 in wild-type IRT1 with alanine increases the substrate specificity of the transporter by selectively eliminating its ability to transport zinc. Two other mutations, replacing the aspartic acid residues at either positions 100 or 136 with alanine, also increase IRT1 metal selectivity by eliminating transport of both iron and manganese. A number of other conserved residues in or near transmembrane domains appear to be essential for all transport function. Therefore, this study identifies at least some of the residues important for substrate selection and transport in a protein belonging to the ZIP gene family, a large transporter family found in a wide variety of organisms.

  13. Optimizing an emperical scoring function for transmembrane protein structure determination.

    SciTech Connect

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  14. Measurement of the ΔpH and electric field developed across Arabidopsis thylakoids in the light.

    PubMed

    Theg, Steven M; Tom, Curtis

    2011-01-01

    Measurement of the different components of the proton motive force (pmf) gives information about the coupling of proton movement within thylakoids to chemiosmotic processes such as photophosphorylation and protein transport, as well as that relating to the overall quality of a thylakoid preparation. The techniques to assess the pmf have been known for many years, as they have been applied to the most popular model plants for photosynthetic research. The emergence of Arabidopsis thaliana as the prominent model plant in developmental and genetics research prompted us to apply these techniques to thylakoids isolated from Arabidopsis chloroplasts. We describe here two spectroscopic techniques to measure the transmembrane pH gradient and electric field developed in the light in Arabidopsis thylakoids.

  15. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  16. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA.

    PubMed

    Wolfers, Simon; Kamerewerd, Jens; Nowrousian, Minou; Sigl, Claudia; Zadra, Ivo; Kürnsteiner, Hubert; Kück, Ulrich; Bloemendal, Sandra

    2015-04-01

    The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.

  17. Basic Leucine Zipper (bZIP) Domain Transcription Factor MBZ1 Regulates Cell Wall Integrity, Spore Adherence, and Virulence in Metarhizium robertsii *

    PubMed Central

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-01-01

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels. PMID:25673695

  18. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    SciTech Connect

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu; Kim, Ki-Jeong; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hot pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.

  19. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii.

    PubMed

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-03-27

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels.

  20. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).

    PubMed

    Wang, Wuyang; Linsdell, Paul

    2012-03-23

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a member of the ATP-binding cassette (ABC) protein family, most members of which act as active transporters. Actively transporting ABC proteins are thought to alternate between "outwardly facing" and "inwardly facing" conformations of the transmembrane substrate pathway. In CFTR, it is assumed that the outwardly facing conformation corresponds to the channel open state, based on homology with other ABC proteins. We have used patch clamp recording to quantify the rate of access of cysteine-reactive probes to cysteines introduced into two different transmembrane regions of CFTR from both the intracellular and extracellular solutions. Two probes, the large [2-sulfonatoethyl]methanethiosulfonate (MTSES) molecule and permeant Au(CN)(2)(-) ions, were applied to either side of the membrane to modify cysteines substituted for Leu-102 (first transmembrane region) and Thr-338 (sixth transmembrane region). Channel opening and closing were altered by mutations in the nucleotide binding domains of the channel. We find that, for both MTSES and Au(CN)(2)(-), access to these two cysteines from the cytoplasmic side is faster in open channels, whereas access to these same sites from the extracellular side is faster in closed channels. These results are consistent with alternating access to the transmembrane regions, however with the open state facing inwardly and the closed state facing outwardly. Our findings therefore prompt revision of current CFTR structural and mechanistic models, as well as having broader implications for transport mechanisms in all ABC proteins. Our results also suggest possible locations of both functional and dysfunctional ("vestigial") gates within the CFTR permeation pathway.

  1. Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis1[w

    PubMed Central

    Shin-Han, Shiu; Bleecker, Anthony B.

    2003-01-01

    Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis. PMID:12805585

  2. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  3. High Transmembrane Voltage Raised by Close Contact Initiates Fusion Pore.

    PubMed

    Bu, Bing; Tian, Zhiqi; Li, Dechang; Ji, Baohua

    2016-01-01

    Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process.

  4. High Transmembrane Voltage Raised by Close Contact Initiates Fusion Pore

    PubMed Central

    Bu, Bing; Tian, Zhiqi; Li, Dechang; Ji, Baohua

    2016-01-01

    Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process. PMID:28018169

  5. Unique COPII component AtSar1a/AtSec23a pair is required for the distinct function of protein ER export in Arabidopsis thaliana.

    PubMed

    Zeng, Yonglun; Chung, Kin Pan; Li, Baiying; Lai, Ching Man; Lam, Sheung Kwan; Wang, Xiangfeng; Cui, Yong; Gao, Caiji; Luo, Ming; Wong, Kam-Bo; Schekman, Randy; Jiang, Liwen

    2015-11-17

    Secretory proteins traffic from endoplasmic reticulum (ER) to Golgi via the coat protein complex II (COPII) vesicle, which consists of five cytosolic components (Sar1, Sec23-24, and Sec13-31). In eukaryotes, COPII transport has diversified due to gene duplication, creating multiple COPII paralogs. Evidence has accumulated, revealing the functional heterogeneity of COPII paralogs in protein ER export. Sar1B, the small GTPase of COPII machinery, seems to be specialized for large cargo secretion in mammals. Arabidopsis contains five Sar1 and seven Sec23 homologs, and AtSar1a was previously shown to exhibit different effects on α-amylase secretion. However, mechanisms underlying the functional diversity of Sar1 paralogs remain unclear in higher organisms. Here, we show that the Arabidopsis Sar1 homolog AtSar1a exhibits distinct localization in plant cells. Transgenic Arabidopsis plants expressing dominant-negative AtSar1a exhibit distinct effects on ER cargo export. Mutagenesis analysis identified a single amino acid, Cys84, as being responsible for the functional diversity of AtSar1a. Structure homology modeling and interaction studies revealed that Cys84 is crucial for the specific interaction of AtSar1a with AtSec23a, a distinct Arabidopsis Sec23 homolog. Structure modeling and coimmunoprecipitation further identified a corresponding amino acid, Cys484, on AtSec23a as being essential for the specific pair formation. At the cellular level, the Cys484 mutation affects the distinct function of AtSec23a on vacuolar cargo trafficking. Additionally, dominant-negative AtSar1a affects the ER export of the transcription factor bZIP28 under ER stress. We have demonstrated a unique plant pair of COPII machinery function in ER export and the mechanism underlying the functional diversity of COPII paralogs in eukaryotes.

  6. Unique COPII component AtSar1a/AtSec23a pair is required for the distinct function of protein ER export in Arabidopsis thaliana

    PubMed Central

    Zeng, Yonglun; Chung, Kin Pan; Li, Baiying; Lai, Ching Man; Lam, Sheung Kwan; Wang, Xiangfeng; Cui, Yong; Gao, Caiji; Luo, Ming; Wong, Kam-Bo; Schekman, Randy; Jiang, Liwen

    2015-01-01

    Secretory proteins traffic from endoplasmic reticulum (ER) to Golgi via the coat protein complex II (COPII) vesicle, which consists of five cytosolic components (Sar1, Sec23-24, and Sec13-31). In eukaryotes, COPII transport has diversified due to gene duplication, creating multiple COPII paralogs. Evidence has accumulated, revealing the functional heterogeneity of COPII paralogs in protein ER export. Sar1B, the small GTPase of COPII machinery, seems to be specialized for large cargo secretion in mammals. Arabidopsis contains five Sar1 and seven Sec23 homologs, and AtSar1a was previously shown to exhibit different effects on α-amylase secretion. However, mechanisms underlying the functional diversity of Sar1 paralogs remain unclear in higher organisms. Here, we show that the Arabidopsis Sar1 homolog AtSar1a exhibits distinct localization in plant cells. Transgenic Arabidopsis plants expressing dominant-negative AtSar1a exhibit distinct effects on ER cargo export. Mutagenesis analysis identified a single amino acid, Cys84, as being responsible for the functional diversity of AtSar1a. Structure homology modeling and interaction studies revealed that Cys84 is crucial for the specific interaction of AtSar1a with AtSec23a, a distinct Arabidopsis Sec23 homolog. Structure modeling and coimmunoprecipitation further identified a corresponding amino acid, Cys484, on AtSec23a as being essential for the specific pair formation. At the cellular level, the Cys484 mutation affects the distinct function of AtSec23a on vacuolar cargo trafficking. Additionally, dominant-negative AtSar1a affects the ER export of the transcription factor bZIP28 under ER stress. We have demonstrated a unique plant pair of COPII machinery function in ER export and the mechanism underlying the functional diversity of COPII paralogs in eukaryotes. PMID:26578783

  7. Mutations in the Hyperosmotic Stress-Responsive Mitochondrial BASIC AMINO ACID CARRIER2 Enhance Proline Accumulation in Arabidopsis1[C][W

    PubMed Central

    Toka, Iman; Planchais, Séverine; Cabassa, Cécile; Justin, Anne-Marie; De Vos, Delphine; Richard, Luc; Savouré, Arnould; Carol, Pierre

    2010-01-01

    Mitochondrial carrier family proteins are diverse in their substrate specificity, organellar location, and gene expression. In Arabidopsis (Arabidopsis thaliana), 58 genes encode these six-transmembrane-domain proteins. We investigated the biological role of the basic amino acid carrier Basic Amino Acid Carrier2 (BAC2) from Arabidopsis that is structurally and functionally similar to ARG11, a yeast ornithine and arginine carrier, and to Arabidopsis BAC1. By studying the expression of BAC2 and the consequences of its mutation in Arabidopsis, we showed that BAC2 is a genuine mitochondrial protein and that Arabidopsis requires expression of the BAC2 gene in order to use arginine. The BAC2 gene is induced by hyperosmotic stress (with either 0.2 m NaCl or 0.4 m mannitol) and dark-induced senescence. The BAC2 promoter contains numerous stress-related cis-regulatory elements, and the transcriptional activity of BAC2:β-glucuronidase is up-regulated by stress and senescence. Under hyperosmotic stress, bac2 mutants express the P5CS1 proline biosynthetic gene more strongly than the wild type, and this correlates with a greater accumulation of Pro. Our data suggest that BAC2 is a hyperosmotic stress-inducible transporter of basic amino acids that contributes to proline accumulation in response to hyperosmotic stress in Arabidopsis. PMID:20172963

  8. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    PubMed

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize.

  9. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    PubMed Central

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  10. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    PubMed

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.

  11. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum.

    PubMed

    Lei, Yunfeng; Liu, Guodong; Yao, Guangshan; Li, Zhonghai; Qin, Yuqi; Qu, Yinbo

    2016-06-01

    Cellulase production in filamentous fungi is largely regulated at the transcriptional level, and several transcription factors have been reported to be involved in this process. In this study, we identified ClrC, a novel transcription factor in cellulase production in Penicillium oxalicum. ClrC and its orthologs have a highly conserved basic leucine zipper (bZIP) DNA binding domain, and their biological functions have not been explored. Deletion of clrC resulted in pleiotropic effects, including altered growth, reduced conidiation and increased sensitivity to oxidative and cell wall stresses. In particular, the clrC deletion mutant ΔclrC showed 46.1% ± 8.1% and 58.0% ± 8.7% decreases in production of filter paper enzyme and xylanase activities in cellulose medium, respectively. In contrast, 57.4% ± 10.0% and 70.9% ± 19.4% increased production of filter paper enzyme, and xylanase was observed in the clrC overexpressing strain, respectively. The transcription levels of major cellulase genes, as well as two cellulase transcriptional activator genes, clrB and xlnR, were significantly downregulated in ΔclrC, but substantially upregulated in clrC overexpressing strains. Furthermore, we observed that the absence of ClrC reduced full induction of cellulase expression even in the clrB overexpressing strain. These results indicated that ClrC is a novel and efficient engineering target for improving cellulolytic enzyme production in filamentous fungi.

  12. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors

    PubMed Central

    Shimura, Kazuya; Onishi, Chiho; Iyoda, Tomonori; Inaba, Kayo

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. To enhance cell-to-cell transmission of HTLV-1, the virus increases the number of infected cells in vivo. HTLV-1 bZIP factor (HBZ) is constitutively expressed in HTLV-1 infected cells and ATL cells and promotes T-cell proliferation. However, the detailed mechanism by which it does so remains unknown. Here, we show that HBZ enhances the proliferation of expressing T cells after stimulation via the T-cell receptor. HBZ promotes this proliferation by influencing the expression and function of multiple co-inhibitory receptors. HBZ suppresses the expression of BTLA and LAIR-1 in HBZ expressing T cells and ATL cells. Expression of T cell immunoglobulin and ITIM domain (TIGIT) and Programmed cell death 1 (PD-1) was enhanced, but their suppressive effect on T-cell proliferation was functionally impaired. HBZ inhibits the co-localization of SHP-2 and PD-1 in T cells, thereby leading to impaired inhibition of T-cell proliferation and suppressed dephosphorylation of ZAP-70 and CD3ζ. HBZ does this by interacting with THEMIS, which associates with Grb2 and SHP-2. Thus, HBZ interacts with the SHP containing complex, impedes the suppressive signal from PD-1 and TIGIT, and enhances the proliferation of T cells. Although HBZ was present in both the nucleus and the cytoplasm of T cells, HBZ was localized largely in the nucleus by suppressed expression of THEMIS by shRNA. This indicates that THEMIS is responsible for cytoplasmic localization of HBZ in T cells. Since THEMIS is expressed only in T-lineage cells, HBZ mediated inhibition of the suppressive effects of co-inhibitory receptors accounts for how HTLV-1 induces proliferation only of T cells in vivo. This study reveals that HBZ targets co-inhibitory receptors to cause the proliferation of infected cells. PMID:28046066

  13. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana.

    PubMed

    Sedbrook, J; Boonsirichai, K; Chen, R; Hilson, P; Pearlman, R; Rosen, E; Rutherford, R; Batiza, A; Carroll, K; Schulz, T; Masson, P H

    1998-05-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  14. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Sedbrook, J.; Boonsirichai, K.; Chen, R.; Hilson, P.; Pearlman, R.; Rosen, E.; Rutherford, R.; Batiza, A.; Carroll, K.; Schulz, T.; Masson, P. H.

    1998-01-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  15. Altered Expression of PERK Receptor Kinases in Arabidopsis Leads to Changes in Growth and Floral Organ Formation

    PubMed Central

    Haffani, Yosr Z; Silva-Gagliardi, Nancy F; Sewter, Sarah K; Grace Aldea, May; Zhao, Zhiying; Nakhamchik, Alina; Cameron, Robin K

    2006-01-01

    The proline-rich, extensin-like receptor kinase (PERK) family is characterized by a putative extracellular domain related to cell wall proteins, followed by a transmembrane domain and kinase domain. The original member, PERK1, was isolated from Brassica napus (BnPERK1) and 15 PERK1-related members were subsequently identified in the Arabidopsis thaliana genome. Ectopic expression and antisense suppression studies were performed using the BnPERK1 cDNA under the control of the 35S CaMV constitutive promoter and introduced into Arabidopsis. In the case of antisense suppression, the BnPERK1 cDNA shared sufficient sequence similarity to suppress several members of the At PERK family. In both sets of transgenic Arabidopsis, several heritable changes in growth and development were observed. Antisense BnPERK1 transgenic Arabidopsis showed various growth defects including loss of apical dominance, increased secondary branching, and floral organ defects. In contrast, Arabidopsis plants ectopically expressing BnPERK1 displayed a prolonged lifespan with increased lateral shoot production and seed set. Along with these phenotypic changes, aberrant deposits of callose and cellulose were also observed, suggestive of cell wall changes as a consequence of altered PERK expression. PMID:19516986

  16. Yeast Aquaglyceroporins Use the Transmembrane Core to Restrict Glycerol Transport*

    PubMed Central

    Geijer, Cecilia; Ahmadpour, Doryaneh; Palmgren, Madelene; Filipsson, Caroline; Klein, Dagmara Medrala; Tamás, Markus J.; Hohmann, Stefan; Lindkvist-Petersson, Karin

    2012-01-01

    Aquaglyceroporins are transmembrane proteins belonging to the family of aquaporins, which facilitate the passage of specific uncharged solutes across membranes of cells. The yeast aquaglyceroporin Fps1 is important for osmoadaptation by regulating intracellular glycerol levels during changes in external osmolarity. Upon high osmolarity conditions, yeast accumulates glycerol by increased production of the osmolyte and by restricting glycerol efflux through Fps1. The extended cytosolic termini of Fps1 contain short domains that are important for regulating glycerol flux through the channel. Here we show that the transmembrane core of the protein plays an equally important role. The evidence is based on results from an intragenic suppressor mutation screen and domain swapping between the regulated variant of Fps1 from Saccharomyces cerevisiae and the hyperactive Fps1 ortholog from Ashbya gossypii. This suggests a novel mechanism for regulation of glycerol flux in yeast, where the termini alone are not sufficient to restrict Fps1 transport. We propose that glycerol flux through the channel is regulated by interplay between the transmembrane helices and the termini. This mechanism enables yeast cells to fine-tune intracellular glycerol levels at a wide range of extracellular osmolarities. PMID:22593571

  17. Transmembrane allosteric coupling of the gates in a potassium channel.

    PubMed

    Wylie, Benjamin J; Bhate, Manasi P; McDermott, Ann E

    2014-01-07

    It has been hypothesized that transmembrane allostery is the basis for inactivation of the potassium channel KcsA: opening the intracellular gate is spontaneously followed by ion expulsion at the extracellular selectivity filter. This suggests a corollary: following ion expulsion at neutral pH, a spontaneous global conformation change of the transmembrane helices, similar to the motion involved in opening, is expected. Consequently, both the low potassium state and the low pH state of the system could provide useful models for the inactivated state. Unique NMR studies of full-length KcsA in hydrated bilayers provide strong evidence for such a mutual coupling across the bilayer: namely, upon removing ambient potassium ions, changes are seen in the NMR shifts of carboxylates E118 and E120 in the pH gate in the hinges of the inner transmembrane helix (98-103), and in the selectivity filter, all of which resemble changes seen upon acid-induced opening and inhibition and suggest that ion release can trigger channel helix opening.

  18. Splice isoform estrogen receptors as integral transmembrane proteins.

    PubMed

    Kim, Kyung Hee; Toomre, Derek; Bender, Jeffrey R

    2011-11-01

    In addition to enhancing or repressing transcription, steroid hormone receptors rapidly transduce kinase activation signals. On ligand engagement, an N-terminus-truncated splice isoform of estrogen receptor (ER) α, ER46, triggers membrane-initiated signals, resulting in endothelial nitric oxide synthase (eNOS) activation and endothelial NO production. The orientation of ER46 at the plasma membrane is incompletely defined. With the use of ecliptic pHluorin-fused ER46, total internal reflection fluorescence microscopy in live human endothelial cells illustrates that ER46 can topologically conform to a type I transmembrane protein structure. Mutation of isoleucine-386 at the center of ER46's transmembrane hydrophobic core prevents membrane spanning, obscures the N-terminal ectodomain, and effects a marked reduction in membrane-impermeant estrogen binding with diminished rapid eNOS activation and NO production, despite maintained genomic induction of an estrogen response element-luciferase reporter. Thus there exist pools of transmembrane steroid hormone receptors that are efficient signaling molecules and potential novel therapeutic targets.

  19. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  20. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1995-01-01

    We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.

  1. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  2. NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

    PubMed Central

    Siriwardana, Chamindika L.; Holt III, Ben F.

    2016-01-01

    Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9) are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP) transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5), which has well-demonstrated roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 triple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surprisingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception, suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomorphogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHOGENIC 1 (cop1) mutants. Thus, our data strongly suggest that NF-Y transcription factors have important roles as positive regulators of photomorphogenesis, and in conjunction with other recent reports, implies that the NF-Y are multifaceted regulators of early seedling development. PMID:27685091

  3. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.

    PubMed

    Waters, Mark T; Smith, Steven M

    2013-01-01

    Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the α/β hydrolase KAI2 is necessary for responses to karrikins. Both MAX2 and KAI2 are essential for normal light-dependent seedling development. The bZIP transcription factor HY5 acts downstream of multiple photoreceptors and promotes photomorphogenesis, but its relationship with MAX2 and KAI2 in terms of seedling development and responses to karrikins and strigolactones is poorly defined. Here, we demonstrate that HY5 action is genetically separable from that of MAX2 and KAI2. While hy5 mutants have weak hypocotyl elongation responses to karrikins and the artificial strigolactone GR24, they have normal transcriptional responses, suggesting that HY5 is not involved in perception or action of karrikins or strigolactones. Furthermore, we show that overexpression of KAI2 is sufficient to enhance responses to both karrikins and GR24 in wild-type seedlings, and that KAI2 overexpression partially suppresses the hy5 long hypocotyl phenotype. These results suggest that KAI2 and MAX2 define a regulatory pathway that largely operates independently of HY5 to mediate seedling responses to abiotic signals such as smoke and light.

  4. Ectopic expression of Arabidopsis FD and FD PARALOGUE in rice results in dwarfism with size reduction of spikelets

    PubMed Central

    Jang, Seonghoe; Li, Hsing-Yi; Kuo, Mei-Lin

    2017-01-01

    Key flowering genes, FD and FD PARALOGUE (FDP) encoding bZIP transcription factors that interact with a FLOWERING LOCUS T (FT) in Arabidopsis were ectopically expressed in rice since we found AtFD and AtFDP also interact with HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Transgenic rice plants overexpressing AtFD and AtFDP caused reduction in plant height and spikelet size with decreased expression of genes involved in cell elongation without significant flowering time alteration in spite of increased expression of OsMADS14 and OsMADS15, rice homologues of APETALA1 (AP1) in the leaves. Simultaneous overexpression of AtFD and AtFDP enhanced phenotypes seen with overexpression of either single gene while transgenic rice plants expressing AtFD or AtFDP under the control of phloem-specific Hd3a promoter were indistinguishable from wild-type rice. Candidate genes responsible for the phenotypes were identified by comparison of microarray hybridization and their expression pattern was also examined in WT and transgenic rice plants. It has so far not been reported that AtFD and AtFDP affect cell elongation in plants, and our findings provide novel insight into the possible roles of AtFD and AtFDP in the mesophyll cells of plants, and potential genetic tools for manipulation of crop architecture. PMID:28290557

  5. Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA.

    PubMed

    Miyazono, Ken-ichi; Koura, Tsubasa; Kubota, Keiko; Yoshida, Takuya; Fujita, Yasunari; Yamaguchi-Shinozaki, Kazuko; Tanokura, Masaru

    2012-04-01

    The AREB/ABF family of bZIP transcription factors play a key role in drought stress response and tolerance during the vegetative stage in plants. To reveal the DNA-recognition mechanism of the AREB/ABF family of proteins, the bZIP domain of OsAREB8, an AREB/ABF-family protein from Oryza sativa, was expressed in Escherichia coli, purified and crystallized with its cognate DNA. Crystals of the OsAREB8-DNA complex were obtained by the sitting-drop vapour-diffusion method at 277 K with a reservoir solution consisting of 50 mM MES pH 6.4, 29% MPD, 2 mM spermidine, 20 mM magnesium acetate and 100 mM sodium chloride. A crystal diffracted X-rays to 3.65 Å resolution and belonged to space group C222, with unit-cell parameters a = 155.1, b = 206.7, c = 38.5 Å. The crystal contained one OsAREB8-DNA complex in the asymmetric unit.

  6. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT).

    PubMed

    Yasuma, Keiko; Yasunaga, Jun-ichirou; Takemoto, Keiko; Sugata, Kenji; Mitobe, Yuichi; Takenouchi, Norihiro; Nakagawa, Masanori; Suzuki, Yutaka; Matsuoka, Masao

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT's ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1.

  7. High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system.

    PubMed

    Takemori, Nobuaki; Takemori, Ayako; Matsuoka, Kazuhiro; Morishita, Ryo; Matsushita, Natsuki; Aoshima, Masato; Takeda, Hiroyuki; Sawasaki, Tatsuya; Endo, Yaeta; Higashiyama, Shigeki

    2015-02-01

    Using a wheat germ cell-free protein synthesis system, we developed a high-throughput method for the synthesis of stable isotope-labeled full-length transmembrane proteins as proteoliposomes to mimic the in vivo environment, and we successfully constructed an internal standard library for targeted transmembrane proteomics by using mass spectrometry.

  8. Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties.

    PubMed

    Sun, Qi; Emanuelsson, Olof; van Wijk, Klaas J

    2004-06-01

    Carefully curated proteomes of the inner envelope membrane, the thylakoid membrane, and the thylakoid lumen of chloroplasts from Arabidopsis were assembled based on published, well-documented localizations. These curated proteomes were evaluated for distribution of physical-chemical parameters, with the goal of extracting parameters for improved subcellular prediction and subsequent identification of additional (low abundant) components of each membrane system. The assembly of rigorously curated subcellular proteomes is in itself also important as a parts list for plant and systems biology. Transmembrane and subcellular prediction strategies were evaluated using the curated data sets. The three curated proteomes differ strongly in average isoelectric point and protein size, as well as transmembrane distribution. Removal of the cleavable, N-terminal transit peptide sequences greatly affected isoelectric point and size distribution. Unexpectedly, the Cys content was much lower for the thylakoid proteomes than for the inner envelope. This likely relates to the role of the thylakoid membrane in light-driven electron transport and helps to avoid unwanted oxidation-reduction reactions. A rule of thumb for discriminating between the predicted integral inner envelope membrane and integral thylakoid membrane proteins is suggested. Using a combination of predictors and experimentally derived parameters, four plastid subproteomes were predicted from the fully annotated Arabidopsis genome. These predicted subproteomes were analyzed for their properties and compared to the curated proteomes. The sensitivity and accuracy of the prediction strategies are discussed. Data can be extracted from the new plastid proteome database (http://ppdb.tc.cornell.edu).

  9. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics.

    PubMed

    Lease, Kevin A; Walker, John C

    2006-11-01

    In the era of genomics, if a gene is not annotated, it is not investigated. Due to their small size, genes encoding peptides are often missed in genome annotations. Secreted peptides are important regulators of plant growth, development, and physiology. Identification of additional peptide signals by sequence homology searches has had limited success due to sequence heterogeneity. A bioinformatics approach was taken to find unannotated Arabidopsis (Arabidopsis thaliana) peptides. Arabidopsis chromosome sequences were searched for all open reading frames (ORFs) encoding peptides and small proteins between 25 and 250 amino acids in length. The translated ORFs were then sequentially queried for the presence of an amino-terminal cleavable signal peptide, the absence of transmembrane domains, and the absence of endoplasmic reticulum lumenal retention sequences. Next, the ORFs were filtered against the The Arabidopsis Information Resource 6.0 annotated Arabidopsis genes to remove those ORFs overlapping known genes. The remaining 33,809 ORFs were placed in a relational database to which additional annotation data were deposited. Genome-wide tiling array data were compared with the coordinates of the ORFs, supporting the possibility that many of the ORFs may be expressed. In addition, clustering and sequence similarity analyses revealed that many of the putative peptides are in gene families and/or appear to be present in the rice (Oryza sativa) genome. A subset of the ORFs was evaluated by reverse transcription-PCR and, for one-fifth of those, expression was detected. These results support the idea that the number and diversity of plant peptides is broader than currently assumed. The peptides identified and their annotation data may be viewed or downloaded through a searchable Web interface at peptidome.missouri.edu.

  10. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs.

    PubMed

    Hernando, Elsa; Soto-Cerrato, Vanessa; Cortés-Arroyo, Susana; Pérez-Tomás, Ricardo; Quesada, Roberto

    2014-03-21

    Ten synthetic analogs of the marine alkaloids tambjamines, bearing aromatic enamine moieties, have been synthesized. These compounds proved to be highly efficient transmembrane anion transporters in model liposomes. Changes in the electronic nature of the substituents of the aromatic enamine or the alkoxy group of the central pyrrole group did not affect this anionophore activity. The in vitro activity of these compounds has also been studied. They trigger apoptosis in several cancer cell lines with IC50 values in the low micromolar range as well as modify the intracellular pH, inducing the basification of acidic organelles.

  11. Membrane topology of transmembrane proteins: determinants and experimental tools.

    PubMed

    Lee, Hunsang; Kim, Hyun

    2014-10-17

    Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.

  12. Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies.

    PubMed

    Odolczyk, Norbert; Zielenkiewicz, Piotr

    2014-07-01

    Cystic fibrosis (CF) is one of the most common genetic disorders, caused by loss of function mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. CFTR is a member of ATP-binding cassette (ABC) transporters superfamily and functions as an ATP-gated anion channel. This review summarises the vast majority of the efforts which utilised molecular modelling approaches to gain insight into the various aspects of CFTR protein, related to its structure, dynamic properties, function and interactions with other protein partners, or drug-like compounds, with emphasis to its relation to CF disease.

  13. A predicted interactome for Arabidopsis.

    PubMed

    Geisler-Lee, Jane; O'Toole, Nicholas; Ammar, Ron; Provart, Nicholas J; Millar, A Harvey; Geisler, Matt

    2007-10-01

    The complex cellular functions of an organism frequently rely on physical interactions between proteins. A map of all protein-protein interactions, an interactome, is thus an invaluable tool. We present an interactome for Arabidopsis (Arabidopsis thaliana) predicted from interacting orthologs in yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), fruitfly (Drosophila melanogaster), and human (Homo sapiens). As an internal quality control, a confidence value was generated based on the amount of supporting evidence for each interaction. A total of 1,159 high confidence, 5,913 medium confidence, and 12,907 low confidence interactions were identified for 3,617 conserved Arabidopsis proteins. There was significant coexpression of genes whose proteins were predicted to interact, even among low confidence interactions. Interacting proteins were also significantly more likely to be found within the same subcellular location, and significantly less likely to be found in conflicting localizations than randomly paired proteins. A notable exception was that proteins located in the Golgi were more likely to interact with Golgi, vacuolar, or endoplasmic reticulum sorted proteins, indicating possible docking or trafficking interactions. These predictions can aid researchers by extending known complexes and pathways with candidate proteins. In addition we have predicted interactions for many previously unknown proteins in known pathways and complexes. We present this interactome, and an online Web interface the Arabidopsis Interactions Viewer, as a first step toward understanding global signaling in Arabidopsis, and to whet the appetite for those who are awaiting results from high-throughput experimental approaches.

  14. Analysis of dihedral angle preferences for alanine and glycine residues in alpha and beta transmembrane regions.

    PubMed

    Saravanan, K M; Krishnaswamy, S

    2015-01-01

    For the past 50 years, the Ramachandran map has been used effectively to study the protein structure and folding. However, though extensive analysis has been done on dihedral angle preferences of residues in globular proteins, related studies and reports of membrane proteins are limited. It is of interest to explore the conformational preferences of residues in transmembrane regions of membrane proteins which are involved in several important and diverse biological processes. Hence, in the present work, a systematic comparative computational analysis has been made on dihedral angle preferences of alanine and glycine in alpha and beta transmembrane regions (the two major classes of transmembrane proteins) with the aid of the Ramachandran map. Further, the conformational preferences of residues in transmembrane regions were compared with the non-transmembrane regions. We have extracted cation-pi interacting residues present in transmembrane regions and explored the dihedral angle preferences. From our observations, we reveal the higher percentage of occurrences of glycine in alpha and beta transmembrane regions than other hydrophobic residues. Further, we noted a clear shift in ψ-angle preferences of glycine residues from negative bins in alpha transmembrane regions to positive bins in beta transmembrane regions. Also, cation-pi interacting residues in beta transmembrane regions avoid preferring ψ-angles in the range of -59° to -30°. In this article, we insist that the studies on preferences of dihedral angles in transmembrane regions, thorough understanding of structure and folding of transmembrane proteins, can lead to modeling of novel transmembrane regions towards designing membrane proteins.

  15. Transmembrane Domains of Attraction on the TSH Receptor

    PubMed Central

    Ali, M. Rejwan; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    The TSH receptor (TSHR) has the propensity to form dimers and oligomers. Our data using ectodomain-truncated TSHRs indicated that the predominant interfaces for oligomerization reside in the transmembrane (TM) domain. To map the potentially interacting residues, we first performed in silico studies of the TSHR transmembrane domain using a homology model and using Brownian dynamics (BD). The cluster of dimer conformations obtained from BD analysis indicated that TM1 made contact with TM4 and two residues in TM2 made contact with TM5. To confirm the proximity of these contact residues, we then generated cysteine mutants at all six contact residues predicted by the BD analysis and performed cysteine cross-linking studies. These results showed that the predicted helices in the protomer were indeed involved in proximity interactions. Furthermore, an alternative experimental approach, receptor truncation experiments and LH receptor sequence substitution experiments, identified TM1 harboring a major region involved in TSHR oligomerization, in agreement with the conclusion from the cross-linking studies. Point mutations of the predicted interacting residues did not yield a substantial decrease in oligomerization, unlike the truncation of the TM1, so we concluded that constitutive oligomerization must involve interfaces forming domains of attraction in a cooperative manner that is not dominated by interactions between specific residues. PMID:25406938

  16. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters

    PubMed Central

    Klinger, Stine C.; Siupka, Piotr; Nielsen, Morten S.

    2015-01-01

    Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN. PMID:26154780

  17. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  18. Forming transmembrane channels using end-functionalized nanotubes.

    PubMed

    Dutt, Meenakshi; Kuksenok, Olga; Little, Steven R; Balazs, Anna C

    2011-01-01

    Using dissipative particle dynamics (DPD) simulations, we examine the interaction between amphiphilic nanotubes and lipid bilayer membranes. The nanotubes are represented by a hydrophobic shaft that is end-functionalized with hydrophilic groups. Nanotubes that are capped by a monolayer of hydrophilic beads or also encompass hydrophilic "hairs" on just one end of the shaft are found to spontaneously penetrate and assume a transmembrane position; the process, however, depends critically on the membrane tension. On the other hand, nanotubes that include hydrophilic hairs at both ends of the hydrophobic shaft are not observed to spontaneously self-organize into the bilayer. When the membrane is stretched to form a pore, the nanotubes with two hairy ends adsorb on the edge of the pore and become localized in the membrane, thus forming a transmembrane channel. The findings from these studies provide guidelines for creating biomimetic nanotube channels that are capable of selectively transporting molecules through the membrane in response to changes in the local environment.

  19. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    PubMed

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane.

  20. Highly Coarse-Grained Representations of Transmembrane Proteins

    PubMed Central

    2017-01-01

    Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies. PMID:28043122

  1. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina.

    PubMed

    Matsuoka, Ryota L; Nguyen-Ba-Charvet, Kim T; Parray, Aijaz; Badea, Tudor C; Chédotal, Alain; Kolodkin, Alex L

    2011-02-10

    In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL), a laminar region that is conventionally divided into five major parallel sublaminae. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs) and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo for the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes.

  2. Transmembrane semaphorin signaling controls laminar stratification in the mammalian retina

    PubMed Central

    Matsuoka, Ryota L.; Nguyen-Ba-Charvet, Kim T.; Parray, Aijaz; Badea, Tudor C.; Chédotal, Alain; Kolodkin, Alex L.

    2010-01-01

    In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells, and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL)1–3: a laminar region that is conventionally divided into five major parallel sublaminae1,2. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here, we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs), and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo with respect to the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes. PMID:21270798

  3. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    NASA Astrophysics Data System (ADS)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  4. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  5. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.

    PubMed

    El Hiani, Yassine; Linsdell, Paul

    2014-10-10

    Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd(2+) bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd(2+) bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd(2+) bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd(2+) bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd(2+) bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close.

  6. Metal Bridges Illuminate Transmembrane Domain Movements during Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel*

    PubMed Central

    El Hiani, Yassine; Linsdell, Paul

    2014-01-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd2+ bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd2+ bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd2+ bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd2+ bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd2+ bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close. PMID:25143385

  7. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases

    PubMed Central

    Shiu, Shin-Han; Bleecker, Anthony B.

    2001-01-01

    Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. PMID:11526204

  8. The salty tale of Arabidopsis.

    PubMed

    Sanders, D

    2000-06-29

    High concentrations of sodium chloride are toxic to most plant species. New insights into the mechanisms by which plants tolerate salt have emerged from the identification of genes in Arabidopsis thaliana that play a critical part in physiological resistance to salt.

  9. Araport: the Arabidopsis Information Portal

    PubMed Central

    Krishnakumar, Vivek; Hanlon, Matthew R.; Contrino, Sergio; Ferlanti, Erik S.; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D.; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A.; Stubbs, Joseph; Sullivan, Julie M.; Krampis, Konstantinos; Miller, Jason R.; Micklem, Gos; Vaughn, Matthew; Town, Christopher D.

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. PMID:25414324

  10. Functional relevance of transmembrane domains in membrane fusion.

    PubMed

    Nikolaus, Jörg; Herrmann, Andreas

    2012-11-01

    Membrane fusion is ubiquitous in life. Fusion of biological membranes is mediated by specialized fusion proteins anchored to the bilayers destined to fuse. Here we describe these proteins as being instrumental in viral, intracellular and developmental fusion. Next, we review experimental and theoretical evidence that points to fusion in the different systems as following a common 'fusion through hemifusion' pathway. We also focus on the structure and dynamics of the transmembrane segment that anchors the fusion proteins to the bilayer, and its role in driving fusion. In particular, we highlight the influence of this single segment on the surrounding membrane lipids and on the overall shape of the membrane along the way to fusion.

  11. Large-Conductance Transmembrane Porin Made from DNA Origami

    PubMed Central

    2016-01-01

    DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the DNA porin into the lipid membrane, creating a transmembrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins’ large ionic conductance. PMID:27504755

  12. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    PubMed

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  13. Cystic fibrosis transmembrane conductance regulator expression in human hypothalamus.

    PubMed

    Mulberg, A E; Weyler, R T; Altschuler, S M; Hyde, T M

    1998-01-05

    We have previously characterized the expression of the cystic fibrosis transmembrane conductance regulator protein (CFTR) gene, mRNA and protein in rat brain with reverse transcriptase (RT)-PCR amplification, in situ hybridization and immunocytochemistry. We now report that the CFTR mRNA is expressed in the human anterior hypothalamus, an area involved in regulation of appetite, resting energy expenditure and sexual differentiation. Expression of CFTR in neurons localized to this region may elucidate the pathogenesis of other non-pulmonary manifestations of cystic fibrosis which commonly are observed in children with CF, including congenital absence of the vas deferens. Neuron-specific expression of CFTR in brain may be involved in the regulation of homeostatic functions including reproductive function and fertility through effects on neurosecretion, i.e. GnRH release. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain my lead to alteration in physiological function.

  14. Large-Conductance Transmembrane Porin Made from DNA Origami.

    PubMed

    Göpfrich, Kerstin; Li, Chen-Yu; Ricci, Maria; Bhamidimarri, Satya Prathyusha; Yoo, Jejoong; Gyenes, Bertalan; Ohmann, Alexander; Winterhalter, Mathias; Aksimentiev, Aleksei; Keyser, Ulrich F

    2016-09-27

    DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the DNA porin into the lipid membrane, creating a transmembrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins' large ionic conductance.

  15. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.

    PubMed

    Zhang, Zhe; Chen, Jue

    2016-12-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.

  16. Retrieval of transmembrane proteins to the endoplasmic reticulum

    PubMed Central

    1993-01-01

    A COOH-terminal double lysine motif maintains type I transmembrane proteins in the ER. Proteins tagged with this motif, eg., CD8/E19 and CD4/E19, rapidly receive post-translational modifications characteristic of the intermediate compartment and partially colocalized to this organelle. These proteins also received modifications characteristic of the Golgi but much more slowly. Lectin staining localized these Golgi modified proteins to ER indicating that this motif is a retrieval signal. Differences in the subcellular distribution and rate of post-translational modification of CD8 maintained in the ER by sequences derived from a variety of ER resident proteins suggested that the efficiency of retrieval was dependent on the sequence context of the double lysine motif and that retrieval may be initiated from multiple positions along the exocytotic pathway. PMID:8468349

  17. ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Li, C; Ramjeesingh, M; Wang, W; Garami, E; Hewryk, M; Lee, D; Rommens, J M; Galley, K; Bear, C E

    1996-11-08

    The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP-activated chloride channel thought to be critical for salt and water transport by epithelial cells. Plausible models exist to describe a role for ATP hydrolysis in CFTR channel activity; however, biochemical evidence that CFTR possesses intrinsic ATPase activity is lacking. In this study, we report the first measurements of the rate of ATP hydrolysis by purified, reconstituted CFTR. The mutation CFTRG551D resides within a motif conserved in many nucleotidases and is known to cause severe human disease. Following reconstitution the mutant protein exhibited both defective ATP hydrolysis and channel gating, providing direct evidence that CFTR utilizes ATP to gate its channel activity.

  18. A functional protein pore with a "retro" transmembrane domain.

    PubMed Central

    Cheley, S.; Braha, O.; Lu, X.; Conlan, S.; Bayley, H.

    1999-01-01

    Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif. PMID:10386875

  19. Transmembrane potentials during high voltage shocks in ischemic cardiac tissue.

    PubMed

    Holley, L K; Knisley, S B

    1997-01-01

    Transmembrane, voltage sensitive fluorescent dye (TMF) recording techniques have shown that high voltage shocks (HVS), typically used in defibrillation, produce either hyper- or depolarization of the transmembrane potential (TMP) when delivered in the refractory period of an action potential (AP) in normal cardiac tissue (NT). Further, HVS produce an extension of the AP, which has been hypothesized as a potential mechanism for electrical defibrillation. We examined whether HVS modify TMP of ischemic tissue (IT) in a similar manner. In seven Langendorff rabbit hearts, recordings of APs were obtained in both NT and IT with TMF using di-4-ANEPPS, and diacetylmonoxime (23 microM) to avoid motion artifacts. Local ischemia was produced by occlusion of the LAD, HVS of either biphasic (5 + 5 ms) or (3 + 2 ms) or monophasic shapes (5 ms) were delivered at varying times (20%-90%) of the paced AP. Intracardiac ECG and TMF recordings of the TMP were each amplified, recorded, and digitized at a frequency of 1 kHz. The paced AP in IT was triangular in shape with no obvious phase 3 plateau, typically seen in NT. There was normally a reduced AP amplitude (expressed as fractional fluorescence) in IT (2.6% +/- 1.79%) compared to 3.8% +/- 0.66% in NT, and shortened AP duration (137 +/- 42 vs 171 +/- 11 ms). One hundred-Volt HVS delivered during the refractory period of paced AP in IT in five rabbits, elicited a depolarization response of the TMP with an amplitude up to three times greater than the paced AP. This is in contrast to NT where the 100-V HVS produced hyperpolarization in four hearts, and only a slight depolarization response in one heart. These results suggest that HVS, typically delivered by a defibrillation shock, modify TMPs in a significantly different manner for ischemic cells, which may influence success in defibrillation.

  20. Roles of carboxyl groups in the transmembrane insertion of peptides

    PubMed Central

    Barrera, Francisco N.; Weerakkody, Dhammika; Anderson, Michael; Andreev, Oleg A.; Reshetnyak, Yana K.; Engelman, Donald M.

    2011-01-01

    We have used the pHLIP® peptide to study the roles of carboxyl groups in transmembrane peptide insertion. The pH (low) insertion peptide (pHLIP) binds to the surface of a lipid bilayer as a disordered peptide at neutral pH, and when the pH is lowered it inserts across the membrane to form a transmembrane helix. Peptide insertion is reversed when the pH is raised above the characteristic pKa (6.0). A key event facilitating the membrane insertion is the protonation of aspartic (Asp) and/or glutamic (Glu) acid residues, since at neutral pH their negatively charged side chains hinder membrane insertion. In order to gain mechanistic understanding, we studied the membrane insertion and exit of a series of pHLIP variants where the four Asp residues were sequentially mutated to nonacidic residues, including histidine (His). Our results show that the presence of His residues does not prevent the pH-dependent peptide membrane insertion at ~pH 4 driven by the protonation of carboxyl groups at the inserting end of the peptide. A further pH drop leads to the protonation of His residues in the TM part of peptide, which induces peptide exit from the bilayer. We also find that the number of ionizable residues that undergo a change in protonation during membrane insertion correlates with the pH-dependent insertion into and exit from the lipid bilayer, and that cooperativity increases with their number. We expect that our understanding will be used to improve the targeting of acidic diseased tissue by pHLIP peptides. PMID:21888917

  1. Spatial changes in the transmembrane potential during extracellular electric stimulation.

    PubMed

    Zhou, X; Knisley, S B; Smith, W M; Rollins, D; Pollard, A E; Ideker, R E

    1998-11-16

    The purpose of this study was to determine the spatial changes in the transmembrane potential caused by extracellular electric field stimulation. The transmembrane potential was recorded in 10 guinea pig papillary muscles in a tissue bath using a double-barrel microelectrode. After 20 S1 stimuli, a 10-ms square wave S2 shock field with a 30-ms S1-S2 coupling interval was given via patch shock electrodes 1 cm on either side of the tissue during the action potential plateau. Two shock strengths (2.1+/-0.2 and 6.5+/-0.6 V/cm) were tested with both shock polarities. The recording site was moved across the tissue along fibers with either 200 micrometer (macroscopic group [n=5], 12 consecutive recording sites over a 2. 2-mm tissue length in each muscle) or 20 micrometer (microscopic group [n=5], 21 consecutive recording sites over a 0.4-mm tissue length in each muscle) between adjacent recording sites. In the macroscopic group, the portion of the tissue toward the anode was hyperpolarized, whereas the portion toward the cathode was depolarized, with 1 zero-potential crossing from hyperpolarization to depolarization present near the center of the tissue. In the microscopic group, only 1 zero-potential crossing was observed in the center region of the tissue, whereas, away from the center, only hyperpolarization was observed toward the anode and depolarization toward the cathode. Although these results are consistent with predictions from field stimulation of continuous representations of myocardial structure, ie, the bidomain and cable equation models, they are not consistent with the prediction of depolarization-hyperpolarization oscillation from representations based on cellular-level resistive discontinuities associated with gap junctions, ie, the sawtooth model.

  2. Molecular Dynamics Simulation of Membranes and a Transmembrane Helix

    NASA Astrophysics Data System (ADS)

    Duong, Tap Ha; Mehler, Ernest L.; Weinstein, Harel

    1999-05-01

    Three molecular dynamics (MD) simulations of 1.5-ns length were carried out on fully hydrated patches of dimyristoyl phosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. The simulations were performed using different ensembles and electrostatic conditions: a microcanonical ensemble or constant pressure-temperature ensemble, with or without truncated electrostatic interactions. Calculated properties of the membrane patches from the three different protocols were compared to available data from experiments. These data include the resulting overall geometrical dimensions, the order characteristics of the lipid hydrocarbon chains, as well as various measures of the conformations of the polar head groups. The comparisons indicate that the simulation carried out within the microcanonical ensemble with truncated electrostatic interactions yielded results closest to the experimental data, provided that the initial equilibration phase preceding the production run was sufficiently long. The effects of embedding a non-ideal helical protein domain in the membrane patch were studied with the same MD protocols. This simulation was carried out for 2.5 ns. The protein domain corresponds to the seventh transmembrane segment (TMS7) of the human serotonin 5HT 2Areceptor. The peptide is composed of two α-helical segments linked by a hinge domain around a perturbing Asn-Pro motif that produces at the end of the simulation a kink angle of nearly 80° between the two helices. Several aspects of the TMS7 structure, such as the bending angle, backbone Φ and Ψ torsion angles, the intramolecular hydrogen bonds, and the overall conformation, were found to be very similar to those determined by NMR for the corresponding transmembrane segment of the tachykinin NK-1 receptor. In general, the simulations were found to yield structural and dynamic characteristics that are in good agreement with experiment. These findings support the application of simulation methods to the study

  3. Analysis of Structured and Intrinsically Disordered Regions of Transmembrane Proteins

    PubMed Central

    Xue, Bin; Li, Liwei; Meroueh, Samy O.; Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    Integral membrane proteins display two major types of transmembrane structures, helical bundles and beta barrels. The main functional roles of transmembrane proteins are the transport of small molecules and cell signaling, and sometimes these two roles are coupled. For cytosolic, water-soluble proteins, signaling and regulatory functions are often carried out by intrinsically disordered regions. Our long range goal is to determine whether integral membrane proteins likewise often use disordered regions for signaling and regulation. Here we carried out a systematic bioinformatics investigation of intrinsically disordered regions obtained from integral membrane proteins for which crystal structures have been determined, and for which the intrinsic disorder was identified as missing electron density. We found 120 disorder-containing integral membrane proteins having a total of 33,675 residues, with 3209 of the residues distributed among 240 different disordered regions. These disordered regions were compared with those obtained from water-soluble proteins with regard to their amino acid compositional biases, and with regard to accuracies of various disorder predictors. The results of these analyses show that the disordered regions from helical bundle integral membrane proteins, those from beta barrel integral membrane proteins, and those from water soluble proteins all exhibit statistically distinct amino acid compositional biases. Despite these differences in composition, current algorithms make reasonably accurate predictions of disorder for these membrane proteins. Although the small size of the current data sets are limiting, these results suggest that developing new predictors that make use of data from disordered regions in helical bundles and beta barrels, especially as these datasets increase in size, will likely lead to significantly more accurate disorder predictions for these two classes of integral membrane proteins. PMID:19585006

  4. Transmembrane Pores Formed by Human Antimicrobial Peptide LL-37

    SciTech Connect

    Qian, Shuo

    2011-01-01

    Human LL-37 is a multifunctional cathelicidin peptide that has shown a wide spectrum of antimicrobial activity by permeabilizing microbial membranes similar to other antimicrobial peptides; however, its molecular mechanism has not been clarified. Two independent experiments revealed LL-37 bound to membranes in the {alpha}-helical form with the axis lying in the plane of membrane. This led to the conclusion that membrane permeabilization by LL-37 is a nonpore carpet-like mechanism of action. Here we report the detection of transmembrane pores induced by LL-37. The pore formation coincided with LL-37 helices aligning approximately normal to the plane of the membrane. We observed an unusual phenomenon of LL-37 embedded in stacked membranes, which are commonly used in peptide orientation studies. The membrane-bound LL-37 was found in the normal orientation only when the membrane spacing in the multilayers exceeded its fully hydrated value. This was achieved by swelling the stacked membranes with excessive water to a swollen state. The transmembrane pores were detected and investigated in swollen states by means of oriented circular dichroism, neutron in-plane scattering, and x-ray lamellar diffraction. The results are consistent with the effect of LL-37 on giant unilamellar vesicles. The detected pores had a water channel of radius 2333 {angstrom}. The molecular mechanism of pore formation by LL-37 is consistent with the two-state model exhibited by magainin and other small pore-forming peptides. The discovery that peptide-membrane interactions in swollen states are different from those in less hydrated states may have implications for other large membrane-active peptides and proteins studied in stacked membranes.

  5. Photometric recording of transmembrane potential in outer hair cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Oghalai, John S.; Saggau, Peter; Rabbitt, Richard D.; Brownell, William E.

    2006-06-01

    Cochlear outer hair cells (OHCs) are polarized epithelial cells that have mechanoelectrical transduction channels within their apical stereocilia and produce electromotile force along their lateral wall. Phase shifts, or time delays, in the transmembrane voltage occurring at different axial locations along the cell may contribute to our understanding of how these cells operate at auditory frequencies. We developed a method to optically measure the phase of the OHC transmembrane potential using the voltage-sensitive dye (VSD) di-8-ANEPPS. The exit aperture of a fibre-optic light source was driven in two dimensions so that a 24 µm spot of excitation light could be positioned along the length of the OHC. We used the whole-cell patch-clamp technique in the current-clamp mode to stimulate the OHC at the base. The photometric response and the voltage response were monitored with a photodetector and patch-clamp amplifier, respectively. The photometric response was used to measure the regional changes in the membrane potential in response to maintained (dc) and sinusoidal (ac) current stimuli applied at the base of the cell. We used a neutral density filter to lower the excitation light intensity and reduce phototoxicity. A sensitive detector and lock-in amplifier were used to measure the small ac VSD signal. This permitted measurements of the ac photometric response below the noise floor of the static fluorescence. The amplitude and phase components of the photometric response were recorded for stimuli up to 800 Hz. VSD data at 400-800 Hz show the presence of a small phase delay between the stimulus voltage at the base of the cell and the local membrane potential measured along the lateral wall. Results are consistent with the hypothesis that OHCs exhibit inhomogeneous membrane potentials that vary with position in analogy with the voltage in nerve axons.

  6. Impact of histidine residues on the transmembrane helices of viroporins.

    PubMed

    Wang, Yan; Park, Sang Ho; Tian, Ye; Opella, Stanley J

    2013-11-01

    Abstract The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein 'u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.

  7. Prediction of transmembrane helices from hydrophobic characteristics of proteins.

    PubMed

    Ponnuswamy, P K; Gromiha, M M

    1993-10-01

    Membrane proteins, requiring to be embedded into the lipid bilayers, have evolved to have amino acid sequences that will fold with a hydrophobic surface in contact with the alkane chains of the lipids and polar surface in contact with the aqueous phases on both sides of the membrane and the polar head groups of the lipids. It is generally assumed that the characteristics of the aqueous parts of the membrane proteins are similar to those of normal globular proteins, and the embedded parts are highly hydrophobic. In our earlier works, we introduced the concept of 'surrounding hydrophobicity' and developed a hydrophobicity scale for the 20 amino acid residues, and applied it successfully to the study of the family of globular proteins. In this work we use the concept of surrounding hydrophobicity to indicate quantitatively how the aqueous parts of membrane proteins compare with the normal globular proteins, and how rich the embedded parts are in their hydrophobic activity. We then develop a surrounding hydrophobicity scale applicable to membrane proteins, by mixing judicially the surrounding hydrophobicities observed in the crystals of the membrane protein, photosynthetic reaction center from the bacterium Rhodopseudomonas viridis, porin from Rhodobacter capsulatus and a set of 64 globular proteins. A predictive scheme based on this scale predicts from amino acid sequence, transmembrane segments in PRC and randomly selected 26 membrane proteins to 80% level of accuracy. This is a much higher predictive power when compared to the existing popular methods. A new procedure to measure the amphipathicity of sequence segments is proposed, and it is used to characterize the transmembrane parts of the sample membrane proteins.

  8. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  9. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding

    PubMed Central

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  10. Bilayer mechanical properties regulate transmembrane helix mobility and enzymatic state of CD39†

    PubMed Central

    Grinthal, Alison; Guidotti, Guido

    2008-01-01

    CD39 can exist in at least two distinct functional states depending on the presence and intact membrane integration of its two transmembrane helices. In native membranes, the transmembrane helices undergo dynamic rotational motions that are required for enzymatic activity and are regulated by substrate binding. In the present study we show that bilayer mechanical properties regulate conversion between the two enzymatic functional states by modulating transmembrane helix dynamics. Alteration of membrane properties by insertion of cone shaped or inverse cone shaped amphiphiles or by cholesterol removal switches CD39 to the same enzymatic state as does removing or solubilizing the transmembrane domains. The same membrane alterations increase the propensity of both transmembrane helices to rotate within the packed structure, resulting in a structure with greater mobility but not an altered primary conformation. Membrane alteration also abolishes the ability of substrate to stabilize the helices in their primary conformation, indicating a loss of coupling between substrate binding and transmembrane helix dynamics. Removal of either transmembrane helix mimics the effect of membrane alteration on the mobility and substrate sensitivity of the remaining helix, suggesting that the ends of the extracellular domain have intrinsic flexibility. We suggest that a mechanical bilayer property, potentially elasticity, regulates CD39 by altering the balance between stability and flexibility of its transmembrane helices and, in turn, of its active site. PMID:17198399

  11. A specific interface between integrin transmembrane helices and affinity for ligand.

    PubMed

    Luo, Bing-Hao; Springer, Timothy A; Takagi, Junichi

    2004-06-01

    Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the alpha and beta subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin alpha(IIbeta) and beta(3) transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the alpha subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins.

  12. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins

    PubMed Central

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G.; Medzihradszky, Katalin F.; Szakács, Gergely; Tusnády, Gábor E.

    2017-01-01

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins. PMID:28211907

  13. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins.

    PubMed

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E

    2017-02-13

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.

  14. Structural organization and interactions of transmembrane domains in tetraspanin proteins

    PubMed Central

    Kovalenko, Oleg V; Metcalf, Douglas G; DeGrado, William F; Hemler, Martin E

    2005-01-01

    Background Proteins of the tetraspanin family contain four transmembrane domains (TM1-4) linked by two extracellular loops and a short intracellular loop, and have short intracellular N- and C-termini. While structure and function analysis of the larger extracellular loop has been performed, the organization and role of transmembrane domains have not been systematically assessed. Results Among 28 human tetraspanin proteins, the TM1-3 sequences display a distinct heptad repeat motif (abcdefg)n. In TM1, position a is occupied by structurally conserved bulky residues and position d contains highly conserved Asn and Gly residues. In TM2, position a is occupied by conserved small residues (Gly/Ala/Thr), and position d has a conserved Gly and two bulky aliphatic residues. In TM3, three a positions of the heptad repeat are filled by two leucines and a glutamate/glutamine residue, and two d positions are occupied by either Phe/Tyr or Val/Ile/Leu residues. No heptad motif is apparent in TM4 sequences. Mutations of conserved glycines in human CD9 (Gly25 and Gly32 in TM1; Gly67 and Gly74 in TM2) caused aggregation of mutant proteins inside the cell. Modeling of the TM1-TM2 interface in CD9, using a novel algorithm, predicts tight packing of conserved bulky residues against conserved Gly residues along the two helices. The homodimeric interface of CD9 was mapped, by disulfide cross-linking of single-cysteine mutants, to the vicinity of residues Leu14 and Phe17 in TM1 (positions g and c) and Gly77, Gly80 and Ala81 in TM2 (positions d, g and a, respectively). Mutations of a and d residues in both TM1 and TM2 (Gly25, Gly32, Gly67 and Gly74), involved in intramolecular TM1-TM2 interaction, also strongly diminished intermolecular interaction, as assessed by cross-linking of Cys80. Conclusion Our results suggest that tetraspanin intra- and intermolecular interactions are mediated by conserved residues in adjacent, but distinct regions of TM1 and TM2. A key structural element that

  15. Subcellular distribution of tail-anchored proteins in Arabidopsis.

    PubMed

    Kriechbaumer, Verena; Shaw, Rowena; Mukherjee, Joy; Bowsher, Caroline G; Harrison, Anne-Marie; Abell, Ben M

    2009-12-01

    Tail-anchored (TA) proteins function in key cellular processes in eukaryotic cells, such as vesicle trafficking, protein translocation and regulation of transcription. They anchor to internal cell membranes by a C-terminal transmembrane domain, which also serves as a targeting sequence. Targeting occurs post-translationally, via pathways that are specific to the precursor, which makes TA proteins a model system for investigating post-translational protein targeting. Bioinformatics approaches have previously been used to identify potential TA proteins in yeast and humans, yet little is known about TA proteins in plants. The identification of plant TA proteins is important for extending the post-translational model system to plastids, in addition to general proteome characterization, and the identification of functional homologues characterized in other organisms. We identified 454 loci that potentially encode TA proteins in Arabidopsis, and combined published data with new localization experiments to assign localizations to 130 proteins, including 29 associated with plastids. By analysing the tail anchor sequences of characterized proteins, we have developed a tool for predicting localization and estimate that 138 TA proteins are localized to plastids.

  16. Asparagine Metabolic Pathways in Arabidopsis.

    PubMed

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.

  17. Evolution of a transcriptional regulator from a transmembrane nucleoporin.

    PubMed

    Franks, Tobias M; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C N; Young, Janet M; Malik, Harmit S; Gage, Fred H; Hetzer, Martin W

    2016-05-15

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components.

  18. A human phospholipid phosphatase activated by a transmembrane control module.

    PubMed

    Halaszovich, Christian R; Leitner, Michael G; Mavrantoni, Angeliki; Le, Audrey; Frezza, Ludivine; Feuer, Anja; Schreiber, Daniela N; Villalba-Galea, Carlos A; Oliver, Dominik

    2012-11-01

    In voltage-sensitive phosphatases (VSPs), a transmembrane voltage sensor domain (VSD) controls an intracellular phosphoinositide phosphatase domain, thereby enabling immediate initiation of intracellular signals by membrane depolarization. The existence of such a mechanism in mammals has remained elusive, despite the presence of VSP-homologous proteins in mammalian cells, in particular in sperm precursor cells. Here we demonstrate activation of a human VSP (hVSP1/TPIP) by an intramolecular switch. By engineering a chimeric hVSP1 with enhanced plasma membrane targeting containing the VSD of a prototypic invertebrate VSP, we show that hVSP1 is a phosphoinositide-5-phosphatase whose predominant substrate is PI(4,5)P(2). In the chimera, enzymatic activity is controlled by membrane potential via hVSP1's endogenous phosphoinositide binding motif. These findings suggest that the endogenous VSD of hVSP1 is a control module that initiates signaling through the phosphatase domain and indicate a role for VSP-mediated phosphoinositide signaling in mammals.

  19. Insertion of short transmembrane helices by the Sec61 translocon.

    PubMed

    Jaud, Simon; Fernández-Vidal, Mónica; Nilsson, Ingmarie; Meindl-Beinker, Nadja M; Hübner, Nadja C; Tobias, Douglas J; von Heijne, Gunnar; White, Stephen H

    2009-07-14

    The insertion efficiency of transmembrane (TM) helices by the Sec61 translocon depends on helix amino acid composition, the positions of the amino acids within the helix, and helix length. We have used an in vitro expression system to examine systematically the insertion efficiency of short polyleucine segments (L(n), n = 4 ... 12) flanked at either end by 4-residue sequences of the form XXPX-L(n)-XPXX with X = G, N, D, or K. Except for X = K, insertion efficiency (p) is <10% for n < 8, but rises steeply to 100% for n = 12. For X = K, p is already close to 100% for n = 10. A similar pattern is observed for synthetic peptides incorporated into oriented phospholipid bilayer arrays, consistent with the idea that recognition of TM segments by the translocon critically involves physical partitioning of nascent peptide chains into the lipid bilayer. Molecular dynamics simulations suggest that insertion efficiency is determined primarily by the energetic cost of distorting the bilayer in the vicinity of the TM helix. Very short lysine-flanked leucine segments can reduce the energetic cost by extensive hydrogen bonding with water and lipid phosphate groups (snorkeling) and by partial unfolding.

  20. Expression of cystic fibrosis transmembrane conductance regulator in rat ovary.

    PubMed

    Jin, Lei; Tang, Ruiling

    2008-10-01

    The protein expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl(-) channel, in ovarian stimulated premature female rat ovary during a cycle of follicle development and corpus luteum formation was investigated. Animals were injected with 10 U pregnant Mare's serum gonadotropin (PMSG) and subsequently 10 U hCG 48 h later. Time-dependent immunohistochemistry and Western blotting experiments were performed before and 24, 48, 72 h after hCG treatment. The immunohistochemistry revealed that administration of PMSG stimulated the CFTR expression in thecal cell layer and granulosa cell layer of mature follicles 48 h post injection, coincident with the PMSG-induced peak in follicular estradiol. However, the expression of CFTR in the granulose lutein cell layer and thecal lutein cell layer was time-dependently reduced following hCG injection, in accordance with the gradually increased progestogen level during luteum corpus formation. Western blotting analysis demonstrated that rat ovarian tissue expressed the special CFTR band at 170 kD. It is concluded that cAMP-dependent Cl(-) channels are involved in regulation of follicle development and luteum formation.

  1. Beta-arrestin-biased ligands at seven-transmembrane receptors.

    PubMed

    Violin, Jonathan D; Lefkowitz, Robert J

    2007-08-01

    Seven-transmembrane receptors (7TMRs), the most common molecular targets of modern drug therapy, are critically regulated by beta-arrestins, which both inhibit classic G-protein signaling and initiate distinct beta-arrestin signaling. The interplay of G-protein and beta-arrestin signals largely determines the cellular consequences of 7TMR-targeted drugs. Until recently, a drug's efficacy for beta-arrestin recruitment was believed to be proportional to its efficacy for G-protein activities. This paradigm restricts 7TMR drug effects to a linear spectrum of responses, ranging from inhibition of all responses to stimulation of all responses. However, it is now clear that 'biased ligands' can selectively activate G-protein or beta-arrestin functions and thus elicit novel biological effects from even well-studied 7TMRs. Here, we discuss the current state of beta-arrestin-biased ligand research and the prospects for beta-arrestin bias as a therapeutic target. Consideration of ligand bias might have profound influences on the way scientists approach 7TMR-targeted drug discovery.

  2. Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation.

    PubMed

    Murovec, Tomo; Sweeney, Daniel C; Latouche, Eduardo; Davalos, Rafael V; Brosseau, Christian

    2016-11-15

    Many approaches for studying the transmembrane potential (TMP) induced during the treatment of biological cells with pulsed electric fields have been reported. From the simple analytical models to more complex numerical models requiring significant computational resources, a gamut of methods have been used to recapitulate multicellular environments in silico. Cells have been modeled as simple shapes in two dimensions as well as more complex geometries attempting to replicate realistic cell shapes. In this study, we describe a method for extracting realistic cell morphologies from fluorescence microscopy images to generate the piecewise continuous mesh used to develop a finite element model in two dimensions. The preelectroporation TMP induced in tightly packed cells is analyzed for two sets of pulse parameters inspired by clinical irreversible electroporation treatments. We show that high-frequency bipolar pulse trains are better, and more homogeneously raise the TMP of tightly packed cells to a simulated electroporation threshold than conventional irreversible electroporation pulse trains, at the expense of larger applied potentials. Our results demonstrate the viability of our method and emphasize the importance of considering multicellular effects in the numerical models used for studying the response of biological tissues exposed to electric fields.

  3. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion

    PubMed Central

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S.; Sharma, Yashoda; Eberl, Daniel F.; Göpfert, Martin C.; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-01-01

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC’s roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  4. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion.

    PubMed

    Knauf, Felix; Thomson, Robert B; Heneghan, John F; Jiang, Zhirong; Adebamiro, Adedotun; Thomson, Claire L; Barone, Christina; Asplin, John R; Egan, Marie E; Alper, Seth L; Aronson, Peter S

    2017-01-01

    Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr(-/-) mice in Ussing chambers and measured transcellular secretion of [(14)C]oxalate. Intestinal tissue isolated from Cftr(-/-) mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr(-/-) tissue. Compared with wild-type mice, Cftr(-/-) mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl(-)-oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr(-/-) mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis.

  5. Hydrodynamics of bilayer membranes with diffusing transmembrane proteins.

    PubMed

    Callan-Jones, Andrew; Durand, Marc; Fournier, Jean-Baptiste

    2016-02-14

    We consider the hydrodynamics of lipid bilayers containing transmembrane proteins of arbitrary shape. This biologically-motivated problem is relevant to the cell membrane, whose fluctuating dynamics play a key role in phenomena ranging from cell migration, intercellular transport, and cell communication. Using Onsager's variational principle, we derive the equations that govern the relaxation dynamics of the membrane shape, of the mass densities of the bilayer leaflets, and of the diffusing proteins' concentration. With our generic formalism, we obtain several results on membrane dynamics. We find that proteins that span the bilayer increase the intermonolayer friction coefficient. The renormalization, which can be significant, is in inverse proportion to the protein's mobility. Second, we find that asymmetric proteins couple to the membrane curvature and to the difference in monolayer densities. For practically all accessible membrane tensions (σ > 10(-8) N m(-1)) we show that the protein density is the slowest relaxing variable. Furthermore, its relaxation rate decreases at small wavelengths due to the coupling to curvature. We apply our formalism to the large-scale diffusion of a concentrated protein patch. We find that the diffusion profile is not self-similar, owing to the wavevector dependence of the effective diffusion coefficient.

  6. Putative transmembrane transporter modulates higher-level aggression in Drosophila.

    PubMed

    Chowdhury, Budhaditya; Chan, Yick-Bun; Kravitz, Edward A

    2017-02-28

    By selection of winners of dyadic fights for 35 generations, we have generated a hyperaggressive Bully line of flies that almost always win fights against the parental wild-type Canton-S stock. Maintenance of the Bully phenotype is temperature dependent during development, with the phenotype lost when flies are reared at 19 °C. No similar effect is seen with the parent line. This difference allowed us to carry out RNA-seq experiments and identify a limited number of genes that are differentially expressed by twofold or greater in the Bullies; one of these was a putative transmembrane transporter, CG13646, which showed consistent and reproducible twofold down-regulation in Bullies. We examined the causal effect of this gene on the phenotype with a mutant line for CG13646, and with an RNAi approach. In all cases, reduction in expression of CG13646 by approximately half led to a hyperaggressive phenotype partially resembling that seen in the Bully flies. This gene is a member of a very interesting family of solute carrier proteins (SLCs), some of which have been suggested as being involved in glutamine/glutamate and GABA cycles of metabolism in excitatory and inhibitory nerve terminals in mammalian systems.

  7. Evolution of a transcriptional regulator from a transmembrane nucleoporin

    PubMed Central

    Franks, Tobias M.; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C.N.; Young, Janet M.; Malik, Harmit S.; Gage, Fred H.; Hetzer, Martin W.

    2016-01-01

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo–cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for “soluble Pom121”) that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components. PMID:27198230

  8. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    SciTech Connect

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

  9. Orphan Missense Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator

    PubMed Central

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-01-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein–tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. PMID:21708286

  10. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE PAGES

    Lin, Qingqing; Li, Huilin; Wang, Tong; ...

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  11. Structure-based statistical analysis of transmembrane helices.

    PubMed

    Baeza-Delgado, Carlos; Marti-Renom, Marc A; Mingarro, Ismael

    2013-03-01

    Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data.

  12. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  13. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  14. Analysis of tobamovirus multiplication in Arabidopsis thaliana mutants defective in TOM2A homologues.

    PubMed

    Fujisaki, Koki; Kobayashi, Soko; Tsujimoto, Yayoi; Naito, Satoshi; Ishikawa, Masayuki

    2008-06-01

    The TOM2A gene of Arabidopsis thaliana encodes a four-pass transmembrane protein that is required for efficient multiplication of a tobamovirus, TMV-Cg. In this study, the involvement of three TOM2A homologues in tobamovirus multiplication in A. thaliana was examined. T-DNA insertion mutations in the three homologues, separately or in combination, did not affect TMV-Cg multiplication, whereas, in the tom2a genetic background, some combinations reduced it. This result suggests that the TOM2A homologues are functional in enhancing TMV-Cg multiplication, but their contribution is much less than TOM2A. Interestingly, the multiplication of another tobamovirus, Tomato mosaic virus, was not drastically affected by any combinations of the mutations in TOM2A and its homologues as far as we examined.

  15. On the post-glacial spread of human commensal Arabidopsis thaliana.

    PubMed

    Lee, Cheng-Ruei; Svardal, Hannes; Farlow, Ashley; Exposito-Alonso, Moises; Ding, Wei; Novikova, Polina; Alonso-Blanco, Carlos; Weigel, Detlef; Nordborg, Magnus

    2017-02-09

    Recent work has shown that Arabidopsis thaliana contains genetic groups originating from different ice age refugia, with one particular group comprising over 95% of the current worldwide population. In Europe, relicts of other groups can be found in local populations along the Mediterranean Sea. Here we provide evidence that these 'relicts' occupied post-glacial Eurasia first and were later replaced by the invading 'non-relicts', which expanded through the east-west axis of Eurasia, leaving traces of admixture in the north and south of the species range. The non-relict expansion was likely associated with human activity and led to a demographic replacement similar to what occurred in humans. Introgressed genomic regions from relicts are associated with flowering time and enriched for genes associated with environmental conditions, such as root cap development or metal ion trans-membrane transport, which suggest that admixture with locally adapted relicts helped the non-relicts colonize new habitats.

  16. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  17. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis

    PubMed Central

    Chevalier, David; Batoux, Martine; Fulton, Lynette; Pfister, Karen; Yadav, Ram Kishor; Schellenberg, Maja; Schneitz, Kay

    2005-01-01

    An open question remains as to what coordinates cell behavior during organogenesis, permitting organs to reach their appropriate size and shape. The Arabidopsis gene STRUBBELIG (SUB) defines a receptor-mediated signaling pathway in plants. SUB encodes a putative leucine-rich repeat transmembrane receptor-like kinase. The mutant sub phenotype suggests that SUB affects the formation and shape of several organs by influencing cell morphogenesis, the orientation of the division plane, and cell proliferation. Mutational analysis suggests that the kinase domain is important for SUB function. Biochemical assays using bacterially expressed fusion proteins indicate that the SUB kinase domain lacks enzymatic phosphotransfer activity. Furthermore, transgenes encoding WT and different mutant variants of SUB were tested for their ability to rescue the mutant sub phenotype. These genetic data also indicate that SUB carries a catalytically inactive kinase domain. The SUB receptor-like kinase may therefore signal in an atypical fashion. PMID:15951420

  18. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana

    PubMed Central

    Schat, Henk; Aarts, Mark G. M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  19. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2013-09-01

    Processing mutations that inhibit folding and trafficking of CFTR are the main cause of cystic fibrosis (CF). A potential CF therapy would be to repair CFTR processing mutants. It has been demonstrated that processing mutants of P-glycoprotein (P-gp), CFTR's sister protein, can be efficiently repaired by a drug-rescue mechanism. Many arginine suppressors that mimic drug-rescue have been identified in the P-gp transmembrane (TM) domains (TMDs) that rescue by forming hydrogen bonds with residues in adjacent helices to promote packing of the TM segments. To test if CFTR mutants could be repaired by a drug-rescue mechanism, we used truncation mutants to test if corrector VX-809 interacted with the TMDs. VX-809 was selected for study because it is specific for CFTR, it is the most effective corrector identified to date, but it has limited clinical benefit. Identification of the VX-809 target domain will help to develop correctors with improved clinical benefits. It was found that VX-809 rescued truncation mutants lacking the NBD2 and R domains. When the remaining domains (TMD1, NBD1, TMD2) were expressed as separate polypeptides, VX-809 only increased the stability of TMD1. We then performed arginine mutagenesis on TM6 in TMD1. Although the results showed that TM6 had distinct lipid and aqueous faces, CFTR was different from P-gp as no arginine promoted maturation of CFTR processing mutants. The results suggest that TMD1 contains a VX-809 binding site, but its mechanism differed from P-gp drug-rescue. We also report that V510D acts as a universal suppressor to rescue CFTR processing mutants.

  20. Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿

    PubMed Central

    Behr, Jürgen; Vogel, Rudi F.

    2010-01-01

    In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of

  1. Visualizing Water Molecules in Transmembrane Proteins Using Radiolytic Labeling Methods

    SciTech Connect

    Orban, T.; Gupta, S; Palczewski, K; Chance, M

    2010-01-01

    Essential to cells and their organelles, water is both shuttled to where it is needed and trapped within cellular compartments and structures. Moreover, ordered waters within protein structures often colocalize with strategically placed polar or charged groups critical for protein function, yet it is unclear if these ordered water molecules provide structural stabilization, mediate conformational changes in signaling, neutralize charged residues, or carry out a combination of all these functions. Structures of many integral membrane proteins, including G protein-coupled receptors (GPCRs), reveal the presence of ordered water molecules that may act like prosthetic groups in a manner quite unlike bulk water. Identification of 'ordered' waters within a crystalline protein structure requires sufficient occupancy of water to enable its detection in the protein's X-ray diffraction pattern, and thus, the observed waters likely represent a subset of tightly bound functional waters. In this review, we highlight recent studies that suggest the structures of ordered waters within GPCRs are as conserved (and thus as important) as conserved side chains. In addition, methods of radiolysis, coupled to structural mass spectrometry (protein footprinting), reveal dynamic changes in water structure that mediate transmembrane signaling. The idea of water as a prosthetic group mediating chemical reaction dynamics is not new in fields such as catalysis. However, the concept of water as a mediator of conformational dynamics in signaling is just emerging, because of advances in both crystallographic structure determination and new methods of protein footprinting. Although oil and water do not mix, understanding the roles of water is essential to understanding the function of membrane proteins.

  2. Transmembrane helices in "classical" nuclear reproductive steroid receptors: a perspective.

    PubMed

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2015-01-01

    Steroid receptors of the nuclear receptor superfamily are proposed to be either: 1) located in the cytosol and moved to the cell nucleus upon activation, 2) tethered to the inside of the plasma membrane, or 3) retained in the nucleus until free steroid hormone enters and activates specific receptors. Using computational methods to analyze peptide receptor topology, we find that the "classical" nuclear receptors for progesterone (PRB/PGR), androgen (ARB/AR) and estrogen (ER1/ESR1) contain two transmembrane helices (TMH) within their ligand-binding domains (LBD).The MEMSAT-SVM algorithm indicates that ARB and ER2 (but not PRB or ER1) contain a pore-lining (channel-forming) region which may merge with other pore-lining regions to form a membrane channel. ER2 lacks a TMH, but contains a single pore-lining region. The MemBrain algorithm predicts that PRB, ARB and ER1 each contain one TMH plus a half TMH separated by 51 amino acids.ER2 contains two half helices. The TM-2 helices of ARB, ER1 and ER2 each contain 9-13 amino acid motifs reported to translocate the receptor to the plasma membrane, as well as cysteine palmitoylation sites. PoreWalker analysis of X-ray crystallographic data identifies a pore or channel within the LBDs of ARB and ER1 and predicts that 70 and 72 residues are pore-lining residues, respectively. The data suggest that (except for ER2), cytosolic receptors become anchored to the plasma membrane following synthesis. Half-helices and pore-lining regions in turn form functional ion channels and/or facilitate passive steroid uptake into the cell. In perspective, steroid-dependent insertion of "classical" receptors containing pore-lining regions into the plasma membrane may regulate permeability to ions such as Ca(2+), Na(+) or K(+), as well as facilitate steroid translocation into the nucleus.

  3. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

    PubMed Central

    Saier, Milton H.

    2000-01-01

    A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional

  4. The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana.

    PubMed

    Yan, Suli; McLamore, Eric S; Dong, Shanshan; Gao, Haibo; Taguchi, Masashige; Wang, Ningning; Zhang, Ting; Su, Xiaohua; Shen, Yingbai

    2015-08-01

    Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.

  5. Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.

    PubMed

    Mortazavi, Armin; Rajagopalan, Venkatesan; Sparks, Kelsey A; Greathouse, Denise V; Koeppe, Roger E

    2016-03-15

    Transmembrane helices of integral membrane proteins often are flanked by interfacial aromatic residues that can serve as anchors to aid the stabilization of a tilted transmembrane orientation. Yet, physical factors that govern the orientation or dynamic averaging of individual transmembrane helices are not well understood and have not been adequately explained. Using solid-state (2) H NMR spectroscopy to examine lipid bilayer-incorporated model peptides of the GWALP23 (acetyl-GGALW(LA)6 LWLAGA-amide) family, we observed substantial unwinding at the terminals of several tilted helices spanning the membranes of DLPC, DMPC, or DOPC lipid bilayers. The fraying of helix ends might be vital for defining the dynamics and orientations of transmembrane helices in lipid bilayer membranes.

  6. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling

    PubMed Central

    Hattermann, Kirsten; Gebhardt, Henrike; Krossa, Sebastian; Ludwig, Andreas; Lucius, Ralph

    2016-01-01

    The transmembrane chemokines CX3CL1/fractalkine and CXCL16 are widely expressed in different types of tumors, often without an appropriate expression of their classical receptors. We observed that receptor-negative cancer cells could be stimulated by the soluble chemokines. Searching for alternative receptors we detected that all cells expressing or transfected with transmembrane chemokine ligands bound the soluble chemokines with high affinity and responded by phosphorylation of intracellular kinases, enhanced proliferation and anti-apoptosis. This activity requires the intracellular domain and apparently the dimerization of the transmembrane chemokine ligand. Thus, shed soluble chemokines can generate auto- or paracrine signals by binding and activating their transmembrane forms. We term this novel mechanism “inverse signaling”. We suppose that inverse signaling is an autocrine feedback and fine-tuning system in the communication between cells that in tumors supports stabilization and proliferation. DOI: http://dx.doi.org/10.7554/eLife.10820.001 PMID:26796342

  7. Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes

    PubMed Central

    Andreu-Fernández, Vicente; Sancho, Mónica; Genovés, Ainhoa; Lucendo, Estefanía; Todt, Franziska; Lauterwasser, Joachim; Funk, Kathrin; Jahreis, Günther; Pérez-Payá, Enrique; Mingarro, Ismael; Edlich, Frank; Orzáez, Mar

    2017-01-01

    The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax transmembrane domain interactions were implicated recently in Bax pore formation. Here, we show that the isolated transmembrane domains of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate interactions between Bax and prosurvival proteins inside the membrane in the absence of apoptotic stimuli. Bcl-2 protein transmembrane domains specifically homooligomerize and heterooligomerize in bacterial and mitochondrial membranes. Their interactions participate in the regulation of Bcl-2 proteins, thus modulating apoptotic activity. Our results suggest that interactions between the transmembrane domains of Bax and antiapoptotic Bcl-2 proteins represent a previously unappreciated level of apoptosis regulation. PMID:28028215

  8. Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas.

    PubMed

    Karagiannidis, Louise E; Haynes, Cally J E; Holder, Katie J; Kirby, Isabelle L; Moore, Stephen J; Wells, Neil J; Gale, Philip A

    2014-10-18

    Simple, highly fluorinated receptors are shown to function as highly effective transmembrane anion antiporters with the most active transporters rivalling the transport efficacy of natural anion transporter prodigiosin for bicarbonate.

  9. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server.

    PubMed

    Käll, Lukas; Krogh, Anders; Sonnhammer, Erik L L

    2007-07-01

    When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30-65% of all predicted signal peptides and 25-35% of all predicted transmembrane topologies overlap. This impairs predictions of 5-10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions. The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homology-enriched predictions. We here present a web interface (http://phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius.

  10. Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles.

    PubMed

    Lau, Tong-Lay; Partridge, Anthony W; Ginsberg, Mark H; Ulmer, Tobias S

    2008-04-01

    Integrin adhesion receptors transduce bidirectional signals across the plasma membrane, with the integrin transmembrane domains acting as conduits in this process. Here, we report the first high-resolution structure of an integrin transmembrane domain. To assess the influence of the membrane model system, structure determinations of the beta3 integrin transmembrane segment and flanking sequences were carried out in both phospholipid bicelles and detergent micelles. In bicelles, a 30-residue linear alpha-helix, encompassing residues I693-H772, is adopted, of which I693-I721 appear embedded in the hydrophobic bicelle core. This relatively long transmembrane helix implies a pronounced helix tilt within a typical lipid bilayer, which facilitates the snorkeling of K716's charged side chain out of the lipid core while simultaneously immersing hydrophobic L717-I721 in the membrane. A shortening of bicelle lipid hydrocarbon tails does not lead to the transfer of L717-I721 into the aqueous phase, suggesting that the reported embedding represents the preferred beta3 state. The nature of the lipid headgroup affected only the intracellular part of the transmembrane helix, indicating that an asymmetric lipid distribution is not required for studying the beta3 transmembrane segment. In the micelle, residues L717-I721 are also embedded but deviate from linear alpha-helical conformation in contrast to I693-K716, which closely resemble the bicelle structure.

  11. The role of transmembrane proteins on force transmission in skeletal muscle.

    PubMed

    Zhang, Chi; Gao, Yingxin

    2014-09-22

    Lateral transmission of force from myofibers laterally to the surrounding extracellular matrix (ECM) via the transmembrane proteins between them is impaired in old muscles. Changes in geometrical and mechanical properties of ECM of skeletal muscle do not fully explain the impaired lateral transmission with aging. The objective of this study was to determine the role of transmembrane proteins on force transmission in skeletal muscle. In this study, a 2D finite element model of single muscle fiber composed of myofiber, ECM, and the transmembrane proteins between them was developed to determine how changes in spatial density and mechanical properties of transmembrane proteins affect the force transmission in skeletal muscle. We found that force transmission and stress distribution are not affected by mechanical stiffness of the transmembrane proteins due to its non-linear stress-strain relationship. Results also showed that the muscle fiber with insufficient transmembrane proteins near the end of muscle fiber transmitted less force than that with more proteins does. Higher stress was observed in myofiber, ECM, and proteins in the muscle fiber with fewer proteins.

  12. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues

    PubMed Central

    Briant, Kit; Koay, Yee-Hui; Otsuka, Yuka; Swanton, Eileithyia

    2015-01-01

    ABSTRACT Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. PMID:26446255

  13. Arabidopsis Tetraspanins Are Confined to Discrete Expression Domains and Cell Types in Reproductive Tissues and Form Homo- and Heterodimers When Expressed in Yeast1[C][W][OPEN

    PubMed Central

    Boavida, Leonor C.; Qin, Peng; Broz, Miranda; Becker, Jörg D.; McCormick, Sheila

    2013-01-01

    Tetraspanins are evolutionary conserved transmembrane proteins present in all multicellular organisms. In animals, they are known to act as central organizers of membrane complexes and thought to facilitate diverse biological processes, such as cell proliferation, movement, adhesion, and fusion. The genome of Arabidopsis (Arabidopsis thaliana) encodes 17 members of the tetraspanin family; however, little is known about their functions in plant development. Here, we analyzed their phylogeny, protein topology, and domain structure and surveyed their expression and localization patterns in reproductive tissues. We show that, despite their low sequence identity with metazoan tetraspanins, plant tetraspanins display the typical structural topology and most signature features of tetraspanins in other multicellular organisms. Arabidopsis tetraspanins are expressed in diverse tissue domains or cell types in reproductive tissues, and some accumulate at the highest levels in response to pollination in the transmitting tract and stigma, male and female gametophytes and gametes. Arabidopsis tetraspanins are preferentially targeted to the plasma membrane, and they variously associate with specialized membrane domains, in a polarized fashion, to intercellular contacts or plasmodesmata. A membrane-based yeast (Saccharomyces cerevisiae) two-hybrid system established that tetraspanins can physically interact, forming homo- and heterodimer complexes. These results, together with a likely genetic redundancy, suggest that, similar to their metazoan counterparts, plant tetraspanins might be involved in facilitating intercellular communication, whose functions might be determined by the composition of tetraspanin complexes and their binding partners at the cell surface of specific cell types. PMID:23946353

  14. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo- and heterodimers when expressed in yeast.

    PubMed

    Boavida, Leonor C; Qin, Peng; Broz, Miranda; Becker, Jörg D; McCormick, Sheila

    2013-10-01

    Tetraspanins are evolutionary conserved transmembrane proteins present in all multicellular organisms. In animals, they are known to act as central organizers of membrane complexes and thought to facilitate diverse biological processes, such as cell proliferation, movement, adhesion, and fusion. The genome of Arabidopsis (Arabidopsis thaliana) encodes 17 members of the tetraspanin family; however, little is known about their functions in plant development. Here, we analyzed their phylogeny, protein topology, and domain structure and surveyed their expression and localization patterns in reproductive tissues. We show that, despite their low sequence identity with metazoan tetraspanins, plant tetraspanins display the typical structural topology and most signature features of tetraspanins in other multicellular organisms. Arabidopsis tetraspanins are expressed in diverse tissue domains or cell types in reproductive tissues, and some accumulate at the highest levels in response to pollination in the transmitting tract and stigma, male and female gametophytes and gametes. Arabidopsis tetraspanins are preferentially targeted to the plasma membrane, and they variously associate with specialized membrane domains, in a polarized fashion, to intercellular contacts or plasmodesmata. A membrane-based yeast (Saccharomyces cerevisiae) two-hybrid system established that tetraspanins can physically interact, forming homo- and heterodimer complexes. These results, together with a likely genetic redundancy, suggest that, similar to their metazoan counterparts, plant tetraspanins might be involved in facilitating intercellular communication, whose functions might be determined by the composition of tetraspanin complexes and their binding partners at the cell surface of specific cell types.

  15. DAC is involved in the accumulation of the cytochrome b6/f complex in Arabidopsis.

    PubMed

    Xiao, Jianwei; Li, Jing; Ouyang, Min; Yun, Tao; He, Baoye; Ji, Daili; Ma, Jinfang; Chi, Wei; Lu, Congming; Zhang, Lixin

    2012-12-01

    The biogenesis and assembly of photosynthetic multisubunit protein complexes is assisted by a series of nucleus-encoded auxiliary protein factors. In this study, we characterize the dac mutant of Arabidopsis (Arabidopsis thaliana), which shows a severe defect in the accumulation of the cytochrome b(6)/f complex, and provide evidence suggesting that the efficiency of cytochrome b(6)/f complex assembly is affected in the mutant. DAC is a thylakoid membrane protein with two predicted transmembrane domains that is conserved from cyanobacteria to vascular plants. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation analyses revealed a specific interaction between DAC and PetD, a subunit of the cytochrome b(6)/f complex. However, DAC was found not to be an intrinsic component of the cytochrome b(6)/f complex. In vivo chloroplast protein labeling experiments showed that the labeling rates of the PetD and cytochrome f proteins were greatly reduced, whereas that of the cytochrome b(6) protein remained normal in the dac mutant. DAC appears to be a novel factor involved in the assembly/stabilization of the cytochrome b(6)/f complex, possibly through interaction with the PetD protein.

  16. Taxonomy and Phylogeny of Arabidopsis (Brassicaceae)

    PubMed Central

    Al-Shehbaz, Ihsan A.; O'Kane, Steve L.

    2002-01-01

    Detailed taxonomic, cytological, and phylogenetic accounts of Arabidopsis are presented. As currently delimited, the genus consists of nine species all of which are indigenous to Europe, with the ranges of two species extending into northern and eastern Asia and North American into central United States. A survey of chromosome numbers in the genus is presented, and the country of origin for each count is given. Detailed descriptions of all species and subspecies and keys to all taxa are provided. Generic assignments are updated for the 50 species previously included in Arabidopsis. A cladogram of the species of Arabidopsis based on molecular phylogenetic studies by the authors is given. PMID:22303187

  17. Arabidopsis thaliana life without phytochromes

    PubMed Central

    Strasser, Bárbara; Sánchez-Lamas, Maximiliano; Yanovsky, Marcelo J.; Casal, Jorge J.; Cerdán, Pablo D.

    2010-01-01

    Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal. PMID:20176939

  18. Sulfenome mining in Arabidopsis thaliana

    PubMed Central

    Waszczak, Cezary; Akter, Salma; Eeckhout, Dominique; Persiau, Geert; Wahni, Khadija; Bodra, Nandita; Van Molle, Inge; De Smet, Barbara; Vertommen, Didier; Gevaert, Kris; De Jaeger, Geert; Van Montagu, Marc; Messens, Joris; Van Breusegem, Frank

    2014-01-01

    Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage. PMID:25049418

  19. Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    Leivar, Pablo; González, Víctor M; Castel, Susanna; Trelease, Richard N; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier

    2005-01-01

    Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of

  20. Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase1

    PubMed Central

    Leivar, Pablo; González, Víctor M.; Castel, Susanna; Trelease, Richard N.; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier

    2005-01-01

    Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-μm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR

  1. The fifth international conference on Arabidopsis research

    SciTech Connect

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  2. PAIR: the predicted Arabidopsis interactome resource.

    PubMed

    Lin, Mingzhi; Shen, Xueling; Chen, Xin

    2011-01-01

    The predicted Arabidopsis interactome resource (PAIR, http://www.cls.zju.edu.cn/pair/), comprised of 5990 experimentally reported molecular interactions in Arabidopsis thaliana together with 145,494 predicted interactions, is currently the most comprehensive data set of the Arabidopsis interactome with high reliability. PAIR predicts interactions by a fine-tuned support vector machine model that integrates indirect evidences for interaction, such as gene co-expressions, domain interactions, shared GO annotations, co-localizations, phylogenetic profile similarities and homologous interactions in other organisms (interologs). These predictions were expected to cover 24% of the entire Arabidopsis interactome, and their reliability was estimated to be 44%. Two independent example data sets were used to rigorously validate the prediction accuracy. PAIR features a user-friendly query interface, providing rich annotation on the relationships between two proteins. A graphical interaction network browser has also been integrated into the PAIR web interface to facilitate mining of specific pathways.

  3. The transmembrane transporter domain of glutamate transporters is a process tip localizer

    PubMed Central

    Hayashi, Mariko Kato; Yasui, Masato

    2015-01-01

    Glutamate transporters in the central nervous system remove glutamate released from neurons to terminate the signal. These transporters localize to astrocyte process tips approaching neuronal synapses. The mechanisms underlying the localization of glutamate transporters to these processes, however, are not known. In this study, we demonstrate that the trimeric transmembrane transporter domain fragment of glutamate transporters, lacking both N- and C-terminal cytoplasmic regions, localized to filopodia tips. This is a common property of trimeric transporters including a neutral amino acid transporter ASCT1. Astrocyte specific proteins are not required for the filopodia tip localization. An extracellular loop at the centre of the 4th transmembrane helices, unique for metazoans, is required for the localization. Moreover, a C186S mutation at the 4th transmembrane region of EAAT1, found in episodic ataxia patients, significantly decreased its process tip localization. The transmembrane transporter domain fragments of glutamate transporters also localized to astrocyte process tips in cultured hippocampal slice. These results indicate that the transmembrane transporter domain of glutamate transporters have an additional function as a sorting signal to process tips. PMID:25761899

  4. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.

    PubMed

    Tsaousis, Georgios N; Bagos, Pantelis G; Hamodrakas, Stavros J

    2014-02-01

    During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.

  5. Intrinsic Disorder in Transmembrane Proteins: Roles in Signaling and Topology Prediction.

    PubMed

    Bürgi, Jérôme; Xue, Bin; Uversky, Vladimir N; van der Goot, F Gisou

    2016-01-01

    Intrinsically disordered regions (IDRs) are peculiar stretches of amino acids that lack stable conformations in solution. Intrinsic Disorder containing Proteins (IDP) are defined by the presence of at least one large IDR and have been linked to multiple cellular processes including cell signaling, DNA binding and cancer. Here we used computational analyses and publicly available databases to deepen insight into the prevalence and function of IDRs specifically in transmembrane proteins, which are somewhat neglected in most studies. We found that 50% of transmembrane proteins have at least one IDR of 30 amino acids or more. Interestingly, these domains preferentially localize to the cytoplasmic side especially of multi-pass transmembrane proteins, suggesting that disorder prediction could increase the confidence of topology prediction algorithms. This was supported by the successful prediction of the topology of the uncharacterized multi-pass transmembrane protein TMEM117, as confirmed experimentally. Pathway analysis indicated that IDPs are enriched in cell projection and axons and appear to play an important role in cell adhesion, signaling and ion binding. In addition, we found that IDP are enriched in phosphorylation sites, a crucial post translational modification in signal transduction, when compared to fully ordered proteins and to be implicated in more protein-protein interaction events. Accordingly, IDPs were highly enriched in short protein binding regions called Molecular Recognition Features (MoRFs). Altogether our analyses strongly support the notion that the transmembrane IDPs act as hubs in cellular signal events.

  6. Structural and functional characterization of the C-terminal transmembrane region of NBCe1-A.

    PubMed

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Abuladze, Natalia; Newman, Debra; Pushkin, Alexander; Liu, Weixin; Chang, Connie; Kurtz, Ira

    2010-11-26

    NBCe1-A and AE1 both belong to the SLC4 HCO(3)(-) transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala(800)-Lys(967). Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met(858) accessible to both biotin maleimide and TAMRA and Thr(926)-Ala(929) only to TAMRA labeling. The intracellular surface contains a highly exposed (Met(813)-Gly(828)) region and a cryptic (Met(887)-Arg(904)) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp(960). Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro(868)-Leu(967) (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1.

  7. Multiple site-specific infrared dichroism of CD3-zeta, a transmembrane helix bundle.

    PubMed

    Torres, Jaume; Briggs, John A G; Arkin, Isaiah T

    2002-02-15

    The structure of the transmembrane domain of CD3-zeta a component of the T-cell receptor involved in signal transduction, has been studied in its native state (a lipid bilayer) by multiple site-specific infrared dichroism. For the first time, the transmembrane domain has been labelled at multiple positions along the sequence, representing a total of 11 samples, each labelled at a different residue with an isotopically modified carbonyl group, (13)C [double bond] (18)O. A strategy is outlined that, based on the above data, can yield the rotational orientation and the local helix tilt for each labelled residue, giving a detailed description of helix geometry. The results obtained indicate that the transmembrane segment is in an alpha-helical conformation throughout, with an average helix tilt of 12 degrees. The N-terminal side of the helix is more tilted than the C-terminal. In an accompanying paper we describe the implementation of the infrared data in a model-building study of the CD3-zeta transmembrane complex. The model obtained is entirely consistent with results based on evolutionary conservation data. Taken together, this study represents the first step towards elucidation of the backbone structure of a transmembrane alpha-helical bundle by infrared spectroscopy.

  8. Methods for studying transmembrane peptides in bicelles: consequences of hydrophobic mismatch and peptide sequence

    NASA Astrophysics Data System (ADS)

    Whiles, Jennifer A.; Glover, Kerney J.; Vold, Regitze R.; Komives, Elizabeth A.

    2002-09-01

    We have shown that bicelles prepared from dilauryl phosphatidylcholine (DLPC) and dipalmitoyl phosphatidylcholine (DPPC) align in a magnetic field under conditions similar to the more common dimyristoyl phosphatidylcholine (DMPC) bicelles. In addition, a model transmembrane peptide, P16, with a hydrophobic stretch of 24 Å, and specific alanine-d 3 labels, was incorporated into all of the different bicelles. The long-chain phospholipid (DLPC, DMPC, or DPPC) remained unperturbed upon incorporation of the peptide while the quadrupolar splitting of the short-chain phospholipid along the bicelle rim increased by varying degrees in the different bicelle systems. The change in quadrupolar splitting of the short-chain phospholipids was attributed to changes in either fluidity of the planar region of the bicelle or differences in overall lipid packing. When the hydrophobic stretch of the bilayer was 22.8 (DMPC) or 26.3 Å (DPPC), the peptide tilt was found to be transmembrane (33-35° with respect to the bicelle normal). When the hydrophobic stretch of the bilayer was 19.5 Å (DLPC), the peptide quadrupolar splittings suggested a loss of transmembrane orientation. When tryptophan was incorporated in the middle of the transmembrane region, the transmembrane orientation was also lost.

  9. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila

    PubMed Central

    Struhl, Gary; Greenwald, Iva

    2001-01-01

    The cleavage model for signal transduction by receptors of the LIN-12/Notch family posits that ligand binding leads to cleavage within the transmembrane domain, so that the intracellular domain is released to translocate to the nucleus and activate target gene expression. The familial Alzheimer's disease-associated protein Presenilin is required for LIN-12/Notch signaling, and several lines of evidence suggest that Presenilin mediates the transmembrane cleavage event that releases the LIN-12/Notch intracellular domain. However, doubt was cast on this possibility by a report that Presenilin is not required for the transducing activity of NECN, a constitutively active transmembrane form of Notch, in Drosophila. Here, we have reassessed this finding and show instead that Presenilin is required for activity of NECN for all cell fate decisions examined. Our results indicate that transmembrane cleavage and signal transduction are strictly correlated, supporting the cleavage model for signal transduction by LIN-12/Notch and a role for Presenilin in mediating the ligand-induced transmembrane cleavage. PMID:11134525

  10. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain.

    PubMed

    Curran, A C; Hwang, I; Corbin, J; Martinez, S; Rayle, D; Sze, H; Harper, J F

    2000-09-29

    The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.

  11. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain

    NASA Technical Reports Server (NTRS)

    Curran, A. C.; Hwang, I.; Corbin, J.; Martinez, S.; Rayle, D.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.

  12. Cell Polarity Signaling in Arabidopsis

    PubMed Central

    Yang, Zhenbiao

    2009-01-01

    Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems. PMID:18837672

  13. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  14. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function

    PubMed Central

    Nakamura, Nobuhiro

    2011-01-01

    A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance. PMID:24957874

  15. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor

    PubMed Central

    Windisch, Dirk; Ziegler, Colin; Grage, Stephan L.; Bürck, Jochen; Zeitler, Marcel; Gor’kov, Peter L.; Ulrich, Anne S.

    2015-01-01

    The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues. PMID:26287626

  16. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  17. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor.

    PubMed

    Hatanaka, Wataru; Kawaguchi, Miki; Sun, Xizheng; Nagao, Yusuke; Ohshima, Hiroyuki; Hashida, Mitsuru; Higuchi, Yuriko; Kishimura, Akihiro; Katayama, Yoshiki; Mori, Takeshi

    2017-02-15

    We developed a strategy to modify cell membranes with an artificial transmembrane receptor. Coulomb force on the receptor, caused by the membrane potential, was used to achieve membrane penetration. A hydrophobically modified cationic peptide was used as a membrane potential sensitive region that was connected to biotin through a transmembrane oligoethylene glycol (OEG) chain. This artificial receptor gradually disappeared from the cell membrane via penetration despite the presence of a hydrophilic OEG chain. However, when the receptor was bound to streptavidin (SA), it remained on the cell membrane because of the large and hydrophilic nature of SA.

  18. A subdomain in the transmembrane domain is necessary for p185neu* activation.

    PubMed Central

    Cao, H; Bangalore, L; Bormann, B J; Stern, D F

    1992-01-01

    The neu proto-oncogene encodes a protein highly homologous to the epidermal growth factor receptor. The neu protein (p185) has a molecular weight of 185,000 Daltons and, like the EGF receptor, possesses tyrosine kinase activity. neu is activated in chemically induced rat neuro/glioblastomas by substitution of valine 664 with glutamic acid within the transmembrane domain. The activated neu* protein (p185*) has an elevated tyrosine kinase activity and a higher propensity to dimerize, but the mechanism of this activation is still unknown. We have used site-directed mutagenesis to explore the role of specific amino acids within the transmembrane domain in this activation. We found that the lateral position and rotational orientation of the glutamic acid in the transmembrane domain does not correlate with transformation. However, the primary structure in the vicinity of Glu664 plays a significant role in this activation. Our results suggest that the Glu664 activation involves highly specific interactions in the transmembrane domain of p185. Images PMID:1347745

  19. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.

    PubMed

    Zou, Yong; Wang, Changzhen; Peng, Ruiyun; Wang, Lifeng; Hu, Xiangjun

    2015-04-01

    A change of the transmembrane voltage is considered to cause biophysical and biochemical responses in cells. The present study focuses on the cellular transmembrane voltage (Δφ) induced by external fields. We detail analytical equations for the transmembrane voltage induced by external high-frequency (above the relaxation frequency of the cell membrane) fields on cells of a spherical shape in suspensions and layers. At direct current (DC) and low frequencies, the cell membrane was assumed to be non-conductive under physiologic conditions. However, with increasing frequency, the permittivity of the cytoplasm/extracellular medium and conductivity of the membrane must be accounted for. Our main work is to extend application of the analytical solution of Δφ to the high-frequency range. We first introduce the transmembrane voltage generated by DC and low-frequency exposures on a single cell. Then, we focus on cell suspensions exposed to high-frequency fields. Using the effective medium theory and the reasonable assumption, the approximate analytical solution of Δφ on cells in suspensions and layers can be derived. Phenomenological effective medium theory equations cannot be used to calculate the local electric field of cell suspensions, so we raised a possible solution based on the Bergman theory.

  20. Inducible Expression of Transmembrane Proteins on Bacterial Magnetic Particles in Magnetospirillum magneticum AMB-1▿

    PubMed Central

    Yoshino, Tomoko; Shimojo, Akiko; Maeda, Yoshiaki; Matsunaga, Tadashi

    2010-01-01

    Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs. PMID:20038711

  1. Novel germline mutation in the transmembrane domain of HER2 in familial lung adenocarcinomas.

    PubMed

    Yamamoto, Hiromasa; Higasa, Koichiro; Sakaguchi, Masakiyo; Shien, Kazuhiko; Soh, Junichi; Ichimura, Koichi; Furukawa, Masashi; Hashida, Shinsuke; Tsukuda, Kazunori; Takigawa, Nagio; Matsuo, Keitaro; Kiura, Katsuyuki; Miyoshi, Shinichiro; Matsuda, Fumihiko; Toyooka, Shinichi

    2014-01-01

    We encountered a family of Japanese descent in which multiple members developed lung cancer. Using whole-exome sequencing, we identified a novel germline mutation in the transmembrane domain of the human epidermal growth factor receptor 2 (HER2) gene (G660D). A novel somatic mutation (V659E) was also detected in the transmembrane domain of HER2 in one of 253 sporadic lung adenocarcinomas. Because the transmembrane domain of HER2 is considered to be responsible for the dimerization and subsequent activation of the HER family and downstream signaling pathways, we performed functional analyses of these HER2 mutants. Mutant HER2 G660D and V659E proteins were more stable than wild-type protein. Both the G660D and V659E mutants activated Akt. In addition, they activated p38, which is thought to promote cell proliferation in lung adenocarcinoma. Our findings strongly suggest that mutations in the transmembrane domain of HER2 may be oncogenic, causing hereditary and sporadic lung adenocarcinomas.

  2. Common Extracellular Sensory Domains in Transmembrane Receptors for Diverse Signal Transduction Pathways in Bacteria and Archaea

    PubMed Central

    Zhulin, Igor B.; Nikolskaya, Anastasia N.; Galperin, Michael Y.

    2003-01-01

    Transmembrane receptors in microorganisms, such as sensory histidine kinases and methyl-accepting chemotaxis proteins, are molecular devices for monitoring environmental changes. We report here that sensory domain sharing is widespread among different classes of transmembrane receptors. We have identified two novel conserved extracellular sensory domains, named CHASE2 and CHASE3, that are found in at least four classes of transmembrane receptors: histidine kinases, adenylate cyclases, predicted diguanylate cyclases, and either serine/threonine protein kinases (CHASE2) or methyl-accepting chemotaxis proteins (CHASE3). Three other extracellular sensory domains were shared by at least two different classes of transmembrane receptors: histidine kinases and either diguanylate cyclases, adenylate cyclases, or phosphodiesterases. These observations suggest that microorganisms use similar conserved domains to sense similar environmental signals and transmit this information via different signal transduction pathways to different regulatory circuits: transcriptional regulation (histidine kinases), chemotaxis (methyl-accepting proteins), catabolite repression (adenylate cyclases), and modulation of enzyme activity (diguanylate cyclases and phosphodiesterases). The variety of signaling pathways using the CHASE-type domains indicates that these domains sense some critically important extracellular signals. PMID:12486065

  3. Detergent properties influence the stability of the glycophorin A transmembrane helix dimer in lysophosphatidylcholine micelles.

    PubMed

    Stangl, Michael; Veerappan, Anbazhagan; Kroeger, Anja; Vogel, Peter; Schneider, Dirk

    2012-12-19

    Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important.

  4. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association.

    PubMed Central

    Javadpour, M M; Eilers, M; Groesbeek, M; Smith, S O

    1999-01-01

    The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex. PMID:10465772

  5. L-selectin transmembrane and cytoplasmic domains are monomeric in membranes

    PubMed Central

    Srinivasan, Sankaranarayanan; Deng, Wei; Li, Renhao

    2011-01-01

    A recombinant protein termed CLS, which corresponds to the C-terminal portion of human L-selectin and contains its entire transmembrane and cytoplasmic domains (residues Ser473-Arg542), has been produced and its oligomeric state in detergents characterized. CLS migrates in the SDS polyacrylamide gel at a pace that is typically expected from a complex twice of its molecular weight. Additional studies revealed however that this is due to residues in the cytoplasmic domain, as mutations in this region or its deletion significantly increased the electrophoretic rate of CLS. Analytical ultracentrifugation and fluorescence resonance energy transfer studies indicated that CLS reconstituted in dodecylphosphocholine detergent micelles is monomeric. When the transmembrane domain of L-selectin is inserted into the inner membrane of Escherichia coli as a part of a chimeric protein in the TOXCAT assay, little oligomerization of the chimeric protein is observed. Overall, these results suggest that transmembrane and cytoplasmic domains of L-selectin lack the propensity to self-associate in membranes, in contrast to the previously documented dimerization of the transmembrane domain of closely related P-selectin. This study will provide constraints for future investigations on the interaction of L-selectin and its associating proteins. PMID:21316337

  6. Interfacial Interaction between Transmembrane Ocular Mucins and Adhesive Polymers and Dendrimers Analyzed by Surface Plasmon Resonance

    PubMed Central

    Noiray, M.; Briand, E.; Woodward, A. M.; Argüeso, P.; Molina Martínez, I. T.; Herrero-Vanrell, R.; Ponchel, G.

    2013-01-01

    Purpose Development of the first in vitro method based on biosensor chip technology designed for probing the interfacial interaction phenomena between transmembrane ocular mucins and adhesive polymers and dendrimers intended for ophthalmic administration. Methods The surface plasmon resonance (SPR) technique was used. A transmembrane ocular mucin surface was prepared on the chip surface and characterized by QCM-D (Quartz Crystal Microbalance with Dissipation) and XPS (X-ray photoelectron spectroscopy). The mucoadhesive molecules tested were: hyaluronic acid (HA), carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC), chitosan (Ch) and polyamidoamine dendrimers (PAMAM). Results While Ch originated interfacial interaction with ocular transmembrane mucins, for HA, CMC and HPMC, chain interdiffusion seemed to be mandatory for bioadherence at the concentrations used in ophthalmic clinical practise. Interestingly, PAMAM dendrimers developed permanent interfacial interactions with transmembrane ocular mucins whatever their surface chemical groups, showing a relevant importance of co-operative effect of these multivalent systems. Polymers developed interfacial interactions with ocular membrane-associated mucins in the following order: Ch(1 %) > G4PAMAM-NH2(2 %) = G4PAMAM-OH(2 %) > G3.5PAMAM-COOH(2 %)≫ CMC(0.5 %) = HA(0.2 %) = HPMC(0.3 %). Conclusions The method proposed is useful to discern between the mucin-polymer chemical interactions at molecular scale. Results reinforce the usefulness of chitosan and den-drimers as polymers able to increase the retention time of drugs on the ocular surface and hence their bioavailability. PMID:22565639

  7. Identifying essential genes in Arabidopsis thaliana.

    PubMed

    Meinke, David; Muralla, Rosanna; Sweeney, Colleen; Dickerman, Allan

    2008-09-01

    Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.

  8. Differentiation of programmed Arabidopsis cells

    PubMed Central

    Xie, De-Yu; Shi, Ming-Zhu

    2012-01-01

    Plants express genes that encode enzymes that catalyse reactions to form plant secondary metabolites in specific cell types. However, the mechanisms of how plants decide their cellular metabolic fate and how cells diversify and specialise their specific secondary metabolites remains largely unknown. Additionally, whether and how an established metabolic program impacts genome-wide reprogramming of plant gene expression is unclear. We recently isolated PAP1-programmed anthocyanin-producing (red) and -free (white) cells from Arabidopsis thaliana; our previous studies have indicated that the PAP1 expression level is similar between these two different cell types. Transcriptional analysis showed that the red cells contain the TTG1-GL3/TT8-PAP1 regulatory complex, which controls anthocyanin biosynthesis; in contrast, the white cells and the wild-type cells lack this entire complex. These data indicate that different regulatory programming underlies the different metabolic states of these cells. In addition, our previous transcriptomic comparison indicated that there is a clear difference in the gene expression profiles of the red and wild-type cells, which is probably a consequence of cell-specific reprogramming. Based on these observations, in this report we discuss the potential mechanisms that underlie the programming and reprogramming of gene expression involved in anthocyanin biosynthesis. PMID:22126737

  9. Wheat Brassinosteroid-Insensitive1 (TaBRI1) Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis.

    PubMed

    Singh, Akanksha; Breja, Priyanka; Khurana, Jitendra P; Khurana, Paramjit

    2016-01-01

    Brassinosteroids (BRs) hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1) when they bind to its extracellular Leu-rich repeat (LRR) domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR), a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs) gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5), at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL) hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress.

  10. Wheat Brassinosteroid-Insensitive1 (TaBRI1) Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis

    PubMed Central

    Singh, Akanksha; Breja, Priyanka; Khurana, Jitendra P.; Khurana, Paramjit

    2016-01-01

    Brassinosteroids (BRs) hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1) when they bind to its extracellular Leu-rich repeat (LRR) domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR), a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs) gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5), at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL) hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress. PMID:27322749

  11. Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

    PubMed Central

    McNatt, Matthew W.; Zang, Trinity; Hatziioannou, Theodora; Bartlett, Mackenzie; Fofana, Ismael Ben; Johnson, Welkin E.; Neil, Stuart J. D.; Bieniasz, Paul D.

    2009-01-01

    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins. PMID:19214216

  12. Structural implications of a Val-->Glu mutation in transmembrane peptides from the EGF receptor.

    PubMed Central

    Sharpe, S; Grant, C W; Barber, K R; Giusti, J; Morrow, M R

    2001-01-01

    Certain specific point mutations within the transmembrane domains of class I receptor tyrosine kinases are known to induce altered behavior in the host cell. An internally controlled pair of peptides containing the transmembrane portion of the human epidermal growth factor (EGF) receptor (ErbB-1) was examined in fluid, fully hydrated lipid bilayers by wide-line 2H-NMR for insight into the physical basis of this effect. One member of the pair encompassed the native transmembrane sequence from ErbB-1, while in the other the valine residue at position 627 was replaced by glutamic acid to mimic a substitution that produces a transformed phenotype in cells. Heteronuclear probes having a defined relationship to the peptide backbone were incorporated by deuteration of the methyl side chains of natural alanine residues. 2H-NMR spectra were recorded in the range 35 degrees C to 65 degrees C in membranes composed of 1-palmitoyl-2-oleoyl phosphatidylcholine. Narrowed spectral components arising from species rotating rapidly and symmetrically within the membrane persisted to very high temperature and appeared to represent monomeric peptide. Probes at positions 623 and 629 within the EGF receptor displayed changes in quadrupole splitting when Val(627) was replaced by Glu, while probes downstream at position 637 were relatively unaffected. The results demonstrate a measurable spatial reorientation in the region of the 5-amino acid motif (residues 624-628) often suggested to be involved in side-to-side interactions of the receptor transmembrane domain. Spectral changes induced by the Val-->Glu mutation in ErbB-1 were smaller than those induced by the analogous oncogenic mutation in the homologous human receptor, ErbB-2 (Sharpe, S., K. R. Barber, and C. W. M. Grant. 2000. Biochemistry. 39:6572-6580). Quadrupole splittings at probe sites examined were only modestly sensitive to temperature, suggesting that each transmembrane peptide behaved as a motionally ordered unit possessing

  13. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents.

    PubMed

    Dezi, Manuela; Di Cicco, Aurelie; Bassereau, Patricia; Lévy, Daniel

    2013-04-30

    Giant unilamellar vesicles (GUVs) are convenient biomimetic systems of the same size as cells that are increasingly used to quantitatively address biophysical and biochemical processes related to cell functions. However, current approaches to incorporate transmembrane proteins in the membrane of GUVs are limited by the amphiphilic nature or proteins. Here, we report a method to incorporate transmembrane proteins in GUVs, based on concepts developed for detergent-mediated reconstitution in large unilamellar vesicles. Reconstitution is performed either by direct incorporation from proteins purified in detergent micelles or by fusion of purified native vesicles or proteoliposomes in preformed GUVs. Lipid compositions of the membrane and the ionic, protein, or DNA compositions in the internal and external volumes of GUVs can be controlled. Using confocal microscopy and functional assays, we show that proteins are unidirectionally incorporated in the GUVs and keep their functionality. We have successfully tested our method with three types of transmembrane proteins. GUVs containing bacteriorhodopsin, a photoactivable proton pump, can generate large transmembrane pH and potential gradients that are light-switchable and stable for hours. GUVs with FhuA, a bacterial porin, were used to follow the DNA injection by T5 phage upon binding to its transmembrane receptor. GUVs incorporating BmrC/BmrD, a bacterial heterodimeric ATP-binding cassette efflux transporter, were used to demonstrate the protein-dependent translocation of drugs and their interactions with encapsulated DNA. Our method should thus apply to a wide variety of membrane or peripheral proteins for producing more complex biomimetic GUVs.

  14. Structural and Functional Characterization of the C-terminal Transmembrane Region of NBCe1-A*

    PubMed Central

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Abuladze, Natalia; Newman, Debra; Pushkin, Alexander; Liu, Weixin; Chang, Connie; Kurtz, Ira

    2010-01-01

    NBCe1-A and AE1 both belong to the SLC4 HCO3− transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala800–Lys967. Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met858 accessible to both biotin maleimide and TAMRA and Thr926–Ala929 only to TAMRA labeling. The intracellular surface contains a highly exposed (Met813–Gly828) region and a cryptic (Met887–Arg904) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp960. Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro868–Leu967 (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1. PMID:20837482

  15. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    PubMed

    McNatt, Matthew W; Zang, Trinity; Hatziioannou, Theodora; Bartlett, Mackenzie; Fofana, Ismael Ben; Johnson, Welkin E; Neil, Stuart J D; Bieniasz, Paul D

    2009-02-01

    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  16. Analysis of Unfolded Protein Response in Arabidopsis

    PubMed Central

    Chen, Yani; Brandizzi, Federica

    2014-01-01

    The unfolded protein response (UPR) is fundamental for development and adaption in eukaryotic cells. Arabidopsis has become one of the best model systems to uncover conserved mechanisms of the UPR in multicellular eukaryotes as well as organism-specific regulation of the UPR in plants. Monitoring the UPR in planta is an elemental approach to identifying regulatory components and to revealing molecular mechanisms of the plant UPR. In this chapter, we provide protocols for the induction and analyses of plant UPR at a molecular level in Arabidopsis. Three kinds of ER stress treatment methods and quantitation of the plant UPR activation are described here. PMID:23913037

  17. The Transmembrane Domain of CEACAM1-4S Is a Determinant of Anchorage Independent Growth and Tumorigenicity

    PubMed Central

    Lawson, Erica L.; Mills, David R.; Brilliant, Kate E.; Hixson, Douglas C.

    2012-01-01

    CEACAM1 is a multifunctional Ig-like cell adhesion molecule expressed by epithelial cells in many organs. CEACAM1-4L and CEACAM1-4S, two isoforms produced by differential splicing, are predominant in rat liver. Previous work has shown that downregulation of both isoforms occurs in rat hepatocellular carcinomas. Here, we have isolated an anchorage dependent clone, designated 253T-NT that does not express detectable levels of CEACAM1. Stable transfection of 253-NT cells with a wild type CEACAM1-4S expression vector induced an anchorage independent growth in vitro and a tumorigenic phenotype in vivo. These phenotypes were used as quantifiable end points to examine the functionality of the CEACAM1-4S transmembrane domain. Examination of the CEACAM1 transmembrane domain showed N-terminal GXXXG dimerization sequences and C-terminal tyrosine residues shown in related studies to stabilize transmembrane domain helix-helix interactions. To examine the effects of transmembrane domain mutations, 253-NT cells were transfected with transmembrane domain mutants carrying glycine to leucine or tyrosine to valine substitutions. Results showed that mutation of transmembrane tyrosine residues greatly enhanced growth in vitro and in vivo. Mutation of transmembrane dimerization motifs, in contrast, significantly reduced anchorage independent growth and tumorigenicity. 253-NT cells expressing CEACAM1-4S with both glycine to leucine and tyrosine to valine mutations displayed the growth-enhanced phenotype of tyrosine mutants. The dramatic effect of transmembrane domain mutations constitutes strong evidence that the transmembrane domain is an important determinant of CEACAM1-4S functionality and most likely by other proteins with transmembrane domains containing dimerization sequences and/or C-terminal tyrosine residues. PMID:22235309

  18. Glycine 105 as Pivot for a Critical Knee-like Joint between Cytoplasmic and Transmembrane Segments of the Second Transmembrane Helix in Ca2+-ATPase.

    PubMed

    Daiho, Takashi; Yamasaki, Kazuo; Danko, Stefania; Suzuki, Hiroshi

    2016-11-18

    The cytoplasmic actuator domain of the sarco(endo)plasmic reticulum Ca(2+)-ATPase undergoes large rotational movements that influence the distant transmembrane transport sites, and a long second transmembrane helix (M2) connected with this domain plays critical roles in transmitting motions between the cytoplasmic catalytic domains and transport sites. Here we explore possible structural roles of Gly(105) between the cytoplasmic (M2c) and transmembrane (M2m) segments of M2 by introducing mutations that limit/increase conformational freedom. Alanine substitution G105A markedly retards isomerization of the phosphoenzyme intermediate (E1PCa2 → E2PCa2 → E2P + 2Ca(2+)), and disrupts Ca(2+) occlusion in E1PCa2 and E2PCa2 at the transport sites uncoupling ATP hydrolysis and Ca(2+) transport. In contrast, this substitution accelerates the ATPase activation (E2 → E1Ca2). Introducing a glycine by substituting another residue on M2 in the G105A mutant (i.e. "G-shift substitution") identifies the glycine positions required for proper Ca(2+) handling and kinetics in each step. All wild-type kinetic properties, including coupled transport, are fully restored in the G-shift substitution at position 112 (G105A/A112G) located on the same side of the M2c helix as Gly(105) facing M4/phosphorylation domain. Results demonstrate that Gly(105) functions as a flexible knee-like joint during the Ca(2+) transport cycle, so that cytoplasmic domain motions can bend and strain M2 in the correct direction or straighten the helix for proper gating and coupling of Ca(2+) transport and ATP hydrolysis.

  19. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    PubMed

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.

  20. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14lambda and the PP2C phosphatase KAPP.

    PubMed

    Rienties, Ingrid M; Vink, Josefien; Borst, Jan Willem; Russinova, Eugenia; de Vries, Sacco C

    2005-06-01

    Leucine-rich repeat (LRR)-containing transmembrane receptor-like kinases (RLKs) are important components of plant signal transduction. The Arabidopsis thaliana somatic embryogenesis receptor-like kinase 1 (AtSERK1) is an LRR-RLK proposed to participate in a signal transduction cascade involved in embryo development. By yeast two-hybrid screening we identified AtCDC48, a homologue of the mammalian AAA-ATPase p97 and GF14lambda, a member of the Arabidopsis family of 14-3-3 proteins as AtSERK1 interactors. In vitro, the AtSERK1 kinase domain is able to transphosphorylate and bind both AtCDC48 and GF14lambda. In yeast, AtCDC48 interacts with GF14lambda and with the PP2C phosphatase KAPP. In plant protoplasts AtSERK1 interacts with GF14lambda.

  1. O-Acetylation of Arabidopsis Hemicellulose Xyloglucan Requires AXY4 or AXY4L, Proteins with a TBL and DUF231 Domain[W][OA

    PubMed Central

    Gille, Sascha; de Souza, Amancio; Xiong, Guangyan; Benz, Monique; Cheng, Kun; Schultink, Alex; Reca, Ida-Barbara; Pauly, Markus

    2011-01-01

    In an Arabidopsis thaliana forward genetic screen aimed at identifying mutants with altered structures of their hemicellulose xyloglucan (axy mutants) using oligosaccharide mass profiling, two nonallelic mutants (axy4-1 and axy4-2) that have a 20 to 35% reduction in xyloglucan O-acetylation were identified. Mapping of the mutation in axy4-1 identified AXY4, a type II transmembrane protein with a Trichome Birefringence-Like domain and a domain of unknown function (DUF231). Loss of AXY4 transcript results in a complete lack of O-acetyl substituents on xyloglucan in several tissues, except seeds. Seed xyloglucan is instead O-acetylated by the paralog AXY4like, as demonstrated by the analysis of the corresponding T-DNA insertional lines. Wall fractionation analysis of axy4 knockout mutants indicated that only a fraction containing xyloglucan is non-O-acetylated. Hence, AXY4/AXY4L is required for the O-acetylation of xyloglucan, and we propose that these proteins represent xyloglucan-specific O-acetyltransferases, although their donor and acceptor substrates have yet to be identified. An Arabidopsis ecotype, Ty-0, has reduced xyloglucan O-acetylation due to mutations in AXY4, demonstrating that O-acetylation of xyloglucan does not impact the plant’s fitness in its natural environment. The relationship of AXY4 with another previously identified group of Arabidopsis proteins involved in general wall O-acetylation, reduced wall acetylation, is discussed. PMID:22086088

  2. A novel chimeric MOMP antigen expressed in Escherichia coli, Arabidopsis thaliana, and Daucus carota as a potential Chlamydia trachomatis vaccine candidate.

    PubMed

    Kalbina, Irina; Wallin, Anita; Lindh, Ingrid; Engström, Peter; Andersson, Sören; Strid, Ke

    2011-12-01

    The major outer membrane protein (MOMP) of Chlamydia trachomatis is a highly antigenic and hydrophobic transmembrane protein. Our attempts to express the full-length protein in a soluble form in Escherichia coli and in transgenic plants failed. A chimeric gene construct of C. trachomatis serovar E MOMP was designed in order to increase solubility of the MOMP protein but with retained antigenicity. The designed construct was successfully expressed in E. coli, in Arabidopsis thaliana, and in Daucus carota. The chimeric MOMP expressed in and purified from E. coli was used as antigen for production of antibodies in rabbits. The anti-chimeric MOMP antibodies recognized the corresponding protein in both E. coli and in transgenic plants, as well as in inactivated C. trachomatis elementary bodies. Transgenic Arabidopsis and carrots were characterized for the number of MOMP chimeric genetic inserts and for protein expression. Stable integration of the transgene and the corresponding protein expression were demonstrated in Arabidopsis plants over at least six generations. Transgenic carrots showed a high level of expression of the chimeric MOMP - up to 3% of TSP.

  3. Interactome of the plant-specific ESCRT-III component AtVPS2.2 in Arabidopsis thaliana.

    PubMed

    Ibl, Verena; Csaszar, Edina; Schlager, Nicole; Neubert, Susanne; Spitzer, Christoph; Hauser, Marie-Theres

    2012-01-01

    The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. The ESCRT machinery consists of four complexes. ESCRT complexes 0-II are important for cargo recognition and concentration via ubiquitin binding. Most of the membrane bending function is mediated by the large multimeric ESCRT-III complex and associated proteins. Here we present the first in vivo proteome analysis of a member of the ESCRT-III complex which is unique to the plant kingdom. We show with LC-MS/MS, yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) that coimmunoprecipitated proteins from Arabidopsis thaliana roots expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING 2.2 (AtVPS2.2) protein are members of the ESCRT-III complex and associated proteins. Therefore we propose that at least in plants the large ESCRT-III membrane scaffolding complex consists of a mixture of SNF7, VPS2 and the associated VPS46 and VPS60 proteins. Apart from transmembrane proteins, numerous membrane-associated but also nuclear and extracellular proteins have been identified, indicating that AtVPS2.2 might be involved in processes beyond the classical ESCRT role. This study is the first in vivo proteome analysis with a tagged ESCRT-III component demonstrating the feasibility of this approach and provides numerous starting points for the investigation of the biological process in which AtVPS2.2 is involved.

  4. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    NASA Technical Reports Server (NTRS)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  5. The companion cell-specific Arabidopsis disaccharide carrier AtSUC2 is expressed in nematode-induced syncytia.

    PubMed

    Juergensen, Katja; Scholz-Starke, Joachim; Sauer, Norbert; Hess, Paul; van Bel, Aart J E; Grundler, Florian M W

    2003-01-01

    Cyst nematodes induce a metabolically highly active syncytial cell complex in host roots. The syncytia are symplastically isolated. Because they form a strong sink, assimilates must be imported via the apoplast, thus suggesting that specific membrane-bound sugar transport proteins are expressed and activated. To identify possible candidate genes, transgenic Arabidopsis plants expressing different reporter genes under the control of different promoters from Arabidopsis sugar transporter genes were infected with the beet cyst nematode (Heterodera schachtii). With polymerase chain reaction, 13 additional sugar transporters were tested for their presence in the syncytia through the use of a syncytium-specific cDNA library. Analysis of the infected roots showed that the promoter of the sucrose (Suc) transporter AtSUC2 gene that codes for a companion cell-specific Suc transporter in noninfected plants was found to be expressed in syncytia. Its expression patterns in beta-glucuronidase and green fluorescent protein plants were monitored. Syncytium-specific gene expression was confirmed by reverse transcriptase-polymerase chain reaction. Results support the idea that AtSUC2 mediates the transmembrane transfer of Suc. AtSUC2 is the first disaccharide carrier described to be activated by pathogens.

  6. Chilling Tolerance in Arabidopsis Involves ALA1, a Member of a New Family of Putative Aminophospholipid Translocases

    PubMed Central

    Gomès, Eric; Jakobsen, Mia Kyed; Axelsen, Kristian B.; Geisler, Markus; Palmgren, Michael Gjedde

    2000-01-01

    The lipid composition of membranes is a key determinant for cold tolerance, and enzymes that modify membrane structure seem to be important for low-temperature acclimation. We have characterized ALA1 (for aminophospholipid ATPase1), a novel P-type ATPase in Arabidopsis that belongs to the gene family ALA1 to ALA11. The deduced amino acid sequence of ALA1 is homologous with those of yeast DRS2 and bovine ATPase II, both of which are putative aminophospholipid translocases. ALA1 complements the deficiency in phosphatidylserine internalization into intact cells that is exhibited by the drs2 yeast mutant, and expression of ALA1 results in increased translocation of aminophospholipids in reconstituted yeast membrane vesicles. These lines of evidence suggest that ALA1 is involved in generating membrane lipid asymmetry and probably encodes an aminophospholipid translocase. ALA1 complements the cold sensitivity of the drs2 yeast mutant. Downregulation of ALA1 in Arabidopsis results in cold-affected plants that are much smaller than those of the wild type. These data suggest a link between regulation of transmembrane bilayer lipid asymmetry and the adaptation of plants to cold. PMID:11148289

  7. Overexpression of a new putative membrane protein gene AtMRB1 results in organ size enlargement in Arabidopsis.

    PubMed

    Guan, Hua; Kang, Dingming; Fan, Min; Chen, Zhangliang; Qu, Li-Jia

    2009-02-01

    Arabidopsis AtMRB1 is predicted to encode a novel protein of 432 amino acid residues in length, with four putative trans-membrane domains. In the present study, characterization of AtMRB1 is conducted. Green fluorescent protein (GFP) fusion protein assay showed that AtMRB1 was located in the plasma membrane. Transgenic lines overexpressing AtMRB1 driven by a CaMV 35S promoter were generated. Statistic analysis showed that, during the seedling stage, the organ sizes of the transgenic lines including hypocotyl length, root length and root weight were significantly larger than those of the wild type plants under both light and dark conditions. In the adult plant stage, the AtMRB1 overexpressor plants were found to have larger organ sizes in terms of leaf length and width, and increased number of cauline leaves and branches when bolting. Further observation indicated that the larger leaf size phenotype was due to a larger number of mesophyll cells, the size of which was not altered. Quantitative real-time polymerase chain reaction analysis showed that the transcription of ANT, ROT3 and GRF5 were upregulated in the AtMRB1-overexpressor plants. These data suggest that AtMRB1 is possibly a positive regulator of organ size development in Arabidopsis, mainly through cell number control.

  8. SDH6 and SDH7 Contribute to Anchoring Succinate Dehydrogenase to the Inner Mitochondrial Membrane in Arabidopsis thaliana1[OPEN

    PubMed Central

    Schikowsky, Christine

    2017-01-01

    The succinate dehydrogenase complex (complex II) is a highly conserved protein complex composed of the SDH1 to SDH4 subunits in bacteria and in the mitochondria of animals and fungi. The reason for the occurrence of up to four additional subunits in complex II of plants, termed SDH5 to SDH8, so far is a mystery. Here, we present a biochemical approach to investigate the internal subunit arrangement of Arabidopsis (Arabidopsis thaliana) complex II. Using low-concentration detergent treatments, the holo complex is dissected into subcomplexes that are analyzed by a three-dimensional gel electrophoresis system. Protein identifications by mass spectrometry revealed that the largest subcomplex (IIa) represents the succinate dehydrogenase domain composed of SDH1 and SDH2. Another subcomplex (IIb) is composed of the SDH3, SDH4, SDH6, and SDH7 subunits. All four proteins include transmembrane helices and together form the membrane anchor of complex II. Sequence analysis revealed that SDH3 and SDH4 lack helices conserved in other organisms. Using homology modeling and phylogenetic analyses, we present evidence that SDH6 and SDH7 substitute missing sequence stretches of SDH3 and SDH4 in plants. Together with SDH5, which is liberated upon dissection of complex II into subcomplexes, SDH6 and SDH7 also add some hydrophilic mass to plant complex II, which possibly inserts further functions into this smallest protein complex of the oxidative phosphorylation system (which is not so small in plants). PMID:28039307

  9. Imaging lipid droplets in Arabidopsis mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confocal fluorescence microscopy was adapted for the imaging of neutral lipids in plant leaves with defects in normal lipid metabolism using two different fluorescent dyes. Disruptions in a gene locus, At4g24160, yielded Arabidopsis thaliana plants with a preponderance of oil bodies in their leaves ...

  10. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  11. Arabidopsis, the Rosetta stone of flowering time?

    PubMed

    Simpson, Gordon G; Dean, Caroline

    2002-04-12

    Multiple environmental and endogenous inputs regulate when plants flower. The molecular genetic dissection of flowering time control in Arabidopsis has identified an integrated network of pathways that quantitatively control the timing of this developmental switch. This framework provides the basis to understand the evolution of different reproductive strategies and how floral pathways interact through seasonal progression.

  12. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  13. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  14. Identification of potential transmembrane protease serine 4 inhibitors as anti-cancer agents by integrated computational approach.

    PubMed

    Ilamathi, M; Hemanth, R; Nishanth, S; Sivaramakrishnan, V

    2016-01-21

    Transmembrane protease serine 4 is a well known cell surface protease facilitating the extracellular matrix degradation and epithelial mesenchymal transition in hepatocellular carcinoma. Henceforth targeting transmembrane protease serine 4 is strongly believed to provide therapeutic intervention against hepatocellular carcinoma. Owing to lack of crystal structure for human transmembrane protease serine 4, we predicted its three dimensional structure for the first time in this study. Experimentally proven inhibitor-Tyroserleutide (TSL) against hepatocellular carcinoma via transmembrane protease serine 4 was used as a benchmark to identify structurally similar candidates from PubChem database to create the TSL library. Virtual screening of TSL library against modeled transmembrane protease serine 4 revealed the top four potential inhibitors. Further binding free energy (ΔGbind) analysis of the potential inhibitors revealed the best potential lead compound against transmembrane protease serine 4. Drug likeliness nature of the top four potential hits were additionally analyzed in comparison to TSL to confirm on the best potential lead compound with the highest % of human oral absorption. Consequently, e-pharmacophore mapping of the best potential lead compound yielded a six point feature. It was observed to contain four hydrogen bond donor sites (D), one positively ionizable site (P) and one aromatic ring (R). Such e-pharmacophore insight obtained from structural determinants by integrated computational analysis could serve as a framework for further advancement of drug discovery process of new anti-cancer agents with less toxicity and high specificity targeting transmembrane protease serine 4 and hepatocellular carcinoma.

  15. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    PubMed Central

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A.B.; Pataki, Csilla; Okina, Elena; Xian, Xiaojie; Pedersen, Mikael E.; Stevens, Troy; Griesbeck, Oliver; Park, Pyong Woo; Pocock, Roger

    2015-01-01

    Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. PMID:26391658

  16. Snorkeling of lysine side chains in transmembrane helices: how easy can it get?

    PubMed

    Strandberg, Erik; Killian, J Antoinette

    2003-06-05

    Transmembrane segments of proteins are often flanked by lysine residues. The side chains of these residues may snorkel, i.e. they may bury themselves with their aliphatic part in the hydrophobic region of the lipid bilayer, while positioning the charged amino group in the more polar interface. Here we estimate the free energy cost of snorkeling from thermodynamical calculations based on studies with synthetic transmembrane peptides [Strandberg et al. (2002) Biochemistry 41, 7190-7198]. The value is estimated to be between 0.07 and 0.7 kcal mol(-1) for a lysine side chain. This very low value indicates that snorkeling may be a common process, which should be taken into consideration both in experimental and in theoretical studies on protein-lipid interactions.

  17. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing

    2016-09-01

    The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences.

  18. The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues.

    PubMed

    Brosig, B; Langosch, D

    1998-04-01

    The glycophorin A transmembrane segment homo-dimerizes to a right-handed pair of alpha-helices. Here, we identified the amino acid motif mediating this interaction within a natural membrane environment. Critical residues were grafted onto two different hydrophobic host sequences in a stepwise manner and self-assembly of the hybrid sequences was determined with the ToxR transcription activator system. Our results show that the motif LIxxGxxxGxxxT elicits a level of self-association equivalent to that of the original glycophorin A transmembrane segment. This motif is very similar to the one previously established in detergent solution. Interestingly, the central GxxxG motif by itself already induced strong self-assembly of host sequences and the three-residue spacing between both glycines proved to be optimal for the interaction. The GxxxG element thus appears to be the most crucial part of the interaction motif.

  19. The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues.

    PubMed Central

    Brosig, B.; Langosch, D.

    1998-01-01

    The glycophorin A transmembrane segment homo-dimerizes to a right-handed pair of alpha-helices. Here, we identified the amino acid motif mediating this interaction within a natural membrane environment. Critical residues were grafted onto two different hydrophobic host sequences in a stepwise manner and self-assembly of the hybrid sequences was determined with the ToxR transcription activator system. Our results show that the motif LIxxGxxxGxxxT elicits a level of self-association equivalent to that of the original glycophorin A transmembrane segment. This motif is very similar to the one previously established in detergent solution. Interestingly, the central GxxxG motif by itself already induced strong self-assembly of host sequences and the three-residue spacing between both glycines proved to be optimal for the interaction. The GxxxG element thus appears to be the most crucial part of the interaction motif. PMID:9568912

  20. Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3

    PubMed Central

    Ling, Shenglong; Zhang, Chengwei; Wang, Wei; Cai, Xiaoying; Yu, Lu; Wu, Fangming; Zhang, Longhua; Tian, Changlin

    2016-01-01

    Interferon-inducible transmembrane protein IFITM3 was known to restrict the entry of a wide spectrum of viruses to the cytosol of the host. The mechanism used by the protein to restrict viral entry is unclear given the unavailability of the membrane topology and structures of the IFITM family proteins. Systematic site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) studies of IFITM3 in detergent micelles identified a single, long transmembrane helix in the C-terminus and an intramembrane segment in the N-terminal hydrophobic region. Solution NMR studies of the same sample verified the secondary structure distribution and demonstrated two rigid regions interacting with the micellar surface. The resulting membrane topology of IFITM3 supports the mechanism of an enhanced restricted membrane hemi-fusion. PMID:27046158

  1. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active.

    PubMed

    Schönitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M

    2011-12-02

    Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA(-) cell lines are shown.

  2. NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs

    PubMed Central

    Mineev, Konstantin S.; Goncharuk, Sergey A.; Kuzmichev, Pavel K.; Vilar, Marçal; Arseniev, Alexander S.

    2015-01-01

    P75NTR is a type I integral membrane protein that plays a key role in neurotrophin signaling. However, structural data for the receptor in various functional states are sparse and controversial. In this work, we studied the spatial structure and mobility of the transmembrane and intracellular parts of p75NTR, incorporated into lipid-protein nanodiscs of various sizes and compositions, by solution NMR spectroscopy. Our data reveal a high level of flexibility and disorder in the juxtamembrane chopper domain of p75NTR, which results in the motions of the receptor death domain being uncoupled from the motions of the transmembrane helix. Moreover, none of the intracellular domains of p75NTR demonstrated a propensity to interact with the membrane or to self-associate under the experimental conditions. The obtained data are discussed in the context of the receptor activation mechanism. PMID:26287629

  3. On the distribution of amino acid residues in transmembrane alpha-helix bundles.

    PubMed Central

    Samatey, F A; Xu, C; Popot, J L

    1995-01-01

    The periodic distribution of residues in the sequence of 469 putative transmembrane alpha-helices from eukaryotic plasma membrane polytopic proteins has been analyzed with correlation matrices. The method does not involve any a priori assumption about the secondary structure of the segments or about the physicochemical properties of individual amino acid residues. Maximal correlation is observed at 3.6 residues per period, characteristic of alpha-helices. A scale extracted from the data describes the propensity of the various residues to lie on the same or on opposite helix faces. The most polar face of transmembrane helices, presumably that buried in the protein core, shows a strong enrichment in aromatic residues, while residues likely to face the fatty acyl chains of lipids are largely aliphatic. PMID:7753846

  4. The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans.

    PubMed

    Liu, Oliver W; Shen, Kang

    2011-12-04

    Dendrites often adopt complex branched structures. The development and organization of these arbors fundamentally determine the potential input and connectivity of a given neuron. The cell-surface receptors that control dendritic branching remain poorly understood. We found that, in Caenorhabditis elegans, a previously uncharacterized transmembrane protein containing extracellular leucine-rich repeat (LRR) domains, which we named DMA-1 (dendrite-morphogenesis-abnormal), promotes dendrite branching and growth. Sustained expression of dma-1 was found only in the elaborately branched sensory neurons PVD and FLP. Genetic analysis revealed that the loss of dma-1 resulted in much reduced dendritic arbors, whereas overexpression of dma-1 resulted in excessive branching. Forced expression of dma-1 in neurons with simple dendrites was sufficient to promote ectopic branching. Worms lacking dma-1 were defective in sensing harsh touch. DMA-1 is the first transmembrane LRR protein to be implicated in dendritic branching and expands the breadth of roles of LRR receptors in nervous system development.

  5. Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome.

    PubMed

    Tu, Liwei; Khanna, Pooja; Deutsch, Carol

    2014-01-09

    Folding of membrane proteins begins in the ribosome as the peptide is elongated. During this process, the nascent peptide navigates along 100Å of tunnel from the peptidyltransferase center to the exit port. Proximal to the exit port is a "folding vestibule" that permits the nascent peptide to compact and explore conformational space for potential tertiary folding partners. The latter occurs for cytosolic subdomains but has not yet been shown for transmembrane segments. We now demonstrate, using an accessibility assay and an improved intramolecular crosslinking assay, that the helical transmembrane S3b-S4 hairpin ("paddle") of a voltage-gated potassium (Kv) channel, a critical region of the Kv voltage sensor, forms in the vestibule. S3-S4 hairpin interactions are detected at an early stage of Kv biogenesis. Moreover, this vestibule hairpin is consistent with a closed-state conformation of the Kv channel in the plasma membrane.

  6. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    NASA Astrophysics Data System (ADS)

    Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed

    2014-08-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells.

  7. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  8. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  9. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction

    PubMed Central

    Alton, Eric W.F.W.

    2015-01-01

    Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians and has been extensively studied for many decades. The cystic fibrosis transmembrane conductance regulator gene was identified in 1989. It encodes a complex protein which has numerous cellular functions. Our understanding of cystic fibrosis pathophysiology and genetics is constantly expanding and being refined, leading to improved management of the disease and increased life expectancy in affected individuals. PMID:26097737

  10. Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters.

    PubMed

    Kato, Naoki; Akai, Masaro; Zulkifli, Lalu; Matsuda, Nobuyuki; Kato, Yasuhiro; Goshima, Shinobu; Hazama, Akihiro; Yamagami, Mutsumi; Guy, H Robert; Uozumi, Nobuyuki

    2007-01-01

    Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.

  11. LIME acts as a transmembrane adapter mediating BCR-dependent B-cell activation.

    PubMed

    Ahn, Eunseon; Lee, Hyunsook; Yun, Yungdae

    2006-02-15

    Assembly of a signaling complex around the transmembrane adapter LAT is essential for the transmission of T-cell receptor (TCR)-mediated signaling. However, a LAT-like molecule responsible for the initial activation events in B-cell receptor (BCR) signaling has not yet been identified. Here, we show that LIME is a transmembrane adaptor required for BCR-mediated B-cell activation. LIME was found to be expressed in mouse splenic B cells. Upon BCR cross-linking, LIME was tyrosine phosphorylated by Lyn and associated with Lyn, Grb2, PLC-gamma2, and PI3K. Reduction of LIME expression by the introduction of siRNA resulted in the disruption of BCR-mediated activation of MAPK, calcium flux, NF-AT, PI3K, and NF-kappaB. Taken together, these results establish that LIME is an essential transmembrane adaptor linking BCR ligation to the downstream signaling events that lead to B-cell activation.

  12. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  13. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.

    PubMed

    Corradi, Valentina; Vergani, Paola; Tieleman, D Peter

    2015-09-18

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of "rational" approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287-288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287-288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.

  14. TOXCAT: A measure of transmembrane helix association in a biological membrane

    PubMed Central

    Russ, William P.; Engelman, Donald M.

    1999-01-01

    The noncovalent association of transmembrane α-helices is a fundamental event in the folding of helical membrane proteins. In this work, a system (TOXCAT) is developed for the study of transmembrane helix–helix oligomerization in a natural membrane environment. This assay uses a chimeric construct composed of the N-terminal DNA binding domain of ToxR (a dimerization-dependent transcriptional activator) fused to a transmembrane domain (tm) of interest and a monomeric periplasmic anchor (the maltose binding protein). Association of the tms results in the ToxR-mediated activation of a reporter gene encoding chloramphenicol acetyltransferase (CAT). The level of CAT expression indicates the strength of tm association. The assay distinguishes between a known dimerizing tm and a mutant in which dimerization is disrupted. In addition, modulation of the chimera concentration shows that the dimerization exhibits concentration dependence in membranes. TOXCAT also is used to select oligomeric tms from a library of randomized sequences, demonstrating the potential of this system to reveal novel oligomerization motifs. The TOXCAT system has been used to investigate glycophorin A tm-mediated dimerization. Although the overall sensitivity of glycophorin A tm dimerization to mutagenesis is found to be similar in membranes and in detergent micelles, several significant differences exist. Mutations to polar residues, which are generally disruptive in SDS, exhibit sequence specificity in membranes, demonstrating both the limitations of detergent micelles and the wider range of application of the TOXCAT system. PMID:9927659

  15. The positive inside rule is stronger when followed by a transmembrane helix.

    PubMed

    Virkki, Minttu T; Peters, Christoph; Nilsson, Daniel; Sörensen, Therese; Cristobal, Susana; Wallner, Björn; Elofsson, Arne

    2014-08-12

    The translocon recognizes transmembrane helices with sufficient level of hydrophobicity and inserts them into the membrane. However, sometimes less hydrophobic helices are also recognized. Positive inside rule, orientational preferences of and specific interactions with neighboring helices have been shown to aid in the recognition of these helices, at least in artificial systems. To better understand how the translocon inserts marginally hydrophobic helices, we studied three naturally occurring marginally hydrophobic helices, which were previously shown to require the subsequent helix for efficient translocon recognition. We find no evidence for specific interactions when we scan all residues in the subsequent helices. Instead, we identify arginines located at the N-terminal part of the subsequent helices that are crucial for the recognition of the marginally hydrophobic transmembrane helices, indicating that the positive inside rule is important. However, in two of the constructs, these arginines do not aid in the recognition without the rest of the subsequent helix; that is, the positive inside rule alone is not sufficient. Instead, the improved recognition of marginally hydrophobic helices can here be explained as follows: the positive inside rule provides an orientational preference of the subsequent helix, which in turn allows the marginally hydrophobic helix to be inserted; that is, the effect of the positive inside rule is stronger if positively charged residues are followed by a transmembrane helix. Such a mechanism obviously cannot aid C-terminal helices, and consequently, we find that the terminal helices in multi-spanning membrane proteins are more hydrophobic than internal helices.

  16. Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking

    PubMed Central

    Sanchez-Garcia, Jonatan; Arbelaez, Daniela; Jensen, Kurt; Rincon-Limas, Diego E.; Fernandez-Funez, Pedro

    2013-01-01

    Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed the role of two highly conserved methionines in helix 3 on PrP biogenesis, folding and pathogenesis. Expression of the PrP-M205S and -M205,212S mutants in Drosophila led to hyperglycosylation, intracellular accumulation and widespread conformational changes due to failure of oxidative folding. Surprisingly, PrP-M205S and -M205,212S acquired a transmembrane topology (Ctm) previously linked to mutations in the signal peptide (SP) and the transmembrane domain (TMD). PrP-M205,212S also disrupted the accumulation of key neurodevelopmental proteins in lipid rafts, resulting in shortened axonal projections. These results uncover a new role for the hydrophobic domain in promoting oxidative folding and preventing the formation of neurotoxic Ctm PrP, mechanisms that may be relevant in the pathogenesis of both inherited and sporadic prion diseases. PMID:23771030

  17. Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development.

    PubMed

    Marcorelles, Pascale; Gillet, Danièle; Friocourt, Gaëlle; Ledé, Françoise; Samaison, Laura; Huguen, Geneviève; Ferec, Claude

    2012-03-01

    Sterility due to bilateral destruction in utero or in early infancy resulting in congenital absence of the vas deferens is the rule in male patients with cystic fibrosis. To understand the developmental pattern of this anomaly, the microscopic morphology of the male excretory system was analyzed during development and the expression of the cystic fibrosis transmembrane conductance regulator protein was explored by immunohistochemistry. We observed that cystic fibrosis fetuses had no excretory ducts agenesis or obstruction until 22 weeks of gestation. However, a focal inflammatory pattern and mucinous plugs in the oldest cystic fibrosis case suggested a disruptive mechanism. Immunolabeling of cytoplasmic epithelial cystic fibrosis transmembrane conductance regulator protein was demonstrated in all cystic fibrosis and control cases with a similar pattern of expression of the protein between age-matched controls and cystic fibrosis cases. At midgestation, an apical intensification appeared in both cystic fibrosis and control cases and was stable during the remainder of fetal life. No gradient of intensity could be detected between the different segments of the excretory tract. These findings are different from those reported in adults. The absence of any morphologic anomaly until 22 weeks of gestation, the focal destruction of the epithelial structures during the second trimester, and the chronological pattern of expression of cystic fibrosis transmembrane conductance regulator are of interest for a better understanding of the pathophysiology of this disease.

  18. Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking.

    PubMed

    Sanchez-Garcia, Jonatan; Arbelaez, Daniela; Jensen, Kurt; Rincon-Limas, Diego E; Fernandez-Funez, Pedro

    2013-11-01

    Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed the role of two highly conserved methionines in helix 3 on PrP biogenesis, folding and pathogenesis. Expression of the PrP-M205S and -M205,212S mutants in Drosophila led to hyperglycosylation, intracellular accumulation and widespread conformational changes due to failure of oxidative folding. Surprisingly, PrP-M205S and -M205,212S acquired a transmembrane topology (Ctm) previously linked to mutations in the signal peptide (SP) and the transmembrane domain (TMD). PrP-M205,212S also disrupted the accumulation of key neurodevelopmental proteins in lipid rafts, resulting in shortened axonal projections. These results uncover a new role for the hydrophobic domain in promoting oxidative folding and preventing the formation of neurotoxic Ctm PrP, mechanisms that may be relevant in the pathogenesis of both inherited and sporadic prion diseases.

  19. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB

    PubMed Central

    Oswald, Christine; Tam, Heng-Keat; Pos, Klaas M.

    2016-01-01

    The deployment of multidrug efflux pumps is a powerful defence mechanism for Gram-negative bacterial cells when exposed to antimicrobial agents. The major multidrug efflux transport system in Escherichia coli, AcrAB–TolC, is a tripartite system using the proton-motive force as an energy source. The polyspecific substrate-binding module AcrB uses various pathways to sequester drugs from the periplasm and outer leaflet of the inner membrane. Here we report the asymmetric AcrB structure in complex with fusidic acid at a resolution of 2.5 Å and mutational analysis of the putative fusidic acid binding site at the transmembrane domain. A groove shaped by the interface between transmembrane helix 1 (TM1) and TM2 specifically binds fusidic acid and other lipophilic carboxylated drugs. We propose that these bound drugs are actively displaced by an upward movement of TM2 towards the AcrB periplasmic porter domain in response to protonation events in the transmembrane domain. PMID:27982032

  20. Structural Role of the Conserved Cysteines in the Dimerization of the Viral Transmembrane Oncoprotein E5

    PubMed Central

    Windisch, Dirk; Hoffmann, Silke; Afonin, Sergii; Vollmer, Stefanie; Benamira, Soraya; Langer, Birgid; Bürck, Jochen; Muhle-Goll, Claudia; Ulrich, Anne S.

    2010-01-01

    The E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. This 44-residue transmembrane protein can interact with the platelet-derived growth factor receptor β, leading to ligand-independent activation and cell transformation. For productive interaction, E5 needs to dimerize via a C-terminal pair of cysteines, though a recent study suggested that its truncated transmembrane segment can dimerize on its own. To analyze the structure of the full protein in a membrane environment and elucidate the role of the Cys-Ser-Cys motif, we produced recombinantly the wild-type protein and four cysteine mutants. Comparison by circular dichroism in detergent micelles and lipid vesicular dispersion and by NMR in trifluoroethanol demonstrates that the absence of one or both cysteines does not influence the highly α-helical secondary structure, nor does it impair the ability of E5 to dimerize, observations that are further supported by sodium dodecylsulfate polyacrylamide gel electrophoresis. We also observed assemblies of higher order. Oriented circular dichroism in lipid bilayers shows that E5 is aligned as a transmembrane helix with a slight tilt angle, and that this membrane alignment is also independent of any cysteines. We conclude that the Cys-containing motif represents a disordered region of the protein that serves as an extra covalent connection for stabilization. PMID:20858420

  1. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    PubMed

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data.

  2. Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain.

    PubMed

    Kirk, Lyndsey M; Ti, Shu W; Bishop, Hannah I; Orozco-Llamas, Mayra; Pham, Michelle; Trimmer, James S; Díaz, Elva

    2016-08-01

    The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline-rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs. J. Comp. Neurol. 524:2266-2280, 2016. © 2015 Wiley Periodicals, Inc.

  3. 17th International Conference on Arabidopsis Research

    SciTech Connect

    Bender, Judith

    2006-07-02

    The 17th International Conference on Arabidopsis Research was held at the University of Madison, Wisconsin from June 27- July 2, 2006. ICAR-2006 included approximately 625 scientists from across the world. The scientific program was of excellent quality featuring 73 talks, including 30 from invited speakers. There were also 6 community-organized workshops (facilitated by conference staff) featuring additional talks on topics including ‘Submitting data to long-term repositories,’ ‘TAIR introductory workshop,’ ‘Web services and demonstration,’ ‘Public engagement: broadening the impact of your research,’ ‘Systems biology approaches to analysis of metabolic and regulatory networks of Arabidopsis,’ and ‘Mechanotransduction in Arabidopsis.’ Approximately 440 posters were presented in general topic areas including, among others, Development, Modeling/Other Systems, Energy, Environment, and Genetic/Epigenetic mechanisms. Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up a significant portion of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The North American Arabidopsis Steering Committee (NAASC) continued its outreach effort and again sponsored two special luncheons to encourage personal and professional development of young scientists and also underrepresented minorities. The ‘Emerging Scientists Luncheon’ featured 10 graduate students selected on the basis of scientific excellence of their submitted research abstracts. The ‘Minority Funding Luncheon,’ featured 8 awardees selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from

  4. Roles of Arabidopsis PARC6 in Coordination of the Chloroplast Division Complex and Negative Regulation of FtsZ Assembly1[OPEN

    PubMed Central

    Chen, Cheng; Froehlich, John E.; TerBush, Allan D.

    2016-01-01

    Chloroplast division is driven by the simultaneous constriction of the inner FtsZ ring (Z ring) and the outer DRP5B ring. The assembly and constriction of these rings in Arabidopsis (Arabidopsis thaliana) are coordinated partly through the inner envelope membrane protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS6 (ARC6). Previously, we showed that PARC6 (PARALOG OF ARC6), also in the inner envelope membrane, negatively regulates FtsZ assembly and acts downstream of ARC6 to position the outer envelope membrane protein PLASTID DIVISION1 (PDV1), which functions together with its paralog PDV2 to recruit DYNAMIN-RELATED PROTEIN 5B (DRP5B) from a cytosolic pool to the outer envelope membrane. However, whether PARC6, like ARC6, also functions in coordination of the chloroplast division contractile complexes was unknown. Here, we report a detailed topological analysis of Arabidopsis PARC6, which shows that PARC6 has a single transmembrane domain and a topology resembling that of ARC6. The newly identified stromal region of PARC6 interacts not only with ARC3, a direct inhibitor of Z-ring assembly, but also with the Z-ring protein FtsZ2. Overexpression of PARC6 inhibits FtsZ assembly in Arabidopsis but not in a heterologous yeast system (Schizosaccharomyces pombe), suggesting that the negative regulation of FtsZ assembly by PARC6 is a consequence of its interaction with ARC3. A conserved carboxyl-terminal peptide in FtsZ2 mediates FtsZ2 interaction with both PARC6 and ARC6. Consistent with its role in the positioning of PDV1, the intermembrane space regions of PARC6 and PDV1 interact. These findings provide new insights into the functions of PARC6 and suggest that PARC6 coordinates the inner Z ring and outer DRP5B ring through interaction with FtsZ2 and PDV1 during chloroplast division. PMID:26527658

  5. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture

    PubMed Central

    Jaquinod, Michel; Villiers, Florent; Kieffer-Jaquinod, Sylvie; Hugouvieux, Véronique; Bruley, Christophe; Garin, Jérôme; Bourguignon, Jacques

    2007-01-01

    To better understand the mechanisms governing cellular traffic, storage of various metabolites and their ultimate degradation, Arabidopsis thaliana vacuoles proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42 fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomic study. Therefore, a proteomic approach was developed in order to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, (iii) a pre-fractionation of proteins by short migration on SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, 2/3 of which copurify with the membrane hydrophobic fraction and 1/3 with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were previously known to be associated with vacuolar

  6. Sucrose-induced Receptor Kinase SIRK1 Regulates a Plasma Membrane Aquaporin in Arabidopsis*

    PubMed Central

    Wu, Xu Na; Sanchez Rodriguez, Clara; Pertl-Obermeyer, Heidi; Obermeyer, Gerhard; Schulze, Waltraud X.

    2013-01-01

    The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis, and it contains the highest fraction of proteins with yet uncharacterized functions. Here, we present functions of SIRK1, a receptor kinase that was previously identified with rapid transient phosphorylation after sucrose resupply to sucrose-starved seedlings. SIRK1 was found to be an active kinase with increasing activity in the presence of an external sucrose supply. In sirk1 T-DNA insertional mutants, the sucrose-induced phosphorylation patterns of several membrane proteins were strongly reduced; in particular, pore-gating phosphorylation sites in aquaporins were affected. SIRK1-GFP fusions were found to directly interact with aquaporins in affinity pull-down experiments on microsomal membrane vesicles. Furthermore, protoplast swelling assays of sirk1 mutants and SIRK1-GFP expressing lines confirmed a direct functional interaction of receptor kinase SIRK1 and aquaporins as substrates for phosphorylation. A lack of SIRK1 expression resulted in the failure of mutant protoplasts to control water channel activity upon changes in external sucrose concentrations. We propose that SIRK1 is involved in the regulation of sucrose-specific osmotic responses through direct interaction with and activation of an aquaporin via phosphorylation and that the duration of this response is controlled by phosphorylation-dependent receptor internalization. PMID:23820729

  7. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  8. Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins.

    PubMed Central

    Capel, J; Jarillo, J A; Salinas, J; Martínez-Zapater, J M

    1997-01-01

    We have characterized two related cDNAs (RCI2A and RCI2B) corresponding to genes from Arabidopsis thaliana, the expression of which is transiently induced by low, nonfreezing temperatures. RCI2A and RCI2B encode small (54 amino acids), highly hydrophobic proteins that bear two potential transmembrane domains. They show similarity to proteins encoded by genes from barley (Hordeum vulgare L.) and wheatgrass (Lophophyrum elongatum) that are regulated by different stress conditions. Their high level of sequence homology (78%) and their genomic location in a single restriction fragment suggest that both genes originated as a result of a tandem duplication. However, their regulatory sequences have diverged enough to confer on them different expression patterns. Like most of the cold-inducible plant genes characterized, the expression of RCI2A and RCI2B is also promoted by abscisic acid (ABA) and dehydration but is not a general response to stress conditions, since it is not induced by salt stress or by anaerobiosis. Furthermore, low temperatures are able to induce RCI2A and RCI2B expression in ABA-deficient and -insensitive genetic backgrounds, indicating that both ABA-dependent and -independent pathways regulate the low-temperature responsiveness of these two genes. PMID:9342870

  9. On the post-glacial spread of human commensal Arabidopsis thaliana

    PubMed Central

    Lee, Cheng-Ruei; Svardal, Hannes; Farlow, Ashley; Exposito-Alonso, Moises; Ding, Wei; Novikova, Polina; Alonso-Blanco, Carlos; Weigel, Detlef; Nordborg, Magnus

    2017-01-01

    Recent work has shown that Arabidopsis thaliana contains genetic groups originating from different ice age refugia, with one particular group comprising over 95% of the current worldwide population. In Europe, relicts of other groups can be found in local populations along the Mediterranean Sea. Here we provide evidence that these ‘relicts' occupied post-glacial Eurasia first and were later replaced by the invading ‘non-relicts', which expanded through the east–west axis of Eurasia, leaving traces of admixture in the north and south of the species range. The non-relict expansion was likely associated with human activity and led to a demographic replacement similar to what occurred in humans. Introgressed genomic regions from relicts are associated with flowering time and enriched for genes associated with environmental conditions, such as root cap development or metal ion trans-membrane transport, which suggest that admixture with locally adapted relicts helped the non-relicts colonize new habitats. PMID:28181519

  10. AtPIN2 defines a locus of Arabidopsis for root gravitropism control.

    PubMed Central

    Müller, A; Guan, C; Gälweiler, L; Tänzler, P; Huijser, P; Marchant, A; Parry, G; Bennett, M; Wisman, E; Palme, K

    1998-01-01

    The molecular mechanisms underlying gravity perception and signal transduction which control asymmetric plant growth responses are as yet unknown, but are likely to depend on the directional flux of the plant hormone auxin. We have isolated an Arabidopsis mutant of the AtPIN2 gene using transposon mutagenesis. Roots of the Atpin2::En701 null-mutant were agravitropic and showed altered auxin sensitivity, a phenotype characteristic of the agravitropic wav6-52 mutant. The AtPIN2 gene was mapped to chromosome 5 (115.3 cM) corresponding to the WAV6 locus and subsequent genetic analysis indicated that wav6-52 and Atpin2::En701 were allelic. The AtPIN2 gene consists of nine exons defining an open reading frame of 1944 bp which encodes a 69 kDa protein with 10 putative transmembrane domains interrupted by a central hydrophilic loop. The topology of AtPIN2p was found to be similar to members of the major facilitator superfamily of transport proteins. We have shown that the AtPIN2 gene was expressed in root tips. The AtPIN2 protein was localized in membranes of root cortical and epidermal cells in the meristematic and elongation zones revealing a polar localization. These results suggest that AtPIN2 plays an important role in control of gravitropism regulating the redistribution of auxin from the stele towards the elongation zone of roots. PMID:9843496

  11. ACA12 Is a Deregulated Isoform of Plasma Membrane Ca2+-ATPase of Arabidopsis thaliana

    PubMed Central

    Limonta, Margherita; Romanowsky, Shawn; Olivari, Claudio; Bonza, Maria Cristina; Luoni, Laura; Rosenberg, Alexa; Harper, Jeffrey F.; De Michelis, Maria Ida

    2014-01-01

    Plant auto-inhibited Ca2+-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca2+-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues - highly conserved in other ACA isoforms - localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation. PMID:24101142

  12. Dynamic Mechanical Responses of Arabidopsis Thylakoid Membranes during PSII-Specific Illumination

    PubMed Central

    Clausen, Casper H.; Brooks, Matthew D.; Li, Tai-De; Grob, Patricia; Kemalyan, Gigi; Nogales, Eva; Niyogi, Krishna K.; Fletcher, Daniel A.

    2014-01-01

    Remodeling of thylakoid membranes in response to illumination is an important process for the regulation of photosynthesis. We investigated the thylakoid network from Arabidopsis thaliana using atomic force microscopy to capture dynamic changes in height, elasticity, and viscosity of isolated thylakoid membranes caused by changes in illumination. We also correlated the mechanical response of the thylakoid network with membrane ultrastructure using electron microscopy. We find that the elasticity of the thylakoid membranes increases immediately upon PSII-specific illumination, followed by a delayed height change. Direct visualization by electron microscopy confirms that there is a significant change in the packing repeat distance of the membrane stacks in response to illumination. Although experiments with Gramicidin show that the change in elasticity depends primarily on the transmembrane pH gradient, the height change requires both the pH gradient and STN7-kinase-dependent phosphorylation of LHCII. Our studies indicate that lumen expansion in response to illumination is not simply a result of the influx of water, and we propose a dynamic model in which protein interactions within the lumen drive these changes. PMID:24806918

  13. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases.

    PubMed

    Kupriyanova, E V; Mamoshina, P O; Ezhova, T A

    2015-10-01

    Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.

  14. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  15. DYn-2 Based Identification of Arabidopsis Sulfenomes*

    PubMed Central

    Akter, Salma; Huang, Jingjing; Bodra, Nandita; De Smet, Barbara; Wahni, Khadija; Rombaut, Debbie; Pauwels, Jarne; Gevaert, Kris; Carroll, Kate; Van Breusegem, Frank; Messens, Joris

    2015-01-01

    Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana. PMID:25693797

  16. High-throughput TILLING for Arabidopsis.

    PubMed

    Till, Bradley J; Colbert, Trenton; Codomo, Christine; Enns, Linda; Johnson, Jessica; Reynolds, Steven H; Henikoff, Jorja G; Greene, Elizabeth A; Steine, Michael N; Comai, Luca; Henikoff, Steven

    2006-01-01

    Targeting induced local lesions in genomes (TILLING) is a general strategy for identifying induced point mutations that can be applied to almost any organism. In this chapter, we describe the basic methodology for high-throughput TILLING. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated sequence and its wild-type counterpart. These heteroduplexes are substrates for cleavage by the endonuclease CEL I. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. High-throughput TILLING has been adopted by the Arabidopsis TILLING Project (ATP) to provide allelic series of point mutations for the general Arabidopsis community.

  17. Comparative transcriptomics of Arabidopsis sperm cells.

    PubMed

    Borges, Filipe; Gomes, Gabriela; Gardner, Rui; Moreno, Nuno; McCormick, Sheila; Feijó, José A; Becker, Jörg D

    2008-10-01

    In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.

  18. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    PubMed

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  19. Analysis of the Arabidopsis Mitochondrial Proteome1

    PubMed Central

    Millar, A. Harvey; Sweetlove, Lee J.; Giegé, Philippe; Leaver, Christopher J.

    2001-01-01

    The complete set of nuclear genes that encode proteins targeted to mitochondria in plants is currently undefined and thus the full range of mitochondrial functions in plants is unknown. Analysis of two-dimensional gel separations of Arabidopsis cell culture mitochondrial protein revealed approximately 100 abundant proteins and 250 low-abundance proteins. Comparison of subfractions of mitochondrial protein on two-dimensional gels provided information on the soluble, membrane, or integral membrane locations of this protein set. A total of 170 protein spots were excised, trypsin-digested, and matrix-assisted laser desorption ionization/time of flight mass spectrometry spectra obtained. Using this dataset, 91 of the proteins were identified by searching translated Arabidopsis genomic databases. Of this set, 81 have defined functions based on sequence comparison. These functions include respiratory electron transport, tricarboxylic acid cycle metabolism, amino acid metabolism, protein import, processing, and assembly, transcription, membrane transport, and antioxidant defense. A total of 10 spectra were matched to Arabidopsis putative open reading frames for which no specific function has been determined. A total of 64 spectra did not match to an identified open reading frame. Analysis of full-length putative protein sequences using bioinformatic tools to predict subcellular targeting (TargetP, Psort, and MitoProt) revealed significant variation in predictions, and also a lack of mitochondrial targeting prediction for several characterized mitochondrial proteins. PMID:11743115

  20. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  1. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  2. [Imprinting genes and it's expression in Arabidopsis].

    PubMed

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  3. TBP-associated factors in Arabidopsis.

    PubMed

    Lago, Clara; Clerici, Elena; Mizzi, Luca; Colombo, Lucia; Kater, Martin M

    2004-11-24

    Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Since TAFs play important roles in transcription they have been extensively studied in organisms like yeast, Drosophila and human. Surprisingly, TAFs have been poorly characterized in plants. With the completion of the Arabidopsis genome sequence, it is possible to search for TAFs, since many of them have conserved amino acid sequences. Mining the genome of Arabidopsis for TAFs resulted in the identification of 18 putative Arabidopsis TAFs (AtTAFs). We have analyzed their protein structure and their genomic localisation. Expression profiling by RT-PCR showed that these TAFs are expressed in all parts of the plant which is in agreement with their general role in transcription. These analyses in combination with their evolutionary conservation with TAFs of other organisms are discussed.

  4. Phytochrome regulation of branching in Arabidopsis.

    PubMed

    Finlayson, Scott A; Krishnareddy, Srirama R; Kebrom, Tesfamichael H; Casal, Jorge J

    2010-04-01

    The red light:far-red light ratio perceived by phytochromes controls plastic traits of plant architecture, including branching. Despite the significance of branching for plant fitness and productivity, there is little quantitative and mechanistic information concerning phytochrome control of branching responses in Arabidopsis (Arabidopsis thaliana). Here, we show that in Arabidopsis, the negative effects of the phytochrome B mutation and of low red light:far-red light ratio on branching were largely due to reduced bud outgrowth capacity and an increased degree of correlative inhibition acting on the buds rather than due to a reduced number of leaves and buds available for branching. Phytochrome effects on the degree of correlative inhibition required functional BRANCHED1 (BRC1), BRC2, AXR1, MORE AXILLARY GROWTH2 (MAX2), and MAX4. The analysis of gene expression in selected buds indicated that BRC1 and BRC2 are part of different gene networks. The BRC1 network is linked to the growth capacity of specific buds, while the BRC2 network is associated with coordination of growth among branches. We conclude that the branching integrators BRC1 and BRC2 are necessary for responses to phytochrome, but they contribute differentially to these responses, likely acting through divergent pathways.

  5. Sodium Influx and Accumulation in Arabidopsis1

    PubMed Central

    Essah, Pauline A.; Davenport, Romola; Tester, Mark

    2003-01-01

    Arabidopsis is frequently used as a genetic model in plant salt tolerance studies, however, its physiological responses to salinity remain poorly characterized. This study presents a characterization of initial Na+ entry and the effects of Ca2+ on plant growth and net Na+ accumulation in saline conditions. Unidirectional Na+ influx was measured carefully using very short influx times in roots of 12-d-old seedlings. Influx showed three components with distinct sensitivities to Ca2+, diethylpyrocarbonate, and osmotic pretreatment. Pharmacological agents and known mutants were used to test the contribution of different transport pathways to Na+ uptake. Influx was stimulated by 4-aminobutyric acid and glutamic acid; was inhibited by flufenamate, quinine, and cGMP; and was insensitive to modulators of K+ and Ca2+ channels. Influx did not differ from wild type in akt1 and hkt1 insertional mutants. These data suggested that influx was mediated by several different types of nonselective cation channels. Na+ accumulation in plants grown in 50 mm NaCl was strongly reduced by increasing Ca2+ activity (from 0.05-3.0 mm), and plant survival was improved. However, plant biomass was not affected by shoot Na+ concentration, suggesting that in Arabidopsis Na+ toxicity is not dependent on shoot Na+ accumulation. These data suggest that Arabidopsis is a good model for investigation of Na+ transport, but may be of limited utility as a model for the study of Na+ toxicity. PMID:12970496

  6. PHOTOSYSTEM II PROTEIN33, a Protein Conserved in the Plastid Lineage, Is Associated with the Chloroplast Thylakoid Membrane and Provides Stability to Photosystem II Supercomplexes in Arabidopsis1[OPEN

    PubMed Central

    Fristedt, Rikard; Herdean, Andrei; Blaby-Haas, Crysten E.; Mamedov, Fikret; Lundin, Björn

    2015-01-01

    Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels. PMID:25511433

  7. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.

  8. A novel transmembrane topology of presenilin based on reconciling experimental and computational evidence.

    PubMed

    Henricson, Anna; Käll, Lukas; Sonnhammer, Erik L L

    2005-06-01

    The transmembrane topology of presenilins is still the subject of debate despite many experimental topology studies using antibodies or gene fusions. The results from these studies are partly contradictory and consequently several topology models have been proposed. Studies of presenilin-interacting proteins have produced further contradiction, primarily regarding the location of the C-terminus. It is thus impossible to produce a topology model that agrees with all published data on presenilin. We have analyzed the presenilin topology through computational sequence analysis of the presenilin family and the homologous presenilin-like protein family. Members of these families are intramembrane-cleaving aspartyl proteases. Although the overall sequence homology between the two families is low, they share the conserved putative active site residues and the conserved 'PAL' motif. Therefore, the topology model for the presenilin-like proteins can give some clues about the presenilin topology. Here we propose a novel nine-transmembrane topology with the C-terminus in the extracytosolic space. This model has strong support from published data on gamma-secretase function and presenilin topology. Contrary to most presenilin topology models, we show that hydrophobic region X is probably a transmembrane segment. Consequently, the C-terminus would be located in the extracytosolic space. However, the last C-terminal amino acids are relatively hydrophobic and in conjunction with existing experimental data we cannot exclude the possibility that the extreme C-terminus could be buried within the gamma-secretase complex. This might explain the difficulties in obtaining consistent experimental evidence regarding the location of the C-terminal region of presenilin.

  9. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    NASA Astrophysics Data System (ADS)

    Melendy, Robert F.

    2015-12-01

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.

  10. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.

    PubMed

    El Hiani, Yassine; Linsdell, Paul

    2015-06-19

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.

  11. An ion-responsive motif in the second transmembrane segment of rhodopsin-like receptors.

    PubMed

    Parker, M S; Wong, Y Y; Parker, S L

    2008-06-01

    A L(M)xxxD(N, E) motif (x=a non-ionic amino acid residue, most frequently A, S, L or F; small capitals indicating a minor representation) is found in the second transmembrane (tm2) segment of most G-protein coupling metazoan receptors of the rhodopsin family (Rh-GPCRs). Changes in signal transduction, agonist binding and receptor cycling are known for numerous receptors bearing evolved or experimentally introduced mutations in this tm2 motif, especially of its aspartate residue. The [Na(+)] sensitivity of the receptor-agonist interaction relates to this aspartate in a number of Rh-GPCRs. Native non-conservative mutations in the tm2 motif only rarely coincide with significant changes in two other ubiquitous features of the rhodopsin family, the seventh transmembrane N(D)PxxY(F) motif and the D(E)RY(W,F) or analogous sequence at the border of the third transmembrane helix and the second intracellular loop. Native tm2 mutations with Rh-GPCRs frequently result in constitutive signaling, and with visual opsins also in shifts to short-wavelength sensitivity. Substitution of a strongly basic residue for the tm2 aspartate in Taste-2 receptors could be connected to a lack of sodium sensing by these receptors. These properties could be consistent with ionic interactions, and even of ion transfer, that involve the tm2 motif. A decrease in cation sensing by this motif is usually connected to an enhanced constitutive interaction of the mutated receptors with cognate G- proteins, and also relates to both the constitutive and the overall activity of the short-wavelength opsins.

  12. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2)

    PubMed Central

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-01-01

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  13. Functional Swapping between Transmembrane Proteins TMEM16A and TMEM16F*

    PubMed Central

    Suzuki, Takayuki; Suzuki, Jun; Nagata, Shigekazu

    2014-01-01

    The transmembrane proteins TMEM16A and -16F each carry eight transmembrane regions with cytoplasmic N and C termini. TMEM16A carries out Ca2+-dependent Cl− ion transport, and TMEM16F is responsible for Ca2+-dependent phospholipid scrambling. Here we established assay systems for the Ca2+-dependent Cl− channel activity using 293T cells and for the phospholipid scramblase activity using TMEM16F−/− immortalized fetal thymocytes. Chemical cross-linking analysis showed that TMEM16A and -16F form homodimers in both 293T cells and immortalized fetal thymocytes. Successive deletion from the N or C terminus of both proteins and the swapping of regions between TMEM16A and -16F indicated that their cytoplasmic N-terminal (147 amino acids for TMEM16A and 95 for 16F) and C-terminal (88 amino acids for TMEM16A and 68 for 16F) regions were essential for their localization at plasma membranes and protein stability, respectively, and could be exchanged. Analyses of TMEM16A and -16F mutants with point mutations in the pore region (located between the fifth and sixth transmembrane regions) indicated that the pore region is essential for both the Cl− channel activity of TMEM16A and the phospholipid scramblase activity of TMEM16F. Some chemicals such as epigallocatechin-3-gallate and digallic acid inhibited the Cl− channel activity of TMEM16A and the scramblase activity of TMEM16F with an opposite preference. These results indicate that TMEM16A and -16F use a similar mechanism for sorting to plasma membrane and protein stabilization, but their functional domains significantly differ. PMID:24478309

  14. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    SciTech Connect

    Melendy, Robert F.

    2015-12-28

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.

  15. Structural Investigation of the Transmembrane Domain of KCNE1 in Proteoliposomes

    PubMed Central

    2015-01-01

    KCNE1 is a single-transmembrane protein of the KCNE family that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in KCNE1 have been linked to diseases such as long QT syndrome (LQTS), atrial fibrillation, sudden infant death syndrome, and deafness. The transmembrane domain (TMD) of KCNE1 plays a key role in mediating the physical association with KCNQ1 and in subsequent modulation of channel gating kinetics and conductance. However, the mechanisms associated with these roles for the TMD remain poorly understood, highlighting a need for experimental structural studies. A previous solution NMR study of KCNE1 in LMPG micelles revealed a curved transmembrane domain, a structural feature proposed to be critical to KCNE1 function. However, this curvature potentially reflects an artifact of working in detergent micelles. Double electron electron resonance (DEER) measurements were conducted on KCNE1 in LMPG micelles, POPC/POPG proteoliposomes, and POPC/POPG lipodisq nanoparticles to directly compare the structure of the TMD in a variety of different membrane environments. Experimentally derived DEER distances coupled with simulated annealing molecular dynamic simulations were used to probe the bilayer structure of the TMD of KCNE1. The results indicate that the structure is helical in proteoliposomes and is slightly curved, which is consistent with the previously determined solution NMR structure in micelles. The evident resilience of the curvature in the KCNE1 TMD leads us to hypothesize that the curvature is likely to be maintained upon binding of the protein to the KCNQ1 channel. PMID:25234231

  16. Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse

    PubMed Central

    Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O’Brien, Terence J.; Shannon Weickert, Cynthia; Jones, Nigel C.

    2015-01-01

    Background The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile. Methods Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF)-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT) mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine. Results In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III) domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice. Interpretation We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function. PMID

  17. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore*

    PubMed Central

    El Hiani, Yassine; Linsdell, Paul

    2015-01-01

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl− and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl− ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl− ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl− permeation, demonstrating their functional role in maximization of Cl− flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl−. The location of these Cl−-attractive residues suggests that cytoplasmic Cl− ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl− ions from the cytoplasm. PMID:25944907

  18. A Transmembrane Segment Determines the Steady-State Localization of an Ion-Transporting Adenosine Triphosphatase

    PubMed Central

    Dunbar, Lisa A.; Aronson, Paul; Caplan, Michael J.

    2000-01-01

    The H,K-adenosine triphosphatase (ATPase) of gastric parietal cells is targeted to a regulated membrane compartment that fuses with the apical plasma membrane in response to secretagogue stimulation. Previous work has demonstrated that the α subunit of the H,K-ATPase encodes localization information responsible for this pump's apical distribution, whereas the β subunit carries the signal responsible for the cessation of acid secretion through the retrieval of the pump from the surface to the regulated intracellular compartment. By analyzing the sorting behaviors of a number of chimeric pumps composed of complementary portions of the H,K-ATPase α subunit and the highly homologous Na,K-ATPase α subunit, we have identified a portion of the gastric H,K-ATPase, which is sufficient to redirect the normally basolateral Na,K-ATPase to the apical surface in transfected epithelial cells. This motif resides within the fourth of the H,K-ATPase α subunit's ten predicted transmembrane domains. Although interactions with glycosphingolipid-rich membrane domains have been proposed to play an important role in the targeting of several apical membrane proteins, the apically located chimeras are not found in detergent-insoluble complexes, which are typically enriched in glycosphingolipids. Furthermore, a chimera incorporating the Na,K-ATPase α subunit fourth transmembrane domain is apically targeted when both of its flanking sequences derive from H,K-ATPase sequence. These results provide the identification of a defined apical localization signal in a polytopic membrane transport protein, and suggest that this signal functions through conformational interactions between the fourth transmembrane spanning segment and its surrounding sequence domains. PMID:10684257

  19. A model for surface diffusion of trans-membrane proteins on lipid bilayers

    NASA Astrophysics Data System (ADS)

    Agrawal, Ashutosh; Steigmann, David J.

    2011-06-01

    The equilibrium theory of lipid membranes is modified to include the effects of a continuous distribution of trans-membrane proteins. These influence membrane shape and evolve in accordance with a diffusive balance law. The model is purely mechanical in the absence of the proteins. Conditions ensuring energy dissipation in the presence of diffusion are given and an example constitutive function is used to simulate the coupled inertia-less interplay between membrane shape and protein distribution. The work extends an earlier continuum theory of equilibrium configurations of composite lipid-protein membranes to accommodate surface diffusion.

  20. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    PubMed Central

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations. PMID:24957177

  1. Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Nusrat, Asma

    2013-01-01

    Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell proliferation, migration, differentiation and regulated shedding. Recent studies have revealed that several proteases target epithelial junction proteins during physiological maturation as well as in pathologic states such as inflammation and cancer. This review discusses mechanisms and biological consequences of transmembrane junction protein cleavage. The influence of junction protein cleavage products on pathogenesis of inflammation and cancer is discussed. PMID:24665393

  2. Membrane Composition Variation and Underdamped Mechanics near Transmembrane Proteins and Coats

    NASA Astrophysics Data System (ADS)

    Rautu, S. Alex; Rowlands, George; Turner, Matthew S.

    2015-03-01

    We study the effect of transmembrane proteins on the shape, composition, and thermodynamic stability of the surrounding membrane. When the coupling between membrane composition and curvature is strong enough, the nearby membrane composition and shape both undergo a transition from overdamped to underdamped spatial variation, well before the membrane becomes unstable in the bulk. This transition is associated with a change in the sign of the thermodynamic energy and, hence, favors the early stages of coat assembly necessary for vesiculation (budding) and may suppress the activity of mechanosensitive membrane channels and transporters. Our results suggest an approach to obtain physical parameters of the membrane that are otherwise difficult to measure.

  3. Artificial Diels–Alderase based on the transmembrane protein FhuA

    PubMed Central

    Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi

    2016-01-01

    Summary Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. PMID:27559380

  4. An ascorbate-mediated transmembrane-reducing system of the human erythrocyte.

    PubMed Central

    Orringer, E P; Roer, M E

    1979-01-01

    Actively metabolizing human erythrocytes catalyze the extracellular reduction of ferricyanide to ferrocyanide. Because neither of these anions can enter the cell, reducing equivalents generated in the course of glycolysis must in some manner be transferred across the cell membrane, thereby resulting in ferricyanide reduction. Work described in this paper suggests that the transmembrane reduction is effected by ascorbic acid. This compound in its oxidized form (dehydroascorbate) rapidly enters the cell. Here it obtains reducing equivalents which appear to come from NADH made available at the level of glyceraldehyde 3-phosphate dehydrogenase. Once reduced, it leaves the cell as ascorbic acid and accomplishes the non-enzymatic reduction of ferricyanide. PMID:216708

  5. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    PubMed

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-06-19

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  6. The transmembrane nucleoporin NDC1 is required for targeting of ALADIN to nuclear pore complexes

    SciTech Connect

    Yamazumi, Yusuke; Kamiya, Atsushi; Nishida, Ayumu; Nishihara, Ayako; Iemura, Shun-ichiro; Natsume, Tohru; Akiyama, Tetsu

    2009-11-06

    NDC1 is a transmembrane nucleoporin that is required for NPC assembly and nucleocytoplasmic transport. We show here that NDC1 directly interacts with the nucleoporin ALADIN, mutations of which are responsible for triple-A syndrome, and that this interaction is required for targeting of ALADIN to nuclear pore complexes (NPCs). Furthermore, we show that NDC1 is required for selective nuclear import. Our findings suggest that NDC1-mediated localization of ALADIN to NPCs is essential for selective nuclear protein import, and that abrogation of the interaction between ALADIN and NDC1 may be important for the development of triple-A syndrome.

  7. Artificial Diels-Alderase based on the transmembrane protein FhuA.

    PubMed

    Osseili, Hassan; Sauer, Daniel F; Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi; Okuda, Jun

    2016-01-01

    Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVF(tev)). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels-Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.

  8. A survey of dominant mutations in Arabidopsis thaliana.

    PubMed

    Meinke, David W

    2013-02-01

    Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.

  9. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    SciTech Connect

    Poirier, M.; Burket, P.

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity and transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.

  10. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-01

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8 × ( W L ¯ ) n = 3 , 4 , 5 / POPE . The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  11. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy

    PubMed Central

    Wang, Ying-Hua; Kalaitzidis, Demetrios; Ramachandran, Janani; Sykes, David B.; Raje, Noopur; Scadden, David T.

    2016-01-01

    Regulation of STAT3 activation is critical for normal and malignant hematopoietic cell proliferation. Here, we have reported that the endogenous transmembrane protein upstream-of-mTORC2 (UT2) negatively regulates activation of STAT3. Specifically, we determined that UT2 interacts directly with GP130 and inhibits phosphorylation of STAT3 on tyrosine 705 (STAT3Y705). This reduces cytokine signaling including IL6 that is implicated in multiple myeloma and other hematopoietic malignancies. Modulation of UT2 resulted in inverse effects on animal survival in myeloma models. Samples from multiple myeloma patients also revealed a decreased copy number of UT2 and decreased expression of UT2 in genomic and transcriptomic analyses, respectively. Together, these studies identify a transmembrane protein that functions to negatively regulate cytokine signaling through GP130 and pSTAT3Y705 and is molecularly and mechanistically distinct from the suppressors of cytokine signaling (SOCS) family of genes. Moreover, this work provides evidence that perturbations of this activation-dampening molecule participate in hematologic malignancies and may serve as a key determinant of multiple myeloma pathophysiology. UT2 is a negative regulator shared across STAT3 and mTORC2 signaling cascades, functioning as a tumor suppressor in hematologic malignancies driven by those pathways. PMID:26927669

  12. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells.

    PubMed

    Kim, Tae-Wan; Chung, Po-Wen; Slowing, Igor I; Tsunoda, Makoto; Yeung, Edward S; Lin, Victor S-Y

    2008-11-01

    A structurally ordered, CMK-1 type mesoporous carbon nanoparticle (MCN) material was successfully synthesized by using a MCM-48 type mesoporous silica nanoparticle as template. The structure of MCN was analyzed by a series of different techniques, including the scanning and transmission electron microscopy, powder X-ray diffraction, and N2 sorption analysis. To the best of our knowledge, no study has been reported prior to our investigation on the utilization of these structurally ordered mesoporous carbon nanoparticles for the delivery of membrane impermeable chemical agents inside of eukaryotic cells. The cellular uptake efficiency and biocompatibility of MCN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC50) value of MCN is very high (>50 microg/mL per million cells) indicating that MCN is fairly biocompatible in vitro. Also, a membrane impermeable fluorescence dye, Fura-2, was loaded to the mesoporous matrix of MCN. We demonstrated that the MCN material could indeed serve as a transmembrane carrier for delivering Fura-2 through the cell membrane to release these molecules inside of live HeLa cells. We envision that further developments of this MCN material will lead to a new generation of nanodevices for transmembrane delivery and intracellular release applications.

  13. CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus.

    PubMed Central

    Löffler, S; Lottspeich, F; Lanza, F; Azorsa, D O; ter Meulen, V; Schneider-Schaulies, J

    1997-01-01

    Canine distemper virus (CDV), a lymphotropic and neurotropic negative-stranded RNA virus of the Morbillivirus genus, causes a life-threatening disease in several carnivores, including domestic dogs. To identify the cellular receptor(s) involved in the uptake of CDV by susceptible cells, we isolated a monoclonal antibody (MAb K41) which binds to the cell surface and inhibits the CDV infection of several cell lines from various species. Pretreatment of cells with MAb K41 reduces the number of infectious centers and the size of the syncytia. Using affinity chromatography with MAb K41, we purified from HeLa and Vero cell extracts a 26-kDa protein which contained the amino acid sequence TKDEPQRETLK of human CD9, a member of the tetraspan transmembrane or transmembrane 4 superfamily of cell surface proteins. Transfection of NIH 3T3 or MDBK cells with a CD9 expression plasmid rendered these cells permissive for viral infection and raised virus production by a factor of 10 to 100. The mechanism involved is still unclear, since we were unable to detect direct binding of CDV to CD9 by using immunoprecipitation and a virus overlay protein binding assay. These findings indicate that human CD9 and its homologs in other species are necessary factors for the uptake of CDV by target cells, the formation of syncytia, and the production of progeny virus. PMID:8985321

  14. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    SciTech Connect

    Schoenitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  15. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin

    PubMed Central

    Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing

    2016-01-01

    The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences. PMID:27658480

  16. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    PubMed Central

    Batrakou, Dzmitry G.; de las Heras, Jose I.; Czapiewski, Rafal; Mouras, Rabah; Schirmer, Eric C.

    2015-01-01

    Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. PMID:26024229

  17. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission.

    PubMed

    Lorizate, Maier; Huarte, Nerea; Sáez-Cirión, Asier; Nieva, José L

    2008-01-01

    Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley-White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure-function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.

  18. Evolution of a computer program for classifying protein segments as transmembrane domains using genetic programming

    SciTech Connect

    Koza, J.R.

    1994-12-31

    The recently-developed genetic programming paradigm is used to evolve a computer program to classify a given protein segment as being a transmembrane domain or non-transmembrane area of the protein. Genetic programming starts with a primordial ooze of randomly generated computer programs composed of available programmatic ingredients and then genetically breeds the population of programs using the Darwinian principle of survival of the fittest and an analog of the naturally occurring genetic operation of crossover (sexual recombination). Automatic function definition enables genetic programming to dynamically create subroutines dynamically during the run. Genetic programming is given a training set of differently-sized protein segments and their correct classification (but no biochemical knowledge, such as hydrophobicity values). Correlation is used as the fitness measure to drive the evolutionary process. The best genetically-evolved program achieves an out-of-sample correlation of 0.968 and an out-of-sample error rate of 1.6%. This error rate is better than that reported for four other algorithms reported at the First International Conference on Intelligent Systems for Molecular Biology. Our genetically evolved program is an instance of an algorithm discovered by an automated learning paradigm that is superior to that written by human investigators.

  19. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

    PubMed

    Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J

    2016-01-22

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.

  20. Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels.

    PubMed

    Lolicato, Marco; Riegelhaupt, Paul M; Arrigoni, Cristina; Clark, Kimberly A; Minor, Daniel L

    2014-12-17

    Mechanical and thermal activation of ion channels is central to touch, thermosensation, and pain. The TRAAK/TREK K(2P) potassium channel subfamily produces background currents that alter neuronal excitability in response to pressure, temperature, signaling lipids, and anesthetics. How such diverse stimuli control channel function is unclear. Here we report structures of K(2P)4.1 (TRAAK) bearing C-type gate-activating mutations that reveal a tilting and straightening of the M4 inner transmembrane helix and a buckling of the M2 transmembrane helix. These conformational changes move M4 in a direction opposite to that in classical potassium channel activation mechanisms and open a passage lateral to the pore that faces the lipid bilayer inner leaflet. Together, our findings uncover a unique aspect of K(2P) modulation, indicate a means for how the K(2P) C-terminal cytoplasmic domain affects the C-type gate which lies ∼40Å away, and suggest how lipids and bilayer inner leaflet deformations may gate the channel.

  1. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants

    PubMed Central

    Fleming, Karen G.; Engelman, Donald M.

    2001-01-01

    The folding, stability, and oligomerization of helical membrane proteins depend in part on a precise set of packing interactions between transmembrane helices. To understand the energetic principles of these helix–helix interactions, we have used alanine-scanning mutagenesis and sedimentation equilibrium analytical ultracentrifugation to quantitatively examine the sequence dependence of the glycophorin A transmembrane helix dimerization. In all cases, we found that mutations to alanine at interface positions cost free energy of association. In contrast, mutations to alanine away from the dimer interface showed free energies of association that are insignificantly different from wild-type or are slightly stabilizing. Our study further revealed that the energy of association is not evenly distributed across the interface, but that there are several “hot spots” for interaction including both glycines participating in a GxxxG motif. Inspection of the NMR structure indicates that simple principles of protein–protein interactions can explain the changes in energy that are observed. A comparison of the dimer stability between different hydrophobic environments suggested that the hierarchy of stability for sequence variants is conserved. Together, these findings imply that the protein–protein interaction portion of the overall association energy may be separable from the contributions arising from protein–lipid and lipid–lipid energy terms. This idea is a conceptual simplification of the membrane protein folding problem and has implications for prediction and design. PMID:11724930

  2. De novo design of conformationally flexible transmembrane peptides driving membrane fusion

    PubMed Central

    Hofmann, Mathias W.; Weise, Katrin; Ollesch, Julian; Agrawal, Prashant; Stalz, Holger; Stelzer, Walter; Hulsbergen, Frans; de Groot, Huub; Gerwert, Klaus; Reed, Jennifer; Langosch, Dieter

    2004-01-01

    Fusion of biological membranes is mediated by distinct integral membrane proteins, e.g., soluble N-ethylmaleimide-sensitive factor attachment protein receptors and viral fusion proteins. Previous work has indicated that the transmembrane segments (TMSs) of such integral membrane proteins play an important role in fusion. Furthermore, peptide mimics of the transmembrane part can drive the fusion of liposomes, and evidence had been obtained that fusogenicity depends on their conformational flexibility. To test this hypothesis, we present a series of unnatural TMSs that were designed de novo based on the structural properties of hydrophobic residues. We find that the fusogenicity of these peptides depends on the ratio of α-helix-promoting Leu and β-sheet-promoting Val residues and is enhanced by helix-destabilizing Pro and Gly residues within their hydrophobic cores. The ability of these peptides to refold from an α-helical state to a β-sheet conformation and backwards was determined under different conditions. Membrane fusogenic peptides with mixed Leu/Val sequences tend to switch more readily between different conformations than a nonfusogenic peptide with an oligo-Leu core. We propose that structural flexibility of these TMSs is a prerequisite of fusogenicity. PMID:15456911

  3. Packing contacts can mediate highly specific interactions between artificial transmembrane proteins and the PDGFβ receptor

    PubMed Central

    Ptacek, Jennifer B.; Edwards, Anne P. B.; Freeman-Cook, Lisa L.; DiMaio, Daniel

    2007-01-01

    We used proteins with randomized transmembrane (TM) domains to explore the role of hydrophobic amino acids in mediating specific interactions between transmembrane helices. The 44-aa bovine papillomavirus E5 protein, which binds to the TM domain of the PDGFβ receptor (PDGFβR) was used as a scaffold to construct a library encoding small dimeric proteins with randomized, strictly hydrophobic TM domains, and proteins were selected that induced focus formation in mouse C127 cells by activating the PDGFβR. Analysis of these proteins identified a motif of two hydrophobic residues that, when inserted into a 17-residue polyleucine TM domain, generated a protein that activated the PDGFβR and transformed cells. In addition, we identified transforming proteins that activated the wild-type PDGFβR but did not activate a series of PDGFβR TM point mutants that were efficiently activated by the E5 protein, indicating that these proteins were more specific than the E5 protein. Our results implied that multiple van der Waals interactions distributed along the entire length of the TM domains were required for productive interaction between the PDGFβR and some small proteins lacking hydrophilic TM residues. Our results also suggested that excluding hydrophilic residues from small TM proteins and peptides is a strategy to increase the specificity of heteromeric TM helix–helix interactions. PMID:17609376

  4. Noninvasive reconstruction of cardiac transmembrane potentials using a kernelized extreme learning method

    NASA Astrophysics Data System (ADS)

    Jiang, Mingfeng; Zhang, Heng; Zhu, Lingyan; Cao, Li; Wang, Yaming; Xia, Ling; Gong, Yinglan

    2015-04-01

    Non-invasively reconstructing the cardiac transmembrane potentials (TMPs) from body surface potentials can act as a regression problem. The support vector regression (SVR) method is often used to solve the regression problem, however the computational complexity of the SVR training algorithm is usually intensive. In this paper, another learning algorithm, termed as extreme learning machine (ELM), is proposed to reconstruct the cardiac transmembrane potentials. Moreover, ELM can be extended to single-hidden layer feed forward neural networks with kernel matrix (kernelized ELM), which can achieve a good generalization performance at a fast learning speed. Based on the realistic heart-torso models, a normal and two abnormal ventricular activation cases are applied for training and testing the regression model. The experimental results show that the ELM method can perform a better regression ability than the single SVR method in terms of the TMPs reconstruction accuracy and reconstruction speed. Moreover, compared with the ELM method, the kernelized ELM method features a good approximation and generalization ability when reconstructing the TMPs.

  5. Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel.

    PubMed

    Bidaux, Gabriel; Sgobba, Miriam; Lemonnier, Loic; Borowiec, Anne-Sophie; Noyer, Lucile; Jovanovic, Srdan; Zholos, Alexander V; Haider, Shozeb

    2015-11-03

    Members of the transient receptor potential (TRP) ion channel family act as polymodal cellular sensors, which aid in regulating Ca(2+) homeostasis. Within the TRP family, TRPM8 is the cold receptor that forms a nonselective homotetrameric cation channel. In the absence of TRPM8 crystal structure, little is known about the relationship between structure and function. Inferences of TRPM8 structure have come from mutagenesis experiments coupled to electrophysiology, mainly regarding the fourth transmembrane helix (S4), which constitutes a moderate voltage-sensing domain, and about cold sensor and phosphatidylinositol 4,5-bisphosphate binding sites, which are both located in the C-terminus of TRPM8. In this study, we use a combination of molecular modeling and experimental techniques to examine the structure of the TRPM8 transmembrane and pore helix region including the conducting conformation of the selectivity filter. The model is consistent with a large amount of functional data and was further tested by mutagenesis. We present structural insight into the role of residues involved in intra- and intersubunit interactions and their link with the channel activity, sensitivity to icilin, menthol and cold, and impact on channel oligomerization.

  6. Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel

    PubMed Central

    Bidaux, Gabriel; Sgobba, Miriam; Lemonnier, Loic; Borowiec, Anne-Sophie; Noyer, Lucile; Jovanovic, Srdan; Zholos, Alexander V.; Haider, Shozeb

    2015-01-01

    Members of the transient receptor potential (TRP) ion channel family act as polymodal cellular sensors, which aid in regulating Ca2+ homeostasis. Within the TRP family, TRPM8 is the cold receptor that forms a nonselective homotetrameric cation channel. In the absence of TRPM8 crystal structure, little is known about the relationship between structure and function. Inferences of TRPM8 structure have come from mutagenesis experiments coupled to electrophysiology, mainly regarding the fourth transmembrane helix (S4), which constitutes a moderate voltage-sensing domain, and about cold sensor and phosphatidylinositol 4,5-bisphosphate binding sites, which are both located in the C-terminus of TRPM8. In this study, we use a combination of molecular modeling and experimental techniques to examine the structure of the TRPM8 transmembrane and pore helix region including the conducting conformation of the selectivity filter. The model is consistent with a large amount of functional data and was further tested by mutagenesis. We present structural insight into the role of residues involved in intra- and intersubunit interactions and their link with the channel activity, sensitivity to icilin, menthol and cold, and impact on channel oligomerization. PMID:26536261

  7. Quantitative estimation of transmembrane ion transport in rat renal collecting duct principal cells.

    PubMed

    Ilyaskin, Alexander V; Karpov, Denis I; Medvedev, Dmitriy A; Ershov, Alexander P; Baturina, Galina S; Katkova, Liubov E; Solenov, Evgeniy I

    2014-01-01

    Kidney collecting duct principal cells play a key role in regulated tubular reabsorption of water and sodium and secretion of potassium. The importance of this function for the maintenance of the osmotic homeostasis of the whole organism motivates extensive study of the ion transport properties of collecting duct principal cells. We performed experimental measurements of cell volume and intracellular sodium concentration in rat renal collecting duct principal cells from the outer medulla (OMCD) and used a mathematical model describing transmembrane ion fluxes to analyze the experimental data. The sodium and chloride concentrations ([Na+]in = 37.3 ± 3.3 mM, [Cl-]in = 32.2 ± 4.0 mM) in OMCD cells were quantitatively estimated. Correspondence between the experimentally measured cell physiological characteristics and the values of model permeability parameters was established. Plasma membrane permeabilities and the rates of transmembrane fluxes for sodium, potassium and chloride ions were estimated on the basis of ion substitution experiments and model predictions. In particular, calculated sodium (PNa), potassium (PK) and chloride (PCl) permeabilities were equal to 3.2 × 10-6 cm/s, 1.0 × 10-5 cm/s and 3.0 × 10-6 cm/s, respectively. This approach sets grounds for utilization of experimental measurements of intracellular sodium concentration and cell volume to quantify the ion permeabilities of OMCD principal cells and aids us in understanding the physiology of the adjustment of renal sodium and potassium excretion.

  8. Expression and characterization of transmembrane and coiled-coil domain family 3

    PubMed Central

    Sohn, Wern-Joo; Kim, Jae-Young; Kim, Dongbum; Park, Jeong-A; Lee, Younghee; Kwon, Hyung-Joo

    2016-01-01

    Transmembrane and coiled-coil domain family 3 (TMCC3) has been reported to be expressed in the human brain; however, its function is still unknown. Here, we found that expression of TMCC3 is higher in human whole brain, testis and spinal cord compared to other human tissues. TMCC3 was expressed in mouse developing hind brain, lung, kidney and somites, with strongest expression in the mesenchyme of developing tongue. By expression of recombinant TMCC3 and its deletion mutants, we found that TMCC3 proteins self-assemble to oligomerize. Immunostaining and confocal microscopy data revealed that TMCC3 proteins are localized in endoplasmic reticulum through transmembrane domains. Based on immunoprecipitation and mass spectroscopy data, TMCC3 proteins associate with TMCC3 and 14-3-3 proteins. This supports the idea that TMCC3 proteins form oligomers and that 14-3-3 may be involved in the function of TMCC3. Taken together, these results may be useful for better understanding of uncharacterized function of TMCC3. PMID:27697108

  9. Endoplasmic Reticulum-Localized Transmembrane Protein Dpy19L1 Is Required for Neurite Outgrowth

    PubMed Central

    Watanabe, Keisuke; Bizen, Norihisa; Sato, Noboru; Takebayashi, Hirohide

    2016-01-01

    The endoplasmic reticulum (ER), including the nuclear envelope, is a continuous and intricate membrane-bound organelle responsible for various cellular functions. In neurons, the ER network is found in cell bodies, axons, and dendrites. Recent studies indicate the involvement of the ER network in neuronal development, such as neuronal migration and axonal outgrowth. However, the regulation of neural development by ER-localized proteins is not fully understood. We previously reported that the multi-transmembrane protein Dpy19L1 is required for neuronal migration in the developing mouse cerebral cortex. A Dpy19L family member, Dpy19L2, which is a causative gene for human Globozoospermia, is suggested to act as an anchor of the acrosome to the nuclear envelope. In this study, we found that the patterns of exogenous Dpy19L1 were partially coincident with the ER, including the nuclear envelope in COS-7 cells at the level of the light microscope. The reticular distribution of Dpy19L1 was disrupted by microtubule depolymerization that induces retraction of the ER. Furthermore, Dpy19L1 showed a similar distribution pattern with a ER marker protein in embryonic mouse cortical neurons. Finally, we showed that Dpy19L1 knockdown mediated by siRNA resulted in decreased neurite outgrowth in cultured neurons. These results indicate that transmembrane protein Dpy19L1 is localized to the ER membrane and regulates neurite extension during development. PMID:27959946

  10. Structural Organization of a Full-Length Gp130/LIF-R Cytokine Receptor Transmembrane Complex

    SciTech Connect

    Skiniotis, G.; Lupardus, P.J.; Martick, M.; Walz, T.; Garcia, K.C.

    2009-05-26

    gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-R{alpha}). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp130/Interleukin-6/IL-6R{alpha} hexameric complex, CNTF/CNTF-R{alpha} heterodimerizes gp130 and LIF-R via non-cooperative energetics to form an asymmetric 1:1:1:1 complex. Single particle electron microscopic (EM) analysis of the full-length gp130/LIF-R/CNTF-R{alpha}/CNTF quaternary complex elucidates an asymmetric structural arrangement, in which the receptor extracellular and transmembrane segments join as a continuous, rigid unit, poised to sensitively transduce ligand engagement to the membrane-proximal intracellular signaling regions. These studies also enumerate the organizing principles for assembly of the 'tall' class of gp130-family cytokine receptor complexes including LIF, IL-27, IL-12, and others.

  11. Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide

    PubMed Central

    Holt, Andrea; Rougier, Léa; Réat, Valérie; Jolibois, Franck; Saurel, Olivier; Czaplicki, Jerzy; Killian, J. Antoinette; Milon, Alain

    2010-01-01

    Abstract A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including 13C and 15N chemical shift anisotropies and 13C-15N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides (2H, 13C, and 15N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21° was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5° previously determined from 2H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error. PMID:20441750

  12. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-07

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8×(WL¯)n=3,4,5/POPE. The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  13. Cysteine scanning of transmembrane domain three of the human dipeptide transporter: implications for substrate transport.

    PubMed

    Links, Jennifer L S; Kulkarni, Ashutosh A; Davies, Daryl L; Lee, Vincent H L; Haworth, Ian S

    2007-04-01

    The human intestinal dipeptide transporter (hPepT1) transports dipeptides and pharmacologically active drugs from the intestine to the blood. The role of transmembrane domain 3 (TMD3) of hPepT1 was studied using cysteine-scanning mutagenesis and methane thiosulfonate (MTS) cysteine modification. Each amino acid in TMD3 was individually mutated to a cysteine and Gly-Sar uptake by each mutated and modified transporter was determined relative to wild-type hPepT1. Uptake data for mutated transporters modified with the lipid-insoluble cysteine-modifying reagent MTSET suggested tilting of TMD3 relative to the substrate translocation pathway; the extracellular region of TMD3 showed little MTSET reactivity, indicative of solvent inaccessibility, whereas the intracellular part of TMD3 was relatively solvent accessible. Modification at 10 positions of TMD3 with MTSEA, a lipid-soluble cysteine-modifying reagent, gave unusual and statistically significant increases in Gly-Sar uptake relative to untreated mutants. We interpret these data in terms of the spatial properties of the hPepT1 substrate translocation channel and possible interactions of TMD3 with other transmembrane domains.

  14. Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis.

    PubMed

    Soga, Naoki; Kinosita, Kazuhiko; Yoshida, Masasuke; Suzuki, Toshiharu

    2012-03-16

    ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ε subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH -0.3 to 2.2, Δψ -30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.

  15. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices

    PubMed Central

    Wescott, Melanie P.; Kufareva, Irina; Paes, Cheryl; Goodman, Jason R.; Thaker, Yana; Puffer, Bridget A.; Berdougo, Eli; Rucker, Joseph B.; Handel, Tracy M.; Doranz, Benjamin J.

    2016-01-01

    The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding. When visualized on the structure of CXCR4, the majority of these residues form a continuous intramolecular signaling chain through the transmembrane helices; this chain connects chemokine binding residues on the extracellular side of CXCR4 to G protein-coupling residues on its intracellular side. Integrated into a cohesive model of signal transmission, these CXCR4 residues cluster into five functional groups that mediate (i) chemokine engagement, (ii) signal initiation, (iii) signal propagation, (iv) microswitch activation, and (v) G protein coupling. Propagation of the signal passes through a “hydrophobic bridge” on helix VI that coordinates with nearly every known GPCR signaling motif. Our results agree with known conserved mechanisms of GPCR activation and significantly expand on understanding the structural principles of CXCR4 signaling. PMID:27543332

  16. Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation.

    PubMed

    Kawashima, Yoshiyuki; Kurima, Kiyoto; Pan, Bifeng; Griffith, Andrew J; Holt, Jeffrey R

    2015-01-01

    Mutations of the transmembrane channel-like 1 (TMC1) gene can cause dominant and recessive forms of deafness in humans and mice. TMC1 is one of eight mammalian TMC genes of unknown function. The multi-pass transmembrane topologic structure of the proteins they encode suggests roles as a receptor, transporter, channel, or pump. Tmc1 and the closely related Tmc2 gene are expressed in neurosensory hair cells of the auditory and vestibular end organs of the mouse inner ear. Recent studies have demonstrated that Tmc1 and Tmc2 are specifically required for mechanoelectrical transduction in hair cells. The exact role of these proteins in mechanoelectrical transduction is unknown. TMC1 and TMC2 are viable candidates for the mechanoelectrical transduction channel of hair cells, whose component molecules have eluded identification for over 30 years. We expect that studies of TMC proteins will yield insights into molecular components and mechanisms of mechanosensation in auditory and vestibular hair cells, as well as in other tissues and organs.

  17. A pump-pore model for transmembrane transport of hydrophilic solutes.

    PubMed Central

    Roberts, E

    1993-01-01

    Transmembrane transport of a hydrophilic solute is presumed to begin when hydrated ligand adheres in Velcro-like fashion to hydrated membrane surface. Asymmetric physical forces cause rolling movements of ligand over membrane surface until contact occurs with appropriate transport machinery, consisting of a pump (Pu) to which is tethered a ligand (Li)-specific perm-selective pore (Po). The Po is in the open form when the Li is attached to an external high-affinity allosteric site on it. The active form of the Pu is stabilized by attachment of the Li to high-affinity internal or low-affinity external allosteric sites. The active form of the Pu induces closure of the Po, even when ligand is bound to it; the inactive conformation of the Pu permits Po opening. Attachment of Li to either one of two binding sites on the active Pu and irreversible envelopment by it in Venus fly-trap fashion trigger transmembrane transport of Li. Multistep attachment of Li is rate-limiting in the transport process. Application of a simple equation derived from relevant kinetic considerations relating velocity of transport (V) to concentration of Li (L), V = k1(L)1/2, gives V-L curves approximating transport data obtained in a variety of biological systems. This model is congruent with the ability of cells to concentrate substances from extremely dilute solutions and with the adaptive informational value to cells of rates of transport. PMID:8102798

  18. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    SciTech Connect

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M.; Lopez, Gabriel P.; Barrick, Todd A.; Flores, Adrean

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  19. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract

    PubMed Central

    Xue, Ruiqi; Gu, Huan; Qiu, Yamei; Guo, Yong; Korteweg, Christine; Huang, Jin; Gu, Jiang

    2016-01-01

    CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients. PMID:27491544

  20. Secondary structure, orientation, and oligomerization of phospholemman, a cardiac transmembrane protein

    PubMed Central

    Beevers, Andrew J.; Kukol, Andreas

    2006-01-01

    Human phospholemman (PLM) is a 72-residue protein, which is expressed at high density in the cardiac plasma membrane and in various other tissues. It forms ion channels selective for K+, Cl−, and taurine in lipid bilayers and colocalizes with the Na+/K+-ATPase and the Na+/Ca2+-exchanger, which may suggest a role in the regulation of cell volume. Here we present the first structural data based on synthetic peptides representing the transmembrane domain of PLM. Perfluoro-octaneoate-PAGE of reconstituted proteoliposomes containing PLM reveals a tetrameric homo-oligomerization. Infrared spectroscopy of proteoliposomes shows that the PLM peptide is completely α-helical, even beyond the hydrophobic core residues. Hydrogen/deuterium exchange experiments reveal that a core of 20–22 residues is not accessible to water, thus embedded in the lipid membrane. The maximum helix tilt is 17° ± 2° obtained by attenuated total reflection infrared spectroscopy. Thus, our data support the idea of ion channel formation by the PLM transmembrane domain. PMID:16597826

  1. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    PubMed Central

    Culhane, Kelly J.; Liu, Yuting; Cai, Yingying; Yan, Elsa C. Y.

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs. PMID:26594176

  2. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants

    PubMed Central

    Tintor, Nico; Saijo, Yusuke

    2014-01-01

    Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways. PMID:24616730

  3. Alteration of CFTR transmembrane span integration by disease-causing mutations.

    PubMed

    Patrick, Anna E; Karamyshev, Andrey L; Millen, Linda; Thomas, Philip J

    2011-12-01

    Many missense mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) result in its misfolding, endoplasmic reticulum (ER) accumulation, and, thus, cystic fibrosis. A number of these mutations are located in the predicted CFTR transmembrane (TM) spans and have been projected to alter span integration. However, the boundaries of the spans have not been precisely defined experimentally. In this study, the ER luminal integration profiles of TM1 and TM2 were determined using the ER glycosylation machinery, and the effects of the CF-causing mutations G85E and G91R thereon were assessed. The mutations either destabilize the integrated conformation or alter the TM1 ER integration profile. G85E misfolding is based in TM1 destabilization by glutamic acid and loss of glycine and correlates with the temperature-insensitive ER accumulation of immature full-length CFTR harboring the mutation. By contrast, temperature-dependent misfolding owing to the G91R mutation depends on the introduction of the basic side chain rather than the loss of the glycine. This work demonstrates that CF-causing mutations predicted to have similar effects on CFTR structure actually result in disparate molecular perturbations that underlie ER accumulation and the pathology of CF.

  4. Transmembrane Helix Straightening and Buckling Underlies Activation of Mechanosensitive and Thermosensitive K2P Channels

    PubMed Central

    Lolicato, Marco; Riegelhaupt, Paul M.; Arrigoni, Cristina; Clark, Kimberly A.; Minor, Daniel L.

    2014-01-01

    SUMMARY Mechanical and thermal activation of ion channels is central to touch, thermosensation, and pain. The TRAAK/TREK K2P potassium channel subfamily produces background currents that alter neuronal excitability in response to pressure, temperature, signaling lipids, and anesthetics. How such diverse stimuli control channel function is unclear. Here we report structures of K2P4.1 (TRAAK) bearing C-type gate-activating mutations that reveal a tilting and straightening of the M4 inner transmembrane helix and a buckling of the M2 transmembrane helix. These conformational changes move M4 in a direction opposite to that in classical potassium channel activation mechanisms and open a passage lateral to the pore that faces the lipid bilayer inner leaflet. Together, our findings uncover a unique aspect of K2P modulation, indicate a means for how the K2P C-terminal cytoplasmic domain affects the C-type gate which lies ~40Å away, and suggest how lipids and bilayer inner leaflet deformations may gate the channel. PMID:25500157

  5. Phospholipid Flip-flop Modulated by Transmembrane Peptides WALP and Melittin

    PubMed Central

    Anglin, Timothy C.; Brown, Krystal L.; Conboy, John C.

    2010-01-01

    Select transmembrane proteins found in biogenic membranes are known to facilitate rapid bidirectional flip-flop of lipids between the membrane leaflets, while others have no little or no effect. The particular characteristics which determine the extent to which a protein will facilitate flip-flop are still unknown. To determine if the relative polarity of the transmembrane protein segment influences its capacity for facilitation of flip-flop, we have studied lipid flip-flop dynamics for bilayers containing the peptides WALP23 and melittin. WALP23 is used as a model hydrophobic peptide, while melittin consists of both hydrophobic and hydrophilic residues. Sum-frequency vibrational spectroscopy (SFVS) was used to characterize the bilayers and determine the kinetics of flip-flop for the lipid component, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), within the mixed bilayers. The kinetics data were utilized to determine the activation thermodynamics for DSPC flip-flop in the presence of the peptides. Melittin was found to significantly reduce the free energy barrier to DSPC flip-flop when incorporated into the bilayer at 1 mol%, while incorporation of WALP23 at the same concentration led to a more modest reduction of the free energy barrier. The possible mechanisms by which these peptides facilitate flip-flop are analyzed and discussed in terms of the observed activation thermodynamics. PMID:19508895

  6. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop*

    PubMed Central

    Ehrhardt, Annette; Chung, W. Joon; Pyle, Louise C.; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M.; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E.; Lewis, Hal A.; Atwell, Shane; Aller, Steve; Bear, Christine E.; Lukacs, Gergely L.; Kirk, Kevin L.; Sorscher, Eric J.

    2016-01-01

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating. PMID:26627831

  7. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Tim; Riordan, John R.; Hanrahan, John W.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) channel is activated by PKA phosphorylation of a regulatory domain that interacts dynamically with multiple CFTR domains and with other proteins. The large number of consensus sequences for phosphorylation by PKA has naturally focused most attention on regulation by this kinase. We report here that human CFTR is also phosphorylated by the tyrosine kinases p60c-Src (proto-oncogene tyrosine-protein kinase) and the proline-rich tyrosine kinase 2 (Pyk2), and they can also cause robust activation of quiescent CFTR channels. In excised patch-clamp experiments, CFTR activity during exposure to Src or Pyk2 reached ∼80% of that stimulated by PKA. Exposure to PKA after Src or Pyk2 caused a further increase to the level induced by PKA alone, implying a common limiting step. Channels became spontaneously active when v-Src or the catalytic domain of Pyk2 was coexpressed with CFTR and were further stimulated by the tyrosine phosphatase inhibitor dephostatin. Exogenous Src also activated 15SA-CFTR, a variant that lacks 15 potential PKA sites and has little response to PKA. PKA-independent activation by tyrosine phosphorylation has implications for the mechanism of regulation by the R domain and for the physiologic functions of CFTR.—Billet, A., Jia, Y., Jensen, T., Riordan, J. R., Hanrahan, J. W. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation. PMID:26062600

  8. Organization of transmembrane helices in photosystem II: comparison of plants and cyanobacteria.

    PubMed Central

    Barber, J; Nield, J

    2002-01-01

    Electron microscopy and X-ray crystallography are revealing the structure of photosystem II. Electron crystallography has yielded a 3D structure at sufficient resolution to identify subunit positioning and transmembrane organization of the reaction-centre core complex of spinach. Single-particle analyses are providing 3D structures of photosystem II-light-harvesting complex II supercomplexes that can be used to incorporate high-resolution structural data emerging from electron and X-ray crystallography. The positions of the chlorins and metal centres within photosystem II are now available. It can be concluded that photosystem II is a dimeric complex with the transmembrane helices of CP47/D2 proteins related to those of the CP43/D1 proteins by a twofold axis within each monomer. Further, both electron microscopy and X-ray analyses show that P(680) is not a 'special pair' and that cytochrome b559 is located on the D2 side of the reaction centres some distance from P(680). However, although comparison of the electron microscopy and X-ray models for spinach and Synechococcus elongatus show considerable similarities, there seem to be differences in the number and positioning of some small subunits. PMID:12437871

  9. Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex

    PubMed Central

    Skiniotis, Georgios; Lupardus, Patrick; Martick, Monika; Walz, Thomas; Garcia, K. Christopher

    2008-01-01

    Summary gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-Rα). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp130/Interleukin-6/IL-6Rα hexameric complex, CNTF/CNTF-Rα heterodimerizes gp130 and LIF-R via non-cooperative energetics to form an asymmetric 1:1:1:1 complex. Single particle electron microscopic (EM) analysis of the full-length gp130/LIF-R/CNTF-Rα/CNTF quaternary complex elucidates an asymmetric structural arrangement, in which the receptor extracellular and transmembrane segments join as a continuous, rigid unit, poised to sensitively transduce ligand engagement to the membrane-proximal intracellular signaling regions. These studies also enumerate the organizing principles for assembly of the ‘tall’ class of gp130-family cytokine receptor complexes including LIF, IL-27, IL-12, and others. PMID:18775332

  10. Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles

    NASA Astrophysics Data System (ADS)

    Lu, Xue-mei; Yuan, Bing; Zhang, Xian-ren; Yang, Kai; Ma, Yu-qiang

    2017-01-01

    The development of advanced delivery strategies for anticancer drugs that can permeate through cellular membranes is urgently required for biomedical applications. In this work, we investigated the dynamic transmembrane behavior of paclitaxel (PTX), a powerful anticancer drug, under the combined impact of shock waves and nanobubbles, by using atomistic molecular dynamics simulations. Our simulations show that the PTX molecule experiences complicated motion modes during the action process with the membrane, as a consequence of its interplay with the lipid bilayer and water, under the joint effect of the shock wave and nanobubble. Moreover, it was found that the transmembrane movement of PTX is closely associated with the conformation changes of PTX, as well as the structural changes of the membrane (e.g., compression and poration in membrane). The nanobubble collapse induced by the shock wave, the proper PTX location with respect to the nanobubble, and a suitable nanobubble size and shock impulse are all necessary for the delivery of PTX into the cell. This work provides a molecular understanding of the interaction mechanism between drug molecules and cell membranes under the influence of shock waves and nanobubbles, and paves the way for exploiting targeted drug delivery systems that combine nanobubbles and ultrasound.

  11. Construction and genetic selection of small transmembrane proteins that activate the human erythropoietin receptor.

    PubMed

    Cammett, Tobin J; Jun, Susan J; Cohen, Emily B; Barrera, Francisco N; Engelman, Donald M; Dimaio, Daniel

    2010-02-23

    This work describes a genetic approach to isolate small, artificial transmembrane (TM) proteins with biological activity. The bovine papillomavirus E5 protein is a dimeric, 44-amino acid TM protein that transforms cells by specifically binding and activating the platelet-derived growth factor beta receptor (PDGFbetaR). We used the E5 protein as a scaffold to construct a retrovirus library expressing approximately 500,000 unique 44-amino acid proteins with randomized TM domains. We screened this library to select small, dimeric TM proteins that were structurally unrelated to erythropoietin (EPO), but specifically activated the human EPO receptor (hEPOR). These proteins did not activate the murine EPOR or the PDGFbetaR. Genetic studies with one of these activators suggested that it interacted with the TM domain of the hEPOR. Furthermore, this TM activator supported erythroid differentiation of primary human hematopoietic progenitor cells in vitro in the absence of EPO. Thus, we have changed the specificity of a protein so that it no longer recognizes its natural target but, instead, modulates an entirely different protein. This represents a novel strategy to isolate small artificial proteins that affect diverse membrane proteins. We suggest the word "traptamer" for these transmembrane aptamers.

  12. Functional characterization in Caenorhabditis elegans of transmembrane worm-human orthologs

    PubMed Central

    Henricson, Anna; Sonnhammer, Erik LL; Baillie, David L; Gomes, Ana Vaz

    2004-01-01

    Background The complete genome sequences for human and the nematode Caenorhabditis elegans offer an opportunity to learn more about human gene function through functional characterization of orthologs in the worm. Based on a previous genome-wide analysis of worm-human orthologous transmembrane proteins, we selected seventeen genes to explore experimentally in C. elegans. These genes were selected on the basis that they all have high confidence candidate human orthologs and that their function is unknown. We first analyzed their phylogeny, membrane topology and domain organization. Then gene functions were studied experimentally in the worm by using RNA interference and transcriptional gfp reporter gene fusions. Results The experiments gave functional insights for twelve of the genes studied. For example, C36B1.12, the worm ortholog of three presenilin-like genes, was almost exclusively expressed in head neurons, suggesting an ancient conserved role important to neuronal function. We propose a new transmembrane topology for the presenilin-like protein family. sft-4, the worm ortholog of surfeit locus gene Surf-4, proved to be an essential gene required for development during the larval stages of the worm. R155.1, whose human ortholog is entirely uncharacterized, was implicated in body size control and other developmental processes. Conclusions By combining bioinformatics and C. elegans experiments on orthologs, we provide functional insights on twelve previously uncharacterized human genes. PMID:15533247

  13. A Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling.

    PubMed

    Wu, Hongjie; Wang, Kun; Lu, Liyao; Xue, Yu; Lyu, Qiang; Jiang, Min

    2016-08-25

    Transmembrane proteins play important roles in cellular energy production, signal transmission, and metabolism. Many shallow machine learning methods have been applied to transmembrane topology prediction, but the performance was limited by the large size of membrane proteins and the complex biological evolution information behind the sequence. In this paper, we proposed a novel deep approach based on conditional random fields named as dCRF-TM for predicting the topology of transmembrane proteins. Conditional random fields take into account more complicated interrelation between residue labels in full-length sequence than HMM and SVM-based methods. Three widely-used datasets were employed in the benchmark. DCRF-TM had the accuracy 95% over helix location prediction and the accuracy 78% over helix number prediction. DCRF-TM demonstrated a more robust performance on large size proteins (>350 residues) against 11 state-of-the-art predictors. Further dCRF-TM was applied to ab initio modeling three-dimensional structures of seven-transmembrane receptors, also known as G protein-coupled receptors. The predictions on 24 solved G protein-coupled receptors and unsolved vasopressin V2 receptor illustrated that dCRF-TM helped abGPCR-I-TASSER to improve TM-score 34.3% rather than using the random transmembrane definition. 2 out of 5 predicted models caught the experimental verified disulfide bond in vasopressin V2 receptor.

  14. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins.

    PubMed

    Landolt-Marticorena, C; Williams, K A; Deber, C M; Reithmeier, R A

    1993-02-05

    The distribution of amino acids in the transmembrane segments and flanking regions of 115 human type I single span (amino terminus extracellular and carboxyl terminus cytosolic) plasma membrane proteins was found to be non-random. In this sample, Ile was preferentially localized to the amino-terminal region of the hydrophobic transmembrane segments, followed by Val, while Leu predominated in the carboxyl-terminal half of the segment. Although Gly residues were preferentially located in the transmembrane segment, this residue was excluded from the carboxyl-terminal and adjacent boundary regions. Aromatic residues (Tyr, Trp and Phe) occurred preferentially at the cytoplasmic boundary, with Trp also favored at the extracellular boundary. The extracellular flanking sequence amino-terminal to the transmembrane segment was enriched in residues predicted to initiate helix formation (Pro, Asn and Ser), while Arg and Lys were enriched in the cytoplasmic flank where they may function as topological determinants. The positional preferences of these particular amino acids within the transmembrane segment and flanking regions suggests that, in addition to lipid-protein interactions, these residues may participate in specific protein-protein interactions. A consensus sequence motif for type I membrane proteins is proposed and its role in the biosynthesis, folding, assembly and function of these segments is discussed.

  15. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    SciTech Connect

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  16. Live confocal imaging of Arabidopsis flower buds.

    PubMed

    Prunet, Nathanaël; Jack, Thomas P; Meyerowitz, Elliot M

    2016-11-01

    Recent advances in confocal microscopy, coupled with the development of numerous fluorescent reporters, provide us with a powerful tool to study the development of plants. Live confocal imaging has been used extensively to further our understanding of the mechanisms underlying the formation of roots, shoots and leaves. However, it has not been widely applied to flowers, partly because of specific challenges associated with the imaging of flower buds. Here, we describe how to prepare and grow shoot apices of Arabidopsis in vitro, to perform both single-point and time-lapse imaging of live, developing flower buds with either an upright or an inverted confocal microscope.

  17. RNA in situ hybridization in Arabidopsis.

    PubMed

    Wu, Miin-Feng; Wagner, Doris

    2012-01-01

    RNA in situ hybridization using digoxigenin-labeled riboprobes on tissue sections is a powerful technique for revealing microscopic spatial gene expression. Here, we describe an in situ hybridization method commonly practiced in Arabidopsis research labs. The highly stringent hybridization condition eliminates the usage of Ribonlucease A and gives highly specific signals. This also allows the use of longer probes which enhance signal strength without cross hybridization to closely related genes. In addition, using spin columns in template and riboprobe purification greatly reduces background signals.

  18. Effects of vertical rotation on Arabidopsis development

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Dahl, A. O.

    1975-01-01

    Various gross morphological end points of Arabidopsis development are examined in an attempt to separate the effects of growth on the horizontal clinostat into a component caused by rotation alone and another component caused by the altered position with respect to the direction of the g-vector. In a series of tests which involved comparisons between vertical stationary plants, vertical rotated plants, and plants rotated on clinostats, certain characters were consistently influenced by vertical rotation alone. The characters for which this effect was statistically significant were petiole length and leaf blade width.

  19. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway

    PubMed Central

    Ruiz-Sola, M. Águila; Rodríguez-Concepción, Manuel

    2012-01-01

    Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology. PMID:22582030

  20. Linkage maps for Arabidopsis lyrata subsp. lyrata and Arabidopsis lyrata subsp. petraea combining anonymous and Arabidopsis thaliana-derived markers.

    PubMed

    Beaulieu, Julien; Jean, Martine; Belzile, François

    2007-02-01

    Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed.

  1. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana.

    PubMed

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  2. Functional Investigation of the Plant-Specific Long Coiled-Coil Proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana

    PubMed Central

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199

  3. ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis.

    PubMed

    Shen, Guoxin; Kuppu, Sundaram; Venkataramani, Sujatha; Wang, Jing; Yan, Juqiang; Qiu, Xiaoyun; Zhang, Hong

    2010-03-01

    Arabidopsis thaliana ANKYRIN REPEAT-CONTAINING PROTEIN 2A (AKR2A) interacts with peroxisomal membrane-bound ASCORBATE PEROXIDASE3 (APX3). This interaction involves the C-terminal sequence of APX3 (i.e., a transmembrane domain plus a few basic amino acid residues). The specificity of the AKR2A-APX3 interaction suggests that AKR2A may function as a molecular chaperone for APX3 because binding of AKR2A to the transmembrane domain can prevent APX3 from forming aggregates after translation. Analysis of three akr2a mutants indicates that these mutant plants have reduced steady state levels of APX3. Reduced expression of AKR2A using RNA interference also leads to reduced steady state levels of APX3 and reduced targeting of APX3 to peroxisomes in plant cells. Since AKR2A also binds specifically to the chloroplast OUTER ENVELOPE PROTEIN7 (OEP7) and is required for the biogenesis of OEP7, AKR2A may serve as a molecular chaperone for OEP7 as well. The pleiotropic phenotype of akr2a mutants indicates that AKR2A plays many important roles in plant cellular metabolism and is essential for plant growth and development.

  4. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    PubMed Central

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. PMID:25963832

  5. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-05-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.

  6. De novo design of transmembrane helix-helix interactions and measurement of stability in a biological membrane.

    PubMed

    Nash, Anthony; Notman, Rebecca; Dixon, Ann M

    2015-05-01

    Membrane proteins regulate a large number of cellular functions, and have great potential as tools for manipulation of biological systems. Developing these tools requires a robust and quantitative understanding of membrane protein folding and interactions within the bilayer. With this in mind, we have designed a series of proteins to probe the net thermodynamic contribution of well-known sequence motifs to transmembrane helix-helix association in a biological membrane. The proteins were designed from first principles (de novo) using current knowledge about membrane insertion and stabilizing interaction motifs. A simple poly-Leu "scaffold" was decorated with individual helix interaction motifs (G-XXX-G, polar residues, heptad repeat) to create transmembrane helix-helix interactions of increasing strength. The GALLEX assay, an in vivo assay for measurement of transmembrane helix self-association, was combined with computational methods to characterize the relative strength and mode of interaction for each sequence. In addition, the apparent free energy contribution (ΔΔGapp) of each motif to transmembrane helix self-association was measured in a biological membrane, results that are the first of their kind for these de novo designed sequences, and suggest that the free energy barrier to overcoming weak association is quite small (<1.4 kcal mol(-1)) in a natural membrane. By quantifying and rationalizing the contribution of key motifs to transmembrane helix association, our work offers a route to direct the design of novel sequences for use in biotechnology or synthetic biology (e.g. molecular switches) and to predict the effects of sequence modification in known transmembrane domains (for control of cellular processes).

  7. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors.

    PubMed

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  8. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains.

    PubMed

    Lu, Xiaohui; Gross, Alec W; Lodish, Harvey F

    2006-03-17

    In the absence of erythropoietin (Epo) cell surface Epo receptors (EpoR) are dimeric; dimerization is mediated mainly by the transmembrane domain. Binding of Epo changes the orientation of the two receptor subunits. This conformational change is transmitted through the juxtamembrane and transmembrane domains, leading to activation of JAK2 kinase and induction of proliferation and survival signals. To define the active EpoR conformation(s) we screened libraries of EpoRs with random mutations in the transmembrane domain and identified several point mutations that activate the EpoR in the absence of ligand, including changes of either of the first two transmembrane domain residues (Leu(226) and Ile(227)) to cysteine. Following this discovery, we performed cysteine-scanning mutagenesis in the EpoR juxtamembrane and transmembrane domains. Many mutants formed disulfide-linked receptor dimers, but only EpoR dimers linked by cysteines at positions 223, 226, or 227 activated EpoR signal transduction pathways and supported proliferation of Ba/F3 cells in the absence of cytokines. These data suggest that activation of dimeric EpoR by Epo binding is achieved by reorienting the EpoR transmembrane and the connected cytosolic domains and that certain disulfide-bonded dimers represent the activated dimeric conformation of the EpoR, constitutively activating downstream signaling. Based on our data and the previously determined structure of Epo bound to a dimer of the EpoR extracellular domain, we present a model of the active and inactive conformations of the Epo receptor.

  9. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus.

    PubMed

    Victor, Bruno L; Baptista, António M; Soares, Cláudio M

    2012-11-26

    Membrane fusion is a process involved in a high range of biological functions, going from viral infections to neurotransmitter release. Fusogenic proteins increase the slow rate of fusion by coupling energetically downhill conformational changes of the protein to the kinetically unfavorable fusion of the membrane lipid bilayers. Hemagglutinin is an example of a fusogenic protein, which promotes the fusion of the membrane of the influenza virus with the membrane of the target cell. The N-terminus of the HA2 subunit of this protein contains a fusion domain described to act as a destabilizer of the target membrane bilayers, leading eventually to a full fusion of the two membranes. On the other hand, the C-terminus of the same subunit contains a helical transmembrane domain which was initially described to act as the anchor of the protein to the membrane of the virus. However, in recent years the study of this peptide segment has been gaining more attention since it has also been described to be involved in the membrane fusion process. Yet, the structural characterization of the interaction of such a protein domain with membrane lipids is still very limited. Therefore, in this work, we present a study of this transmembrane peptide domain in the presence of DMPC membrane bilayers, and we evaluate the effect of several mutations, and the effect of peptide oligomerization in this interaction process. Our results allowed us to identify and confirm amino acid residue motifs that seem to regulate the interaction between the segment peptide and membrane bilayers. Besides these sequence requirements, we have also identified length and tilt requirements that ultimately contribute to the hydrophobic matching between the peptide and the membrane. Additionally, we looked at the association of several transmembrane peptide segments and evaluated their direct interaction and stability inside a membrane bilayer. From our results we could conclude that three independent TM peptide

  10. LsbB Bacteriocin Interacts with the Third Transmembrane Domain of the YvjB Receptor

    PubMed Central

    Miljkovic, Marija; Uzelac, Gordana; Mirkovic, Nemanja; Devescovi, Giulia; Diep, Dzung B.; Venturi, Vittorio

    2016-01-01

    ABSTRACT The Zn-dependent membrane-located protease YvjB has previously been shown to serve as a target receptor for LsbB, a class II leaderless lactococcal bacteriocin. Although yvjB is highly conserved in the genus Lactococcus, the bacteriocin appears to be active only against the subspecies L. lactis subsp. lactis. Comparative analysis of the YvjB proteins of a sensitive strain (YvjBMN) and a resistant strain (YvjBMG) showed that they differ from each other in 31 positions. In this study, we applied site-directed mutagenesis and performed directed binding studies to provide biochemical evidence that LsbB interacts with the third transmembrane helix of YvjB in susceptible cells. The site-directed mutagenesis of LsbB and YvjB proteins showed that certain amino acids and the length of LsbB are responsible for the bacteriocin activity, most probably through adequate interaction of these two proteins; the essential amino acids in LsbB responsible for the activity are tryptophan (Trp25) and terminal alanine (Ala30). It was also shown that the distance between Trp25 and terminal alanine is crucial for LsbB activity. The crucial region in YvjB for the interaction with LsbB is the beginning of the third transmembrane helix, particularly amino acids tyrosine (Tyr356) and alanine (Ala353). In vitro experiments showed that LsbB could interact with both YvjBMN and YvjBMG, but the strength of interaction is significantly less with YvjBMG. In vivo experiments with immunofluorescently labeled antibody demonstrated that LsbB specifically interacts only with cells carrying YvjBMN. IMPORTANCE The antimicrobial activity of LsbB bacteriocin depends on the correct interaction with the corresponding receptor in the bacterial membrane of sensitive cells. Membrane-located bacteriocin receptors have essential primary functions, such as cell wall synthesis or sugar transport, and it seems that interaction with bacteriocins is suicidal for cells. This study showed that the C-terminal part

  11. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes.

    PubMed

    Chen, Jian; Zhang, Bei; Xia, Fei; Xie, Yunchang; Jiang, Sifan; Su, Rui; Lu, Yi; Wu, Wei

    2016-04-07

    Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL(-1), but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using (125)I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell

  12. Root growth inhibition by NH(4)(+) in Arabidopsis is mediated by the root tip and is linked to NH(4)(+) efflux and GMPase activity.

    PubMed

    Li, Qing; Li, Bao-Hai; Kronzucker, Herbert J; Shi, Wei-Ming

    2010-09-01

    Root growth in higher plants is sensitive to excess ammonium (NH(4)(+)). Our study shows that contact of NH(4)(+) with the primary root tip is both necessary and sufficient to the development of arrested root growth under NH(4)(+) nutrition in Arabidopsis. We show that cell elongation and not cell division is the principal target in the NH(4)(+) inhibition of primary root growth. Mutant and expression analyses using DR5:GUS revealed that the growth inhibition is furthermore independent of auxin and ethylene signalling. NH(4)(+) fluxes along the primary root, measured using the Scanning Ion-selective Electrode Technique, revealed a significant stimulation of NH(4)(+) efflux at the elongation zone following treatment with elevated NH(4)(+), coincident with the inhibition of root elongation. Stimulation of NH(4)(+) efflux and inhibition of cell expansion were significantly more pronounced in the NH(4)(+)-hypersensitive mutant vtc1-1, deficient in the enzyme GDP-mannose pyrophosphorylase (GMPase). We conclude that both restricted transmembrane NH(4)(+) fluxes and proper functioning of GMPase in roots are critical to minimizing the severity of the NH(4)(+) toxicity response in Arabidopsis.

  13. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis

    PubMed Central

    Gao, Qi-Fei; Gu, Li-Li; Wang, Hui-Qin; Fei, Cui-Fang; Fang, Xiang; Hussain, Jamshaid; Sun, Shu-Jing; Dong, Jing-Yun; Liu, Hongtao; Wang, Yong-Fei

    2016-01-01

    In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca2+ gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca2+ channels in pollen tube tips are core components that regulate Ca2+ gradients by mediating and regulating external Ca2+ influx. Therefore, Ca2+ channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca2+ channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca2+ gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/−) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18’s transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca2+ channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca2+ channel for pollen tube guidance in Arabidopsis. PMID:26929345

  14. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis

    PubMed Central

    Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Background Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. Results The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. Conclusion The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance. PMID:26562158

  15. The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in Arabidopsis[C][W

    PubMed Central

    De Clercq, Inge; Vermeirssen, Vanessa; Van Aken, Olivier; Vandepoele, Klaas; Murcha, Monika W.; Law, Simon R.; Inzé, Annelies; Ng, Sophia; Ivanova, Aneta; Rombaut, Debbie; van de Cotte, Brigitte; Jaspers, Pinja; Van de Peer, Yves; Kangasjärvi, Jaakko; Whelan, James; Van Breusegem, Frank

    2013-01-01

    Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain–containing NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana. PMID:24045019

  16. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis.

    PubMed

    Gao, Qi-Fei; Gu, Li-Li; Wang, Hui-Qin; Fei, Cui-Fang; Fang, Xiang; Hussain, Jamshaid; Sun, Shu-Jing; Dong, Jing-Yun; Liu, Hongtao; Wang, Yong-Fei

    2016-03-15

    In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca(2+) gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca(2+) channels in pollen tube tips are core components that regulate Ca(2+) gradients by mediating and regulating external Ca(2+) influx. Therefore, Ca(2+) channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca(2+) channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca(2+) gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/-) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18's transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca(2+) channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca(2+) channel for pollen tube guidance in Arabidopsis.

  17. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi.

    PubMed

    Zhang, Weiguo; Fraiture, Malou; Kolb, Dagmar; Löffelhardt, Birgit; Desaki, Yoshitake; Boutrot, Freddy F G; Tör, Mahmut; Zipfel, Cyril; Gust, Andrea A; Brunner, Frédéric

    2013-10-01

    Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called sclerotinia culture filtrate elicitor1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to receptor-like protein30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases brassinosteroid insensitive1-associated receptor kinase1 (BAK1) and Suppressor of BIR1-1/evershed (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.

  18. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  19. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke.

    PubMed

    Raju, S Vamsee; Lin, Vivian Y; Liu, Limbo; McNicholas, Carmel M; Karki, Suman; Sloane, Peter A; Tang, Liping; Jackson, Patricia L; Wang, Wei; Wilson, Landon; Macon, Kevin J; Mazur, Marina; Kappes, John C; DeLucas, Lawrence J; Barnes, Stephen; Kirk, Kevin; Tearney, Guillermo J; Rowe, Steven M

    2017-01-01

    Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX-770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE-derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1-μm resolution optical coherence tomography. CSE reduced CFTR-dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE-induced reduction of CFTR gating, decreasing CFTR open-channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.

  20. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2.

    PubMed

    Monzel, Christian; Unden, Gottfried

    2015-09-01

    The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane-water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21-41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181-201 in the OFF state and residues 185-205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2' in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4-6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3-4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase.

  1. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2

    PubMed Central

    Monzel, Christian; Unden, Gottfried

    2015-01-01

    The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane–water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21–41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181–201 in the OFF state and residues 185–205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2′ in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4–6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3–4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase. PMID:26283365

  2. Arabidopsis MET1 cytosine methyltransferase mutants.

    PubMed Central

    Kankel, Mark W; Ramsey, Douglas E; Stokes, Trevor L; Flowers, Susan K; Haag, Jeremy R; Jeddeloh, Jeffrey A; Riddle, Nicole C; Verbsky, Michelle L; Richards, Eric J

    2003-01-01

    We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis. PMID:12663548

  3. Diuretics prime plant immunity in Arabidopsis thaliana.

    PubMed

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  4. Epigenetic natural variation in Arabidopsis thaliana.

    PubMed

    Vaughn, Matthew W; Tanurdzić, Milos; Lippman, Zachary; Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R W; Martienssen, Robert A

    2007-07-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F(2) families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.

  5. Epigenetic Natural Variation in Arabidopsis thaliana

    PubMed Central

    Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W. Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R.W; Martienssen, Robert A

    2007-01-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F 2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means. PMID:17579518

  6. Epigenetic regulation of gene responsiveness in Arabidopsis

    PubMed Central

    To, Taiko K.; Kim, Jong Myong

    2014-01-01

    The regulation of chromatin structure is inevitable for proper transcriptional response in eukaryotes. Recent reports in Arabidopsis have suggested that gene responsiveness is modulated by particular chromatin status. One such feature is H2A.Z, a histone variant conserved among eukaryotes. In Arabidopsis, H2A.Z is enriched within gene bodies of transcriptionally variable genes, which is in contrast to genic DNA methylation found within constitutive genes. In the absence of H2A.Z, the genes normally harboring H2A.Z within gene bodies are transcriptionally misregulated, while DNA methylation is unaffected. Therefore, H2A.Z may promote variability of gene expression without affecting genic DNA methylation. Another epigenetic information that could be important for gene responsiveness is trimethylation of histone H3 lysine 4 (H3K4me3). The level of H3K4me3 increases when stress responsive genes are transcriptionally activated, and it decreases after recovery from the stress. Even after the recovery, however, H3K4me3 is kept at some atypical levels, suggesting possible role of H3K4me3 for a stress memory. In this review, we summarize and discuss the growing evidences connecting chromatin features and gene responsiveness. PMID:24432027

  7. MTHFD1 controls DNA methylation in Arabidopsis

    PubMed Central

    Groth, Martin; Moissiard, Guillaume; Wirtz, Markus; Wang, Haifeng; Garcia-Salinas, Carolina; Ramos-Parra, Perla A.; Bischof, Sylvain; Feng, Suhua; Cokus, Shawn J.; John, Amala; Smith, Danielle C.; Zhai, Jixian; Hale, Christopher J.; Long, Jeff A.; Hell, Ruediger; Díaz de la Garza, Rocío I.; Jacobsen, Steven E.

    2016-01-01

    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. PMID:27291711

  8. Local Evolution of Seed Flotation in Arabidopsis

    PubMed Central

    Saez-Aguayo, Susana; Rondeau-Mouro, Corinne; Macquet, Audrey; Kronholm, Ilkka; Ralet, Marie-Christine; Berger, Adeline; Sallé, Christine; Poulain, Damien; Granier, Fabienne; Botran, Lucy; Loudet, Olivier; de Meaux, Juliette; Marion-Poll, Annie; North, Helen M.

    2014-01-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed. PMID:24625826

  9. Brassinosteroid functions in Arabidopsis seed development

    PubMed Central

    Jiang, Wen-Bo; Lin, Wen-Hui

    2013-01-01

    Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mass and number comprise final seed yield, and seed shape also contributes to seed development and weight. Seed size is coordinated by communication among endosperm, embryo, and integument. Seed number determination is more complex to investigate and shows differencies between monocot and eudicot. Total seed number depends on sillique number and seed number per sillique in Arabidopsis. Seed comes from fertilized ovule, hence the ovule number per flower determines the maximal seed number per sillique. Early studies reported that engineering BR levels increased the yield of ovule and seed; however the molecular mechanism of BR regulation in seed development still remained unclear. Our recent studies demonstrated that BR regulated seed size, shape, and number by transcriptionally modulating specific seed developmental pathways. This review summarizes roles of BR in Arabidopsis seed development and gives clues for future application of BR in agricultural production. PMID:24270689

  10. Local evolution of seed flotation in Arabidopsis.

    PubMed

    Saez-Aguayo, Susana; Rondeau-Mouro, Corinne; Macquet, Audrey; Kronholm, Ilkka; Ralet, Marie-Christine; Berger, Adeline; Sallé, Christine; Poulain, Damien; Granier, Fabienne; Botran, Lucy; Loudet, Olivier; de Meaux, Juliette; Marion-Poll, Annie; North, Helen M

    2014-03-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.

  11. Polyploidization increases meiotic recombination frequency in Arabidopsis

    PubMed Central

    2011-01-01

    Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence. PMID:21510849

  12. Defining the core Arabidopsis thaliana root microbiome

    PubMed Central

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  13. Photoperiodic flowering regulation in Arabidopsis thaliana

    PubMed Central

    Golembeski, Greg S.; Kinmonth-Schultz, Hannah A.; Song, Young Hun; Imaizumi, Takato

    2015-01-01

    Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction. PMID:25684830

  14. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers1

    PubMed Central

    Zhang, Qiu; Petridis, Loukas; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Smith, Jeremy C.; Meiler, Jens

    2016-01-01

    A cellulose synthesis complex with a “rosette” shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the “hexamer of trimers” model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. PMID:26556795

  15. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses1[OPEN

    PubMed Central

    2015-01-01

    Receptor-like cytoplasmic kinases (RLCKs) are a subset of plant receptor-like kinases lacking both extracellular and transmembrane domains. Some of the 46 members in the Arabidopsis (Arabidopsis thaliana) RLCK subfamily VII have been linked to plant innate immunity; however, most remain uncharacterized. Thus, multiple subfamily VII members are expected to be involved in plant immune signaling. Here, we investigate the role of AvrPphB SUSCEPTIBLE1-LIKE13 (PBL13), a subfamily VII RLCK with unique domain architecture. Unlike other characterized RLCKs, PBL13 transfer DNA insertion lines exhibit enhanced disease resistance after inoculation with virulent Pseudomonas syringae. The pbl13-2 knockout also exhibits elevated basal-level expression of the PATHOGENESIS-RELATED GENE1 defense marker gene, enhanced reactive oxygen species (ROS) burst in response to perception of bacterial microbial patterns, and accelerated flagellin-induced activation of mitogen-activated protein kinases. Recombinant PBL13 is an active kinase, and its primary autophosphorylated sites map to a 15-amino acid repeat motif unique to PBL13. Complementation of pbl13-2 with PBL13-3xFLAG converts the enhanced resistance and elevated ROS phenotypes back to wild-type levels. In contrast, kinase-dead PBL13K111A-3xFLAG was unable to rescue pbl13-2 disease phenotypes. Consistent with the enhanced ROS burst in the pbl13-2 knockout, PBL13 is able to associate with the nicotinamide adenine dinucleotide phosphate, reduced oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN D (RBOHD) by split-luciferase complementation assay, and this association is disrupted by flagellin treatment. We conclude that the PBL13 kinase negatively regulates plant innate immunity to pathogenic bacteria and can associate with RBOHD before pathogen perception. These data are consistent with the hypothesis that PBL13 acts to prevent inappropriate activation of defense responses in the absence of pathogen challenge. PMID:26432875

  16. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

    SciTech Connect

    Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu; Petridis, Loukas; Heller, William T.; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Langan, Paul; Smith, Jeremy C.; Meiler, Jens; O’Neill, Hugh

    2015-11-10

    In a cellulose synthesis complex a "rosette" shape is responsible for the synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. Our work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. Moreover, the conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. Finally, this study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.

  17. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

    DOE PAGES

    Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu; ...

    2015-11-10

    In a cellulose synthesis complex a "rosette" shape is responsible for the synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. Our work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer inmore » solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. Moreover, the conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. Finally, this study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.« less

  18. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    PubMed

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  19. Inhibition of primary breast tumor growth and metastasis using a neuropilin-1 transmembrane domain interfering peptide

    PubMed Central

    Arpel, Alexia; Gamper, Coralie; Spenlé, Caroline; Fernandez, Aurore; Jacob, Laurent; Baumlin, Nadège; Laquerriere, Patrice; Orend, Gertraud; Crémel, Gérard; Bagnard, Dominique

    2016-01-01

    The transmembrane domains (TMD) in membrane receptors play a key role in cell signaling. As previously shown by us a peptide targeting the TMD of neuropilin-1 (MTP-NRP1), blocks cell proliferation, cell migration and angiogenesis in vitro, and decreases glioblastoma growth in vivo. We now explored the clinical potential of MTP-NRP1 on breast cancer models and demonstrate that MTP-NRP1 blocks proliferation of several breast cancer lines including the MDA-MB-231, a triple negative human breast cancer cell line. In models with long term in vivo administration of the peptide, MTP-NRP1 not only reduced tumor volume but also decreased number and size of breast cancer metastases. Strikingly, treating mice before tumors developed protected from metastasis establishment/formation. Overall, our results report that targeting the TMD of NRP1 in breast cancer is a potent new strategy to fight against breast cancer and related metastasis. PMID:27351129

  20. Transmembrane exchange of hyperpolarized 13C-urea in human erythrocytes: subminute timescale kinetic analysis.

    PubMed

    Pagès, Guilhem; Puckeridge, Max; Liangfeng, Guo; Tan, Yee Ling; Jacob, Chacko; Garland, Marc; Kuchel, Philip W

    2013-11-05

    The rate of exchange of urea across the membranes of human erythrocytes (red blood cells) was quantified on the 1-s to 2-min timescale. (13)C-urea was hyperpolarized and subjected to rapid dissolution and the previously reported (partial) resolution of (13)C NMR resonances from the molecules inside and outside red blood cells in suspensions was observed. This enabled a stopped-flow type of experiment to measure the (initially) zero-trans transport of urea with sequential single-pulse (13)C NMR spectra, every second for up to ~2 min. Data were analyzed using Bayesian reasoning and a Markov chain Monte Carlo method with a set of simultaneous nonlinear differential equations that described nuclear magnetic relaxation combined with transmembrane exchange. Our results contribute to quantitative understanding of urea-exchange kinetics in the whole body; and the methodological approach is likely to be applicable to other cellular systems and tissues in vivo.

  1. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding.

    PubMed

    Reichart, Timothy M; Baksh, Michael M; Rhee, Jin-Kyu; Fiedler, Jason D; Sligar, Stephen G; Finn, M G; Zwick, Michael B; Dawson, Philip E

    2016-02-18

    The membrane-proximal external region (MPER) of HIV gp41 is an established target of antibodies that neutralize a broad range of HIV isolates. To evaluate the role of the transmembrane (TM) domain, synthetic MPER-derived peptides were incorporated into lipid nanoparticles using natural and designed TM domains, and antibody affinity was measured using immobilized and solution-based techniques. Peptides incorporating the native HIV TM domain exhibit significantly stronger interactions with neutralizing antibodies than peptides with a monomeric TM domain. Furthermore, a peptide with a trimeric, three-helix bundle TM domain recapitulates the binding profile of the native sequence. These studies suggest that neutralizing antibodies can bind the MPER when the TM domain is a three-helix bundle and this presentation could influence the binding of neutralizing antibodies to the virus. Lipid-bilayer presentation of viral antigens in Nanodiscs is a new platform for evaluating neutralizing antibodies.

  2. Snorkeling preferences foster an amino acid composition bias in transmembrane helices.

    PubMed

    Chamberlain, Aaron K; Lee, Yohan; Kim, Sanguk; Bowie, James U

    2004-05-28

    By analyzing transmembrane (TM) helices in known structures, we find that some polar amino acids are more frequent at the N terminus than at the C terminus. We propose the asymmetry occurs because most polar amino acids are better able to snorkel their polar atoms away from the membrane core at the N terminus than at the C terminus. Two findings lead us to this proposition: (1) side-chain conformations are influenced strongly by the N or C-terminal position of the amino acid in the bilayer, and (2) the favored snorkeling direction of an amino acid correlates well with its N to C-terminal composition bias. Our results suggest that TM helix predictions should incorporate an N to C-terminal composition bias, that rotamer preferences of TM side-chains are position-dependent, and that the ability to snorkel influences the evolutionary selection of amino acids for the helix N and C termini.

  3. Energetics of side-chain snorkeling in transmembrane helices probed by nonproteinogenic amino acids.

    PubMed

    Öjemalm, Karin; Higuchi, Takashi; Lara, Patricia; Lindahl, Erik; Suga, Hiroaki; von Heijne, Gunnar

    2016-09-20

    Cotranslational translocon-mediated insertion of membrane proteins into the endoplasmic reticulum is a key process in membrane protein biogenesis. Although the mechanism is understood in outline, quantitative data on the energetics of the process is scarce. Here, we have measured the effect on membrane integration efficiency of nonproteinogenic analogs of the positively charged amino acids arginine and lysine incorporated into model transmembrane segments. We provide estimates of the influence on the apparent free energy of membrane integration (ΔGapp) of "snorkeling" of charged amino acids toward the lipid-water interface, and of charge neutralization. We further determine the effect of fluorine atoms and backbone hydrogen bonds (H-bonds) on ΔGapp These results help establish a quantitative basis for our understanding of membrane protein assembly in eukaryotic cells.

  4. Single-molecule visualization of dynamic transitions of pore-forming peptides among multiple transmembrane positions

    PubMed Central

    Li, Ying; Qian, Zhenyu; Ma, Li; Hu, Shuxin; Nong, Daguan; Xu, Chunhua; Ye, Fangfu; Lu, Ying; Wei, Guanghong; Li, Ming

    2016-01-01

    Research on the dynamics of single-membrane proteins remains underdeveloped due to the lack of proper approaches that can probe in real time the protein's insertion depth in lipid bilayers. Here we report a single-molecule visualization method to track both vertical insertion and lateral diffusion of membrane proteins in supported lipid bilayers by exploiting the surface-induced fluorescence attenuation (SIFA) of fluorophores. The attenuation follows a d−4 dependency, where d is the fluorophore-to-surface distance. The method is validated by observing the antimicrobial peptide LL-37 to transfer among five transmembrane positions: the surface, the upper leaflet, the centre, the lower leaflet and the bottom of the lipid bilayer. These results demonstrate the power of SIFA to study protein-membrane interactions and provide unprecedented in-depth understanding of molecular mechanisms of the insertion and translocation of membrane proteins. PMID:27686409

  5. Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process.

    PubMed Central

    Orzáez, M.; Pérez-Payá, E.; Mingarro, I.

    2000-01-01

    The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane-mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C-terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement of TM fragments that takes place when leucine repeats are introduced in such protein segments. We also show that secondary structure of GpA derivatives was independent from dimerization, in agreement with the two-stage model for membrane protein folding and oligomerization. PMID:10892817

  6. Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site▿

    PubMed Central

    Scheffers, Dirk-Jan; Robichon, Carine; Haan, Gert Jan; den Blaauwen, Tanneke; Koningstein, Gregory; van Bloois, Edwin; Beckwith, Jon; Luirink, Joen

    2007-01-01

    The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site. PMID:17693520

  7. Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles.

    PubMed

    Valkenier, Hennie; López Mora, Néstor; Kros, Alexander; Davis, Anthony P

    2015-02-09

    Transmembrane ion transporters (ionophores) are widely investigated as supramolecular agents with potential for biological activity. Tests are usually performed in synthetic membranes that are assembled into large unilamellar vesicles (LUVs). However transport must be followed through bulk properties of the vesicle suspension, because LUVs are too small for individual study. An alternative approach is described whereby ion transport can be revealed and quantified through direct observation. The method employs giant unilamellar vesicles (GUVs), which are 20-60 μm in diameter and readily imaged by light microscopy. This allows characterization of individual GUVs containing transporter molecules, followed by studies of transport through fluorescence emission from encapsulated indicators. The method provides new levels of certainty and relevance, given that the GUVs are similar in size to living cells. It has been demonstrated using a highly active anion carrier, and should aid the development of compounds for treating channelopathies such as cystic fibrosis.

  8. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution.

    PubMed

    Ostedgaard, L S; Baldursson, O; Vermeer, D W; Welsh, M J; Robertson, A D

    2000-05-09

    Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708-831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.

  9. Toward the semisynthesis of multidomain transmembrane receptors: Modification of Eph tyrosine kinases

    PubMed Central

    Singla, Nikhil; Himanen, Juha Pekka; Muir, Tom W.; Nikolov, Dimitar B.

    2008-01-01

    Expressed protein ligation (EPL) is a protein engineering approach that allows the modification or assembly of a target protein from multiple recombinant and synthetic polypeptides. EPL has been previously used to modify intracellular proteins and small integral membrane proteins for structural and functional studies. Here we describe the semisynthetic site-specific modification of the complete, multidomain extracellular regions of both A and B classes of Eph receptor tyrosine kinases. We show that the ectodomains of these receptors can be ligated to different peptides under carefully established experimental conditions, while their biological activity is retained. This work extends the boundaries of the EPL technique for semisynthesis of multidomain, extracellular, disulfide-bonded, and glycosylated proteins and highlights its potential application for reconstituting entire single-pass transmembrane proteins. PMID:18628240

  10. Energetics of side-chain snorkeling in transmembrane helices probed by nonproteinogenic amino acids

    PubMed Central

    Öjemalm, Karin; Higuchi, Takashi; Lara, Patricia; Lindahl, Erik; Suga, Hiroaki

    2016-01-01

    Cotranslational translocon-mediated insertion of membrane proteins into the endoplasmic reticulum is a key process in membrane protein biogenesis. Although the mechanism is understood in outline, quantitative data on the energetics of the process is scarce. Here, we have measured the effect on membrane integration efficiency of nonproteinogenic analogs of the positively charged amino acids arginine and lysine incorporated into model transmembrane segments. We provide estimates of the influence on the apparent free energy of membrane integration (ΔGapp) of “snorkeling” of charged amino acids toward the lipid–water interface, and of charge neutralization. We further determine the effect of fluorine atoms and backbone hydrogen bonds (H-bonds) on ΔGapp. These results help establish a quantitative basis for our understanding of membrane protein assembly in eukaryotic cells. PMID:27601675

  11. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  12. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.

    PubMed

    Törnroth-Horsefield, Susanna; Gourdon, Pontus; Horsefield, Rob; Brive, Lars; Yamamoto, Natsuko; Mori, Hirotada; Snijder, Arjan; Neutze, Richard

    2007-12-01

    Bacterial drug resistance is a serious concern for human health. Multidrug efflux pumps export a broad variety of substrates out of the cell and thereby convey resistance to the host. In Escherichia coli, the AcrB:AcrA:TolC efflux complex forms a principal transporter for which structures of the individual component proteins have been determined in isolation. Here, we present the X-ray structure of AcrB in complex with a single transmembrane protein, assigned by mass spectrometry as YajC. A specific rotation of the periplasmic porter domain of AcrB is also revealed, consistent with the hypothesized "twist-to-open" mechanism for TolC activation. Growth experiments with yajc-deleted E. coli reveal a modest increase in the organism's susceptibility to beta-lactam antibiotics, but this effect could not conclusively be attributed to the loss of interactions between YajC and AcrB.

  13. Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map

    PubMed Central

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J.; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2010-01-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at ∼50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a 3-dimensional discrete neural map are unclear. Here we show that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) is differentially expressed in different classes of PNs. Loss- and gain-of-function studies indicate that Caps instructs the segregation of Caps-positive and negative PN dendrites to discrete glomerular targets. Moreover, Caps does not mediate homophilic interactions and regulates PN dendrite targeting independent of pre-synaptic ORNs. The closely related protein Tartan plays a partially redundant function with Capricious. These LRR proteins are likely part of a combinatorial cell-surface code that instructs discrete olfactory map formation. PMID:19915565

  14. IgTM: An algorithm to predict transmembrane domains and topology in proteins

    PubMed Central

    Peris, Piedachu; López, Damián; Campos, Marcelino

    2008-01-01

    Background Due to their role of receptors or transporters, membrane proteins play a key role in many important biological functions. In our work we used Grammatical Inference (GI) to localize transmembrane segments. Our GI process is based specifically on the inference of Even Linear Languages. Results We obtained values close to 80% in both specificity and sensitivity. Six datasets have been used for the experiments, considering different encodings for the input sequences. An encoding that includes the topology changes in the sequence (from inside and outside the membrane to it and vice versa) allowed us to obtain the best results. This software is publicly available at: Conclusion We compared our results with other well-known methods, that obtain a slightly better precision. However, this work shows that it is possible to apply Grammatical Inference techniques in an effective way to bioinformatics problems. PMID:18783592

  15. Spin Labeling Studies of Transmembrane Signaling and Transport: Applications to Phototaxis, ABC Transporters and Symporters.

    PubMed

    Klare, Johann P; Steinhoff, Heinz-Jürgen

    2015-01-01

    Membrane proteins still represent a major challenge for structural biologists. This chapter will focus on the application of continuous wave and pulsed EPR spectroscopy on spin-labeled membrane proteins. Site-directed spin labeling EPR spectroscopy has evolved as a powerful tool to study the structure and dynamics of proteins, especially membrane proteins, as this method works largely independently of the size and complexity of the biological system under investigation. This chapter describes applications of this technique to three different systems: the archaeal photoreceptor/-transducer complex SRII/HtrII as an example for transmembrane signaling and two transport systems, the histidine ATP-binding cassette transporter HisQMP, and the sodium-proline symporter PutP.

  16. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.

    PubMed

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2009-12-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.

  17. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis.

    PubMed

    Guselnikov, S V; Grayfer, L; De Jesús Andino, F; Rogozin, I B; Robert, J; Taranin, A V

    2015-11-01

    The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates.

  18. Schematic representation of residue-based protein context-dependent data: an application to transmembrane proteins.

    PubMed

    Campagne, F; Weinstein, H

    1999-01-01

    An algorithmic method for drawing residue-based schematic diagrams of proteins on a 2D page is presented and illustrated. The method allows the creation of rendering engines dedicated to a given family of sequences, or fold. The initial implementation provides an engine that can produce a 2D diagram representing secondary structure for any transmembrane protein sequence. We present the details of the strategy for automating the drawing of these diagrams. The most important part of this strategy is the development of an algorithm for laying out residues of a loop that connects to arbitrary points of a 2D plane. As implemented, this algorithm is suitable for real-time modification of the loop layout. This work is of interest for the representation and analysis of data from (1) protein databases, (2) mutagenesis results, or (3) various kinds of protein context-dependent annotations or data.

  19. The Role of Plasmalemmal-Cortical Anchoring on the Stability of Transmembrane Electropores

    PubMed Central

    Kennedy, S. M.; Ji, Z.; Rockweiler, N. B.; Hahn, A. R.; Booske, J. H.; Hagness, S. C.

    2009-01-01

    The structure of eukaryotic cells is maintained by a network of filamentous actin anchored subjacently to the plasma membrane. This structure is referred to as the actin cortex. We present a locally constrained surface tension model for electroporation in order to address the influence of plasmalemmal-cortical anchoring on electropore dynamics. This model predicts that stable electropores are possible under certain conditions. The existence of stable electropores has been suggested in several experimental studies. The electropore radius at which stability is achieved is a function of the characteristic radii of locally constrained regions about the plasma membrane. This model opens the possibility of using actin-modifying compounds to physically manipulate cortical density, thereby manipulating electroporation dynamics. It also underscores the need to improve electroporation models further by incorporating the influence of trans-electropore ionic and aqueous flow, cortical flexibility, transmembrane protein mobility, and active cellular wound healing mechanisms. PMID:20490371

  20. Coupling of Transmembrane Helix Orientation To Membrane Release of the Juxtamembrane Region in FGFR3

    PubMed Central

    2015-01-01

    Activation of the protein tyrosine kinase receptors requires the coupling of ligand binding to a change in both the proximity and orientation of the single transmembrane (TM) helices of receptor monomers to allow transphosphorylation of the receptor kinase domain. We make use of peptides corresponding to the TM and juxtamembrane (JM) regions of the fibroblast growth factor receptor 3 to assess how mutations in the TM region (G380R and A391E), which lead to receptor activation, influence the orientation of the TM domain and interactions of the intracellular JM sequence with the membrane surface. On the basis of fluorescence and Fourier transform infrared spectroscopy, we find that both activating mutations change the TM helix tilt angle relative to the membrane normal and release the JM region from the membrane. These results suggest a general mechanism regarding how the TM–JM region functionally bridges the extracellular and intracellular regions for these receptors. PMID:25010350

  1. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled.

    PubMed

    Usui, T; Shima, Y; Shimada, Y; Hirano, S; Burgess, R W; Schwarz, T L; Takeichi, M; Uemura, T

    1999-09-03

    We identified a seven-pass transmembrane receptor of the cadherin superfamily, designated Flamingo (Fmi), localized at cell-cell boundaries in the Drosophila wing. In the absence of Fmi, planar polarity was distorted. Before morphological polarization of wing cells along the proximal-distal (P-D) axis, Fmi was redistributed predominantly to proximal and distal cell edges. This biased localization of Fmi appears to be driven by an imbalance of the activity of Frizzled (Fz) across the proximal/distal cell boundary. These results, together with phenotypes caused by ectopic expression of fz and fmi, suggest that cells acquire the P-D polarity by way of the Fz-dependent boundary localization of Fmi.

  2. Structural Requirements in the Transmembrane Domain of GLIC Revealed by Incorporation of Noncanonical Histidine Analogs

    PubMed Central

    Rienzo, Matthew; Lummis, Sarah C.R.; Dougherty, Dennis A.

    2014-01-01

    SUMMARY The cyanobacterial pentameric ligand-gated ion channel GLIC, a homolog of the Cys-loop receptor superfamily, has provided useful structural and functional information about its eukaryotic counterparts. X-ray diffraction data and site-directed mutagenesis have previously implicated a transmembrane histi-dine residue (His234) as essential for channel function. Here, we investigated the role of His234 via synthesis and incorporation of histidine analogs and α-hydroxy acids using in vivo nonsense suppression. Receptors were expressed heterologously in Xenopus laevis oocytes, and whole-cell voltage-clamp electrophysiology was used to monitor channel activity. We show that an interhelix hydrogen bond involving His234 is important for stabilization of the open state, and that the shape and basicity of its side chain are highly sensitive to perturbations. In contrast, our data show that two other His residues are not involved in the acid-sensing mechanism. PMID:25525989

  3. Interferon-induced transmembrane protein 1 (IFITM1) is required for the progression of colorectal cancer

    PubMed Central

    Phi, Lan Thi Hanh; Kim, Hyungjoo; Baek, Moo Jun; Jeong, Dongjun; Kwon, Hyog Young

    2016-01-01

    Interferon-induced transmembrane protein 1 (IFITM1) has been shown to be implicated in multiple cancers, yet little is known about biological significance of IFITM1 in colorectal cancer. Here, we show that IFITM1 is highly expressed in metastatic colorectal cancer cell lines as well as colorectal patient-derived tumor samples, and its expression is associated with a poor prognosis of the disease. Also, IFITM1 depletion resulted in a significant reduction in the mobility of cancer cell lines, whereas ectopic expression of IFITM1 promoted the migration of cancer cells. Epithelial-mesenchymal transition (EMT) signature was dysregulated by both loss and gain of function of IFITM1, which was partially reverted by Caveolin-1 (CAV1). Therefore, these results suggest that IFITM1 may be a prognostic marker and an attractive target to achieve better therapeutic outcomes in colorectal cancer. PMID:27852071

  4. Structure of the transmembrane region of the M2 protein H+ channel

    PubMed Central

    Wang, Junfeng; Kim, Sanguk; Kovacs, Frank; Cross, Timothy A.

    2001-01-01

    The transmembrane domain of the M2 protein from influenza A virus forms a nearly uniform and ideal helix in a liquid crystalline bilayer environment. The exposure of the hydrophilic backbone structure is minimized through uniform hydrogen bond geometry imposed by the low dielectric lipid environment. A high-resolution structure of the monomer backbone and a detailed description of its orientation with respect to the bilayer were achieved using orientational restraints from solid-state NMR. With this unique information, the tetrameric structure of this H+ channel is constrained substantially. Features of numerous published models are discussed in light of the experimental structure of the monomer and derived features of the tetrameric bundle. PMID:11604531

  5. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences

    PubMed Central

    Hayat, Sikander; Sander, Chris; Marks, Debora S.

    2015-01-01

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand–strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases. PMID:25858953

  6. Exploring the dynamic behaviors and transport properties of gas molecules in a transmembrane cyclic peptide nanotube.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2013-12-05

    The dynamic behaviors and transport properties of O2, CO2, and NH3 molecules through a transmembrane cyclic peptide nanotube (CPNT) of 8×cyclo-(WL)4/POPE have been investigated by steered molecular dynamics (SMD) simulations and adaptive biasing force (ABF) samplings. Different external forces are needed for three gas molecules to enter the channel. The periodic change of the pulling force curve for a gas traveling through the channel mainly arises from the regular and periodic arrangement of the composed CP subunits of the CPNT. Radial distribution functions (RDFs) between gas and water disclose the density decrease of channel water, which strongly aggravates the discontinuity of H-bond formation between a gas molecule and the neighboring water. Compared to hardly any H-bond formation between CO2 (or O2) and the framework of the CPNT, NH3 can form abundant H-bonds with the carbonyl/amide groups of the CPNT, leading to a fierce competition to NH3-water H-bonded interactions. In addition to direct H-bonded interactions, all three gases can form water bridges with the tube. The potential profile of mean force coincides with the occurring probability of a gas molecule along the tube axis. The energy barriers at two mouths of the CPNT elucidate the phenomenon that CO2 and O2 are thoroughly confined in the narrow lumen while NH3 can easily go outside the tube. Intermolecular interactions of each gas with channel water and the CPNT framework and the formation of H-bonds and water bridges illuminate the different gas translocation behaviors. The results uncover interesting and comprehensive mechanisms underlying the permeation characteristics of three gas molecules traveling through a transmembrane CPNT.

  7. Expression of Hypoxia-Inducible Cell-Surface Transmembrane Carbonic Anhydrases in Human Cancer

    PubMed Central

    Ivanov, Sergey; Liao, Shu-Yuan; Ivanova, Alla; Danilkovitch-Miagkova, Alla; Tarasova, Nadezhda; Weirich, Gregor; Merrill, Marsha J.; Proescholdt, Martin A.; Oldfield, Edward H.; Lee, Joshua; Zavada, Jan; Waheed, Abdul; Sly, William; Lerman, Michael I.; Stanbridge, Eric J.

    2001-01-01

    An acidic extracellular pH is a fundamental property of the malignant phenotype. In von Hippel-Lindau (VHL)-defective tumors the cell surface transmembrane carbonic anhydrase (CA) CA9 and CA12 genes are overexpressed because of the absence of pVHL. We hypothesized that these enzymes might be involved in maintaining the extracellular acidic pH in tumors, thereby providing a conducive environment for tumor growth and spread. Using Northern blot analysis and immunostaining with specific antibodies we analyzed the expression of CA9 and CA12 genes and their products in a large sample of cancer cell lines, fresh and archival tumor specimens, and normal human tissues. Expression was also analyzed in cultured cells under hypoxic conditions. Expression of CA IX and CA XII in normal adult tissues was detected only in highly specialized cells and for most tissues their expression did not overlap. Analysis of RNA samples isolated from 87 cancer cell lines and 18 tumors revealed high-to-moderate levels of expression of CA9 and CA12 in multiple cancers. Immunohistochemistry revealed high-to-moderate expression of these enzymes in various normal tissues and multiple common epithelial tumor types. The immunostaining was seen predominantly on the cell surface membrane. The expression of both genes was markedly induced under hypoxic conditions in tumors and cultured tumor cells. We conclude that the cell surface trans-membrane carbonic anhydrases CA IX and CA XII are overexpressed in many tumors suggesting that this is a common feature of cancer cells that may be required for tumor progression. These enzymes may contribute to the tumor microenvironment by maintaining extracellular acidic pH and helping cancer cells grow and metastasize. Our studies show an important causal link between hypoxia, extracellular acidification, and induction or enhanced expression of these enzymes in human tumors. PMID:11238039

  8. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca Ellis

    2017-02-17

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith EC, et al. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins. 2013. J Biol Chem. 288, 35726). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.

  9. Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection

    PubMed Central

    Londino, James David; Lazrak, Ahmed; Noah, James W.; Aggarwal, Saurabh; Bali, Vedrana; Woodworth, Bradford A.; Bebok, Zsuzsanna; Matalon, Sadis

    2015-01-01

    We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.—Londino, J. D., Lazrak, A., Noah, J. W., Aggarwal, S., Bali, V., Woodworth, B. A., Bebok, Z., Matalon, S. Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. PMID:25795456

  10. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal.

    PubMed

    Prince, L S; Peter, K; Hatton, S R; Zaliauskiene, L; Cotlin, L F; Clancy, J P; Marchase, R B; Collawn, J F

    1999-02-05

    We previously demonstrated that the cystic fibrosis transmembrane conductance regulator (CFTR) is rapidly endocytosed in epithelial cells (Prince, L. S., Workman, R. B., Jr., and Marchase, R. B. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 5192-5196). To determine the structural features of CFTR required for endocytosis, we prepared chimeric molecules consisting of the amino-terminal (residues 2-78) and carboxyl-terminal tail regions (residues 1391-1476) of CFTR, each fused to the transmembrane and extracellular domains of the transferrin receptor. Functional analysis of the CFTR-(2-78) and CFTR-(1391-1476) indicated that both chimeras were rapidly internalized. Deletion of residues 1440-1476 had no effect on chimera internalization. Mutations of potential internalization signals in both cytoplasmic domains reveal that only one mutation inhibits internalization, Y1424A. Using a surface biotinylation reaction, we also examined internalization rates of wild type and mutant CFTRs expressed in COS-7 cells. We found that both wild type and A1440X CFTR were rapidly internalized, whereas the Y1424A CFTR mutant, like the chimeric protein, had approximately 40% reduced internalization activity. Deletions in the amino-terminal tail region of CFTR resulted in defective trafficking of CFTR out of the endoplasmic reticulum to the cell surface, suggesting that an intact amino terminus is critical for biosynthesis. In summary, our results suggest that both tail regions of CFTR are sufficient to promote rapid internalization of a reporter molecule and that tyrosine 1424 is required for efficient CFTR endocytosis.

  11. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases

    PubMed Central

    Vilas, Gonzalo L.; Loganathan, Sampath K.; Liu, Jun; Riau, Andri K.; Young, James D.; Mehta, Jodhbir S.; Vithana, Eranga N.; Casey, Joseph R.

    2013-01-01

    Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and cell division. All known water-channelling proteins belong to the major intrinsic protein family, exemplified by aquaporins (AQPs). Here we identified SLC4A11, a member of the solute carrier family 4 of bicarbonate transporters, as an unexpected addition to known transmembrane water movement facilitators. The rate of osmotic-gradient driven cell-swelling was monitored in Xenopus laevis oocytes and HEK293 cells, expressing human AQP1, NIP5;1 (a water channel protein from plant), hCNT3 (a human nucleoside transporter) and human SLC4A11. hCNT3-expressing cells swelled no faster than control cells, whereas SLC4A11-mediated water permeation at a rate about half that of some AQP proteins. SLC4A11-mediated water movement was: (i) similar to some AQPs in rate; (ii) uncoupled from solute-flux; (iii) inhibited by stilbene disulfonates (classical SLC4 inhibitors); (iv) inactivated in one CHED2 mutant (R125H). Localization of AQP1 and SLC4A11 in human and murine corneal (apical and basolateral, respectively) suggests a cooperative role in mediating trans-end