Stability Properties of the Regular Set for the Navier-Stokes Equation
NASA Astrophysics Data System (ADS)
D'Ancona, Piero; Lucà, Renato
2018-06-01
We investigate the size of the regular set for small perturbations of some classes of strong large solutions to the Navier-Stokes equation. We consider perturbations of the data that are small in suitable weighted L2 spaces but can be arbitrarily large in any translation invariant Banach space. We give similar results in the small data setting.
Equivalence of partition properties and determinacy
Kechris, Alexander S.; Woodin, W. Hugh
1983-01-01
It is shown that, within L(ℝ), the smallest inner model of set theory containing the reals, the axiom of determinacy is equivalent to the existence of arbitrarily large cardinals below Θ with the strong partition property κ → (κ)κ. PMID:16593299
Gap-minimal systems of notations and the constructible hierarchy
NASA Technical Reports Server (NTRS)
Lucian, M. L.
1972-01-01
If a constructibly countable ordinal alpha is a gap ordinal, then the order type of the set of index ordinals smaller than alpha is exactly alpha. The gap ordinals are the only points of discontinuity of a certain ordinal-valued function. The notion of gap minimality for well ordered systems of notations is defined, and the existence of gap-minimal systems of notations of arbitrarily large constructibly countable length is established.
Setting limits on q0 from gravitational lensing
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Park, Myeong-Gu; Lee, Hyung Mok
1989-01-01
Gravitational lensing by galaxies in a wide variety of cosmological models is considered. For closed models, the lensing depends on the parameter beta(crit). If beta(crit) is greater than zero, a normal lensing case can be obtained with two bright images separated by an angle twice beta(crit) and a third, arbitrarily dim image between them coincident with the position of the lensing galaxy nucleus. As the QSO approaches the antipodal redshift, which can occur in models with large values of the cosmological constant, the cross sections for lensing blow up. An overfocused case where beta(crit) is less than zero can be obtained for a QSO beyond the antipodal redshift. In this case, when a lensing event occurs, only one arbitrarily dim image coincident with the position of the lensing galaxy nucleus is seen. If galaxy rotation curves are always flat or slowly rising, the overfocused case always produces one image.
Method And Apparatus For Arbitrarily Large Capacity Removable Media
Milligan, Charles A.; Hughes, James P.; Debiez; Jacques
2003-04-08
A method and apparatus to handle multiple sets of removable media within a storage system. A first set of removable media are mounted on a set of drives. Data is accepted until the first set of removable media is filled. A second set of removable media is mounted on the drives, while the first set of removable media is removed. When the change in removable media is complete, writing of data proceeds on the second set of removable media. Data may be buffered while the change in removable media occurs. Alternatively, two sets of removable media may be mounted at the same time. When the first set of removable media is filled to a selected amount, the second set of removable media may then be used to write the data. A third set of removable media is set up or mounted for use, while the first set of removable media is removed.
Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.
NASA Astrophysics Data System (ADS)
Neustupa, Tomáš
2017-07-01
The paper presents the mathematical model of a steady 2-dimensional viscous incompressible flow through a radial blade machine. The corresponding boundary value problem is studied in the rotating frame. We provide the classical and weak formulation of the problem. Using a special form of the so called "artificial" or "natural" boundary condition on the outflow, we prove the existence of a weak solution for an arbitrarily large inflow.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Astrophysics Data System (ADS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-04-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
NASA Technical Reports Server (NTRS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-01-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
A posteriori noise estimation in variable data sets. With applications to spectra and light curves
NASA Astrophysics Data System (ADS)
Czesla, S.; Molle, T.; Schmitt, J. H. M. M.
2018-01-01
Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis.
Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio
2017-08-01
Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .
Cut set-based risk and reliability analysis for arbitrarily interconnected networks
Wyss, Gregory D.
2000-01-01
Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.
A cylindrical shell with an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1982-01-01
The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.
Asymptotic violation of Bell inequalities and distillability.
Masanes, Lluís
2006-08-04
A multipartite quantum state violates a Bell inequality asymptotically if, after jointly processing by general local operations an arbitrarily large number of copies of it, the result violates the inequality. In the bipartite case we show that asymptotic violation of the Clauser-Horne-Shimony-Holt inequality is equivalent to distillability. Hence, bound entangled states do not violate it. In the multipartite case we consider the complete set of full-correlation Bell inequalities with two dichotomic observables per site. We show that asymptotic violation of any of these inequalities by a multipartite state implies that pure-state entanglement can be distilled from it, although the corresponding distillation protocol may require that some of the parties join into several groups. We also obtain the extreme points of the set of distributions generated by measuring N quantum systems with two dichotomic observables per site.
SP2Bench: A SPARQL Performance Benchmark
NASA Astrophysics Data System (ADS)
Schmidt, Michael; Hornung, Thomas; Meier, Michael; Pinkel, Christoph; Lausen, Georg
A meaningful analysis and comparison of both existing storage schemes for RDF data and evaluation approaches for SPARQL queries necessitates a comprehensive and universal benchmark platform. We present SP2Bench, a publicly available, language-specific performance benchmark for the SPARQL query language. SP2Bench is settled in the DBLP scenario and comprises a data generator for creating arbitrarily large DBLP-like documents and a set of carefully designed benchmark queries. The generated documents mirror vital key characteristics and social-world distributions encountered in the original DBLP data set, while the queries implement meaningful requests on top of this data, covering a variety of SPARQL operator constellations and RDF access patterns. In this chapter, we discuss requirements and desiderata for SPARQL benchmarks and present the SP2Bench framework, including its data generator, benchmark queries and performance metrics.
A cylindrical shell with an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1983-01-01
The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system to five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented. Previously annunced in STAR as N83-16783
Combining states without scale hierarchies with ordered parton showers
Fischer, Nadine; Prestel, Stefan
2017-09-12
Here, we present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This then requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. Our algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHCmore » data.« less
Macroscopic traveling packet and soliton states of quasi-one-dimensional flocks.
Guttenberg, Nicholas; Toner, John; Tu, Yuhai
2014-05-01
Using a continuum model for inhomogeneous flocks, we show that a finite but arbitrarily large moving "packet" of active particles (e.g., moving creatures) can form in a background of a lower density disordered phase of these particles, like a liquid drop surrounded by vapor. The "vapor density" of the disordered background can be made arbitrarily low. We find three basic types of quasi-one-dimensional states: "longitudinal", "transverse", and "oblique" states, with their internal velocity fields, respectively, parallel, perpendicular, and oblique to the interface. The transitions between these states are also studied.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Correction to the Alfven-Lawson criterion for relativistic electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodin, I. Y.; Fisch, N. J.
2006-10-15
The Alfven-Lawson criterion for relativistic electron beams is revised. The parameter range is found, in which a stationary beam can carry arbitrarily large current, regardless of its transverse structure.
Escape probability of the super-Penrose process
NASA Astrophysics Data System (ADS)
Ogasawara, Kota; Harada, Tomohiro; Miyamoto, Umpei; Igata, Takahisa
2017-06-01
We consider a head-on collision of two massive particles that move in the equatorial plane of an extremal Kerr black hole, which results in the production of two massless particles. Focusing on a typical case, where both of the colliding particles have zero angular momenta, we show that a massless particle produced in such a collision can escape to infinity with arbitrarily large energy in the near-horizon limit of the collision point. Furthermore, if we assume that the emission of the produced massless particles is isotropic in the center-of-mass frame but confined to the equatorial plane, the escape probability of the produced massless particle approaches 5 /12 , and almost all escaping massless particles have arbitrarily large energy at infinity and an impact parameter approaching 2 G M /c2, where M is the mass of the black hole.
Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition
NASA Astrophysics Data System (ADS)
Low, Daniel
One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).
OPTIMASS: a package for the minimization of kinematic mass functions with constraints
NASA Astrophysics Data System (ADS)
Cho, Won Sang; Gainer, James S.; Kim, Doojin; Lim, Sung Hak; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc; Park, Myeonghun
2016-01-01
Reconstructed mass variables, such as M 2, M 2 C , M T * , and M T2 W , play an essential role in searches for new physics at hadron colliders. The calculation of these variables generally involves constrained minimization in a large parameter space, which is numerically challenging. We provide a C++ code, O ptimass, which interfaces with the M inuit library to perform this constrained minimization using the Augmented Lagrangian Method. The code can be applied to arbitrarily general event topologies, thus allowing the user to significantly extend the existing set of kinematic variables. We describe this code, explain its physics motivation, and demonstrate its use in the analysis of the fully leptonic decay of pair-produced top quarks using M 2 variables.
Favoured local structures in liquids and solids: a 3D lattice model.
Ronceray, Pierre; Harrowell, Peter
2015-05-07
We investigate the connection between the geometry of Favoured Local Structures (FLS) in liquids and the associated liquid and solid properties. We introduce a lattice spin model - the FLS model on a face-centered cubic lattice - where this geometry can be arbitrarily chosen among a discrete set of 115 possible FLS. We find crystalline groundstates for all choices of a single FLS. Sampling all possible FLS's, we identify the following trends: (i) low symmetry FLS's produce larger crystal unit cells but not necessarily higher energy groundstates, (ii) chiral FLS's exhibit peculiarly poor packing properties, (iii) accumulation of FLS's in supercooled liquids is linked to large crystal unit cells, and (iv) low symmetry FLS's tend to find metastable structures on cooling.
NASA Astrophysics Data System (ADS)
Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas
2016-05-01
In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.
NASA Astrophysics Data System (ADS)
Boche, H.; Janßen, G.
2014-08-01
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. ["Universal quantum state merging," J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.
Multiple Positive Solutions in the Second Order Autonomous Nonlinear Boundary Value Problems
NASA Astrophysics Data System (ADS)
Atslega, Svetlana; Sadyrbaev, Felix
2009-09-01
We construct the second order autonomous equations with arbitrarily large number of positive solutions satisfying homogeneous Dirichlet boundary conditions. Phase plane approach and bifurcation of solutions are the main tools.
Development of a non-solvent based test method for evaluating reclaimed asphalt pavement mixes.
DOT National Transportation Integrated Search
2004-09-01
The percent of reclaimed asphalt pavement (RAP) used in hot mix asphalt (HMA) is currently established either by arbitrarily setting maximum percent limits, or alternatively, by evaluating both the virgin and recovered binder properties. The first ap...
RNA detection using peptide-inserted Renilla luciferase.
Andou, Takashi; Endoh, Tamaki; Mie, Masayasu; Kobatake, Eiry
2009-01-01
A novel complementation system with short peptide-inserted-Renilla luciferase (PI-Rluc) and split-RNA probes was constructed for noninvasive RNA detection. The RNA binding peptides HIV-1 Rev and BIV Tat were used as inserted peptides. They display induced fit conformational changes upon binding to specific RNAs and trigger complementation or discomplementation of Rluc. Split-RNA probes were designed to reform the peptide binding site upon hybridization with arbitrarily selected target RNA. This set of recombinant protein and split-RNA probes enabled a high degree of sensitivity in RNA detection. In this study, we show that the Rluc system is comparable to Fluc, but that its detection limit for arbitrarily selected RNA (at least 100 pM) exceeds that of Fluc by approximately two orders of magnitude.
LCD real-time mask technique for fabrication of arbitrarily shaped microstructure
NASA Astrophysics Data System (ADS)
Peng, Qinjun; Guo, Yongkang; Chen, Bo; Du, Jinglei; Xiang, Jinshan; Cui, Zheng
2002-04-01
A new technique to fabricate arbitrarily shaped microstructures by using LCD (liquid crystal display) real- time mask is reported in this paper. Its principle and design method are explained. Based on partial coherent imaging theory, the process to fabricate micro-axicon array and zigzag grating has been simulated. The experiment using a color LCD as real-time mask has been set up. Micro-axicon array and zigzag grating has been fabricated by the LCD real-time mask technique. The 3D surface relief structures were made on pan chromatic silver-halide sensitized gelatin (Kodak-131) with trypsinase etching. The pitch size of zigzag grating is 46.26micrometers . The caliber of axicon is 118.7micrometers , and the etching depth is 1.332micrometers .
Four-dimensional wavelet compression of arbitrarily sized echocardiographic data.
Zeng, Li; Jansen, Christian P; Marsch, Stephan; Unser, Michael; Hunziker, Patrick R
2002-09-01
Wavelet-based methods have become most popular for the compression of two-dimensional medical images and sequences. The standard implementations consider data sizes that are powers of two. There is also a large body of literature treating issues such as the choice of the "optimal" wavelets and the performance comparison of competing algorithms. With the advent of telemedicine, there is a strong incentive to extend these techniques to higher dimensional data such as dynamic three-dimensional (3-D) echocardiography [four-dimensional (4-D) datasets]. One of the practical difficulties is that the size of this data is often not a multiple of a power of two, which can lead to increased computational complexity and impaired compression power. Our contribution in this paper is to present a genuine 4-D extension of the well-known zerotree algorithm for arbitrarily sized data. The key component of our method is a one-dimensional wavelet algorithm that can handle arbitrarily sized input signals. The method uses a pair of symmetric/antisymmetric wavelets (10/6) together with some appropriate midpoint symmetry boundary conditions that reduce border artifacts. The zerotree structure is also adapted so that it can accommodate noneven data splitting. We have applied our method to the compression of real 3-D dynamic sequences from clinical cardiac ultrasound examinations. Our new algorithm compares very favorably with other more ad hoc adaptations (image extension and tiling) of the standard powers-of-two methods, in terms of both compression performance and computational cost. It is vastly superior to slice-by-slice wavelet encoding. This was seen not only in numerical image quality parameters but also in expert ratings, where significant improvement using the new approach could be documented. Our validation experiments show that one can safely compress 4-D data sets at ratios of 128:1 without compromising the diagnostic value of the images. We also display some more extreme compression results at ratios of 2000:1 where some key diagnostically relevant key features are preserved.
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Landau damping of electrostatic waves in arbitrarily degenerate quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rightley, Shane, E-mail: shane.rightley@colorado.edu; Uzdensky, Dmitri, E-mail: uzdensky@colorado.edu
2016-03-15
We carry out a systematic study of the dispersion relation for linear electrostatic waves in an arbitrarily degenerate quantum electron plasma. We solve for the complex frequency spectrum for arbitrary values of wavenumber k and level of degeneracy μ. Our finding is that for large k and high μ the real part of the frequency ω{sub r} grows linearly with k and scales with μ, only because of the scaling of the Fermi energy. In this regime, the relative Landau damping rate γ/ω{sub r} becomes independent of k and varies inversely with μ. Thus, damping is weak but finite atmore » moderate levels of degeneracy for short wavelengths.« less
Simbrain 3.0: A flexible, visually-oriented neural network simulator.
Tosi, Zachary; Yoshimi, Jeffrey
2016-11-01
Simbrain 3.0 is a software package for neural network design and analysis, which emphasizes flexibility (arbitrarily complex networks can be built using a suite of basic components) and a visually rich, intuitive interface. These features support both students and professionals. Students can study all of the major classes of neural networks in a familiar graphical setting, and can easily modify simulations, experimenting with networks and immediately seeing the results of their interventions. With the 3.0 release, Simbrain supports models on the order of thousands of neurons and a million synapses. This allows the same features that support education to support research professionals, who can now use the tool to quickly design, run, and analyze the behavior of large, highly customizable simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
OPTIMASS: A package for the minimization of kinematic mass functions with constraints
Cho, Won Sang; Gainer, James S.; Kim, Doojin; ...
2016-01-07
Reconstructed mass variables, such as M 2, M 2C, M* T, and M T2 W, play an essential role in searches for new physics at hadron colliders. The calculation of these variables generally involves constrained minimization in a large parameter space, which is numerically challenging. We provide a C++ code, Optimass, which interfaces with the Minuit library to perform this constrained minimization using the Augmented Lagrangian Method. The code can be applied to arbitrarily general event topologies, thus allowing the user to significantly extend the existing set of kinematic variables. Here, we describe this code, explain its physics motivation, andmore » demonstrate its use in the analysis of the fully leptonic decay of pair-produced top quarks using M 2 variables.« less
College Stores 1975--A Challenge to the Publishers
ERIC Educational Resources Information Center
Davis, Howard W.
1976-01-01
A presentation by the general manager of the Harvard Cooperative Society to the College Division of the Association of American Publishers in which he illustrates with survey data the contention that suggested publishers prices for textbooks are arbitrarily set too low by publishers to cover minimal costs of marketing textbooks. (JT)
A terracing operator for physical property mapping with potential field data
Cordell, L.; McCafferty, A.E.
1989-01-01
The terracing operator works iteratively on gravity or magnetic data, using the sense of the measured field's local curvature, to produce a field comprised of uniform domains separated by abrupt domain boundaries. The result is crudely proportional to a physical-property function defined in one (profile case) or two (map case) horizontal dimensions. This result can be extended to a physical-property model if its behavior in the third (vertical) dimension is defined, either arbitrarily or on the basis of the local geologic situation. The terracing algorithm is computationally fast and appropriate to use with very large digital data sets. The terracing operator was applied separately to aeromagnetic and gravity data from a 136km x 123km area in eastern Kansas. Results provide a reasonable good physical representation of both the gravity and the aeromagnetic data. Superposition of the results from the two data sets shows many areas of agreement that can be referenced to geologic features within the buried Precambrian crystalline basement. -from Authors
Blueprint for a microwave trapped ion quantum computer.
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K
2017-02-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
NASA Astrophysics Data System (ADS)
Pavičić, Mladen
2017-06-01
Quantum contextuality turns out to be a necessary resource for universal quantum computation and important in the field of quantum information processing. It is therefore of interest both for theoretical considerations and for experimental implementation to find new types and instances of contextual sets and develop methods of their optimal generation. We present an arbitrarily exhaustive hypergraph-based generation of the most explored contextual sets [Kochen-Specker (KS) ones] in 4, 6, 8, 16, and 32 dimensions. We consider and analyze 12 KS classes and obtain numerous properties of theirs, which we then compare with the results previously obtained in the literature. We generate several thousand additional types and instances of KS sets, including all KS sets in three of the classes and the upper part of a fourth set. We make use of the McKay-Megill-Pavičić (MMP) hypergraph language, algorithms, and programs to generate KS sets strictly following their definition from the Kochen-Specker theorem. This approach proves to be particularly advantageous over the parity-proof-based ones (which prevail in the literature) since it turns out that only a very few KS sets have a parity proof (in six KS classes <0.01% and in one of them 0%). MMP hypergraph formalism enables a translation of an exponentially complex task of solving systems of nonlinear equations, describing KS vector orthogonalities, into a statistically linearly complex task of evaluating vertex states of hypergraph edges, thus exponentially speeding up the generation of KS sets and enabling us to generate billions of novel instances of them. The MMP hypergraph notation also enables us to graphically represent KS sets and to visually discern their features.
Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.
2016-01-01
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605
Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V
2016-01-21
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
Very massive neutron stars in Ni's theory of gravity
NASA Technical Reports Server (NTRS)
Mikkelsen, D. R.
1977-01-01
It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.
Wigner functions for fermions in strong magnetic fields
NASA Astrophysics Data System (ADS)
Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun
2018-02-01
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.
The demarcation of arbitrary boundaries for coastal zone management: the Israeli case.
Sas, Eliraz; Fischhendler, Itay; Portman, Michelle E
2010-11-01
Integrated coastal zone management (ICZM) addresses the interconnections, complexities, and conflicts between many users of the coastal area with different goals. It requires setting managerial boundaries that capture many elements of human and natural systems. Experience teaches us that without a directed effort managerial rules and laws are not likely to coincide with the physical sensitivity of units that reflect different environmental characteristics of the coastal zone. Hence the aim of this study is to explore why coastal managerial boundaries are set arbitrarily and whether and how it is possible to address the problems this poses. We examine what influences the decisions of a new coastal management authority in Israel to determine how this body overcomes the limits of arbitrary boundary demarcation. The study found that real life management succeeded to both address areas outside the arbitrary boundaries and also to respect some of the different socio-economic needs and physical constraints of the coastal sub-units. Israel's Coastal Environment Protection Law allows and, in fact, encourages the regulator to use discretion and to employ various criteria to balance development and conservation. This implies that policy makers are cognizant of a need to balance ecologically-sensitive boundaries that consider the homogeneity of the coast with politically feasible boundaries that are set arbitrarily. Copyright 2010 Elsevier Ltd. All rights reserved.
Extendability of parallel sections in vector bundles
NASA Astrophysics Data System (ADS)
Kirschner, Tim
2016-01-01
I address the following question: Given a differentiable manifold M, what are the open subsets U of M such that, for all vector bundles E over M and all linear connections ∇ on E, any ∇-parallel section in E defined on U extends to a ∇-parallel section in E defined on M? For simply connected manifolds M (among others) I describe the entirety of all such sets U which are, in addition, the complement of a C1 submanifold, boundary allowed, of M. This delivers a partial positive answer to a problem posed by Antonio J. Di Scala and Gianni Manno (2014). Furthermore, in case M is an open submanifold of Rn, n ≥ 2, I prove that the complement of U in M, not required to be a submanifold now, can have arbitrarily large n-dimensional Lebesgue measure.
High-order fractional partial differential equation transform for molecular surface construction.
Hu, Langhua; Chen, Duan; Wei, Guo-Wei
2013-01-01
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.
Illumination in diverse codimensions
NASA Technical Reports Server (NTRS)
Banks, David C.
1994-01-01
This paper derives a model of diffuse and specular illumination in arbitrarily large dimensions, based on a few characteristics of material and light in three-space. It then describes how to adjust for the anomaly of excess brightness in large codimensions. If a surface is grooved or furry, it can be illuminated with a hybrid model that incorporates both the one dimensional geometry (the grooves or fur) and the two dimensional geometry (the surface).
Blueprint for a microwave trapped ion quantum computer
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.
2017-01-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154
A Generally Robust Approach for Testing Hypotheses and Setting Confidence Intervals for Effect Sizes
ERIC Educational Resources Information Center
Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N.
2008-01-01
Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…
Alienation from Learning: School Effects on Students.
ERIC Educational Resources Information Center
Travis, Jon E.
1995-01-01
During their elementary school years, many students develop a dislike for school. Their alienation is due partly to the school environment and discouraging educator behaviors. Children sense they are overly assessed and classified, arbitrarily promoted, confined to large groups, and bound to a routine work schedule that values competition and…
Constructing Dense Graphs with Unique Hamiltonian Cycles
ERIC Educational Resources Information Center
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
A systematic construction of microstate geometries with low angular momentum
NASA Astrophysics Data System (ADS)
Bena, Iosif; Heidmann, Pierre; Ramírez, Pedro F.
2017-10-01
We outline a systematic procedure to obtain horizonless microstate geometries that have the same charges as three-charge five-dimensional black holes with a macroscopically-large horizon area and an arbitrarily-small angular momentum. There are two routes through which such solutions can be constructed: using multi-center Gibbons-Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-sponding to microstate geometries for black holes with no angular momentum have been obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed to give rise only to microstate geometries of BMPV black holes with a large angular mo-mentum [2]. We perform a thorough search throughout the parameter space of smooth horizonless solutions with four GH centers and find that these have an angular momentum that is generally larger than 80% of the cosmic censorship bound. However, we find that solutions with three GH centers and one supertube (which are smooth in six-dimensional supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives a recipe to build large classes of microstate geometries for zero-angular-momentum black holes without resorting to superstratum technology.
A physical approach to the numerical treatment of boundaries in gas dynamics
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
Two types of boundaries are considered: rigid walls, and artificial (open) boundaries which were arbitrarily drawn somewhere across a wider flow field. A set of partial differential equations (typically, the Euler equations) has an infinite number of solutions, each one defined by a set of initial and boundary conditions. The initial conditions remaining the same, any change in the boundary conditions will produce a new solution. To pose the problem well, a necessary and sufficient number of boundary conditions are prescribed.
Density Functional O(N) Calculations
NASA Astrophysics Data System (ADS)
Ordejón, Pablo
1998-03-01
We have developed a scheme for performing Density Functional Theory calculations with O(N) scaling.(P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev. B, 53), 10441 (1996) The method uses arbitrarily flexible and complete Atomic Orbitals (AO) basis sets. This gives a wide range of choice, from extremely fast calculations with minimal basis sets, to greatly accurate calculations with complete sets. The size-efficiency of AO bases, together with the O(N) scaling of the algorithm, allow the application of the method to systems with many hundreds of atoms, in single processor workstations. I will present the SIESTA code,(D. Sanchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65), 453 (1997) in which the method is implemented, with several LDA, LSD and GGA functionals available, and using norm-conserving, non-local pseudopotentials (in the Kleinman-Bylander form) to eliminate the core electrons. The calculation of static properties such as energies, forces, pressure, stress and magnetic moments, as well as molecular dynamics (MD) simulations capabilities (including variable cell shape, constant temperature and constant pressure MD) are fully implemented. I will also show examples of the accuracy of the method, and applications to large-scale materials and biomolecular systems.
Law, Andrew J.; Rivlis, Gil
2014-01-01
Pioneering studies demonstrated that novel degrees of freedom could be controlled individually by directly encoding the firing rate of single motor cortex neurons, without regard to each neuron's role in controlling movement of the native limb. In contrast, recent brain-computer interface work has emphasized decoding outputs from large ensembles that include substantially more neurons than the number of degrees of freedom being controlled. To bridge the gap between direct encoding by single neurons and decoding output from large ensembles, we studied monkeys controlling one degree of freedom by comodulating up to four arbitrarily selected motor cortex neurons. Performance typically exceeded random quite early in single sessions and then continued to improve to different degrees in different sessions. We therefore examined factors that might affect performance. Performance improved with larger ensembles. In contrast, other factors that might have reflected preexisting synaptic architecture—such as the similarity of preferred directions—had little if any effect on performance. Patterns of comodulation among ensemble neurons became more consistent across trials as performance improved over single sessions. Compared with the ensemble neurons, other simultaneously recorded neurons showed less modulation. Patterns of voluntarily comodulated firing among small numbers of arbitrarily selected primary motor cortex (M1) neurons thus can be found and improved rapidly, with little constraint based on the normal relationships of the individual neurons to native limb movement. This rapid flexibility in relationships among M1 neurons may in part underlie our ability to learn new movements and improve motor skill. PMID:24920030
GreedyMAX-type Algorithms for the Maximum Independent Set Problem
NASA Astrophysics Data System (ADS)
Borowiecki, Piotr; Göring, Frank
A maximum independent set problem for a simple graph G = (V,E) is to find the largest subset of pairwise nonadjacent vertices. The problem is known to be NP-hard and it is also hard to approximate. Within this article we introduce a non-negative integer valued function p defined on the vertex set V(G) and called a potential function of a graph G, while P(G) = max v ∈ V(G) p(v) is called a potential of G. For any graph P(G) ≤ Δ(G), where Δ(G) is the maximum degree of G. Moreover, Δ(G) - P(G) may be arbitrarily large. A potential of a vertex lets us get a closer insight into the properties of its neighborhood which leads to the definition of the family of GreedyMAX-type algorithms having the classical GreedyMAX algorithm as their origin. We establish a lower bound 1/(P + 1) for the performance ratio of GreedyMAX-type algorithms which favorably compares with the bound 1/(Δ + 1) known to hold for GreedyMAX. The cardinality of an independent set generated by any GreedyMAX-type algorithm is at least sum_{vin V(G)} (p(v)+1)^{-1}, which strengthens the bounds of Turán and Caro-Wei stated in terms of vertex degrees.
Chaotic flows and fast magnetic dynamos
NASA Technical Reports Server (NTRS)
Finn, John M.; Ott, Edward
1988-01-01
The kinematic dynamo problem is considered in the R(m) approaching infinity limit. It is shown that the magnetic field tends to concentrate on a zero volume fractal set; moreover, it displays arbitrarily fine-scaled oscillations between parallel and antiparallel directions. Consideration is given to the relationship between the dynamo growth rate and quantitative measures of chaos, such as the Liapunov element and topological entropy.
NASA Astrophysics Data System (ADS)
Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.
2018-06-01
Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.
Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants.
Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam
2016-03-01
A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx.
Data Identifiers, Versioning, and Micro-citation
NASA Astrophysics Data System (ADS)
Parsons, M. A.; Duerr, R. E.
2012-12-01
Data citation, especially using Digital Object Identifiers (DOIs), is an increasingly accepted scientific practice. For example, the AGU Council asserts that data "publications" should "be credited and cited like the products of any other scientific activity," and Thomson Reuters has recently announced a data citation index built from DOIs assigned to data sets. Correspondingly, formal guidelines for how to cite a data set (using DOIs or similar identifiers/locators) have recently emerged, notably those from the international DataCite consortium, the UK Digital Curation Centre, and the US Federation of Earth Science Information Partners. These different data citation guidelines are largely congruent. They agree on the basic practice and elements of data citation, especially for relatively static, whole data collections. There is less agreement on some of the more subtle nuances of data citation. They define different methods for handling different data set versions, especially for the very dynamic, growing data sets that are common in Earth Sciences. They also differ in how people should cite specific, arbitrarily large elements, "passages," or subsets of a larger data collection, i.e., the precise data records actually used in a study. This detailed "micro-citation", and careful reference to exact versions of data are essential to ensure scientific reproducibility. Identifiers such as DOIs are necessary but not sufficient for the precise, detailed, references necessary. Careful practice must be coupled with the use of curated identifiers. In this paper we review the pros and cons of different approaches to versioning and micro-citation. We suggest a workable solution for most existing Earth science data and suggest a more rigorous path forward for the future.
On the improvement for charging large-scale flexible electrostatic actuators
NASA Astrophysics Data System (ADS)
Liao, Hsu-Ching; Chen, Han-Long; Su, Yu-Hao; Chen, Yu-Chi; Ko, Wen-Ching; Liou, Chang-Ho; Wu, Wen-Jong; Lee, Chih-Kung
2011-04-01
Recently, the development of flexible electret based electrostatic actuator has been widely discussed. The devices was shown to have high sound quality, energy saving, flexible structure and can be cut to any shape. However, achieving uniform charge on the electret diaphragm is one of the most critical processes needed to have the speaker ready for large-scale production. In this paper, corona discharge equipment contains multi-corona probes and grid bias was set up to inject spatial charges within the electret diaphragm. The optimal multi-corona probes system was adjusted to achieve uniform charge distribution of electret diaphragm. The processing conditions include the distance between the corona probes, the voltages of corona probe and grid bias, etc. We assembled the flexible electret loudspeakers first and then measured their sound pressure and beam pattern. The uniform charge distribution within the electret diaphragm based flexible electret loudspeaker provided us with the opportunity to shape the loudspeaker arbitrarily and to tailor the sound distribution per specifications request. Some of the potential futuristic applications for this device such as sound poster, smart clothes, and sound wallpaper, etc. were discussed as well.
Andromeda: a peptide search engine integrated into the MaxQuant environment.
Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias
2011-04-01
A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.
Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels
NASA Astrophysics Data System (ADS)
Ahlswede, Rudolf; Bjelaković, Igor; Boche, Holger; Nötzel, Janis
2013-01-01
We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.
Freeman, S.; Pham, M.; Rodriguez, R.J.
1993-01-01
Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation
Sherfey, Jason S.; Soplata, Austin E.; Ardid, Salva; Roberts, Erik A.; Stanley, David A.; Pittman-Polletta, Benjamin R.; Kopell, Nancy J.
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community. PMID:29599715
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
Sherfey, Jason S; Soplata, Austin E; Ardid, Salva; Roberts, Erik A; Stanley, David A; Pittman-Polletta, Benjamin R; Kopell, Nancy J
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.
Quantum communication complexity advantage implies violation of a Bell inequality
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-01-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600
Improved cost-effective fabrication of arbitrarily shaped μIPMC transducers
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Chen, Ri-Hong
2008-01-01
Conventional ionic polymer-metal composite (IPMC) production cuts individual transducers from bulk IPMC sheets. This paper presents a novel photolithographic technique that grows a large array of identical devices on a thin (~µm range) parylene diaphragm supported on a perforated substrate of material that is immune to the subsequent processing liquids. In particular, the new technique relies on a unique wax fill-up and removal concept that can produce arbitrarily shaped Nafion films with micron feature size. The developed process is cheap and results in devices of high uniformity and reliability, with greater design flexibility. Microtensile testing characterizes the fracture profiles of the non-electroded Nafion film and IPMC. Young's modulus is characterized, as well as maximum displacement and current consumption under various loading, driving voltages, waveforms and frequencies. High product quality and low process costs make this process of interest for mass production of micromachined IPMC transducers.
A framework for the direct evaluation of large deviations in non-Markovian processes
NASA Astrophysics Data System (ADS)
Cavallaro, Massimo; Harris, Rosemary J.
2016-11-01
We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means.
High-order fractional partial differential equation transform for molecular surface construction
Hu, Langhua; Chen, Duan; Wei, Guo-Wei
2013-01-01
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation. PMID:24364020
NASA Astrophysics Data System (ADS)
Sun, Yimin; Verschuur, Eric; van Borselen, Roald
2018-03-01
The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.
Arbitrarily small amounts of correlation for arbitrarily varying quantum channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boche, H., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de; Nötzel, J., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de
2013-11-15
As our main result show that in order to achieve the randomness assisted message and entanglement transmission capacities of a finite arbitrarily varying quantum channel it is not necessary that sender and receiver share (asymptotically perfect) common randomness. Rather, it is sufficient that they each have access to an unlimited amount of uses of one part of a correlated bipartite source. This access might be restricted to an arbitrary small (nonzero) fraction per channel use, without changing the main result. We investigate the notion of common randomness. It turns out that this is a very costly resource – generically, itmore » cannot be obtained just by local processing of a bipartite source. This result underlines the importance of our main result. Also, the asymptotic equivalence of the maximal- and average error criterion for classical message transmission over finite arbitrarily varying quantum channels is proven. At last, we prove a simplified symmetrizability condition for finite arbitrarily varying quantum channels.« less
Quantifying Discretization Effects on Brain Trauma Simulations
2016-01-01
arbitrarily formed meshes can propagate error when resolving interactions among the skull , cerebrospinal fluid, and brain. We compared Lagrangian, pure...embedded methods from top to bottom. ......3 Fig. 2 Loading node-set for Eulerian rotational problem. The dark shaded area around the skull is the area to...and top inner edges of the skull . The example shown is a Lagrangian rotational model. The red and green materials represent the brain and skull
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boche, H., E-mail: boche@tum.de; Janßen, G., E-mail: gisbert.janssen@tum.de
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary inmore » an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.« less
Implications of tachyon-like matter for superdense stars.
NASA Technical Reports Server (NTRS)
Bhatia, M. S.; Pande, L. K.
1972-01-01
Derivation of a new equation of state of superdense matter by treating superdense matter as a perfect, degenerate tachyon gas. Model calculations for superdense stars based on this equation of state are presented. By appropriately choosing a certain parameter, dynamical stability can be achieved for arbitrarily large central densities. Also, a somewhat larger than usual value for the maximum mass is obtained.
1994-07-25
these equations, see Antman [1]. fourth order methods are the only ones that give good results Keyfits and Xranser [(3 considered the string with a...produces a weak solution to the Cauchy problem for arbitrarily large initial data by working in L 2 spaces. [1] Stuart S. Antman , "The Equations for
Barasz, Kate; John, Leslie K; Keenan, Elizabeth A; Norton, Michael I
2017-10-01
Pseudo-set framing-arbitrarily grouping items or tasks together as part of an apparent "set"-motivates people to reach perceived completion points. Pseudo-set framing changes gambling choices (Study 1), effort (Studies 2 and 3), giving behavior (Field Data and Study 4), and purchase decisions (Study 5). These effects persist in the absence of any reward, when a cost must be incurred, and after participants are explicitly informed of the arbitrariness of the set. Drawing on Gestalt psychology, we develop a conceptual account that predicts what will-and will not-act as a pseudo-set, and defines the psychological process through which these pseudo-sets affect behavior: over and above typical reference points, pseudo-set framing alters perceptions of (in)completeness, making intermediate progress seem less complete. In turn, these feelings of incompleteness motivate people to persist until the pseudo-set has been fulfilled. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Direct mapping of symbolic DNA sequence into frequency domain in global repeat map algorithm
Glunčić, Matko; Paar, Vladimir
2013-01-01
The main feature of global repeat map (GRM) algorithm (www.hazu.hr/grm/software/win/grm2012.exe) is its ability to identify a broad variety of repeats of unbounded length that can be arbitrarily distant in sequences as large as human chromosomes. The efficacy is due to the use of complete set of a K-string ensemble which enables a new method of direct mapping of symbolic DNA sequence into frequency domain, with straightforward identification of repeats as peaks in GRM diagram. In this way, we obtain very fast, efficient and highly automatized repeat finding tool. The method is robust to substitutions and insertions/deletions, as well as to various complexities of the sequence pattern. We present several case studies of GRM use, in order to illustrate its capabilities: identification of α-satellite tandem repeats and higher order repeats (HORs), identification of Alu dispersed repeats and of Alu tandems, identification of Period 3 pattern in exons, implementation of ‘magnifying glass’ effect, identification of complex HOR pattern, identification of inter-tandem transitional dispersed repeat sequences and identification of long segmental duplications. GRM algorithm is convenient for use, in particular, in cases of large repeat units, of highly mutated and/or complex repeats, and of global repeat maps for large genomic sequences (chromosomes and genomes). PMID:22977183
2010-12-01
arbitrarily shaped polygon QWR inclusion/inhomogeneity with eigenstrain ∗Ijγ in an anisotropic substrate... eigenstrain *ijγ is applied to the QWR which is an arbitrarily shaped polygon .................................. 42 3.2 A square InAs QWR embedded in...the QWR domain V and to 0 outside. Figure 2.1 An arbitrarily shaped polygon QWR inclusion/inhomogeneity with eigenstrain ∗Ijγ in an anisotropic
Metastability of Queuing Networks with Mobile Servers
NASA Astrophysics Data System (ADS)
Baccelli, F.; Rybko, A.; Shlosman, S.; Vladimirov, A.
2018-04-01
We study symmetric queuing networks with moving servers and FIFO service discipline. The mean-field limit dynamics demonstrates unexpected behavior which we attribute to the metastability phenomenon. Large enough finite symmetric networks on regular graphs are proved to be transient for arbitrarily small inflow rates. However, the limiting non-linear Markov process possesses at least two stationary solutions. The proof of transience is based on martingale techniques.
Identification of Sources with Unknown Wavefronts.
1988-03-31
as p p [zi~ -it (1.28)ti Thle scalar (l-) is precisel thle " projection " of V oil tilie iiiit vec(tor of lie pt h axis. So (.1.28) simiply means thle t...Arbitrarily forget about t,’ and 0 by deciding I:’ 0 anud assiuuule I ie two So urce vectoIrs are oithog iial (very large arra s) a rather cruile...be thle mlodel. Reiterating a remark already Iii a de a 1 i t lie colit inlis p~ lanle waves andL large parametric dlescri ptimons, Lii’ phsca meaning
Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe
NASA Astrophysics Data System (ADS)
Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim
2017-11-01
The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.
Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
NASA Astrophysics Data System (ADS)
Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
NASA Astrophysics Data System (ADS)
Wang, Lei; Dai, Cheng; Xue, Liang
2018-04-01
This study presents a Laplace-transform-based boundary element method to model the groundwater flow in a heterogeneous confined finite aquifer with arbitrarily shaped boundaries. The boundary condition can be Dirichlet, Neumann or Robin-type. The derived solution is analytical since it is obtained through the Green's function method within the domain. However, the numerical approximation is required on the boundaries, which essentially renders it a semi-analytical solution. The proposed method can provide a general framework to derive solutions for zoned heterogeneous confined aquifers with arbitrarily shaped boundary. The requirement of the boundary element method presented here is that the Green function must exist for a specific PDE equation. In this study, the linear equations for the two-zone and three-zone confined aquifers with arbitrarily shaped boundary is established in Laplace space, and the solution can be obtained by using any linear solver. Stehfest inversion algorithm can be used to transform it back into time domain to obtain the transient solution. The presented solution is validated in the two-zone cases by reducing the arbitrarily shaped boundaries to circular ones and comparing it with the solution in Lin et al. (2016, https://doi.org/10.1016/j.jhydrol.2016.07.028). The effect of boundary shape and well location on dimensionless drawdown in two-zone aquifers is investigated. Finally the drawdown distribution in three-zone aquifers with arbitrarily shaped boundary for constant-rate tests (CRT) and flow rate distribution for constant-head tests (CHT) are analyzed.
A simple method to derive bounds on the size and to train multilayer neural networks
NASA Technical Reports Server (NTRS)
Sartori, Michael A.; Antsaklis, Panos J.
1991-01-01
A new derivation is presented for the bounds on the size of a multilayer neural network to exactly implement an arbitrary training set; namely, the training set can be implemented with zero error with two layers and with the number of the hidden-layer neurons equal to no.1 is greater than p - 1. The derivation does not require the separation of the input space by particular hyperplanes, as in previous derivations. The weights for the hidden layer can be chosen almost arbitrarily, and the weights for the output layer can be found by solving no.1 + 1 linear equations. The method presented exactly solves (M), the multilayer neural network training problem, for any arbitrary training set.
Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio
2011-02-04
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.
2016-03-04
summary of the linear algebra involved. As we have seen, the RSC process begins with the interferometric phase measurement β, which due to wrapping will...mentary Divisors) in Section 2 and the following defi- nition of the matrix determinant. This definition is given in many linear algebra texts (see...principle solve for a particular solution of this system by arbitrarily setting two object phases (whose spatial frequencies are not co- linear ) and one
NASA Astrophysics Data System (ADS)
Halbach, Heiner; Chatterjee, Niranjan D.
1984-11-01
The technique of linear parametric programming has been applied to derive sets of internally consistent thermodynamic data for 21 condensed phases of the quaternary system CaO-Al2O3-SiO2-H2O (CASH) (Table 4). This was achieved by simultaneously processing: a) calorimetric data for 16 of these phases (Table 1), and b) experimental phase equilibria reversal brackets for 27 reactions (Table 3) involving these phases. Calculation of equilibrium P-T curves of several arbitrarily picked reactions employing the preferred set of internally consistent thermodynamic data from Table 4 shows that the input brackets are invariably satisfied by the calculations (Fig. 2a). By contrast, the same equilibria calculated on the basis of a set of thermodynamic data derived by applying statistical methods to a large body of comparable input data (Haas et al. 1981; Hemingway et al. 1982) do not necessarily agree with the experimental reversal brackets. Prediction of some experimentally investigated phase relations not included into the linear programming input database also appears to be remarkably successful. Indications are, therefore, that the thermodynamic data listed in Table 4 may be used with confidence to predict geologic phase relations in the CASH system with considerable accuracy. For such calculated phase diagrams and their petrological implications, the reader's attention is drawn to the paper by Chatterjee et al. (1984).
NASA Technical Reports Server (NTRS)
Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.
2016-01-01
In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.
SOFIA: a flexible source finder for 3D spectral line data
NASA Astrophysics Data System (ADS)
Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel S.; Staveley-Smith, Lister; Courtois, Hélène
2015-04-01
We introduce SOFIA, a flexible software application for the detection and parametrization of sources in 3D spectral line data sets. SOFIA combines for the first time in a single piece of software a set of new source-finding and parametrization algorithms developed on the way to future H I surveys with ASKAP (WALLABY, DINGO) and APERTIF. It is designed to enable the general use of these new algorithms by the community on a broad range of data sets. The key advantages of SOFIA are the ability to: search for line emission on multiple scales to detect 3D sources in a complete and reliable way, taking into account noise level variations and the presence of artefacts in a data cube; estimate the reliability of individual detections; look for signal in arbitrarily large data cubes using a catalogue of 3D coordinates as a prior; provide a wide range of source parameters and output products which facilitate further analysis by the user. We highlight the modularity of SOFIA, which makes it a flexible package allowing users to select and apply only the algorithms useful for their data and science questions. This modularity makes it also possible to easily expand SOFIA in order to include additional methods as they become available. The full SOFIA distribution, including a dedicated graphical user interface, is publicly available for download.
NASA Astrophysics Data System (ADS)
Christensen, C.; Summa, B.; Scorzelli, G.; Lee, J. W.; Venkat, A.; Bremer, P. T.; Pascucci, V.
2017-12-01
Massive datasets are becoming more common due to increasingly detailed simulations and higher resolution acquisition devices. Yet accessing and processing these huge data collections for scientific analysis is still a significant challenge. Solutions that rely on extensive data transfers are increasingly untenable and often impossible due to lack of sufficient storage at the client side as well as insufficient bandwidth to conduct such large transfers, that in some cases could entail petabytes of data. Large-scale remote computing resources can be useful, but utilizing such systems typically entails some form of offline batch processing with long delays, data replications, and substantial cost for any mistakes. Both types of workflows can severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. In order to facilitate interactivity in both analysis and visualization of these massive data ensembles, we introduce a dynamic runtime system suitable for progressive computation and interactive visualization of arbitrarily large, disparately located spatiotemporal datasets. Our system includes an embedded domain-specific language (EDSL) that allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible processing. Computations involving large amounts of data can be performed remotely in an incremental fashion that dramatically reduces data movement, while the client receives updates progressively thereby remaining robust to fluctuating network latency or limited bandwidth. This system facilitates interactive, incremental analysis and visualization of massive remote datasets up to petabytes in size. Our system is now available for general use in the community through both docker and anaconda.
Electromagnetic imaging with an arbitrarily oriented magnetic dipole
NASA Astrophysics Data System (ADS)
Guillemoteau, Julien; Sailhac, Pascal; Behaegel, Mickael
2013-04-01
We present the theoretical background for the geophysical EM analysis with arbitrarily oriented magnetic dipoles. The first application of such a development is that we would now be able to correct the data when they are not acquired in accordance to the actual interpretation methods. In order to illustrate this case, we study the case of airborne TEM measurements over an inclined ground. This context can be encountered if the measurements are made in mountain area. We show in particular that transient central loop helicopter borne magnetic data should be corrected by a factor proportional to the angle of the slope under the system. In addition, we studied the sensitivity function of a grounded multi-angle frequency domain system. Our development leads to a general Jacobian kernel that could be used for all the induction number and all the position/orientation of both transmitter and receiver in the air layer. Indeed, if one could design a system controlling the angles of Tx and Rx, the present development would allow to interpret such a data set and enhance the ground analysis, especially in order to constrain the 3D anisotropic inverse problem.
Biedermann, Benjamin R.; Wieser, Wolfgang; Eigenwillig, Christoph M.; Palte, Gesa; Adler, Desmond C.; Srinivasan, Vivek J.; Fujimoto, James G.; Huber, Robert
2009-01-01
We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality. PMID:18978919
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Zuo, Chao; Idir, Mourad
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
Huang, Lei; Zuo, Chao; Idir, Mourad; ...
2015-04-21
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
Self-similar perturbations of a Friedmann universe
NASA Technical Reports Server (NTRS)
Carr, Bernard J.; Yahil, Amos
1990-01-01
The present analysis of spherically symmetric self-similar solutions to the Einstein equations gives attention to those solutions that are asymptotically k = 0 Friedmann at large z values, and possess finite but perturbed density at the origin. Such solutions represent nonlinear density fluctuations which grow at the same rate as the universe's particle horizon. The overdense solutions span only a narrow range of parameters, and resemble static isothermal gas spheres just within the sonic point; the underdense solutions may have arbitrarily low density at the origin while exhibiting a unique relationship between amplitude and scale. Their relevance to large-scale void formation is considered.
Broadband metasurfaces enabling arbitrarily large delay-bandwidth products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginis, Vincent; Tassin, Philippe; Koschny, Thomas
2016-01-19
Metasurfaces allow for advanced manipulation of optical signals by imposing phase discontinuities across flat interfaces. Unfortunately, these phase shifts remain restricted to values between 0 and 2π, limiting the delay-bandwidth product of such sheets. Here, we develop an analytical tool to design metasurfaces that mimic three-dimensional materials of arbitrary thickness. In this way, we demonstrate how large phase discontinuities can be realized by combining several subwavelength Lorentzian resonances in the unit cell of the surface. Finally, our methods open up the temporal response of metasurfaces and may lead to the construction of metasurfaces with a plethora of new optical functions.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966
NASA Astrophysics Data System (ADS)
Steinberg, P. D.; Bednar, J. A.; Rudiger, P.; Stevens, J. L. R.; Ball, C. E.; Christensen, S. D.; Pothina, D.
2017-12-01
The rich variety of software libraries available in the Python scientific ecosystem provides a flexible and powerful alternative to traditional integrated GIS (geographic information system) programs. Each such library focuses on doing a certain set of general-purpose tasks well, and Python makes it relatively simple to glue the libraries together to solve a wide range of complex, open-ended problems in Earth science. However, choosing an appropriate set of libraries can be challenging, and it is difficult to predict how much "glue code" will be needed for any particular combination of libraries and tasks. Here we present a set of libraries that have been designed to work well together to build interactive analyses and visualizations of large geographic datasets, in standard web browsers. The resulting workflows run on ordinary laptops even for billions of data points, and easily scale up to larger compute clusters when available. The declarative top-level interface used in these libraries means that even complex, fully interactive applications can be built and deployed as web services using only a few dozen lines of code, making it simple to create and share custom interactive applications even for datasets too large for most traditional GIS systems. The libraries we will cover include GeoViews (HoloViews extended for geographic applications) for declaring visualizable/plottable objects, Bokeh for building visual web applications from GeoViews objects, Datashader for rendering arbitrarily large datasets faithfully as fixed-size images, Param for specifying user-modifiable parameters that model your domain, Xarray for computing with n-dimensional array data, Dask for flexibly dispatching computational tasks across processors, and Numba for compiling array-based Python code down to fast machine code. We will show how to use the resulting workflow with static datasets and with simulators such as GSSHA or AdH, allowing you to deploy flexible, high-performance web-based dashboards for your GIS data or simulations without needing major investments in code development or maintenance.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.
ERIC Educational Resources Information Center
Supreme Court of the U. S., Washington, DC.
School board rules for the Cleveland, Ohio, and the Chesterfield County, Virginia, districts required pregnant teachers to take unpaid maternity leave five months and four months respectively before expected childbirth. A date for eligibility for return to work was also arbitrarily set. This pamphlet contains the entire official text of the…
An ODE-Based Wall Model for Turbulent Flow Simulations
NASA Technical Reports Server (NTRS)
Berger, Marsha J.; Aftosmis, Michael J.
2017-01-01
Fully automated meshing for Reynolds-Averaged Navier-Stokes Simulations, Mesh generation for complex geometry continues to be the biggest bottleneck in the RANS simulation process; Fully automated Cartesian methods routinely used for inviscid simulations about arbitrarily complex geometry; These methods lack of an obvious & robust way to achieve near wall anisotropy; Goal: Extend these methods for RANS simulation without sacrificing automation, at an affordable cost; Note: Nothing here is limited to Cartesian methods, and much becomes simpler in a body-fitted setting.
Molecular Signatures and Diagnostic Biomarkers of Cumulative Blast-Graded Mild TBI
2014-12-01
100 ± 9% 191 ± 20%* Values are mean ± SE of 4 rats/ group expressed as percentage of control . The level of the averaged control for each...protein is arbitrarily set to 100 with SE adjusted proportionally with remaining groups normalized to the level in control . *Significantly increased...not significant vs sham; **- pɘ.05, and ***-pɘ.01 Rat number in each group ranged 4-7. Mean, pg/ml for GFAP and UCHL1 and AU in % control
Mode selection in swirling jet experiments: a linear stability analysis
NASA Astrophysics Data System (ADS)
Gallaire, François; Chomaz, Jean-Marc
2003-11-01
The primary goal of the study is to identify the selection mechanism responsible for the appearance of a double-helix structure in the pre-breakdown stage of so-called screened swirling jets for which the circulation vanishes away from the jet. The family of basic flows under consideration combines the azimuthal velocity profiles of Carton & McWilliams (1989) and the axial velocity profiles of Monkewitz (1988). This model satisfactorily represents the nozzle exit velocity distributions measured in the swirling jet experiment of Billant et al. (1998). Temporal and absolute/convective instability properties are directly retrieved from numerical simulations of the linear impulse response for different swirl parameter settings. A large range of negative helical modes, winding with the basic flow, are destabilized as swirl is increased, and their characteristics for large azimuthal wavenumbers are shown to agree with the asymptotic analysis of Leibovich & Stewartson (1983). However, the temporal study fails to yield a clear selection principle. The absolute/convective instability regions are mapped out in the plane of the external axial flow and swirl parameters. The absolutely unstable domain is enhanced by rotation and it remains open for arbitrarily large swirl. The swirling jet with zero external axial flow is found to first become absolutely unstable to a mode of azimuthal wavenumber m {=} {-}2, winding with the jet. It is suggested that this selection mechanism accounts for the experimental observation of a double-helix structure.
Enabling High Performance Instruments for Astronomy and Space Exploration and ALD
NASA Technical Reports Server (NTRS)
Greer, Frank; Lee, M. C.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Dickie, M.; Monacos, S.; Nikzad, S.; Day, P.; Leduc, R.;
2012-01-01
Benefits of ALD for NASA instruments and applications: a) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area. b). High quality films (density, roughness, conductivity, etc.) . Angstrom level control of stoichiometry, interfaces, and surface properties: 1) Multilayer nanolaminates/nanocomposites. 2) Low temperature surface engineering. Flight applications enabled by ALD: a) Anti-reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors. b) Superconducting Films for Submillimeter Astronomy.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Precise and efficient evaluation of gravimetric quantities at arbitrarily scattered points in space
NASA Astrophysics Data System (ADS)
Ivanov, Kamen G.; Pavlis, Nikolaos K.; Petrushev, Pencho
2017-12-01
Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravimetric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally demanding process. We present here the development of an algorithm and its associated software for the efficient and precise evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples the disturbing potential T, height anomaly ζ , gravity anomaly Δ g , gravity disturbance δ g , north-south deflection of the vertical ξ , east-west deflection of the vertical η , and the second radial derivative T_{rr} of the disturbing potential. After a pre-computational step that takes between 1 and 2 h per quantity, the current version of the software is capable of computing on a standard PC each of these quantities in the range from the surface of the Earth up to 544 km above that surface at speeds between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the relative error does not exceed 10^{-6} and the memory (RAM) use is 9.3 GB.
NASA Astrophysics Data System (ADS)
Turrini, Paolo; Grossi, Davide; Broersen, Jan; Meyer, John-Jules Ch.
The purpose of this contribution is to set up a language to evaluate the results of concerted action among interdependent agents against predetermined properties that we can recognise as desirable from a deontic point of view. Unlike the standard view of logics to reason about coalitionally rational action, the capacity of a set of agents to take a rational decision will be restricted to what we will call agreements, that can be seen as solution concepts to a dependence structure present in a certain game. The language will identify in concise terms those agreements that act accordingly or disaccordingly with the desirable properties arbitrarily set up in the beginning, and will reveal, by logical reasoning, a variety of structural properties of this type of collective action.
Experimental verification of a new Bell-type inequality
NASA Astrophysics Data System (ADS)
Zhao, Jia-Qiang; Cao, Lian-Zhen; Yang, Yang; Li, Ying-De; Lu, Huai-Xin
2018-05-01
Arpan Das et al. proposed a set of new Bell inequalities (Das et al., 2017 [16]) for a three-qubit system and claimed that each inequality within this set is violated by all generalized Greenberger-Horne-Zeilinger (GGHZ) states. We investigate experimentally the new inequalities in the three-photon GGHZ class states. Since the inequalities are symmetric under the identical particles system, we chose one Bell-type inequality from the set arbitrarily. The experimental data well verified the theoretical prediction. Moreover, the experimental results show that the amount of violation of the new Bell inequality against locality realism increases monotonically following the increase of the tangle of the GGHZ state. The most profound physical essence revealed by the results is that the nonlocality of GGHZ state correlate with three tangles directly.
NASA Astrophysics Data System (ADS)
Comastri, S. A.; Perez, Liliana I.; Pérez, Gervasio D.; Bastida, K.; Martin, G.
2008-04-01
The wavefront aberration of any image forming system and, in particular, of a human eye, is often expanded in Zernike modes each mode being weighed by a coefficient that depends both on the image forming components of the system and on the contour, size and centering of the pupil. In the present article, expanding up to 7th order the wavefront aberration, an analytical method to compute a new set of Zernike coefficients corresponding to a pupil in terms of an original set evaluated via ray tracing for a dilated and transversally arbitrarily displaced pupil is developed. A transformation matrix of dimension 36×36 is attained multiplying the scaling-horizontal traslation matrix previously derived by appropriate rotation matrices. Multiplying the original coefficients by this transformation matrix, analytical formulas for each new coefficient are attained and supplied and, for the information concerning the wavefront aberration to be available, these formulas must be employed in cases in which the new pupil is contained in the original one. The use of these analytical formulas is exemplified applying them to study the effect of pupil contraction and/or decentering in 3 situations: calculation of corneal aberrations of a keratoconic subject for the natural photopic pupil size and various decenterings; coma compensation by means of pupil shift in a fictitious system solely having primary aberrations and evaluation of the amount of astigmatism and coma of a hypothetical system originally having spherical aberration alone.
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2017-12-01
We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.
Geometric Modeling of Inclusions as Ellipsoids
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2008-01-01
Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate this process, a geometric simulation of the inclusions was devised. To make the simulation problem tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. These parameters are necessary to determine an inclusion s potential to develop a propagating fatigue crack. Without these mathematical models, computationally expensive search algorithms would be required to compute these parameters.
Scattering from arbitrarily shaped microstrip patch antennas
NASA Technical Reports Server (NTRS)
Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.
1992-01-01
The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.
Calibration of an arbitrarily arranged projection moiré system for 3D shape measurement
NASA Astrophysics Data System (ADS)
Tang, Ying; Yao, Jun; Zhou, Yihao; Sun, Chen; Yang, Peng; Miao, Hong; Chen, Jubing
2018-05-01
An arbitrarily arranged projection moiré system is presented for three-dimensional shape measurement. We develop a model for projection moiré system and derive a universal formula expressing the relation between height and phase variation before and after we put the object on the reference plane. With so many system parameters involved, a system calibration technique is needed. In this work, we provide a robust and accurate calibration method for an arbitrarily arranged projection moiré system. The system no longer puts restrictions on the configuration of the optical setup. Real experiments have been conducted to verify the validity of this method.
A self-consistency check for unitary propagation of Hawking quanta
NASA Astrophysics Data System (ADS)
Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng
2017-11-01
The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.
Experiences with Probabilistic Analysis Applied to Controlled Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Giesy, Daniel P.
2004-01-01
This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.
Combinatorial Production and Processing of Oxide Nanopowders for Transparent, Ceramic Lasers
2007-06-01
lasers have only recently been 10-16shown to offer power outputs superior to single crystal lasers. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...7 Although known for 30 years, 8 9 transparent ceramic lasers have only recently been shown to offer power outputs superior to single crystal lasers...offer: (1) higher energy production than single crystal lasers; (2) access to very large sizes and arbitrarily shaped gain media; (3) access to new
Nonlinear Finite Element Analysis of Sandwich Composites.
1981-03-01
to the element midsurface z - z(x,y) at all points. An additional coordinate r is used to describe the distance away from the midsurface at any point...It is assumed that on the element level, the shell is shallow, so that z2 2 (56) ,y everywhere. The unit vector normal to the shell midsurface at a...relations above do not involve the orientation of the displaced midsurface normal, and, therefore, apply to arbitrarily large displacements and rotations
The Fermi paradox: An approach based on percolation theory
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1993-01-01
If even a very small fraction of the hundred billion stars in the galaxy are home to technological civilizations which colonize over interstellar distances, the entire galaxy could be completely colonized in a few million years. The absence of such extraterrestrial civilizations visiting Earth is the Fermi paradox. A model for interstellar colonization is proposed using the assumption that there is a maximum distance over which direct interstellar colonization is feasible. Due to the time lag involved in interstellar communications, it is assumed that an interstellar colony will rapidly develop a culture independent of the civilization that originally settled it. Any given colony will have a probability P of developing a colonizing civilization, and a probability (1-P) that it will develop a non-colonizing civilization. These assumptions lead to the colonization of the galaxy occuring as a percolation problem. In a percolation problem, there will be a critical value of percolation probability, P(sub c). For P less than P(sub c), colonization will always terminate after a finite number of colonies. Growth will occur in 'clusters', with the outside of each cluster consisting of non-colonizing civilizations. For P greater than P(sub c), small uncolonized voids will exist, bounded by non-colonizing civilizations. For P approximately = to P(sub c), arbitrarily large filled regions exist, and also arbitrarily large empty regions.
A THz Tomography System for Arbitrarily Shaped Samples
NASA Astrophysics Data System (ADS)
Stübling, E.; Bauckhage, Y.; Jelli, E.; Fischer, B.; Globisch, B.; Schell, M.; Heinrich, A.; Balzer, J. C.; Koch, M.
2017-10-01
We combine a THz time-domain spectroscopy system with a robotic arm. With this scheme, the THz emitter and receiver can be positioned perpendicular and at defined distance to the sample surface. Our system allows the acquisition of reflection THz tomographic images of samples with an arbitrarily shaped surface.
Haner, M; Warren, W S
1987-09-01
We have produced complex software adjustable laser pulse shapes with ~10-ps resolution, and pulse energies up to 100 microJ for spectroscopic applications. The key devices are a high damage threshold electrooptic directional coupler and a GaAs circuit for synthesizing arbitrarily shaped microwave pulses.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...
2016-10-25
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less
Computational Aspects of N-Mixture Models
Dennis, Emily B; Morgan, Byron JT; Ridout, Martin S
2015-01-01
The N-mixture model is widely used to estimate the abundance of a population in the presence of unknown detection probability from only a set of counts subject to spatial and temporal replication (Royle, 2004, Biometrics 60, 105–115). We explain and exploit the equivalence of N-mixture and multivariate Poisson and negative-binomial models, which provides powerful new approaches for fitting these models. We show that particularly when detection probability and the number of sampling occasions are small, infinite estimates of abundance can arise. We propose a sample covariance as a diagnostic for this event, and demonstrate its good performance in the Poisson case. Infinite estimates may be missed in practice, due to numerical optimization procedures terminating at arbitrarily large values. It is shown that the use of a bound, K, for an infinite summation in the N-mixture likelihood can result in underestimation of abundance, so that default values of K in computer packages should be avoided. Instead we propose a simple automatic way to choose K. The methods are illustrated by analysis of data on Hermann's tortoise Testudo hermanni. PMID:25314629
Stability and stabilisation of a class of networked dynamic systems
NASA Astrophysics Data System (ADS)
Liu, H. B.; Wang, D. Q.
2018-04-01
We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.
Graphene nanoFlakes with large spin.
Wang, Wei L; Meng, Sheng; Kaxiras, Efthimios
2008-01-01
We investigate, using benzenoid graph theory and first-principles calculations, the magnetic properties of arbitrarily shaped finite graphene fragments to which we refer as graphene nanoflakes (GNFs). We demonstrate that the spin of a GNF depends on its shape due to topological frustration of the pi-bonds. For example, a zigzag-edged triangular GNF has a nonzero net spin, resembling an artificial ferrimagnetic atom, with the spin value scaling with its linear size. In general, the principle of topological frustration can be used to introduce large net spin and interesting spin distributions in graphene. These results suggest an avenue to nanoscale spintronics through the sculpting of graphene fragments.
Blind quantum computing with weak coherent pulses.
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-18
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
Blind Quantum Computing with Weak Coherent Pulses
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Solving Nonlinear Euler Equations with Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
NASA Astrophysics Data System (ADS)
Pfister, Olivier
2017-05-01
When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.
NASA Astrophysics Data System (ADS)
Lü, Boqiang; Shi, Xiaoding; Zhong, Xin
2018-06-01
We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.
Suppressing Transients In Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1993-01-01
Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.
Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD
NASA Technical Reports Server (NTRS)
Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.
2011-01-01
Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors
Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition.
Feigel'man, M V; Ioffe, L B
2018-01-19
Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.
Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition
NASA Astrophysics Data System (ADS)
Feigel'man, M. V.; Ioffe, L. B.
2018-01-01
Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.
NASA Astrophysics Data System (ADS)
Vilar, Jose M. G.; Saiz, Leonor
2006-06-01
DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.
Quantum angular momentum diffusion of rigid bodies
NASA Astrophysics Data System (ADS)
Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus
2017-12-01
We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.
Reliable computation from contextual correlations
NASA Astrophysics Data System (ADS)
Oestereich, André L.; Galvão, Ernesto F.
2017-12-01
An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.
Position space analysis of the AdS (in)stability problem
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Fotios V.; Freivogel, Ben; Lippert, Matthew; Yang, I.-Sheng
2015-08-01
We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the space of initial conditions does not collapse on this time scale. We perform an analysis in position space to study this puzzle, and our formalism allows us to directly study the vanishing-amplitude limit. We show that gravitational self-interaction leads to tidal deformations which are equally likely to focus or defocus energy, and we sketch the phase diagram accordingly. We also clarify the connection between gravitational evolution in global AdS and holographic thermalization.
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.
2018-03-01
Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.
Kersulyte, D; Struelens, M J; Deplano, A; Berg, D E
1995-01-01
Arbitrarily primed PCR fingerprinting was carried out on 43 Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients. Seventeen major groups of strains that coincided with groups also distinguished by macrorestriction (pulsed-field gel electrophoresis) typing were identified. Our results illustrated that a CF patient can carry more than one strain and can carry a given strain for long periods of time and that strains can evolve by changes in drug resistance or other phenotypic traits during long-term colonization. The arbitrarily primed PCR method is recommended for first-pass screening of P. aeruginosa isolates from CF patients, especially when many strains are to be typed, because of its sensitivity and efficiency. PMID:7559985
NASA Astrophysics Data System (ADS)
Sellentin, Elena; Heavens, Alan F.
2018-01-01
We investigate whether a Gaussian likelihood, as routinely assumed in the analysis of cosmological data, is supported by simulated survey data. We define test statistics, based on a novel method that first destroys Gaussian correlations in a data set, and then measures the non-Gaussian correlations that remain. This procedure flags pairs of data points that depend on each other in a non-Gaussian fashion, and thereby identifies where the assumption of a Gaussian likelihood breaks down. Using this diagnosis, we find that non-Gaussian correlations in the CFHTLenS cosmic shear correlation functions are significant. With a simple exclusion of the most contaminated data points, the posterior for s8 is shifted without broadening, but we find no significant reduction in the tension with s8 derived from Planck cosmic microwave background data. However, we also show that the one-point distributions of the correlation statistics are noticeably skewed, such that sound weak-lensing data sets are intrinsically likely to lead to a systematically low lensing amplitude being inferred. The detected non-Gaussianities get larger with increasing angular scale such that for future wide-angle surveys such as Euclid or LSST, with their very small statistical errors, the large-scale modes are expected to be increasingly affected. The shifts in posteriors may then not be negligible and we recommend that these diagnostic tests be run as part of future analyses.
An efficient sampling technique for sums of bandpass functions
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1982-01-01
A well known sampling theorem states that a bandlimited function can be completely determined by its values at a uniformly placed set of points whose density is at least twice the highest frequency component of the function (Nyquist rate). A less familiar but important sampling theorem states that a bandlimited narrowband function can be completely determined by its values at a properly chosen, nonuniformly placed set of points whose density is at least twice the passband width. This allows for efficient digital demodulation of narrowband signals, which are common in sonar, radar and radio interferometry, without the side effect of signal group delay from an analog demodulator. This theorem was extended by developing a technique which allows a finite sum of bandlimited narrowband functions to be determined by its values at a properly chosen, nonuniformly placed set of points whose density can be made arbitrarily close to the sum of the passband widths.
Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice
NASA Astrophysics Data System (ADS)
Rueger, Z.; Lakes, R. S.
2018-02-01
Large size effects are experimentally measured in lattices of triangular unit cells: about a factor of 36 in torsion rigidity and 29 in bending rigidity. This nonclassical phenomenon is consistent with Cosserat elasticity, which allows for the rotation of points and distributed moments in addition to the translation of points and force stress of classical elasticity. The Cosserat characteristic length for torsion is ℓt=9.4 mm ; for bending, it is ℓb=8.8 mm ; these values are comparable to the cell size. Nonclassical effects are much stronger than in stretch-dominated lattices with uniform straight ribs. The lattice structure provides a path to the attainment of arbitrarily large effects.
Remarks on the maximum luminosity
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon
2018-04-01
The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.
Reduction of the radar cross section of arbitrarily shaped cavity structures
NASA Technical Reports Server (NTRS)
Chou, R.; Ling, H.; Lee, S. W.
1987-01-01
The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring.
Improving the performance of auto-parametric pendulum absorbers by means of a flexural beam
NASA Astrophysics Data System (ADS)
Mahmoudkhani, S.
2018-07-01
Auto-parametric pendulum absorbers perform well only in a very limited range of excitation amplitudes, above which their efficiency would be substantially degraded as a consequence of spillover effects or appearance of quasi-periodic and chaotic responses. For improving the performance against this drawback, the rigid pendulum is replaced in the present study with a low-stiffness viscoelastic beam. An additional one-to-three internal resonance between the almost non-flexural rotational and the first flexural modes of the beam is also introduced. With the aid of this internal resonance, the energy that has been transferred to the absorber due to the one-to-two internal resonance would be avoided from being transferred back to the primary system by faster dissipation of vibrations at a higher-frequency mode thereby leading to lower spillover effects. For modeling purpose, the tracking frame with the rigid-body constraint and also the third-order nonlinear beam theory are employed to account for arbitrarily large rotation angles coupled to moderately large elastic deformations. The assumed-mode method is also used to obtain discretized equations of motion. The numerical continuation of periodic solution is performed and the bifurcations with detrimental effects on the performance are determined. Various parametric studies are also conducted which show that by proper setting of the system parameters, higher efficiencies at much wider range of excitation amplitudes could be achieved.
Luo, Lingyun; Tong, Ling; Zhou, Xiaoxi; Mejino, Jose L V; Ouyang, Chunping; Liu, Yongbin
2017-11-01
Organizing the descendants of a concept under a particular semantic relationship may be rather arbitrarily carried out during the manual creation processes of large biomedical terminologies, resulting in imbalances in relationship granularity. This work aims to propose scalable models towards systematically evaluating the granularity balance of semantic relationships. We first utilize "parallel concepts set (PCS)" and two features (the length and the strength) of the paths between PCSs to design the general evaluation models, based on which we propose eight concrete evaluation models generated by two specific types of PCSs: single concept set and symmetric concepts set. We then apply those concrete models to the IS-A relationship in FMA and SNOMED CT's Body Structure subset, as well as to the Part-Of relationship in FMA. Moreover, without loss of generality, we conduct two additional rounds of applications on the Part-Of relationship after removing length redundancies and strength redundancies sequentially. At last, we perform automatic evaluation on the imbalances detected after the final round for identifying missing concepts, misaligned relations and inconsistencies. For the IS-A relationship, 34 missing concepts, 80 misalignments and 18 redundancies in FMA as well as 28 missing concepts, 114 misalignments and 1 redundancy in SNOMED CT were uncovered. In addition, 6,801 instances of imbalances for the Part-Of relationship in FMA were also identified, including 3,246 redundancies. After removing those redundancies from FMA, the total number of Part-Of imbalances was dramatically reduced to 327, including 51 missing concepts, 294 misaligned relations, and 36 inconsistencies. Manual curation performed by the FMA project leader confirmed the effectiveness of our method in identifying curation errors. In conclusion, the granularity balance of hierarchical semantic relationship is a valuable property to check for ontology quality assurance, and the scalable evaluation models proposed in this study are effective in fulfilling this task, especially in auditing relationships with sub-hierarchies, such as the seldom evaluated Part-Of relationship. Copyright © 2017 Elsevier Inc. All rights reserved.
On the dynamics of chain systems. [applications in manipulator and human body models
NASA Technical Reports Server (NTRS)
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.
Tsutsumi, Takanobu; Asakawa, Takeshi; Kanegami, Akemi; Okada, Takao; Tahira, Tomoko; Hayashi, Kenshi
2014-01-01
DNA has been recognized as an ideal material for bottom-up construction of nanometer scale structures by self-assembly. The generation of sequences optimized for unique self-assembly (GENESUS) program reported here is a straightforward method for generating sets of strand sequences optimized for self-assembly of arbitrarily designed DNA nanostructures by a generate-candidates-and-choose-the-best strategy. A scalable procedure to prepare single-stranded DNA having arbitrary sequences is also presented. Strands for the assembly of various structures were designed and successfully constructed, validating both the program and the procedure.
Universally stable black holes
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
We argue that, when certain higher-curvature corrections are added to the four-dimensional Einstein-Hilbert action, black holes become stable below certain mass. We show this to be the case for an infinite family of ghost-free theories involving terms of arbitrarily high order in curvature. The thermodynamic behavior of the new black holes is universal for arbitrary values of the couplings, with the only exception of the Schwarzschild solution itself, which is recovered when all the couplings are set to zero. For this class of theories, the issue of non-unitary evolution is inexistent, as black holes never evaporate completely.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
A Diagrammatic Language for Biochemical Networks
NASA Astrophysics Data System (ADS)
Maimon, Ron
2002-03-01
I present a diagrammatic language for representing the structure of biochemical networks. The language is designed to represent modular structure in a computational fasion, with composition of reactions replacing functional composition. This notation is used to represent arbitrarily large networks efficiently. The notation finds its most natural use in representing biological interaction networks, but it is a general computing language appropriate to any naturally occuring computation. Unlike lambda-calculus, or text-derived languages, it does not impose a tree-structure on the diagrams, and so is more effective at representing biological fucntion than competing notations.
Indirect estimation of signal-dependent noise with nonadaptive heterogeneous samples.
Azzari, Lucio; Foi, Alessandro
2014-08-01
We consider the estimation of signal-dependent noise from a single image. Unlike conventional algorithms that build a scatterplot of local mean-variance pairs from either small or adaptively selected homogeneous data samples, our proposed approach relies on arbitrarily large patches of heterogeneous data extracted at random from the image. We demonstrate the feasibility of our approach through an extensive theoretical analysis based on mixture of Gaussian distributions. A prototype algorithm is also developed in order to validate the approach on simulated data as well as on real camera raw images.
jmzML, an open-source Java API for mzML, the PSI standard for MS data.
Côté, Richard G; Reisinger, Florian; Martens, Lennart
2010-04-01
We here present jmzML, a Java API for the Proteomics Standards Initiative mzML data standard. Based on the Java Architecture for XML Binding and XPath-based XML indexer random-access XML parser, jmzML can handle arbitrarily large files in minimal memory, allowing easy and efficient processing of mzML files using the Java programming language. jmzML also automatically resolves internal XML references on-the-fly. The library (which includes a viewer) can be downloaded from http://jmzml.googlecode.com.
Chiral surface waves for enhanced circular dichroism
NASA Astrophysics Data System (ADS)
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2017-06-01
We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.
A Cerebellar-model Associative Memory as a Generalized Random-access Memory
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1989-01-01
A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
We study synchronization of coupled linear systems over networks with weak connectivity and time-varying delays. We focus on the case that the internal dynamics are time-varying but non-expansive. Both uniformly connected and infinitely connected communication topologies are considered. A new concept of P-synchronization is introduced and we first show that global asymptotic P-synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of the infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns out that the existence of a uniform time interval for the communicationmore » topology is not necessary and P-synchronization can be achieved when the time varying delays are arbitrarily bounded. Simulations are given to validate the theoretical results.« less
Ray Scattering by an Arbitrarily Oriented Spheroid: 2. Transmission and Cross-polarization Effects
NASA Technical Reports Server (NTRS)
Lock, James A.
1996-01-01
Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are: (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays.
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
A spherical harmonic analysis program is being tested which takes magnetic data in universal time from a set of arbitrarily space observatories and calculates a value for the instantaneous magnetic field at any point on the globe. The calculation is done as a least mean-squares value fit to a set of spherical harmonics up to any desired order. The program accepts as a set of input the orbit position of a satellite coordinates it with ground-based magnetic data for a given time. The output is a predicted time series for the magnetic field on the Earth's surface at the (r, theta) position directly under the hypothetically orbiting satellite for the duration of the time period of the input data set. By tracking the surface magnetic field beneath the satellite, narrow-band averages crosspowers between the spatially coordinated satellite and the ground-based data sets are computed. These crosspowers are used to calculate field transfer coefficients with minimum noise distortion. The application of this technique to calculating the vector response function W is discussed.
Minimizing embedding impact in steganography using trellis-coded quantization
NASA Astrophysics Data System (ADS)
Filler, Tomáš; Judas, Jan; Fridrich, Jessica
2010-01-01
In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.
Press, William H.
2006-01-01
Götz, Druckmüller, and, independently, Brady have defined a discrete Radon transform (DRT) that sums an image's pixel values along a set of aptly chosen discrete lines, complete in slope and intercept. The transform is fast, O(N2log N) for an N × N image; it uses only addition, not multiplication or interpolation, and it admits a fast, exact algorithm for the adjoint operation, namely backprojection. This paper shows that the transform additionally has a fast, exact (although iterative) inverse. The inverse reproduces to machine accuracy the pixel-by-pixel values of the original image from its DRT, without artifacts or a finite point-spread function. Fourier or fast Fourier transform methods are not used. The inverse can also be calculated from sampled sinograms and is well conditioned in the presence of noise. Also introduced are generalizations of the DRT that combine pixel values along lines by operations other than addition. For example, there is a fast transform that calculates median values along all discrete lines and is able to detect linear features at low signal-to-noise ratios in the presence of pointlike clutter features of arbitrarily large amplitude. PMID:17159155
Press, William H
2006-12-19
Götz, Druckmüller, and, independently, Brady have defined a discrete Radon transform (DRT) that sums an image's pixel values along a set of aptly chosen discrete lines, complete in slope and intercept. The transform is fast, O(N2log N) for an N x N image; it uses only addition, not multiplication or interpolation, and it admits a fast, exact algorithm for the adjoint operation, namely backprojection. This paper shows that the transform additionally has a fast, exact (although iterative) inverse. The inverse reproduces to machine accuracy the pixel-by-pixel values of the original image from its DRT, without artifacts or a finite point-spread function. Fourier or fast Fourier transform methods are not used. The inverse can also be calculated from sampled sinograms and is well conditioned in the presence of noise. Also introduced are generalizations of the DRT that combine pixel values along lines by operations other than addition. For example, there is a fast transform that calculates median values along all discrete lines and is able to detect linear features at low signal-to-noise ratios in the presence of pointlike clutter features of arbitrarily large amplitude.
Construction of 3D Metallic Nanostructures on an Arbitrarily Shaped Substrate.
Chen, Fei; Li, Jingning; Yu, Fangfang; Zhao, Di; Wang, Fan; Chen, Yanbin; Peng, Ru-Wen; Wang, Mu
2016-09-01
Constructing conductive/magnetic nanowire arrays with 3D features by electrodeposition remains challenging. An unprecedented fabrication approach that allows to construct metallic (cobalt) nanowires on an arbitrarily shaped surface is reported. The spatial separation of nanowires varies from 70 to 3000 nm and the line width changes from 50 to 250 nm depending on growth conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino, M
1999-07-14
An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less
NASA Astrophysics Data System (ADS)
Kirk, Toby L.
2018-03-01
This paper presents new analytical formulae for flow in a channel with one or both walls patterned with a longitudinal array of ridges and arbitrarily protruding menisci. Derived from a matched asymptotic expansion, they extend results by Crowdy (J. Fluid Mech., vol. 791, 2016, R7) for shear flow, and thus make no restriction on the protrusion into or out of the liquid. The slip length formula is compared against full numerical solutions and, despite the assumption of small ridge period in its derivation, is found to have a very large range of validity; relative errors are small even for periods large enough for the protruding menisci to degrade the flow and touch the opposing wall.
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
High-dimensional entanglement certification
NASA Astrophysics Data System (ADS)
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-06-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.
Phase plate technology for laser marking of magnetic discs
Neuman, Bill; Honig, John; Hackel, Lloyd; Dane, C. Brent; Dixit, Shamasundar
1998-01-01
An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei
2015-09-01
Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.
Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru
2014-01-31
Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.
A linear shift-invariant image preprocessing technique for multispectral scanner systems
NASA Technical Reports Server (NTRS)
Mcgillem, C. D.; Riemer, T. E.
1973-01-01
A linear shift-invariant image preprocessing technique is examined which requires no specific knowledge of any parameter of the original image and which is sufficiently general to allow the effective radius of the composite imaging system to be arbitrarily shaped and reduced, subject primarily to the noise power constraint. In addition, the size of the point-spread function of the preprocessing filter can be arbitrarily controlled, thus minimizing truncation errors.
Multivariate η-μ fading distribution with arbitrary correlation model
NASA Astrophysics Data System (ADS)
Ghareeb, Ibrahim; Atiani, Amani
2018-03-01
An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
An effective lattice Boltzmann flux solver on arbitrarily unstructured meshes
NASA Astrophysics Data System (ADS)
Wu, Qi-Feng; Shu, Chang; Wang, Yan; Yang, Li-Ming
2018-05-01
The recently proposed lattice Boltzmann flux solver (LBFS) is a new approach for the simulation of incompressible flow problems. It applies the finite volume method (FVM) to discretize the governing equations, and the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. In the previous application of the LBFS, the structured meshes have been commonly employed, which may cause inconvenience for problems with complex geometries. In this paper, the LBFS is extended to arbitrarily unstructured meshes for effective simulation of incompressible flows. Two test cases, the lid-driven flow in a triangular cavity and flow around a circular cylinder, are carried out for validation. The obtained results are compared with the data available in the literature. Good agreement has been achieved, which demonstrates the effectiveness and reliability of the LBFS in simulating flows on arbitrarily unstructured meshes.
Meng, Ziyang; Yang, Tao; Li, Guoqi; ...
2017-09-18
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
Horizontal decomposition of data table for finding one reduct
NASA Astrophysics Data System (ADS)
Hońko, Piotr
2018-04-01
Attribute reduction, being one of the most essential tasks in rough set theory, is a challenge for data that does not fit in the available memory. This paper proposes new definitions of attribute reduction using horizontal data decomposition. Algorithms for computing superreduct and subsequently exact reducts of a data table are developed and experimentally verified. In the proposed approach, the size of subtables obtained during the decomposition can be arbitrarily small. Reducts of the subtables are computed independently from one another using any heuristic method for finding one reduct. Compared with standard attribute reduction methods, the proposed approach can produce superreducts that usually inconsiderably differ from an exact reduct. The approach needs comparable time and much less memory to reduce the attribute set. The method proposed for removing unnecessary attributes from superreducts executes relatively fast for bigger databases.
Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko
2010-03-01
We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.
Global Solutions for the zero-energy Novikov–Veselov equation by inverse scattering
NASA Astrophysics Data System (ADS)
Music, Michael; Perry, Peter
2018-07-01
Using the inverse scattering method, we construct global solutions to the Novikov–Veselov equation for real-valued decaying initial data q 0 with the property that the associated Schrödinger operator is nonnegative. Such initial data are either critical (an arbitrarily small perturbation of the potential makes the operator nonpositive) or subcritical (sufficiently small perturbations of the potential preserve non-negativity of the operator). Previously, Lassas, Mueller, Siltanen and Stahel proved global existence for critical potentials, also called potentials of conductivity type. We extend their results to include the much larger class of subcritical potentials. We show that the subcritical potentials form an open set and that the critical potentials form the nowhere dense boundary of this open set. Our analysis draws on previous work of the first author and on ideas of Grinevich and Manakov.
Free software helps map and display data
NASA Astrophysics Data System (ADS)
Wessel, Paul; Smith, Walter H. F.
When creating camera-ready figures, most scientists are familiar with the sequence of raw data → processing → final illustration and with the spending of large sums of money to finalize papers for submission to scientific journals, prepare proposals, and create overheads and slides for various presentations. This process can be tedious and is often done manually, since available commercial or in-house software usually can do only part of the job.To expedite this process, we introduce the Generic Mapping Tools (GMT), which is a free, public domain software package that can be used to manipulate columns of tabular data, time series, and gridded data sets and to display these data in a variety of forms ranging from simple x-y plots to maps and color, perspective, and shaded-relief illustrations. GMT uses the PostScript page description language, which can create arbitrarily complex images in gray tones or 24-bit true color by superimposing multiple plot files. Line drawings, bitmapped images, and text can be easily combined in one illustration. PostScript plot files are device-independent, meaning the same file can be printed at 300 dots per inch (dpi) on an ordinary laserwriter or at 2470 dpi on a phototypesetter when ultimate quality is needed. GMT software is written as a set of UNIX tools and is totally self contained and fully documented. The system is offered free of charge to federal agencies and nonprofit educational organizations worldwide and is distributed over the computer network Internet.
Borovikov, V. A.; Kalinin, S. V.; Khavin, Yu.; ...
2015-08-19
We derive the Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. Moreover, the solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition.
Stress-intensity factors for cracks emanating from the loaded fastener hole
NASA Technical Reports Server (NTRS)
Shivakumar, V.; Hsu, Y. C.
1977-01-01
Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.
NASA Technical Reports Server (NTRS)
Forman, M. A.; Jokipii, J. R.
1978-01-01
The distribution function of cosmic rays streaming perpendicular to the mean magnetic field in a turbulent medium is reexamined. Urch's (1977) discovery that in quasi-linear theory, the flux is due to particles at 90 deg pitch angle is discussed and shown to be consistent with previous formulations of the theory. It is pointed out that this flux of particles at 90 deg cannot be arbitrarily set equal to zero, and hence the alternative theory which proceeds from this premise is dismissed. A further, basic inconsistency in Urch's transport equation is demonstrated, and the connection between quasi-linear theory and compound diffusion is discussed.
Consistent Initial Conditions for the DNS of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.; Blaisdell, G. A.
1996-01-01
Relationships between diverse thermodynamic quantities appropriate to weakly compressible turbulence are derived. It is shown that for turbulence of a finite turbulent Mach number there is a finite element of compressibility. A methodology for generating initial conditions for the fluctuating pressure, density and dilatational velocity is given which is consistent with finite Mach number effects. Use of these initial conditions gives rise to a smooth development of the flow, in contrast to cases in which these fields are specified arbitrarily or set to zero. Comparisons of the effect of different types of initial conditions are made using direct numerical simulation of decaying isotropic turbulence.
Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2001-01-01
General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.
Bonded half planes containing an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksogan, O.
1973-01-01
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.
Direct state tomography using continuous variable measuring device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuanmin, E-mail: zhuxuanmin@xidian.edu.cn; Wei, Qun
Compared with the conventional quantum state tomography (QST), the efficiency of the direct state tomography (DST) using weak value is very low. However, DST is easily manipulated in experiments. We modify the direct state tomography by using coupling-deformed observables. The modified direct state measurement is valid for arbitrarily large measurement strength. The optimal measurement strengths are obtained to attain the highest efficiency. The efficiency of DST is significantly improved in the modified strategy, and the reconstructed state has no inherent bias. The state reconstruction strategy investigated in this paper might be useful in actual experiments.
Relaxation of the single-slip condition in strain-gradient plasticity
Anguige, Keith; Dondl, Patrick W.
2014-01-01
We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales. PMID:25197243
Choi, Joseph S; Howell, John C
2014-12-01
Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle ('paraxial') limit.
Kolkata Paise Restaurant Problem: An Introduction
NASA Astrophysics Data System (ADS)
Ghosh, Asim; Biswas, Soumyajyoti; Chatterjee, Arnab; Chakrabarti, Anindya Sundar; Naskar, Tapan; Mitra, Manipushpak; Chakrabarti, Bikas K.
We discuss several stochastic optimization strategies in games with many players having large number of choices (Kolkata Paise Restaurant Problem) and two choices (minority game problem). It is seen that a stochastic crowd avoiding strategy gives very efficient utilization in KPR problem. A slightly modified strategy in the minority game problem gives full utilization but the dynamics stops after reaching full efficiency, thereby making the utilization helpful for only about half of the population (those in minority). We further discuss the ways in which the dynamics may be continued and the utilization becomes effective for all the agents keeping fluctuation arbitrarily small.
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1982-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.
Relaxation of the single-slip condition in strain-gradient plasticity.
Anguige, Keith; Dondl, Patrick W
2014-09-08
We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.
Distributed Load Shedding over Directed Communication Networks with Time Delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di
When generation is insufficient to support all loads under emergencies, effective and efficient load shedding needs to be deployed in order to maintain the supply-demand balance. This paper presents a distributed load shedding algorithm, which makes efficient decision based on the discovered global information. In the global information discovery process, each load only communicates with its neighboring load via directed communication links possibly with arbitrarily large but bounded time varying communication delays. We propose a novel distributed information discovery algorithm based on ratio consensus. Simulation results are used to validate the proposed method.
NASA Astrophysics Data System (ADS)
Raman, Kumar; Papanikolaou, Stefanos; Fradkin, Eduardo
2007-03-01
We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries, and is generic in that it does not involve the fine tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries. Please see cond-mat/0611390 for more details.
Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters
NASA Astrophysics Data System (ADS)
Buterakos, Donovan; Barnes, Edwin; Economou, Sophia E.
2017-10-01
Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss.
NASA Technical Reports Server (NTRS)
Ball, R. E.
1972-01-01
A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.
The freedom to choose neutron star magnetic field equilibria: Table 1.
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Lasky, Paul D.
2016-12-01
Our ability to interpret and glean useful information from the large body of observations of strongly magnetized neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.
Phase plate technology for laser marking of magnetic discs
Neuman, B.; Honig, J.; Hackel, L.; Dane, C.B.; Dixit, S.
1998-10-27
An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating. 3 figs.
Return of the Leith-Upatnieks transmission hologram
NASA Astrophysics Data System (ADS)
Jeong, Tung H.; Ro, Raymond J.; Aumiller, Riley W.
2000-10-01
Two fundamental problems have prevented the Leith-Upatnieks Transmission Hologram (LUTH) from popular public display enjoyed by reflection holograms. 1, A laser light source is needed for illumination, which should not exceed five milliwatts in output for the sake of eye safety; and 2, much space is needed behind the hologram for the reconstruction beam. Herein we discuss methods for creating a LUTH display system which is arbitrarily thin regardless of the size of the hologram and arbitrarily bright without safety problems.
User's Manual for FEM-BEM Method. 1.0
NASA Technical Reports Server (NTRS)
Butler, Theresa; Deshpande, M. D. (Technical Monitor)
2002-01-01
A user's manual for using FORTRAN code to perform electromagnetic analysis of arbitrarily shaped material cylinders using a hybrid method that combines the finite element method (FEM) and the boundary element method (BEM). In this method, the material cylinder is enclosed by a fictitious boundary and the Maxwell's equations are solved by FEM inside the boundary and by BEM outside the boundary. The electromagnetic scattering on several arbitrarily shaped material cylinders using this FORTRAN code is computed to as examples.
NASA Technical Reports Server (NTRS)
Sucec, J.
1975-01-01
Solutions for the surface temperature and surface heat flux are found for laminar, constant property, slug flow over a plate convectively cooled from below, when the temperature of the fluid over the plate varies arbitrarily with time at the plate leading edge. A simple technique is presented for handling arbitrary fluid temperature variation with time by approximating it by a sequence of ramps or steps for which exact analytical solutions are available.
Light propagation in the Solar System for astrometry on sub-micro-arcsecond level
NASA Astrophysics Data System (ADS)
Zschocke, Sven
2018-04-01
We report on recent advancement in the theory of light propagation in the Solar System aiming at sub-micro-arcsecond level of accuracy: (1) A solution for the light ray in 1.5PN approximation has been obtained in the field of N arbitrarily moving bodies of arbitrary shape, inner structure, oscillations, and rotational motion. (2) A solution for the light ray in 2PN approximation has been obtained in the field of one arbitrarily moving pointlike body.
Syndrome source coding and its universal generalization
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1975-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A universal generalization of syndrome-source-coding is formulated which provides robustly-effective, distortionless, coding of source ensembles.
Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass
NASA Astrophysics Data System (ADS)
Lugones, Germán; Arbañil, José D. V.
2017-03-01
We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and radii of compact objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmanov, Anvar, E-mail: agilmano@umn.edu; Le, Trung Bao, E-mail: lebao002@umn.edu; Sotiropoulos, Fotis, E-mail: fotis@umn.edu
We present a new numerical methodology for simulating fluid–structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet–Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid–fluid interfaces where the structural nodalmore » positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.« less
Static axisymmetric equilibria in general relativistic magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunez, Manuel
2008-01-15
While the definition of static equilibria is not clear in a general relativistic context, in many cases of astrophysical interest a natural 3+1 split exists which allows us to define physically meaningful spatial and temporal coordinates. We study the possibility of axisymmetric magnetohydrodynamic equilibria in this setting. The presence of a nontrivial shift velocity provides a constraint not present in the Newtonian case, while the momentum equation may be set in a Grad-Shafranov-like form with the presence of additional terms involving the space-time metric coefficients. It is found that whenever the magnetic field or the shift velocity possesses poloidal component,more » the existence of even local static equilibria demands that the metric parameters satisfy such strong conditions that these equilibria are extremely unlikely. Only very particular cases such as purely toroidal fields and shifts yield existence of equilibria, provided we are able to choose arbitrarily the plasma pressure and density.« less
An instrumental variable random-coefficients model for binary outcomes
Chesher, Andrew; Rosen, Adam M
2014-01-01
In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048
Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities
NASA Astrophysics Data System (ADS)
Batle, J.; Naseri, M.; Ghoranneviss, M.; Farouk, A.; Alkhambashi, M.; Elhoseny, M.
2017-03-01
It is a well-known fact that both quantum entanglement and nonlocality (implied by the violation of Bell inequalities) constitute quantum correlations that cannot be arbitrarily shared among subsystems. They are both monogamous, albeit in a different fashion. In the present contribution we focus on nonlocality monogamy relations such as the Toner-Verstraete, the Seevinck, and a derived monogamy inequality for three parties and compare them with multipartite nonlocality measures for the whole set of pure states distributed according to the Haar measure. In this numerical endeavor, we also see that, although monogamy relations for nonlocality cannot exist for more than three parties, in practice the exploration of the whole set of states for different numbers of qubits will return effective bounds on the maximum value of all bipartite Bell violations among subsystems. Hence, we shed light on the effective nonlocality monogamy bounds in the multiqubit case.
A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owkes, Mark, E-mail: mfc86@cornell.edu; Desjardins, Olivier
2013-09-15
The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of themore » reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.« less
NASA Astrophysics Data System (ADS)
Datta, Nilanjana; Pautrat, Yan; Rouzé, Cambyse
2016-06-01
Quantum Stein's lemma is a cornerstone of quantum statistics and concerns the problem of correctly identifying a quantum state, given the knowledge that it is one of two specific states (ρ or σ). It was originally derived in the asymptotic i.i.d. setting, in which arbitrarily many (say, n) identical copies of the state (ρ⊗n or σ⊗n) are considered to be available. In this setting, the lemma states that, for any given upper bound on the probability αn of erroneously inferring the state to be σ, the probability βn of erroneously inferring the state to be ρ decays exponentially in n, with the rate of decay converging to the relative entropy of the two states. The second order asymptotics for quantum hypothesis testing, which establishes the speed of convergence of this rate of decay to its limiting value, was derived in the i.i.d. setting independently by Tomamichel and Hayashi, and Li. We extend this result to settings beyond i.i.d. Examples of these include Gibbs states of quantum spin systems (with finite-range, translation-invariant interactions) at high temperatures, and quasi-free states of fermionic lattice gases.
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Park, Yongkeun
2017-05-01
Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.
Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, A L
2010-12-15
As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum valuemore » available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be replaced with the 64-bit integer. that need to be replaced. In the rest of this paper we describe the techniques used to facilitate this transformation, issues raised, and issues still to be addressed. This poster will describe the reasons, methods, issues associated with extending the ALE3D code to run problems larger than 700 million elements.« less
Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K
2007-01-01
3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.
Quantum descriptions of singularities leading to pair creation. [of gravitons
NASA Technical Reports Server (NTRS)
Misner, C. W.
1974-01-01
A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.
New black holes in D =5 minimal gauged supergravity: Deformed boundaries and frozen horizons
NASA Astrophysics Data System (ADS)
Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen
2018-04-01
A new class of black hole solutions of the five-dimensional minimal gauged supergravity is presented. They are characterized by the mass, the electric charge, two equal magnitude angular momenta and the magnitude of the magnetic potential at infinity. These black holes possess a horizon of spherical topology; however, both the horizon and the sphere at infinity can be arbitrarily squashed, with nonextremal solutions interpolating between black strings and black branes. A particular set of extremal configurations corresponds to a new one-parameter family of supersymmetric black holes. While their conserved charges are determined by the squashing of the sphere at infinity, these supersymmetric solutions possess the same horizon geometry.
From total empiricism to a rational design of metronomic chemotherapy phase I dosing trials.
Lam, Thomas; Hetherington, John W; Greenman, John; Maraveyas, Anthony
2006-02-01
'Metronomic chemotherapy' represents a novel anti-angiogenic strategy whereby low-dose chemotherapy is utilized in a continuous fashion in order to target tumor endothelium. There are many potential advantages of this strategy and clinical trials are already underway. However, although the scheduling of metronomic chemotherapy is relatively unequivocal, metronomic dosing principles are at present poorly defined. Arbitrarily, 10-33% of the maximum tolerated dose comprises 'the dose range'. We argue that this is too empirical and propose a set of phase I metronomic chemotherapy dosing strategies based on a principled approach which may help to reduce the problem of empiricism in dosing for metronomic chemotherapy trials.
Secure key from bound entanglement.
Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Oppenheim, Jonathan
2005-04-29
We characterize the set of shared quantum states which contain a cryptographically private key. This allows us to recast the theory of privacy as a paradigm closely related to that used in entanglement manipulation. It is shown that one can distill an arbitrarily secure key from bound entangled states. There are also states that have less distillable private keys than the entanglement cost of the state. In general, the amount of distillable key is bounded from above by the relative entropy of entanglement. Relationships between distillability and distinguishability are found for a class of states which have Bell states correlated to separable hiding states. We also describe a technique for finding states exhibiting irreversibility in entanglement distillation.
Classical management of refractory adult immune (idiopathic) thrombocytopenic purpura.
McMillan, R
2002-03-01
Treatment of chronic immune (idiopathic) thrombocytopenic purpura with corticosteroids and/or splenectomy results in safe platelet counts in over 70% of patients without additional treatment. Therapy of patients who are refractory to these two treatments may be difficult. The treatment approach to refractory ITP patients, described in this report, is arbitrarily divided into four levels: levels 1 through 3 represent treatments with increasing side effects; level 4 therapy may be tried when the others have failed. Patients undergoing these treatments may require concomitant intravenous gammaglobulin, high-dose corticosteroids or platelets, to maintain the platelet count in the setting of mucosal bleeding or severe thrombocytopenia. Copyright 2002, Elsevier Science Ltd. All rights reserved.
1979-10-01
AIRCRAFT Flight Control ASA-32( ) Flight Director Computer TBD (Same as non -ARN-101 equipped F-4E aircraft) Air Data Computer CPK-92/A24G-34 Attitude...below. A two-inch separation between cable types is arbitrarily set as a minimum design goal. 3.2.6.4.1 Power and Control Circuits. Roucing and channel...plan in accordance with MIL-STD-461A(3) shall be the controlling document for EMIC design . 3.2.7.1 Design Reuire-nents. The generation of and suscepti
NASA Astrophysics Data System (ADS)
Ivković, Zoran; Lloyd, Errol L.
Classic bin packing seeks to pack a given set of items of possibly varying sizes into a minimum number of identical sized bins. A number of approximation algorithms have been proposed for this NP-hard problem for both the on-line and off-line cases. In this chapter we discuss fully dynamic bin packing, where items may arrive (Insert) and depart (Delete) dynamically. In accordance with standard practice for fully dynamic algorithms, it is assumed that the packing may be arbitrarily rearranged to accommodate arriving and departing items. The goal is to maintain an approximately optimal solution of provably high quality in a total amount of time comparable to that used by an off-line algorithm delivering a solution of the same quality.
Radial rescaling approach for the eigenvalue problem of a particle in an arbitrarily shaped box.
Lijnen, Erwin; Chibotaru, Liviu F; Ceulemans, Arnout
2008-01-01
In the present work we introduce a methodology for solving a quantum billiard with Dirichlet boundary conditions. The procedure starts from the exactly known solutions for the particle in a circular disk, which are subsequently radially rescaled in such a way that they obey the new boundary conditions. In this way one constructs a complete basis set which can be used to obtain the eigenstates and eigenenergies of the corresponding quantum billiard to a high level of precision. Test calculations for several regular polygons show the efficiency of the method which often requires one or two basis functions to describe the lowest eigenstates with high accuracy.
Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks
NASA Astrophysics Data System (ADS)
McGee, O. G.; Kim, J. W.
2010-02-01
This paper provides free vibration data for cylindrical elastic solids, specifically thick circular plates and cylinders with V-notches and sharp radial cracks, for which no extensive previously published database is known to exist. Bending moment and shear force singularities are known to exist at the sharp reentrant corner of a thick V-notched plate under transverse vibratory motion, and three-dimensional (3-D) normal and transverse shear stresses are known to exist at the sharp reentrant terminus edge of a V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done in this work utilizing a variational Ritz procedure including these essential singularity effects. The procedure incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of " edge functions" that explicitly model the 3-D stress singularities which exist along a reentrant terminus edge (i.e., α>180°) of the V-notch. The first set of polynomials guarantees convergence to exact frequencies, as sufficient terms are retained. The second set of edge functions—in addition to representing the corner stress singularities—substantially accelerates the convergence of frequency solutions. This is demonstrated through extensive convergence studies that have been carried out by the investigators. Numerical analysis has been carried out and the results have been given for cylindrical elastic solids with various V-notch angles and depths. The relative depth of the V-notch is defined as (1- c/ a), and the notch angle is defined as (360°- α). For a very small notch angle (1° or less), the notch may be regarded as a "sharp radial crack." Accurate (four significant figure) frequencies are presented for a wide spectrum of notch angles (360°- α), depths (1- c/ a), and thickness ratios ( a/ h for plates and h/ a for cylinders). An extended database of frequencies for completely free thick sectorial, semi-circular, and segmented plates and cylinders are also reported herein as interesting special cases. A generalization of the elasticity-based Ritz analysis and findings applicable here is an arbitrarily shaped V-notched cylindrical solid, being a surface traced out by a family of generatrix, which pass through the circumference of an arbitrarily shaped V-notched directrix curve, r( θ), several of which are described for future investigations and close extensions of this work.
Multiple choices of time in quantum cosmology
NASA Astrophysics Data System (ADS)
Małkiewicz, Przemysław
2015-07-01
It is often conjectured that a choice of time function merely sets up a frame for the quantum evolution of the gravitational field, meaning that all choices should be in some sense compatible. In order to explore this conjecture (and the meaning of compatibility), we develop suitable tools for determining the relation between quantum theories based on different time functions. First, we discuss how a time function fixes a canonical structure on the constraint surface. The presentation includes both the kinematical and the reduced perspective, and the relation between them. Second, we formulate twin theorems about the existence of two inequivalent maps between any two deparameterizations, a formal canonical and a coordinate one. They are used to separate the effects induced by choice of clock and other factors. We show, in an example, how the spectra of quantum observables are transformed under the change of clock and prove, via a general argument, the existence of choice-of-time-induced semiclassical effects. Finally, we study an example, in which we find that the semiclassical discrepancies can in fact be arbitrarily large for dynamical observables. We conclude that the values of critical energy density or critical volume in the bouncing scenarios of quantum cosmology cannot in general be at the Planck scale, and always need to be given with reference to a specific time function.
Engineering the evolution of self-organizing behaviors in swarm robotics: a case study.
Trianni, Vito; Nolfi, Stefano
2011-01-01
Evolutionary robotics (ER) is a powerful approach for the automatic synthesis of robot controllers, as it requires little a priori knowledge about the problem to be solved in order to obtain good solutions. This is particularly true for collective and swarm robotics, in which the desired behavior of the group is an indirect result of the control and communication rules followed by each individual. However, the experimenter must make several arbitrary choices in setting up the evolutionary process, in order to define the correct selective pressures that can lead to the desired results. In some cases, only a deep understanding of the obtained results can point to the critical aspects that constrain the system, which can be later modified in order to re-engineer the evolutionary process towards better solutions. In this article, we discuss the problem of engineering the evolutionary machinery that can lead to the desired result in the swarm robotics context. We also present a case study about self-organizing synchronization in a swarm of robots, in which some arbitrarily chosen properties of the communication system hinder the scalability of the behavior to large groups. We show that by modifying the communication system, artificial evolution can synthesize behaviors that scale properly with the group size.
Micronutrient powders to combat anaemia in young children: do they work?
Verhoef, Hans; Teshome, Emily; Prentice, Andrew M
2018-01-22
In 2016, the World Health Organization (WHO) recommended point-of-use fortification of complementary foods with iron-containing micronutrient powders to improve iron status and reduce anaemia in children at risk of anaemia. This recommendation continues to be debated. In a recent trial among Kenyan children aged 12-36 months, we found no evidence that daily point-of-use fortification was efficacious in improving haemoglobin concentration or plasma iron markers. An updated meta-analysis indicated that, on average, in an arbitrarily selected setting and with adherence as obtained under trial conditions, one may expect a small increase in haemoglobin concentration in preschool children, with the upper limit of the 95% CI virtually excluding an effect beyond 5.5 g/L. In the present paper, we elaborate on the interpretation of these findings and the meta-analyses that formed the basis for the WHO guidelines. In particular, we draw attention to the phenomenon that small group differences in the distribution of continuous outcomes (haemoglobin concentration, ferritin concentrations) can give a false impression of relatively large effects on the prevalence of the dichotomised outcomes (anaemia, iron deficiency).Please see related articles: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-017-0839-z , https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-017-0867-8.
Good physicians from the perspective of their patients
Schattner, Ami; Rudin, Dan; Jellin, Navah
2004-01-01
Background It is not currently known what is the patient's viewpoint of a "good" physician. We set out to define patient's priorities regarding different physician's attributes in 3 domains important in medical care. Methods Patients hospitalized or attending clinics at a large teaching hospital selected the 4 attributes that they considered most important out of 21 listed arbitrarily in a questionnaire. The questionnaire included 7 items each in the domains of patient autonomy, professional expertise and humanism. Results Participating patients (n = 445, mean age 57.5 ± 16 years) selected professional expertise (50%), physician's patience and attentiveness (38% and 30%, respectively), and informing the patient, representing the patient's interests, being truthful and respecting patient's preferences (25–36% each) as the most essential attributes. Patient's selections were not significantly influenced by different demographic or clinical background. Selections of attributes in the domain of patient's autonomy were significantly more frequent and this was the preferred domain for 31% and as important as another domain for 16% – significantly more than the domain of professional expertise (P = 0.008), and much more than the domain of humanism and support (P < 0.0005). Conclusions Patients studied want their physicians to be highly professional and expert clinicians and show humaneness and support, but their first priority is for the physician to respect their autonomy. PMID:15361255
Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates
NASA Astrophysics Data System (ADS)
Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun
2018-05-01
We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.
Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.
Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing
2012-08-13
Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.
Asymptotic charges cannot be measured in finite time
Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.; ...
2018-02-28
To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less
Cooperative effects in spherical spasers: Ab initio analytical model
NASA Astrophysics Data System (ADS)
Bordo, V. G.
2017-06-01
A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.
Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary
NASA Astrophysics Data System (ADS)
Li, Hai-liang; Zhang, Xingwei
2016-12-01
In this paper, we consider the two-dimensional barotropic compressible Navier-Stokes equations with stress free boundary condition imposed on the free surface. As the viscosity coefficients satisfies μ (ρ) = 2 μ, λ (ρ) =ρβ, β > 1, we establish the existence of global strong solution for arbitrarily large spherical symmetric initial data even if the density vanishes across the free boundary. In particular, we show that the density is strictly positive and bounded from the above and below in any finite time if the initial density is strictly positive, and the free boundary propagates along the particle path and expand outwards at an algebraic rate.
Asymptotic charges cannot be measured in finite time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.
To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1983-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393
NASA Technical Reports Server (NTRS)
Atkins, H. L.; Shu, Chi-Wang
2001-01-01
The explicit stability constraint of the discontinuous Galerkin method applied to the diffusion operator decreases dramatically as the order of the method is increased. Block Jacobi and block Gauss-Seidel preconditioner operators are examined for their effectiveness at accelerating convergence. A Fourier analysis for methods of order 2 through 6 reveals that both preconditioner operators bound the eigenvalues of the discrete spatial operator. Additionally, in one dimension, the eigenvalues are grouped into two or three regions that are invariant with order of the method. Local relaxation methods are constructed that rapidly damp high frequencies for arbitrarily large time step.
Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J.; Ruocco, A.
2016-01-15
Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.
Dynamical analysis of Grover's search algorithm in arbitrarily high-dimensional search spaces
NASA Astrophysics Data System (ADS)
Jin, Wenliang
2016-01-01
We discuss at length the dynamical behavior of Grover's search algorithm for which all the Walsh-Hadamard transformations contained in this algorithm are exposed to their respective random perturbations inducing the augmentation of the dimension of the search space. We give the concise and general mathematical formulations for approximately characterizing the maximum success probabilities of finding a unique desired state in a large unsorted database and their corresponding numbers of Grover iterations, which are applicable to the search spaces of arbitrary dimension and are used to answer a salient open problem posed by Grover (Phys Rev Lett 80:4329-4332, 1998).
Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory
NASA Astrophysics Data System (ADS)
Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.
2014-01-01
Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.
The effect of viscosity on steady transonic flow with a nodal solution topology
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Zank, Gary P.
1991-01-01
The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.
Bamford, Simeon A; Murray, Alan F; Willshaw, David J
2010-02-01
A distributed and locally reprogrammable address-event receiver has been designed, in which incoming address-events are monitored simultaneously by all synapses, allowing for arbitrarily large axonal fan-out without reducing channel capacity. Synapses can change the address of their presynaptic neuron, allowing the distributed implementation of a biologically realistic learning rule, with both synapse formation and elimination (synaptic rewiring). Probabilistic synapse formation leads to topographic map development, made possible by a cross-chip current-mode calculation of Euclidean distance. As well as synaptic plasticity in rewiring, synapses change weights using a competitive Hebbian learning rule (spike-timing-dependent plasticity). The weight plasticity allows receptive fields to be modified based on spatio-temporal correlations in the inputs, and the rewiring plasticity allows these modifications to become embedded in the network topology.
The motion of interconnected flexible bodies
NASA Technical Reports Server (NTRS)
Hopkins, A. S.
1975-01-01
The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.
Interferometric scanning optical microscope for surface characterization.
Offside, M J; Somekh, M G
1992-11-01
A phase-sensitive scanning optical microscope is described that can measure surface height changes down to 0.1 nm. This is achieved by using two heterodyne Michelson interferometers in parallel. One interferometer probes the sample with a tightly focused beam, and the second has a collimated beam that illuminates a large area of the surface, providing a large area on sample reference. This is facilitated by using a specially constructed objective lens that permits the relative areas illuminated by the two probe beams to be varied both arbitrarily and independently, thus ensuring an accurate absolute phase measurement. We subtracted the phase outputs from each interferometer to provide the sample phase information, canceling the phase noise resulting from microphonics in the process. Results from a prototype version of the microscope are presented that demonstrate the advantages of the system over existing techniques.
Accounting for partiality in serial crystallography using ray-tracing principles.
Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet
2015-09-01
Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.
NASA Astrophysics Data System (ADS)
Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.
2016-07-01
We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.
NASA Astrophysics Data System (ADS)
Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.
2000-12-01
Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features we use a NN to select the most significant features among the large number of measured ones, and then we use these selected features to perform the classification task. In order to optimize the performance of the system, we implemented and tested several different models of NN. The comparison of the NExt performance with that of the best detection and classification package known to the authors (SExtractor) shows that NExt is at least as effective as the best traditional packages.
NASA Astrophysics Data System (ADS)
Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.
2008-12-01
We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.
The Dynamics of Multilateral Exchange
NASA Astrophysics Data System (ADS)
Hausken, Kjell; Moxnes, John F.
The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.
Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol
2010-03-05
The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90%) were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8%) and the lowest in fibroblastic DNA (92.3%, P < or = 0.05). Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P < or = 0.05). The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic cells.
Trimming the UCERF2 hazard logic tree
Porter, Keith A.; Field, Edward H.; Milner, Kevin
2012-01-01
The Uniform California Earthquake Rupture Forecast 2 (UCERF2) is a fully time‐dependent earthquake rupture forecast developed with sponsorship of the California Earthquake Authority (Working Group on California Earthquake Probabilities [WGCEP], 2007; Field et al., 2009). UCERF2 contains 480 logic‐tree branches reflecting choices among nine modeling uncertainties in the earthquake rate model shown in Figure 1. For seismic hazard analysis, it is also necessary to choose a ground‐motion‐prediction equation (GMPE) and set its parameters. Choosing among four next‐generation attenuation (NGA) relationships results in a total of 1920 hazard calculations per site. The present work is motivated by a desire to reduce the computational effort involved in a hazard analysis without understating uncertainty. We set out to assess which branching points of the UCERF2 logic tree contribute most to overall uncertainty, and which might be safely ignored (set to only one branch) without significantly biasing results or affecting some useful measure of uncertainty. The trimmed logic tree will have all of the original choices from the branching points that contribute significantly to uncertainty, but only one arbitrarily selected choice from the branching points that do not.
A Software Engineering Paradigm for Quick-turnaround Earth Science Data Projects
NASA Astrophysics Data System (ADS)
Moore, K.
2016-12-01
As is generally the case with applied sciences professional and educational programs, the participants of such programs can come from a variety of technical backgrounds. In the NASA DEVELOP National Program, the participants constitute an interdisciplinary set of backgrounds, with varying levels of experience with computer programming. DEVELOP makes use of geographically explicit data sets, and it is necessary to use geographic information systems and geospatial image processing environments. As data sets cover longer time spans and include more complex sets of parameters, automation is becoming an increasingly prevalent feature. Though platforms such as ArcGIS, ERDAS Imagine, and ENVI facilitate the batch-processing of geospatial imagery, these environments are naturally constricting to the user in that they limit him or her to the tools that are available. Users must then turn to "homemade" scripting in more traditional programming languages such as Python, JavaScript, or R, to automate workflows. However, in the context of quick-turnaround projects like those in DEVELOP, the programming learning curve may be prohibitively steep. In this work, we consider how to best design a software development paradigm that addresses two major constants: an arbitrarily experienced programmer and quick-turnaround project timelines.
The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain
Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano
2010-01-01
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869
NASA Astrophysics Data System (ADS)
Hartmann, Alfred; Redfield, Steve
1989-04-01
This paper discusses design of large-scale (1000x 1000) optical crossbar switching networks for use in parallel processing supercom-puters. Alternative design sketches for an optical crossbar switching network are presented using free-space optical transmission with either a beam spreading/masking model or a beam steering model for internodal communications. The performances of alternative multiple access channel communications protocol-unslotted and slotted ALOHA and carrier sense multiple access (CSMA)-are compared with the performance of the classic arbitrated bus crossbar of conventional electronic parallel computing. These comparisons indicate an almost inverse relationship between ease of implementation and speed of operation. Practical issues of optical system design are addressed, and an optically addressed, composite spatial light modulator design is presented for fabrication to arbitrarily large scale. The wide range of switch architecture, communications protocol, optical systems design, device fabrication, and system performance problems presented by these design sketches poses a serious challenge to practical exploitation of highly parallel optical interconnects in advanced computer designs.
Systematic methods for defining coarse-grained maps in large biomolecules.
Zhang, Zhiyong
2015-01-01
Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.
The least channel capacity for chaos synchronization.
Wang, Mogei; Wang, Xingyuan; Liu, Zhenzhen; Zhang, Huaguang
2011-03-01
Recently researchers have found that a channel with capacity exceeding the Kolmogorov-Sinai entropy of the drive system (h(KS)) is theoretically necessary and sufficient to sustain the unidirectional synchronization to arbitrarily high precision. In this study, we use symbolic dynamics and the automaton reset sequence to distinguish the information that is required in identifying the current drive word and obtaining the synchronization. Then, we show that the least channel capacity that is sufficient to transmit the distinguished information and attain the synchronization of arbitrarily high precision is h(KS). Numerical simulations provide support for our conclusions.
NASA Technical Reports Server (NTRS)
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
Production of a Scalar Boson and a Fermion Pair in Arbitrarily Polarized e - e + Beams
NASA Astrophysics Data System (ADS)
Abdullayev, S. K.; Gojayev, M. Sh.; Nasibova, N. A.
2018-05-01
Within the framework of the Standard Model (Minimal Supersymmetric Standard Model) we consider the production of the scalar boson HSM (h; H) and a fermion pair ff- in arbitrarily polarized, counterpropagating electron-positron beams e - e + ⇒ HSM (h; H) ff-. Characteristic features of the behavior of the cross sections and polarization characteristics (right-left spin asymmetry, degree of longitudinal polarization of the fermion, and transverse spin asymmetry) are investigated and elucidated as functions of the energy of the electron-positron beams and the mass of the scalar boson.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Nilanjana; Rouzé, Cambyse; Pautrat, Yan
2016-06-15
Quantum Stein’s lemma is a cornerstone of quantum statistics and concerns the problem of correctly identifying a quantum state, given the knowledge that it is one of two specific states (ρ or σ). It was originally derived in the asymptotic i.i.d. setting, in which arbitrarily many (say, n) identical copies of the state (ρ{sup ⊗n} or σ{sup ⊗n}) are considered to be available. In this setting, the lemma states that, for any given upper bound on the probability α{sub n} of erroneously inferring the state to be σ, the probability β{sub n} of erroneously inferring the state to be ρmore » decays exponentially in n, with the rate of decay converging to the relative entropy of the two states. The second order asymptotics for quantum hypothesis testing, which establishes the speed of convergence of this rate of decay to its limiting value, was derived in the i.i.d. setting independently by Tomamichel and Hayashi, and Li. We extend this result to settings beyond i.i.d. Examples of these include Gibbs states of quantum spin systems (with finite-range, translation-invariant interactions) at high temperatures, and quasi-free states of fermionic lattice gases.« less
Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.
Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu
2016-08-01
This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.
Probability evolution method for exit location distribution
NASA Astrophysics Data System (ADS)
Zhu, Jinjie; Chen, Zhen; Liu, Xianbin
2018-03-01
The exit problem in the framework of the large deviation theory has been a hot topic in the past few decades. The most probable escape path in the weak-noise limit has been clarified by the Freidlin-Wentzell action functional. However, noise in real physical systems cannot be arbitrarily small while noise with finite strength may induce nontrivial phenomena, such as noise-induced shift and noise-induced saddle-point avoidance. Traditional Monte Carlo simulation of noise-induced escape will take exponentially large time as noise approaches zero. The majority of the time is wasted on the uninteresting wandering around the attractors. In this paper, a new method is proposed to decrease the escape simulation time by an exponentially large factor by introducing a series of interfaces and by applying the reinjection on them. This method can be used to calculate the exit location distribution. It is verified by examining two classical examples and is compared with theoretical predictions. The results show that the method performs well for weak noise while may induce certain deviations for large noise. Finally, some possible ways to improve our method are discussed.
Simple Deterministically Constructed Recurrent Neural Networks
NASA Astrophysics Data System (ADS)
Rodan, Ali; Tiňo, Peter
A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.
Optimizing BAO measurements with non-linear transformations of the Lyman-α forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinkang; Font-Ribera, Andreu; Seljak, Uroš, E-mail: xinkang.wang@berkeley.edu, E-mail: afont@lbl.gov, E-mail: useljak@berkeley.edu
2015-04-01
We explore the effect of applying a non-linear transformation to the Lyman-α forest transmitted flux F=e{sup −τ} and the ability of analytic models to predict the resulting clustering amplitude. Both the large-scale bias of the transformed field (signal) and the amplitude of small scale fluctuations (noise) can be arbitrarily modified, but we were unable to find a transformation that increases significantly the signal-to-noise ratio on large scales using Taylor expansion up to the third order. In particular, however, we achieve a 33% improvement in signal to noise for Gaussianized field in transverse direction. On the other hand, we explore anmore » analytic model for the large-scale biasing of the Lyα forest, and present an extension of this model to describe the biasing of the transformed fields. Using hydrodynamic simulations we show that the model works best to describe the biasing with respect to velocity gradients, but is less successful in predicting the biasing with respect to large-scale density fluctuations, especially for very nonlinear transformations.« less
McNamara, C; Naddy, B; Rohan, D; Sexton, J
2003-10-01
The Monte Carlo computational system for stochastic modelling of dietary exposure to food chemicals and nutrients is presented. This system was developed through a European Commission-funded research project. It is accessible as a Web-based application service. The system allows and supports very significant complexity in the data sets used as the model input, but provides a simple, general purpose, linear kernel for model evaluation. Specific features of the system include the ability to enter (arbitrarily) complex mathematical or probabilistic expressions at each and every input data field, automatic bootstrapping on subjects and on subject food intake diaries, and custom kernels to apply brand information such as market share and loyalty to the calculation of food and chemical intake.
Williams, Jennifer Stewart
2011-07-01
To show how fractional polynomial methods can usefully replace the practice of arbitrarily categorizing data in epidemiology and health services research. A health service setting is used to illustrate a structured and transparent way of representing non-linear data without arbitrary grouping. When age is a regressor its effects on an outcome will be interpreted differently depending upon the placing of cutpoints or the use of a polynomial transformation. Although it is common practice, categorization comes at a cost. Information is lost, and accuracy and statistical power reduced, leading to spurious statistical interpretation of the data. The fractional polynomial method is widely supported by statistical software programs, and deserves greater attention and use.
NASA Astrophysics Data System (ADS)
Chen, Youhua; Cao, Ruizhi; Liu, Wenjie; Zhu, Dazhao; Zhang, Zhiming; Kuang, Cuifang; Liu, Xu
2018-04-01
We present an alternative approach to realize structured illumination microscopy (SIM), which is capable for live cell imaging. The prototype utilizes two sets of scanning galvo mirrors, a polarization converter and a piezo-platform to generate a fast shifted, s-polarization interfered and periodic variable illumination patterns. By changing the angle of the scanning galvanometer, we can change the position of the spots at the pupil plane of the objective lens arbitrarily, making it easy to switch between widefield and total internal reflection fluorescent-SIM mode and adapting the penetration depth in the sample. Also, a twofold resolution improvement is achieved in our experiments. The prototype offers more flexibility of pattern period and illumination orientation changing than previous systems.
Optical multiple-image hiding based on interference and grating modulation
NASA Astrophysics Data System (ADS)
He, Wenqi; Peng, Xiang; Meng, Xiangfeng
2012-07-01
We present a method for multiple-image hiding on the basis of interference-based encryption architecture and grating modulation. By using a modified phase retrieval algorithm, we can separately hide a number of secret images into one arbitrarily preselected host image associated with a set of phase-only masks (POMs), which are regarded as secret keys. Thereafter, a grating modulation operation is introduced to multiplex and store the different POMs into a single key mask, which is then assigned to the authorized users in privacy. For recovery, after an appropriate demultiplexing process, one can reconstruct the distributions of all the secret keys and then recover the corresponding hidden images with suppressed crosstalk. Computer simulation results are presented to validate the feasibility of our approach.
Reformulating the Schrödinger equation as a Shabat-Zakharov system
NASA Astrophysics Data System (ADS)
Boonserm, Petarpa; Visser, Matt
2010-02-01
We reformulate the second-order Schrödinger equation as a set of two coupled first-order differential equations, a so-called "Shabat-Zakharov system" (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasize the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrödinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ordinary differential equation.
NASA Technical Reports Server (NTRS)
Carts, M. A.; Marshall, P. W.; Reed, R.; Curie, S.; Randall, B.; LaBel, K.; Gilbert, B.; Daniel, E.
2006-01-01
Serial Bit Error Rate Testing under radiation to characterize single particle induced errors in high-speed IC technologies generally involves specialized test equipment common to the telecommunications industry. As bit rates increase, testing is complicated by the rapidly increasing cost of equipment able to test at-speed. Furthermore as rates extend into the tens of billions of bits per second test equipment ceases to be broadband, a distinct disadvantage for exploring SEE mechanisms in the target technologies. In this presentation the authors detail the testing accomplished in the CREST project and apply the knowledge gained to establish a set of guidelines suitable for designing arbitrarily high speed radiation effects tests.
Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance
NASA Astrophysics Data System (ADS)
Cao, Fangfei; Liu, Jinkun
2018-05-01
In this paper, we consider a boundary control problem for a constrained two-link rigid-flexible manipulator. The nonlinear system is described by hybrid ordinary differential equation-partial differential equation (ODE-PDE) dynamic model. Based on the coupled ODE-PDE model, boundary control is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. With the help of prescribed performance functions, the tracking error can converge to an arbitrarily small residual set and the convergence rate is no less than a certain pre-specified value. Asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle extended to infinite-dimensional system. Numerical simulations are provided to demonstrate the effectiveness of the proposed controller.
S/Ka Dichroic Plate with Rounded Corners for NASA's 34-m Beam-Waveguide Antenna
NASA Astrophysics Data System (ADS)
Veruttipong, W.; Khayatian, B.; Imbriale, W.
2016-02-01
An S-/Ka-band frequency selective surface (FSS) or a dichroic plate is designed, manufactured, and tested for use in NASA's Deep Space Network (DSN) 34-m beam-waveguide (BWG) antennas. Due to its large size, the proposed dichroic incorporates a new design feature: waveguides with rounded corners to cut cost and allow ease of manufacturing the plate. The dichroic is designed using an analysis that combines the finite-element method (FEM) for arbitrarily shaped guides with the method of moments and Floquet mode theory for periodic structures. The software was verified by comparison with previously measured and computed dichroic plates. The large plate was manufactured with end-mill machining. The RF performance was measured and is in excellent agreement with the analytical results. The dichroic has been successfully installed and is operational at DSS-24, DSS-34, and DSS-54.
Spotlight-8 Image Analysis Software
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2006-01-01
Spotlight is a cross-platform GUI-based software package designed to perform image analysis on sequences of images generated by combustion and fluid physics experiments run in a microgravity environment. Spotlight can perform analysis on a single image in an interactive mode or perform analysis on a sequence of images in an automated fashion. Image processing operations can be employed to enhance the image before various statistics and measurement operations are performed. An arbitrarily large number of objects can be analyzed simultaneously with independent areas of interest. Spotlight saves results in a text file that can be imported into other programs for graphing or further analysis. Spotlight can be run on Microsoft Windows, Linux, and Apple OS X platforms.
Properties of Nonlinear Dynamo Waves
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Mirror-assisted coherent backscattering from the Mollow sidebands
NASA Astrophysics Data System (ADS)
Piovella, N.; Teixeira, R. Celistrino; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.
2017-11-01
In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we show here that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, J. Erik, E-mail: e.baxter@shu.ac.uk
We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our mainmore » result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.« less
Penn, Elizabeth Maggie
2014-01-01
This article presents a new model for scoring alternatives from “contest” outcomes. The model is a generalization of the method of paired comparison to accommodate comparisons between arbitrarily sized sets of alternatives in which outcomes are any division of a fixed prize. Our approach is also applicable to contests between varying quantities of alternatives. We prove that under a reasonable condition on the comparability of alternatives, there exists a unique collection of scores that produces accurate estimates of the overall performance of each alternative and satisfies a well-known axiom regarding choice probabilities. We apply the method to several problems in which varying choice sets and continuous outcomes may create problems for standard scoring methods. These problems include measuring centrality in network data and the scoring of political candidates via a “feeling thermometer.” In the latter case, we also use the method to uncover and solve a potential difficulty with common methods of rescaling thermometer data to account for issues of interpersonal comparability. PMID:24748759
NASA Astrophysics Data System (ADS)
Kit Luk, Chuen; Chesi, Graziano
2015-11-01
This paper addresses the estimation of the domain of attraction for discrete-time nonlinear systems where the vector field is subject to changes. First, the paper considers the case of switched systems, where the vector field is allowed to arbitrarily switch among the elements of a finite family. Second, the paper considers the case of hybrid systems, where the state space is partitioned into several regions described by polynomial inequalities, and the vector field is defined on each region independently from the other ones. In both cases, the problem consists of computing the largest sublevel set of a Lyapunov function included in the domain of attraction. An approach is proposed for solving this problem based on convex programming, which provides a guaranteed inner estimate of the sought sublevel set. The conservatism of the provided estimate can be decreased by increasing the size of the optimisation problem. Some numerical examples illustrate the proposed approach.
Sato, Takeshi; Uto, Koichiro; Aoyagi, Takao; Ebara, Mitsuhiro
2016-01-01
This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the potential of the SHT system for the manipulation of cells. PMID:28773983
Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide
NASA Astrophysics Data System (ADS)
Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.
2017-07-01
We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.
Arbitrarily accurate twin composite π -pulse sequences
NASA Astrophysics Data System (ADS)
Torosov, Boyan T.; Vitanov, Nikolay V.
2018-04-01
We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .
Unconditional security of quantum key distribution over arbitrarily long distances
Lo; Chau
1999-03-26
Quantum key distribution is widely thought to offer unconditional security in communication between two users. Unfortunately, a widely accepted proof of its security in the presence of source, device, and channel noises has been missing. This long-standing problem is solved here by showing that, given fault-tolerant quantum computers, quantum key distribution over an arbitrarily long distance of a realistic noisy channel can be made unconditionally secure. The proof is reduced from a noisy quantum scheme to a noiseless quantum scheme and then from a noiseless quantum scheme to a noiseless classical scheme, which can then be tackled by classical probability theory.
Cloaking of arbitrarily shaped objects with homogeneous coatings
NASA Astrophysics Data System (ADS)
Forestiere, Carlo; Dal Negro, Luca; Miano, Giovanni
2014-05-01
We present a theory for the cloaking of arbitrarily shaped objects and demonstrate electromagnetic scattering cancellation through designed homogeneous coatings. First, in the small-particle limit, we expand the dipole moment of a coated object in terms of its resonant modes. By zeroing the numerator of the resulting rational function, we accurately predict the permittivity values of the coating layer that abates the total scattered power. Then, we extend the applicability of the method beyond the small-particle limit, deriving the radiation corrections of the scattering-cancellation permittivity within a perturbation approach. Our method permits the design of invisibility cloaks for irregularly shaped devices such as complex sensors and detectors.
NASA Astrophysics Data System (ADS)
Liu, Changying; Iserles, Arieh; Wu, Xinyuan
2018-03-01
The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.
Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay
2014-01-01
We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.
PROcess Based Diagnostics PROBE
NASA Technical Reports Server (NTRS)
Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.
2013-01-01
Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
Accounting for partiality in serial crystallography using ray-tracing principles
Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet
2015-01-01
Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography. PMID:26327370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, D.; Eisert, J.; Schuch, N.
We introduce schemes for quantum computing based on local measurements on entangled resource states. This work elaborates on the framework established in Gross and Eisert [Phys. Rev. Lett. 98, 220503 (2007); quant-ph/0609149]. Our method makes use of tools from many-body physics--matrix product states, finitely correlated states, or projected entangled pairs states--to show how measurements on entangled states can be viewed as processing quantum information. This work hence constitutes an instance where a quantum information problem--how to realize quantum computation--was approached using tools from many-body theory and not vice versa. We give a more detailed description of the setting and presentmore » a large number of examples. We find computational schemes, which differ from the original one-way computer, for example, in the way the randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the universal resource states: They may, for example, exhibit nonvanishing long-range correlation functions or be locally arbitrarily close to a pure state. We discuss variants of Kitaev's toric code states as universal resources, and contrast this with situations where they can be efficiently classically simulated. This framework opens up a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices or linear optical systems.« less
Cosmic acceleration and the helicity-0 graviton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved.more » Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.« less
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Influence of geometry variations on the gravitational focusing of timelike geodesic congruences
NASA Astrophysics Data System (ADS)
Seriu, Masafumi
2015-10-01
We derive a set of equations describing the linear response of the convergence properties of a geodesic congruence to arbitrary geometry variations. It is a combination of equations describing the deviations from the standard Raychaudhuri-type equations due to the geodesic shifts and an equation describing the geodesic shifts due to the geometry variations. In this framework, the geometry variations, which can be chosen arbitrarily, serve as probes to investigate the gravitational contraction processes from various angles. We apply the obtained framework to the case of conformal geometry variations, characterized by an arbitrary function f (x ), and see that the formulas get simplified to a great extent. We investigate the response of the convergence properties of geodesics in the latest phase of gravitational contractions by restricting the class of conformal geometry variations to the one satisfying the strong energy condition. We then find out that in the final stage, f and D .D f control the overall contraction behavior and that the contraction rate gets larger when f is negative and |f | is so large as to overwhelm |D .D f |. (Here D .D is the Laplacian operator on the spatial hypersurfaces orthogonal to the geodesic congruence in concern.) To get more concrete insights, we also apply the framework to the time-reversed Friedmann-Robertson-Walker model as the simplest case of the singularity formations.
Bounding the Failure Probability Range of Polynomial Systems Subject to P-box Uncertainties
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2012-01-01
This paper proposes a reliability analysis framework for systems subject to multiple design requirements that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bernstein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of failure probabilities. The offset between this bounding interval and the actual failure probability range can be made arbitrarily tight with additional computational effort.
Cost of remembering a bit of information
NASA Astrophysics Data System (ADS)
Chiuchiù; , D.; López-Suárez, M.; Neri, I.; Diamantini, M. C.; Gammaitoni, L.
2018-05-01
In 1961, Landauer [R. Landauer, IBM J. Res. Develop. 5, 183 (1961), 10.1147/rd.53.0183] pointed out that resetting a binary memory requires a minimum energy of kBT ln(2 ) . However, once written, any memory is doomed to lose its content if no action is taken. To avoid memory losses, a refresh procedure is periodically performed. We present a theoretical model and an experiment on a microelectromechanical system to evaluate the minimum energy required to preserve one bit of information over time. Two main conclusions are drawn: (i) in principle, the energetic cost to preserve information for a fixed time duration with a given error probability can be arbitrarily reduced if the refresh procedure is performed often enough, and (ii) the Heisenberg uncertainty principle sets an upper bound on the memory lifetime.
NASA Technical Reports Server (NTRS)
Smith, P.
1986-01-01
The Pilot Climate Data System (PCDS) was designed to support a variety of users that have been arbitrarily categorized into four groups: researchers, data producers, occasional users, and management. The expanding capabilities of the system are attracting the attention of both academic and other scientific institutions worldwide. Highlighted by progress in networking capabilities, hardware acquisitions, software developments, data set additions, and tutorial developments, exciting advances have taken place since the First PCDS Workshop. In the plans for the 1986 fiscal year, recommendations from an ad hoc users' group meeting in May 1985 and from the First PCDS workshop are apparent. This year's plans are listed, along with comments made at the users' group meeting. Although the PCDS is presently considered to be in a developmental phase, plans for making the transition to an operational phase are being implemented.
Global cosmological dynamics for the scalar field representation of the modified Chaplygin gas
NASA Astrophysics Data System (ADS)
Uggla, Claes
2013-09-01
In this paper we investigate the global dynamics for the minimally coupled scalar field representation of the modified Chaplygin gas in the context of flat Friedmann-Lemaître-Robertson Walker cosmology. The tool for doing this is a new set of bounded variables that lead to a regular dynamical system. It is shown that the exact modified Chaplygin gas perfect fluid solution appears as a straight line in the associated phase plane. It is also shown that no other solutions stay close to this solution during their entire temporal evolution, but that there exists an open subset of solutions that stay arbitrarily close during an intermediate time interval, and into the future in the case when the scalar field potential exhibits a global minimum.
Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system
NASA Astrophysics Data System (ADS)
Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping
2017-12-01
This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
Robust MST-Based Clustering Algorithm.
Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing
2018-06-01
Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.
Verification of unfold error estimates in the UFO code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have anmore » imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.« less
OASIS: A Data Fusion System Optimized for Access to Distributed Archives
NASA Astrophysics Data System (ADS)
Berriman, G. B.; Kong, M.; Good, J. C.
2002-05-01
The On-Line Archive Science Information Services (OASIS) is accessible as a java applet through the NASA/IPAC Infrared Science Archive home page. It uses Geographical Information System (GIS) technology to provide data fusion and interaction services for astronomers. These services include the ability to process and display arbitrarily large image files, and user-controlled contouring, overlay regeneration and multi-table/image interactions. OASIS has been optimized for access to distributed archives and data sets. Its second release (June 2002) provides a mechanism that enables access to OASIS from "third-party" services and data providers. That is, any data provider who creates a query form to an archive containing a collection of data (images, catalogs, spectra) can direct the result files from the query into OASIS. Similarly, data providers who serve links to datasets or remote services on a web page can access all of these data with one instance of OASIS. In this was any data or service provider is given access to the full suite of capabilites of OASIS. We illustrate the "third-party" access feature with two examples: queries to the high-energy image datasets accessible from GSFC SkyView, and links to data that are returned from a target-based query to the NASA Extragalactic Database (NED). The second release of OASIS also includes a file-transfer manager that reports the status of multiple data downloads from remote sources to the client machine. It is a prototype for a request management system that will ultimately control and manage compute-intensive jobs submitted through OASIS to computing grids, such as request for large scale image mosaics and bulk statistical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, J; Ma, L
2015-06-15
Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beammore » numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.« less
Heat transfer of phase-change materials in two-dimensional cylindrical coordinates
NASA Technical Reports Server (NTRS)
Labdon, M. B.; Guceri, S. I.
1981-01-01
Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.
Nonlinear dynamics of the rock-paper-scissors game with mutations.
Toupo, Danielle F P; Strogatz, Steven H
2015-05-01
We analyze the replicator-mutator equations for the rock-paper-scissors game. Various graph-theoretic patterns of mutation are considered, ranging from a single unidirectional mutation pathway between two of the species, to global bidirectional mutation among all the species. Our main result is that the coexistence state, in which all three species exist in equilibrium, can be destabilized by arbitrarily small mutation rates. After it loses stability, the coexistence state gives birth to a stable limit cycle solution created in a supercritical Hopf bifurcation. This attracting periodic solution exists for all the mutation patterns considered, and persists arbitrarily close to the limit of zero mutation rate and a zero-sum game.
Theory of the fundamental laser linewidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, P.; Milonni, P.W.; Sundaram, B.
1991-08-01
The theory of the laser linewidth is formulated to account for arbitrarily large output couplings and spatial hole burning. We show explicitly that the linewidth can be interpreted in terms of either spontaneous-emission noise or the amplification of vacuum field modes leaking into the cavity, depending on the ordering of operators in the correlation function determining the laser spectrum. This allows us to derive the Petermann {ital K} factor associated with excess spontaneous-emission noise'' in a physically transparent and mathematically simple way, without the need to introduce adjoint modes of the resonator. It also allows us to straightforwardly include spatial-hole-burningmore » effects, which are found to increase the {ital K} factor and the linewidth in high-gain systems appreciably.« less
On the Modeling of Shells in Multibody Dynamics
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.
2000-01-01
Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.
Nonlinear control for a class of hydraulic servo system.
Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong
2004-11-01
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.
Non-thermal transitions in a model inspired by moral decisions
NASA Astrophysics Data System (ADS)
Alamino, Roberto C.
2016-08-01
This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget’s ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.
A Distributed Algorithm for Economic Dispatch Over Time-Varying Directed Networks With Delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Lu, Jie; Wu, Di
In power system operation, economic dispatch problem (EDP) is designed to minimize the total generation cost while meeting the demand and satisfying generator capacity limits. This paper proposes an algorithm based on the gradient-push method to solve the EDP in a distributed manner over communication networks potentially with time-varying topologies and communication delays. It has been shown that the proposed method is guaranteed to solve the EDP if the time-varying directed communication network is uniformly jointly strongly connected. Moreover, the proposed algorithm is also able to handle arbitrarily large but bounded time delays on communication links. Numerical simulations are usedmore » to illustrate and validate the proposed algorithm.« less
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1983-01-01
Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.
Investment under Uncertainty with Manager-Shareholder Conflict
NASA Astrophysics Data System (ADS)
Shibata, Takashi; Nishihara, Michi
2009-09-01
This paper examines investment timing by the manager in a decentralized firm in the presence of asymmetric information. In particular, we extend the agency problem in a real options model to incorporate an audit technology which allows the owner, at a cost, to verify private information. The implied investment triggers include those in three related papers: standard full information model (e.g., McDonald and Siegel, 1986); Grenadier and Wang (2005); Shibata (2009). An increase in the penalty for the manager's false report always reduces inefficiency in the investment triggers, while it does not necessarily reduce inefficiency in the total social welfare. Most importantly, however, the full information investment triggers and total social welfare can be approximated arbitrarily closely by making the penalty sufficiently large.
The fractional Fourier transform and applications
NASA Technical Reports Server (NTRS)
Bailey, David H.; Swarztrauber, Paul N.
1991-01-01
This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.
NASA Astrophysics Data System (ADS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1983-08-01
Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.
Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.
Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A
2012-06-29
Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.
NASA Astrophysics Data System (ADS)
Taylor, M. B.
2009-09-01
The new plotting functionality in version 2.0 of STILTS is described. STILTS is a mature and powerful package for all kinds of table manipulation, and this version adds facilities for generating plots from one or more tables to its existing wide range of non-graphical capabilities. 2- and 3-dimensional scatter plots and 1-dimensional histograms may be generated using highly configurable style parameters. Features include multiple dataset overplotting, variable transparency, 1-, 2- or 3-dimensional symmetric or asymmetric error bars, higher-dimensional visualization using color, and textual point labeling. Vector and bitmapped output formats are supported. The plotting options provide enough flexibility to perform meaningful visualization on datasets from a few points up to tens of millions. Arbitrarily large datasets can be plotted without heavy memory usage.
On a quantum particle in laser channels
NASA Astrophysics Data System (ADS)
Dik, A. V.; Frolov, E. N.; Dabagov, S. B.
2018-02-01
In this paper the effective potential describing interaction of a scalar quantum particle with arbitrary nonuniform laser field is derived for a wide spectrum of the particle energies. The presented method allows to take into account all the features of the effective potential for a scalar particle. The derived expression for effective potential for quantum particle has the same form as the one presented earlier for a classical particle. A special case for channeling of a quantum particle as well as accompanying channeling radiation in a field formed by two crossed plane laser waves is considered. It is shown that relativistic particles moving near the laser channel bottom should be examined as quantum ones at both arbitrarily large longitudinal energies and laser fields of accessible intensities.
Universal statistics of vortex tangles in three-dimensional random waves
NASA Astrophysics Data System (ADS)
Taylor, Alexander J.
2018-02-01
The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.
Locating arbitrarily time-dependent sound sources in three dimensional space in real time.
Wu, Sean F; Zhu, Na
2010-08-01
This paper presents a method for locating arbitrarily time-dependent acoustic sources in a free field in real time by using only four microphones. This method is capable of handling a wide variety of acoustic signals, including broadband, narrowband, impulsive, and continuous sound over the entire audible frequency range, produced by multiple sources in three dimensional (3D) space. Locations of acoustic sources are indicated by the Cartesian coordinates. The underlying principle of this method is a hybrid approach that consists of modeling of acoustic radiation from a point source in a free field, triangulation, and de-noising to enhance the signal to noise ratio (SNR). Numerical simulations are conducted to study the impacts of SNR, microphone spacing, source distance and frequency on spatial resolution and accuracy of source localizations. Based on these results, a simple device that consists of four microphones mounted on three mutually orthogonal axes at an optimal distance, a four-channel signal conditioner, and a camera is fabricated. Experiments are conducted in different environments to assess its effectiveness in locating sources that produce arbitrarily time-dependent acoustic signals, regardless whether a sound source is stationary or moves in space, even toward behind measurement microphones. Practical limitations on this method are discussed.
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
Challenges and opportunities for integrating lake ecosystem modelling approaches
Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.
2010-01-01
A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.
SOURCE EXPLORER: Towards Web Browser Based Tools for Astronomical Source Visualization and Analysis
NASA Astrophysics Data System (ADS)
Young, M. D.; Hayashi, S.; Gopu, A.
2014-05-01
As a new generation of large format, high-resolution imagers come online (ODI, DECAM, LSST, etc.) we are faced with the daunting prospect of astronomical images containing upwards of hundreds of thousands of identifiable sources. Visualizing and interacting with such large datasets using traditional astronomical tools appears to be unfeasible, and a new approach is required. We present here a method for the display and analysis of arbitrarily large source datasets using dynamically scaling levels of detail, enabling scientists to rapidly move from large-scale spatial overviews down to the level of individual sources and everything in-between. Based on the recognized standards of HTML5+JavaScript, we enable observers and archival users to interact with their images and sources from any modern computer without having to install specialized software. We demonstrate the ability to produce large-scale source lists from the images themselves, as well as overlaying data from publicly available source ( 2MASS, GALEX, SDSS, etc.) or user provided source lists. A high-availability cluster of computational nodes allows us to produce these source maps on demand and customized based on user input. User-generated source lists and maps are persistent across sessions and are available for further plotting, analysis, refinement, and culling.
Vijaykumar, Archana; Saini, Ajay; Jawali, Narendra
2012-01-01
Background and aims Intra-species hybridization and incompletely homogenized ribosomal RNA repeat units have earlier been reported in 21 accessions of Vigna unguiculata from six subspecies using internal transcribed spacer (ITS) and 5S intergenic spacer (IGS) analyses. However, the relationships among these accessions were not clear from these analyses. We therefore assessed intra-species hybridization in the same set of accessions. Methodology Arbitrarily primed polymerase chain reaction (AP-PCR) analysis was carried out using 12 primers. The PCR products were resolved on agarose gels and the DNA fragments were scored manually. Genetic relationships were inferred by TREECON software using unweighted paired group method with arithmetic averages (UPGMA) cluster analysis evaluated by bootstrapping and compared with previous analyses based on ITS and 5S IGS. Principal results A total of 202 (86 %) fragments were found to be polymorphic and used for generating a genetic distance matrix. Twenty-one V. unguiculata accessions were grouped into three main clusters. The cultivated subspecies (var. unguiculata) and most of its wild progenitors (var. spontanea) were placed in cluster I along with ssp. pubescens and ssp. stenophylla. Whereas var. spontanea were grouped with ssp. alba and ssp. tenuis accessions in cluster II, ssp. alba and ssp. baoulensis were included in cluster III. Close affinities of ssp. unguiculata, ssp. alba and ssp. tenuis suggested inter-subspecies hybridization. Conclusions Multi-locus AP-PCR analysis reveals that intra-species hybridization is prevalent among V. unguiculata subspecies and suggests that grouping of accessions from two different subspecies is not solely due to the similarity in the ITS and 5S IGS regions but also due to other regions of the genome. PMID:22619698
Digital logic circuits in yeast with CRISPR-dCas9 NOR gates
Gander, Miles W.; Vrana, Justin D.; Voje, William E.; Carothers, James M.; Klavins, Eric
2017-01-01
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be ‘wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems. PMID:28541304
A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex
Peck, J. R.
1994-01-01
This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes. PMID:8070669
Self-similar solutions of stationary Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Shi, Zuoshunhua
2018-02-01
In this paper, we mainly study the existence of self-similar solutions of stationary Navier-Stokes equations for dimension n = 3 , 4. For n = 3, if the external force is axisymmetric, scaling invariant, C 1 , α continuous away from the origin and small enough on the sphere S2, we shall prove that there exists a family of axisymmetric self-similar solutions which can be arbitrarily large in the class Cloc3 , α (R3 0). Moreover, for axisymmetric external forces without swirl, corresponding to this family, the momentum flux of the flow along the symmetry axis can take any real number. However, there are no regular (U ∈ Cloc3 , α (R3 0)) axisymmetric self-similar solutions provided that the external force is a large multiple of some scaling invariant axisymmetric F which cannot be driven by a potential. In the case of dimension 4, there always exists at least one self-similar solution to the stationary Navier-Stokes equations with any scaling invariant external force in L 4 / 3 , ∞ (R4).
A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces
Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew
2008-01-01
In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946
Inclusive search for squark and gluino production in pp[over ] collisions at sqrt[s]=1.96 TeV.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-03-27
We report on a search for inclusive production of squarks and gluinos in pp[over ] collisions at sqrt[s]=1.96 TeV, in events with large missing transverse energy and multiple jets of hadrons in the final state. The study uses a CDF Run II data sample corresponding to 2 fb(-1) of integrated luminosity. The data are in good agreement with the standard model predictions, giving no evidence for any squark or gluino component. In an R-parity conserving minimal supergravity scenario with A(0)=0, mu<0, and tanbeta=5, 95% C.L. upper limits on the production cross sections in the range between 0.1 and 1 pb are obtained, depending on the squark and gluino masses considered. For gluino masses below 280 GeV/c(2), arbitrarily large squark masses are excluded at the 95% C.L., while for mass degenerate gluinos and squarks, masses below 392 GeV/c(2) are excluded at the 95% C.L.
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.
2015-12-16
Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less
NASA Technical Reports Server (NTRS)
Hunter, W. F.
1974-01-01
A derivation of the equations which govern the deformation of an arbitrarily curved and twisted space beam is presented. These equations differ from those of the classical theory in that (1) extensional effects are included; (2) the strain-displacement relations are derived; and (3) the expressions for the stress resultants are developed from the strain displacement relations. It is shown that the torsional stress resultant obtained by the classical approach is basically incorrect except when the cross-section is circular. The governing equations are given in the form of first-order differential equations. A numerical algorithm is given for obtaining the natural vibration characteristics and example problems are presented.
Dong, Bing; Booth, Martin J
2018-01-22
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.
Programmable quantum random number generator without postprocessing.
Nguyen, Lac; Rehain, Patrick; Sua, Yong Meng; Huang, Yu-Ping
2018-02-15
We demonstrate a viable source of unbiased quantum random numbers whose statistical properties can be arbitrarily programmed without the need for any postprocessing such as randomness distillation or distribution transformation. It is based on measuring the arrival time of single photons in shaped temporal modes that are tailored with an electro-optical modulator. We show that quantum random numbers can be created directly in customized probability distributions and pass all randomness tests of the NIST and Dieharder test suites without any randomness extraction. The min-entropies of such generated random numbers are measured close to the theoretical limits, indicating their near-ideal statistics and ultrahigh purity. Easy to implement and arbitrarily programmable, this technique can find versatile uses in a multitude of data analysis areas.
NASA Astrophysics Data System (ADS)
Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis
2017-10-01
We analyze arbitrarily varying classical-quantum wiretap channels. These channels are subject to two attacks at the same time: one passive (eavesdropping) and one active (jamming). We elaborate on our previous studies [H. Boche et al., Quantum Inf. Process. 15(11), 4853-4895 (2016) and H. Boche et al., Quantum Inf. Process. 16(1), 1-48 (2016)] by introducing a reduced class of allowable codes that fulfills a more stringent secrecy requirement than earlier definitions. In addition, we prove that non-symmetrizability of the legal link is sufficient for equality of the deterministic and the common randomness assisted secrecy capacities. Finally, we focus on analytic properties of both secrecy capacities: We completely characterize their discontinuity points and their super-activation properties.
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1976-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.
Naked singularities as particle accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Mandar; Joshi, Pankaj S.
We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energymore » of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.« less
The direct effects of gravity on the control and output matrices of controlled structure models
NASA Technical Reports Server (NTRS)
Rey, Daniel A.; Alexander, Harold L.; Crawley, Edward F.
1992-01-01
The effects of gravity on the dynamic performance of structural control actuators and sensors are dual forms of an additive perturbation that can attenuate or amplify the device response (input or output). The modal modeling of these perturbations is derived for the general case of arbitrarily oriented devices and arbitrarily oriented planes of deformation. A nondimensional sensitivity analysis to identify the circumstances under which the effects of gravity are important is presented. Results show that gravity effects become important when the product of the ratio of the normalized modal slope and the modal displacement is comparable to the ratio of the gravitational acceleration and the product of the beam length and the squared eigenfrequency for a given mode.
Quasi-Airy beams along tunable propagation trajectories and directions.
Qian, Yixian; Zhang, Site
2016-05-02
We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.
Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora
2017-11-01
In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.
Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films
NASA Astrophysics Data System (ADS)
Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.
2013-06-01
A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, D.W.; Selvin, S.; Close, E.R.
In studying geographic disease distributions, one normally compares rates of arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP). Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease-rates are constant. On the transformed map, the statistical analysis of the observed distribution ismore » greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be reliably calculated. The present report describes the first successful application of the DEMP technique to a sizeable ``real-world`` data set of epidemiologic interest. An improved DEMP algorithm [GUSE93, CLOS94] was applied to a data set previously analyzed with conventional techniques [SATA90, REYN91]. The results from the DEMP analysis and a conventional analysis are compared.« less
Calculating observables in inhomogeneous cosmologies. Part I: general framework
NASA Astrophysics Data System (ADS)
Hellaby, Charles; Walters, Anthony
2018-02-01
We lay out a general framework for calculating the variation of a set of cosmological observables, down the past null cone of an arbitrarily placed observer, in a given arbitrary inhomogeneous metric. The observables include redshift, proper motions, area distance and redshift-space density. Of particular interest are observables that are zero in the spherically symmetric case, such as proper motions. The algorithm is based on the null geodesic equation and the geodesic deviation equation, and it is tailored to creating a practical numerical implementation. The algorithm provides a method for tracking which light rays connect moving objects to the observer at successive times. Our algorithm is applied to the particular case of the Szekeres metric. A numerical implementation has been created and some results will be presented in a subsequent paper. Future work will explore the range of possibilities.
Relative Positioning Evaluation of a Tetrahedral Flight Formation’s Satellites
NASA Astrophysics Data System (ADS)
Mahler, W. F. C.; Rocco, E. M.; Santos, D. P. S.
2017-10-01
This paper presents a study about the tetrahedral layout of four satellites in a way that every half-orbital period this set groups together while flying in formation. The formation is calculated analyzing the problem from a geometrical perspective and disposed by precisely adjusting the orbital parameters of each satellite. The dynamic modelling considers the orbital motion equations. The results are analyzed, compared and discussed. A detection algorithm is used as flag to signal the regular tetrahedron’s exact moments of occurrence. To do so, the volume calculated during the simulation is compared to the real volume, based on the initial conditions of the exact moment of formation and respecting a tolerance. This tolerance value is stablished arbitrarily depending on the mission and the formation’s geometrical parameters. The simulations will run on a computational environment.
Many Molecular Properties from One Kernel in Chemical Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less
Robustness of the filamentation instability as shock mediator in arbitrarily oriented magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Alvaro, E. Perez
2011-08-15
The filamentation instability (sometimes also referred to as ''Weibel'') is a key process in many astrophysical scenario. In the Fireball model for gamma ray bursts, this instability is believed to mediate collisionless shock formation from the collision of two plasma shells. It has been known for long that a flow aligned magnetic field can completely cancel this instability. We show here that in the general case where there is an angle between the field and the flow, the filamentation instability can never be stabilized, regardless of the field strength. The presented model analyzes the stability of two symmetric counter-streaming coldmore » electron/proton plasma shells. Relativistic effects are accounted for, and various exact analytical results are derived. This result guarantees the occurrence of the instability in realistic settings fulfilling the cold approximation.« less
Degree of coupling and efficiency of energy converters far-from-equilibrium
NASA Astrophysics Data System (ADS)
Vroylandt, Hadrien; Lacoste, David; Verley, Gatien
2018-02-01
In this paper, we introduce a real symmetric and positive semi-definite matrix, which we call the non-equilibrium conductance matrix, and which generalizes the Onsager response matrix for a system in a non-equilibrium stationary state. We then express the thermodynamic efficiency in terms of the coefficients of this matrix using a parametrization similar to the one used near equilibrium. This framework, then valid arbitrarily far from equilibrium allows to set bounds on the thermodynamic efficiency by a universal function depending only on the degree of coupling between input and output currents. It also leads to new general power-efficiency trade-offs valid for macroscopic machines that are compared to trade-offs previously obtained from uncertainty relations. We illustrate our results on an unicycle heat to heat converter and on a discrete model of a molecular motor.
Bell Correlations in a Many-Body System with Finite Statistics
NASA Astrophysics Data System (ADS)
Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel
2017-10-01
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.
Bell Correlations in a Many-Body System with Finite Statistics.
Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel
2017-10-27
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.
Phase-Shifting Zernike Interferometer Wavefront Sensor
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.
2011-01-01
The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.
Numerical treatment of a geometrically nonlinear planar Cosserat shell model
NASA Astrophysics Data System (ADS)
Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea
2016-05-01
We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.
Numerical investigation of the spreading of self-excited stratified jets
NASA Technical Reports Server (NTRS)
Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.
1990-01-01
The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.
Output transformations and separation results for feedback linearisable delay systems
NASA Astrophysics Data System (ADS)
Cacace, F.; Conte, F.; Germani, A.
2018-04-01
The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.
Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.
Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor
2015-02-20
Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.
NASA Astrophysics Data System (ADS)
Page, Don N.
2018-01-01
In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .
Long time stability of small-amplitude Breathers in a mixed FPU-KG model
NASA Astrophysics Data System (ADS)
Paleari, Simone; Penati, Tiziano
2016-12-01
In the limit of small couplings in the nearest neighbor interaction, and small total energy, we apply the resonant normal form result of a previous paper of ours to a finite but arbitrarily large mixed Fermi-Pasta-Ulam Klein-Gordon chain, i.e., with both linear and nonlinear terms in both the on-site and interaction potential, with periodic boundary conditions. An existence and orbital stability result for Breathers of such a normal form, which turns out to be a generalized discrete nonlinear Schrödinger model with exponentially decaying all neighbor interactions, is first proved. Exploiting such a result as an intermediate step, a long time stability theorem for the true Breathers of the KG and FPU-KG models, in the anti-continuous limit, is proven.
Dynamic analysis of rotor flex-structure based on nonlinear anisotropic shell models
NASA Astrophysics Data System (ADS)
Bauchau, Olivier A.; Chiang, Wuying
1991-05-01
In this paper an anisotropic shallow shell model is developed that accommodates transverse shearing deformations and arbitrarily large displacements and rotations, but strains are assumed to remain small. Two kinematic models are developed, the first using two DOF to locate the direction of the normal to the shell's midplane, the second using three. The latter model allows for an automatic compatibility of the shell model with beam models. The shell model is validated by comparing its predictions with several benchmark problems. In actual helicopter rotor blade problems, the shell model of the flex structure is shown to give very different results shown compared to beam models. The lead-lag and torsion modes in particular are strongly affected, whereas flapping modes seem to be less affected.
Laser jetting of femto-liter metal droplets for high resolution 3D printed structures
NASA Astrophysics Data System (ADS)
Zenou, M.; Sa'Ar, A.; Kotler, Z.
2015-11-01
Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.
An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks
NASA Astrophysics Data System (ADS)
Li, Baolei; Li, Tinghua; Wu, Jun; Hui, Ming; Yuan, Gang; Zhu, Yongsheng
2017-01-01
Based on transformation acoustics, an arbitrary-shaped acoustic cloak capable of functioning as an information exchange-enabling internal cloak and a movement-allowing external cloak is presented. The general expressions of material parameters for the acoustic cloaks with arbitrarily conformal or non-conformal boundaries are derived, and then the performances of developed cloaks are validated by full-wave simulations. Finally, the different characteristics of the linear and nonlinear transformations-based cloaks are compared and analyzed. The proposed cloak could lead to wider applications beyond that of normal cloaks, since it effectively compensates the insufficiencies of traditional internal and external cloaks. Besides, this work also provides a new method to design bifunctional device and suggests an alternative way to make a large object invisible.
Waples, R S
2016-10-01
The relationship between life-history traits and the key eco-evolutionary parameters effective population size (Ne) and Ne/N is revisited for iteroparous species with overlapping generations, with a focus on the annual rate of adult mortality (d). Analytical methods based on populations with arbitrarily long adult lifespans are used to evaluate the influence of d on Ne, Ne/N and the factors that determine these parameters: adult abundance (N), generation length (T), age at maturity (α), the ratio of variance to mean reproductive success in one season by individuals of the same age (φ) and lifetime variance in reproductive success of individuals in a cohort (Vk•). Although the resulting estimators of N, T and Vk• are upwardly biased for species with short adult lifespans, the estimate of Ne/N is largely unbiased because biases in T are compensated for by biases in Vk• and N. For the first time, the contrasting effects of T and Vk• on Ne and Ne/N are jointly considered with respect to d and φ. A simple function of d and α based on the assumption of constant vital rates is shown to be a robust predictor (R(2)=0.78) of Ne/N in an empirical data set of life tables for 63 animal and plant species with diverse life histories. Results presented here should provide important context for interpreting the surge of genetically based estimates of Ne that has been fueled by the genomics revolution.
Self-gravitating black hole scalar wigs
NASA Astrophysics Data System (ADS)
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier
2017-07-01
It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
NASA Astrophysics Data System (ADS)
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
Methods, media, and systems for detecting attack on a digital processing device
Stolfo, Salvatore J.; Li, Wei-Jen; Keromylis, Angelos D.; Androulaki, Elli
2014-07-22
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.
High-velocity collision of particles around a rapidly rotating black hole
NASA Astrophysics Data System (ADS)
Harada, T.
2014-03-01
We have derived a general formula for the centre-of-mass (CM) energy for the near-horizon collision of two general geodesic particles around a Kerr black hole. We have found that if the angular momentum of the particle satisfies the critical condition, the CM energy can be arbitrarily high. We have then applied the formula to the collision of a particle orbiting an innermost stable circular orbit (ISCO) and another generic particle near the horizon, and found that the CM energy is arbitrarily high if we take the maximal limit of the black hole spin. In view of the astrophysical significance of the ISCO, this implies that particles can collide around a rapidly rotating black hole with a very high CM energy without any artificial fine-tuning. We have next applied the formula to the collision of general inclined geodesic particles and shown that in the direct collision scenario, the collision with an arbitrarily high CM energy can occur near the horizon of maximally rotating black holes, not only at the equator but also on a belt centred at the equator between two latitudes. This is also true in the scenario through the collision of a last stable orbit particle. This strongly suggests that if signals due to high-energy collision are to be observed, such signals will be generated primarily on this belt.
Methods, media, and systems for detecting attack on a digital processing device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolfo, Salvatore J.; Li, Wei-Jen; Keromytis, Angelos D.
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document tomore » the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.« less
A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG
Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng
2017-01-01
In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203
On the Relationship between Variational Level Set-Based and SOM-Based Active Contours
Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad
2015-01-01
Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736
Real-time quasi-3D tomographic reconstruction
NASA Astrophysics Data System (ADS)
Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.
2018-06-01
Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.
Predictive Rate-Distortion for Infinite-Order Markov Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2016-06-01
Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.
Instability of enclosed horizons
NASA Astrophysics Data System (ADS)
Kay, Bernard S.
2015-03-01
We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
Pettini, Marco; Casetti, Lapo; Cerruti-Sola, Monica; Franzosi, Roberto; Cohen, E G D
2005-03-01
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond
NASA Astrophysics Data System (ADS)
Pettini, Marco; Casetti, Lapo; Cerruti-Sola, Monica; Franzosi, Roberto; Cohen, E. G. D.
2005-03-01
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.
Quantum And Relativistic Protocols For Secure Multi-Party Computation
NASA Astrophysics Data System (ADS)
Colbeck, Roger
2009-11-01
After a general introduction, the thesis is divided into four parts. In the first, we discuss the task of coin tossing, principally in order to highlight the effect different physical theories have on security in a straightforward manner, but, also, to introduce a new protocol for non-relativistic strong coin tossing. This protocol matches the security of the best protocol known to date while using a conceptually different approach to achieve the task. In the second part variable bias coin tossing is introduced. This is a variant of coin tossing in which one party secretly chooses one of two biased coins to toss. It is shown that this can be achieved with unconditional security for a specified range of biases, and with cheat-evident security for any bias. We also discuss two further protocols which are conjectured to be unconditionally secure for any bias. The third section looks at other two-party secure computations for which, prior to our work, protocols and no-go theorems were unknown. We introduce a general model for such computations, and show that, within this model, a wide range of functions are impossible to compute securely. We give explicit cheating attacks for such functions. In the final chapter we discuss the task of expanding a private random string, while dropping the usual assumption that the protocol's user trusts her devices. Instead we assume that all quantum devices are supplied by an arbitrarily malicious adversary. We give two protocols that we conjecture securely perform this task. The first allows a private random string to be expanded by a finite amount, while the second generates an arbitrarily large expansion of such a string.
Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.
Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E
2017-07-01
We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.
NASA Astrophysics Data System (ADS)
Enciso, Alberto; Poyato, David; Soler, Juan
2018-05-01
Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness properties for these sequences of approximate solutions. Some of the parts of the proof are of independent interest.
Flexible metasurface black nickel with stepped nanopillars.
Qian, Qinyu; Yan, Ying; Wang, Chinhua
2018-03-15
We report on a monolithic, all-metallic, and flexible metasurface perfect absorber [black nickel (Ni)] based on coupled Mie resonances originated from vertically stepped Ni nanopillars homoepitaxially grown on an Ni substrate. Coupled Mie resonances are generated from Ni nanopillars with different sizes such that Mie resonances of the stepped two sets of Ni nanopillars occur complementarily at different wavelengths to realize polarization-independent broadband absorption over the entire visible wavelength band (400-760 nm) within an ultra-thin surface layer of only 162 nm thick in total. Two-step double-beam interference lithography and electroplating are utilized to fabricate the proposed monolithic metasurface that can be arbitrarily bent and pressed. A black nickel metasurface is experimentally demonstrated in which an average polarization-independent absorption of 0.972 (0.961, experiment) in the entire visible band is achieved and remains 0.838 (0.815, experiment) when the incident angle increases to 70°.
A low-cost spectrometer for NMR measurements in the Earth's magnetic field
NASA Astrophysics Data System (ADS)
Michal, Carl A.
2010-10-01
We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.
Effects of rooting via out-groups on in-group topology in phylogeny.
Ackerman, Margareta; Brown, Daniel G; Loker, David
2014-01-01
Users of phylogenetic methods require rooted trees, because the direction of time depends on the placement of the root. While phylogenetic trees are typically rooted by using an out-group, this mechanism is inappropriate when the addition of an out-group changes the in-group topology. We perform a formal analysis of phylogenetic algorithms under the inclusion of distant out-groups. It turns out that linkage-based algorithms (including UPGMA) and a class of bisecting methods do not modify the topology of the in-group when an out-group is included. By contrast, the popular neighbour joining algorithm fails this property in a strong sense: every data set can have its structure destroyed by some arbitrarily distant outlier. Furthermore, including multiple outliers can lead to an arbitrary topology on the in-group. The standard rooting approach that uses out-groups may be fundamentally unsuited for neighbour joining.
Nonlocality distillation and postquantum theories with trivial communication complexity.
Brunner, Nicolas; Skrzypczyk, Paul
2009-04-24
We first present a protocol for deterministically distilling nonlocality, building upon a recent result of Forster et al. [Phys. Rev. Lett. 102, 120401 (2009)10.1103/PhysRevLett.102.120401]. Our protocol, which is optimal for two-copy distillation, works efficiently for a specific class of postquantum nonlocal boxes, which we term correlated nonlocal boxes. In the asymptotic limit, all correlated nonlocal boxes are distilled to the maximally nonlocal box of Popescu and Rohrlich. Then, taking advantage of a result of Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006)10.1103/PhysRevLett.96.250401] we show that all correlated nonlocal boxes make communication complexity trivial, and therefore appear very unlikely to exist in nature. Astonishingly, some of these nonlocal boxes are arbitrarily close to the set of classical correlations. This result therefore gives new insight to the problem of why quantum nonlocality is limited.
Long sequence correlation coprocessor
NASA Astrophysics Data System (ADS)
Gage, Douglas W.
1994-09-01
A long sequence correlation coprocessor (LSCC) accelerates the bitwise correlation of arbitrarily long digital sequences by calculating in parallel the correlation score for 16, for example, adjacent bit alignments between two binary sequences. The LSCC integrated circuit is incorporated into a computer system with memory storage buffers and a separate general purpose computer processor which serves as its controller. Each of the LSCC's set of sequential counters simultaneously tallies a separate correlation coefficient. During each LSCC clock cycle, computer enable logic associated with each counter compares one bit of a first sequence with one bit of a second sequence to increment the counter if the bits are the same. A shift register assures that the same bit of the first sequence is simultaneously compared to different bits of the second sequence to simultaneously calculate the correlation coefficient by the different counters to represent different alignments of the two sequences.
An arbitrary-order staggered time integrator for the linear acoustic wave equation
NASA Astrophysics Data System (ADS)
Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo
2018-02-01
We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.
Conformal manifolds: ODEs from OPEs
NASA Astrophysics Data System (ADS)
Behan, Connor
2018-03-01
The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.
NASA Astrophysics Data System (ADS)
Steffen, Julien; Hartke, Bernd
2017-10-01
Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Meneghini, R.
1978-01-01
A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.
NASA Technical Reports Server (NTRS)
Hoge, F. E.
1982-01-01
A conceptual method is developed to deduce rapidly the spectral extinction coefficient of fluorescent, highly absorbing liquids, such as crude or refined petroleum oils. The technique offers the advantage of only requiring one laser wavelength and a single experimental assembly and execution for any specific fluorescent liquid. The liquid is inserted into an extremely thin wedge-shaped cavity for stimulation by a laser from one side and flurescence measurement on the other side by a monochromator system. For each arbitrarily selected extinction wavelength, the wedge is driven slowly to increasing thicknesses until the fluorescence extinguishes. The fluorescence as a function of wedge thickness permits a determination of the extinction coefficient using an included theoretical model. When the monochromator is set to the laser emission wavelength, the extinction coefficient is determined using the usual on-wavelength signal extinction procedure.
Decentralized Observer with a Consensus Filter for Distributed Discrete-Time Linear Systems
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Mandic, Milan
2011-01-01
This paper presents a decentralized observer with a consensus filter for the state observation of a discrete-time linear distributed systems. In this setup, each agent in the distributed system has an observer with a model of the plant that utilizes the set of locally available measurements, which may not make the full plant state detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state estimate of each agent with its neighbors' estimates. We assume that the communication graph is connected for all times as well as the sensing graph. It is proven that the state estimates of the proposed observer asymptotically converge to the actual plant states under arbitrarily changing, but connected, communication and sensing topologies. As a byproduct of this research, we also obtained a result on the location of eigenvalues, the spectrum, of the Laplacian for a family of graphs with self-loops.
Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu
2018-06-01
This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.
Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C
2009-02-01
Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.
Thermodynamics of Computational Copying in Biochemical Systems
NASA Astrophysics Data System (ADS)
Ouldridge, Thomas E.; Govern, Christopher C.; ten Wolde, Pieter Rein
2017-04-01
Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics.
General gauge mediation at the weak scale
Knapen, Simon; Redigolo, Diego; Shih, David
2016-03-09
We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds onmore » all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to m h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.« less
Experimental loss-tolerant quantum coin flipping
Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang
2011-01-01
Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication. PMID:22127057
Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.
1981-01-01
Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.
Biomolecular surface construction by PDE transform
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2011-01-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140
A New Source Biasing Approach in ADVANTG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Mosher, Scott W
2012-01-01
The ADVANTG code has been developed at Oak Ridge National Laboratory to generate biased sources and weight window maps for MCNP using the CADIS and FW-CADIS methods. In preparation for an upcoming RSICC release, a new approach for generating a biased source has been developed. This improvement streamlines user input and improves reliability. Previous versions of ADVANTG generated the biased source from ADVANTG input, writing an entirely new general fixed-source definition (SDEF). Because volumetric sources were translated into SDEF-format as a finite set of points, the user had to perform a convergence study to determine whether the number of sourcemore » points used accurately represented the source region. Further, the large number of points that must be written in SDEF-format made the MCNP input and output files excessively long and difficult to debug. ADVANTG now reads SDEF-format distributions and generates corresponding source biasing cards, eliminating the need for a convergence study. Many problems of interest use complicated source regions that are defined using cell rejection. In cell rejection, the source distribution in space is defined using an arbitrarily complex cell and a simple bounding region. Source positions are sampled within the bounding region but accepted only if they fall within the cell; otherwise, the position is resampled entirely. When biasing in space is applied to sources that use rejection sampling, current versions of MCNP do not account for the rejection in setting the source weight of histories, resulting in an 'unfair game'. This problem was circumvented in previous versions of ADVANTG by translating volumetric sources into a finite set of points, which does not alter the mean history weight ({bar w}). To use biasing parameters without otherwise modifying the original cell-rejection SDEF-format source, ADVANTG users now apply a correction factor for {bar w} in post-processing. A stratified-random sampling approach in ADVANTG is under development to automatically report the correction factor with estimated uncertainty. This study demonstrates the use of ADVANTG's new source biasing method, including the application of {bar w}.« less
Multiple-Event Seismic Location Using the Markov-Chain Monte Carlo Technique
NASA Astrophysics Data System (ADS)
Myers, S. C.; Johannesson, G.; Hanley, W.
2005-12-01
We develop a new multiple-event location algorithm (MCMCloc) that utilizes the Markov-Chain Monte Carlo (MCMC) method. Unlike most inverse methods, the MCMC approach produces a suite of solutions, each of which is consistent with observations and prior estimates of data and model uncertainties. Model parameters in MCMCloc consist of event hypocenters, and travel-time predictions. Data are arrival time measurements and phase assignments. Posteriori estimates of event locations, path corrections, pick errors, and phase assignments are made through analysis of the posteriori suite of acceptable solutions. Prior uncertainty estimates include correlations between travel-time predictions, correlations between measurement errors, the probability of misidentifying one phase for another, and the probability of spurious data. Inclusion of prior constraints on location accuracy allows direct utilization of ground-truth locations or well-constrained location parameters (e.g. from InSAR) that aid in the accuracy of the solution. Implementation of a correlation structure for travel-time predictions allows MCMCloc to operate over arbitrarily large geographic areas. Transition in behavior between a multiple-event locator for tightly clustered events and a single-event locator for solitary events is controlled by the spatial correlation of travel-time predictions. We test the MCMC locator on a regional data set of Nevada Test Site nuclear explosions. Event locations and origin times are known for these events, allowing us to test the features of MCMCloc using a high-quality ground truth data set. Preliminary tests suggest that MCMCloc provides excellent relative locations, often outperforming traditional multiple-event location algorithms, and excellent absolute locations are attained when constraints from one or more ground truth event are included. When phase assignments are switched, we find that MCMCloc properly corrects the error when predicted arrival times are separated by several seconds. In cases where the predicted arrival times are within the combined uncertainty of prediction and measurement errors, MCMCloc determines the probability of one or the other phase assignment and propagates this uncertainty into all model parameters. We find that MCMCloc is a promising method for simultaneously locating large, geographically distributed data sets. Because we incorporate prior knowledge on many parameters, MCMCloc is ideal for combining trusted data with data of unknown reliability. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, Contribution UCRL-ABS-215048
Surface code quantum communication.
Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L
2010-05-07
Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.
NASA Astrophysics Data System (ADS)
Vela Vela, Luis; Sanchez, Raul; Geiger, Joachim
2018-03-01
A method is presented to obtain initial conditions for Smoothed Particle Hydrodynamic (SPH) scenarios where arbitrarily complex density distributions and low particle noise are needed. Our method, named ALARIC, tampers with the evolution of the internal variables to obtain a fast and efficient profile evolution towards the desired goal. The result has very low levels of particle noise and constitutes a perfect candidate to study the equilibrium and stability properties of SPH/SPMHD systems. The method uses the iso-thermal SPH equations to calculate hydrodynamical forces under the presence of an external fictitious potential and evolves them in time with a 2nd-order symplectic integrator. The proposed method generates tailored initial conditions that perform better in many cases than those based on purely crystalline lattices, since it prevents the appearance of anisotropies.
Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei
2018-05-01
Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.
A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong
2018-03-01
A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.
Designing broad phononic band gaps for in-plane modes
NASA Astrophysics Data System (ADS)
Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong
2018-03-01
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.
Ultrafast propagation of Schroedinger waves in absorbing media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, F.; Muga, J.G.; Ruschhaupt, A.
2004-02-01
We show that the temporal peak of a quantum wave may arrive at different locations simultaneously in an absorbing medium. The arrival occurs at the lifetime of the particle in the medium from the instant when a point source with a sharp onset is turned on. We also identify other characteristic times. In particular, the 'traversal' or 'Buettiker-Landauer' time (which grows linearly with the distance to the source) for the Hermitian, non-absorbing case is substituted by several characteristic quantities in the absorbing case. The simultaneous arrival due to absorption, unlike the Hartman effect, occurs for carrier frequencies under or abovemore » the cutoff, and for arbitrarily large distances. It holds also in a relativistic generalization but limited by causality. A possible physical realization is proposed by illuminating a two-level atom with a detuned laser.« less
Implicit method for the computation of unsteady flows on unstructured grids
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1995-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-10-19
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.
Review and status of sonic boom penetration into the ocean.
Sparrow, Victor W
2002-01-01
Since the 1970 Sonic Boom Symposium, held at the ASA's 80th meeting in Houston, TX, substantial progress has been made in understanding the penetration of sonic booms into the ocean. The state of the art at that time was documented by J. C. Cook, T. Goforth, and R. K. Cook [J. Acoust. Soc. Am. 51, 729-741 (1972)]. Since then, additional experiments have been performed which corroborate Cook's and Sawyers' theory for sonic boom penetration into a flat ocean surface. In addition, computational simulations have validated that theory and extended the work to include arbitrarily shaped waveforms penetrating flat ocean surfaces. Further numerical studies have investigated realistic ocean surfaces including large-scale ocean swell. Research has also been performed on the effects of ocean inhomogeneities due to bubble plumes. This paper provides a brief overview of these developments.
Supervised self-organization of homogeneous swarms using ergodic projections of Markov chains.
Chattopadhyay, Ishanu; Ray, Asok
2009-12-01
This paper formulates a self-organization algorithm to address the problem of global behavior supervision in engineered swarms of arbitrarily large population sizes. The swarms considered in this paper are assumed to be homogeneous collections of independent identical finite-state agents, each of which is modeled by an irreducible finite Markov chain. The proposed algorithm computes the necessary perturbations in the local agents' behavior, which guarantees convergence to the desired observed state of the swarm. The ergodicity property of the swarm, which is induced as a result of the irreducibility of the agent models, implies that while the local behavior of the agents converges to the desired behavior only in the time average, the overall swarm behavior converges to the specification and stays there at all times. A simulation example illustrates the underlying concept.
LES of a ducted propeller with rotor and stator in crashback
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2012-11-01
A sliding interface method is developed for large eddy simulation (LES) of flow past ducted propellers with both rotor and stator. The method is developed for arbitrarily shaped unstructured elements on massively parallel computing platforms. Novel algorithms for searching sliding elements, interpolation at the sliding interface, and data structures for message passing are developed. We perform LES of flow past a ducted propeller with stator blades in the crashback mode of operation, where a marine vessel is quickly decelerated by rotating the propeller in reverse. The unsteady loads predicted by LES are in good agreement with experiments. A highly unsteady vortex ring is observed outside the duct. High pressure fluctuations are observed near the blade tips, which significantly contribute to the side-force. This work is supported by the United States Office of Naval Research.
Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.
2013-09-04
The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less
On the wavelet optimized finite difference method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1994-01-01
When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.
Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy
Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2015-12-01
We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibriummore » quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.« less
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri
2015-01-01
A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.
Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.
Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P
2016-11-11
We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.
A New Method for Incremental Testing of Finite State Machines
NASA Technical Reports Server (NTRS)
Pedrosa, Lehilton Lelis Chaves; Moura, Arnaldo Vieira
2010-01-01
The automatic generation of test cases is an important issue for conformance testing of several critical systems. We present a new method for the derivation of test suites when the specification is modeled as a combined Finite State Machine (FSM). A combined FSM is obtained conjoining previously tested submachines with newly added states. This new concept is used to describe a fault model suitable for incremental testing of new systems, or for retesting modified implementations. For this fault model, only the newly added or modified states need to be tested, thereby considerably reducing the size of the test suites. The new method is a generalization of the well-known W-method and the G-method, but is scalable, and so it can be used to test FSMs with an arbitrarily large number of states.
Accounting for partiality in serial crystallography using ray-tracing principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.
Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialitiesmore » based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.« less
2011-01-01
Background The Prospective Space-Time scan statistic (PST) is widely used for the evaluation of space-time clusters of point event data. Usually a window of cylindrical shape is employed, with a circular or elliptical base in the space domain. Recently, the concept of Minimum Spanning Tree (MST) was applied to specify the set of potential clusters, through the Density-Equalizing Euclidean MST (DEEMST) method, for the detection of arbitrarily shaped clusters. The original map is cartogram transformed, such that the control points are spread uniformly. That method is quite effective, but the cartogram construction is computationally expensive and complicated. Results A fast method for the detection and inference of point data set space-time disease clusters is presented, the Voronoi Based Scan (VBScan). A Voronoi diagram is built for points representing population individuals (cases and controls). The number of Voronoi cells boundaries intercepted by the line segment joining two cases points defines the Voronoi distance between those points. That distance is used to approximate the density of the heterogeneous population and build the Voronoi distance MST linking the cases. The successive removal of edges from the Voronoi distance MST generates sub-trees which are the potential space-time clusters. Finally, those clusters are evaluated through the scan statistic. Monte Carlo replications of the original data are used to evaluate the significance of the clusters. An application for dengue fever in a small Brazilian city is presented. Conclusions The ability to promptly detect space-time clusters of disease outbreaks, when the number of individuals is large, was shown to be feasible, due to the reduced computational load of VBScan. Instead of changing the map, VBScan modifies the metric used to define the distance between cases, without requiring the cartogram construction. Numerical simulations showed that VBScan has higher power of detection, sensitivity and positive predicted value than the Elliptic PST. Furthermore, as VBScan also incorporates topological information from the point neighborhood structure, in addition to the usual geometric information, it is more robust than purely geometric methods such as the elliptic scan. Those advantages were illustrated in a real setting for dengue fever space-time clusters. PMID:21513556
Limits on amplification by Aharonov-Albert-Vaidman weak measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Tatsuhiko; Tanaka, Saki
2011-12-15
We analyze the amplification by the Aharonov-Albert-Vaidman weak quantum measurement on a Sagnac interferometer [Dixon et al., Phys. Rev. Lett. 102, 173601 (2009)] up to all orders of the coupling strength between the measured system and the measuring device. The amplifier transforms a small tilt of a mirror into a large transverse displacement of the laser beam. The conventional analysis has shown that the measured value is proportional to the weak value, so that the amplification can be made arbitrarily large in the cost of decreasing output laser intensity. It is shown that the measured displacement and the amplification factormore » are in fact not proportional to the weak value and rather vanish in the limit of infinitesimal output intensity. We derive the optimal overlap of the pre- and postselected states with which the amplification become maximum. We also show that the nonlinear effects begin to arise in the performed experiments so that any improvements in the experiment, typically with an amplification greater than 100, should require the nonlinear theory in translating the observed value to the original displacement.« less
Higher incidence of small Y chromosome in humans with trisomy 21 (Down syndrome).
Verma, R S; Huq, A; Madahar, C; Qazi, Q; Dosik, H
1982-09-01
The length of the Y chromosome was measured in 42 black patients with trisomy 21 (47,XY,+21) and a similar number of normal individuals of American black ancestry. The length of the Y was expressed as a function of Y/F ratio and arbitrarily classified into five groups using subjectively defined criteria as follows: very small, small, average, large, and very large. Thirty-eight % of the trisomy 21 patients had small or very small Ys compared to 2.38% of the controls (P less than 0.01). In both populations the size of the Y was not normally distributed. In the normals it was skewed to the left, whereas in the Downs the distribution was flat (platykurtic). A significantly higher incidence of Y length heteromorphisms was noted in the Down as compared to the normal black population. In the light of our current understanding that about one-third of all trisomy 21 patients are due to paternal nondisjunction, it may be tempting to speculate that males with small Y are at an increased risk for nondisjunction of the 21 chromosome.
Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie
2014-01-01
The study analyses the role of long-distance travel behaviours on the large-scale spatial spreading of directly transmitted infectious diseases, focusing on two different travel types in terms of the travellers travelling to a specific group or not. For this purpose, we have formulated and analysed a metapopulation model in which the individuals in each subpopulation are organised into a scale-free contact network. The long-distance travellers between the subpopulations will temporarily change the network structure of the destination subpopulation through the "merging effects (MEs)," which indicates that the travellers will be regarded as either connected components or isolated nodes in the contact network. The results show that the presence of the MEs has constantly accelerated the transmission of the diseases and aggravated the outbreaks compared to the scenario in which the diversity of the long-distance travel types is arbitrarily discarded. Sensitivity analyses show that these results are relatively constant regarding a wide range variation of several model parameters. Our study has highlighted several important causes which could significantly affect the spatiotemporal disease dynamics neglected by the present studies.
Micro-fabrication of a novel linear actuator
NASA Astrophysics Data System (ADS)
Jiang, Shuidong; Liu, Lei; Hou, Yangqing; Fang, Houfei
2017-04-01
The novel linear actuator is researched with light weight, small volume, low power consumption, fast response and relatively large displacement output. It can be used for the net surface control of large deployable mesh antennas, the tension precise adjustment of the controlled cable in the tension and tensile truss structure and many other applications. The structure and the geometry parameters are designed and analysed by finite element method in multi-physics coupling. Meantime, the relationship between input voltage and displacement output is computed, and the strength check is completed according to the stress distribution. Carbon fiber reinforced composite (CFRC), glass fiber reinforced composited (GFRC), and Lead Zirconium Titanate (PZT) materials are used to fabricate the actuator by using laser etching and others MEMS process. The displacement output is measured by the laser displacement sensor device at the input voltage range of DC0-180V. The response time is obtained by oscilloscope at the arbitrarily voltage in the above range. The nominal force output is measured by the PTR-1101 mechanics setup. Finally, the computed and test results are compared and analysed.
Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Larsson, Johan
2013-01-01
A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.
A numerical algorithm with preference statements to evaluate the performance of scientists.
Ricker, Martin
Academic evaluation committees have been increasingly receptive for using the number of published indexed articles, as well as citations, to evaluate the performance of scientists. It is, however, impossible to develop a stand-alone, objective numerical algorithm for the evaluation of academic activities, because any evaluation necessarily includes subjective preference statements. In a market, the market prices represent preference statements, but scientists work largely in a non-market context. I propose a numerical algorithm that serves to determine the distribution of reward money in Mexico's evaluation system, which uses relative prices of scientific goods and services as input. The relative prices would be determined by an evaluation committee. In this way, large evaluation systems (like Mexico's Sistema Nacional de Investigadores ) could work semi-automatically, but not arbitrarily or superficially, to determine quantitatively the academic performance of scientists every few years. Data of 73 scientists from the Biology Institute of Mexico's National University are analyzed, and it is shown that the reward assignation and academic priorities depend heavily on those preferences. A maximum number of products or activities to be evaluated is recommended, to encourage quality over quantity.
Controlled regular locomotion of algae cell microrobots.
Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing
2016-06-01
Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.
Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions
NASA Astrophysics Data System (ADS)
Rosset, Denis; Buscemi, Francesco; Liang, Yeong-Cherng
2018-04-01
We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation from one quantum channel into another one, by means of classically correlated preprocessing and postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is capable of storing quantum information, as opposed to memories that can be simulated by measurement and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of entanglement in quantum states (correlated spatially). As the set of conditions is complete, the corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified. Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum channel verification. As such, the tests we propose are intrinsically different from the usual process tomography, for which the probes of both the input and the output of the channel must be trusted. An explicit construction is provided and shown to be experimentally realizable, even in the presence of arbitrarily strong losses in the memory or detectors.
Hakeem, Rubina; Thomas, Jane; Badruddin, Salma H
2002-09-01
Food habits and nutrient density of diets of six groups of rural and urban school children aged 10-12 years were compared. Data were collected from three-day food records. In the UK, data were collected during October-November 1994 and in Pakistan during April-May 1995. Based on the apparent level of urbanism, the six groups were arbitrarily assigned urbanization rank 1-6. Patterns of their food and intake of nutrients were different from each other in various aspects and were not always associated with the apparent level of urbanism of the group. With urbanization, the intake of fat and sugar increased steadily. The intake of carbohydrate, fibre, riboflavin, and vitamin E decreased with urbanization. The intake of vitamin C, vitamin B12, and folates was higher among group 4, 5, and 6 than other groups. Due to various factors, in terms of micronutrient density, diets of various urban groups could have more differences than similarities. While these differences point toward the need for comprehensive nutrition education and community nutrition surveys, they also indicate the possibility of having healthy diets in urban settings.
Accurate quantum Z rotations with less magic
NASA Astrophysics Data System (ADS)
Landahl, Andrew; Cesare, Chris
2013-03-01
We present quantum protocols for executing arbitrarily accurate π /2k rotations of a qubit about its Z axis. Unlike reduced instruction set computing (RISC) protocols which use a two-step process of synthesizing high-fidelity ``magic'' states from which T = Z (π / 4) gates can be teleported and then compiling a sequence of adaptive stabilizer operations and T gates to approximate Z (π /2k) , our complex instruction set computing (CISC) protocol distills magic states for the Z (π /2k) gates directly. Replacing this two-step process with a single step results in substantial reductions in the number of gates needed. The key to our construction is a family of shortened quantum Reed-Muller codes of length 2 k + 2 - 1 , whose distillation threshold shrinks with k but is greater than 0.85% for k <= 6 . AJL and CC were supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Universal Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Fitzsimons, Joseph; Kashefi, Elham
2012-02-01
Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's inputs, outputs and computation remain private. Recently we proposed a universal unconditionally secure BQC scheme, based on the conceptual framework of the measurement-based quantum computing model, where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Here we present a refinement of the scheme which vastly expands the class of quantum circuits which can be directly implemented as a blind computation, by introducing a new class of resource states which we term dotted-complete graph states and expanding the set of single qubit states the client is required to prepare. These two modifications significantly simplify the overall protocol and remove the previously present restriction that only nearest-neighbor circuits could be implemented as blind computations directly. As an added benefit, the refined protocol admits a substantially more intuitive and simplified verification mechanism, allowing the correctness of a blind computation to be verified with arbitrarily small probability of error.
Streaming PCA with many missing entries.
DOT National Transportation Integrated Search
2015-12-01
This paper considers the problem of matrix completion when some number of the columns are : completely and arbitrarily corrupted, potentially by a malicious adversary. It is well-known that standard : algorithms for matrix completion can return arbit...
Autorino, Riccardo; Zargar, Homayoun; Mariano, Mirandolino B; Sanchez-Salas, Rafael; Sotelo, René J; Chlosta, Piotr L; Castillo, Octavio; Matei, Deliu V; Celia, Antonio; Koc, Gokhan; Vora, Anup; Aron, Monish; Parsons, J Kellogg; Pini, Giovannalberto; Jensen, James C; Sutherland, Douglas; Cathelineau, Xavier; Nuñez Bragayrac, Luciano A; Varkarakis, Ioannis M; Amparore, Daniele; Ferro, Matteo; Gallo, Gaetano; Volpe, Alessandro; Vuruskan, Hakan; Bandi, Gaurav; Hwang, Jonathan; Nething, Josh; Muruve, Nic; Chopra, Sameer; Patel, Nishant D; Derweesh, Ithaar; Champ Weeks, David; Spier, Ryan; Kowalczyk, Keith; Lynch, John; Harbin, Andrew; Verghese, Mohan; Samavedi, Srinivas; Molina, Wilson R; Dias, Emanuel; Ahallal, Youness; Laydner, Humberto; Cherullo, Edward; De Cobelli, Ottavio; Thiel, David D; Lagerkvist, Mikael; Haber, Georges-Pascal; Kaouk, Jihad; Kim, Fernando J; Lima, Estevao; Patel, Vipul; White, Wesley; Mottrie, Alexander; Porpiglia, Francesco
2015-07-01
Laparoscopic and robotic simple prostatectomy (SP) have been introduced with the aim of reducing the morbidity of the standard open technique. To report a large multi-institutional series of minimally invasive SP (MISP). Consecutive cases of MISP done for the treatment of bladder outlet obstruction (BOO) due to benign prostatic enlargement (BPE) between 2000 and 2014 at 23 participating institutions in the Americas and Europe were included in this retrospective analysis. Laparoscopic or robotic SP. Demographic data and main perioperative outcomes were gathered and analyzed. A multivariable analysis was conducted to identify factors associated with a favorable trifecta outcome, arbitrarily defined as a combination of the following postoperative events: International Prostate Symptom Score <8, maximum flow rate >15ml/s, and no perioperative complications. Overall, 1330 consecutive cases were analyzed, including 487 robotic (36.6%) and 843 laparoscopic (63.4%) SP cases. Median overall prostate volume was 100ml (range: 89-128). Median estimated blood loss was 200ml (range: 150-300). An intraoperative transfusion was required in 3.5% of cases, an intraoperative complication was recorded in 2.2% of cases, and the conversion rate was 3%. Median length of stay was 4 d (range: 3-5). On pathology, prostate cancer was found in 4% of cases. Overall postoperative complication rate was 10.6%, mostly of low grade. At a median follow-up of 12 mo, a significant improvement was observed for subjective and objective indicators of BOO. Trifecta outcome was not significantly influenced by the type of procedure (robotic vs laparoscopic; p=0.136; odds ratio [OR]: 1.6; 95% confidence interval [CI], 0.8-2.9), whereas operative time (p=0.01; OR: 0.9; 95% CI, 0.9-1.0) and estimated blood loss (p=0.03; OR: 0.9; 95% CI, 0.9-1.0) were the only two significant factors. Retrospective study design, lack of a control arm, and limited follow-up represent major limitations of the present analysis. This study provides the largest outcome analysis reported for MISP for BOO/BPE. These findings confirm that SP can be safely and effectively performed in a minimally invasive fashion in a variety of healthcare settings in which specific surgical expertise and technology is available. MISP can be considered a viable surgical treatment in cases of large prostatic adenomas. The use of robotic technology for this indication can be considered in centers that have a robotic program in place for other urologic indications. Analysis of a large data set from multiple institutions shows that surgical removal of symptomatic large prostatic adenomas can be carried out with good outcomes by using robot-assisted laparoscopy. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.
A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Tai H., E-mail: tdou@mednet.ucla.edu; Thomas, David H.; O'Connell, Dylan P.
2015-11-15
Purpose: To develop a technique that assesses the accuracy of the breathing phase-specific volume image generation process by patient-specific breathing motion model using the original free-breathing computed tomographic (CT) scans as ground truths. Methods: Sixteen lung cancer patients underwent a previously published protocol in which 25 free-breathing fast helical CT scans were acquired with a simultaneous breathing surrogate. A patient-specific motion model was constructed based on the tissue displacements determined by a state-of-the-art deformable image registration. The first image was arbitrarily selected as the reference image. The motion model was used, along with the free-breathing phase information of the originalmore » 25 image datasets, to generate a set of deformation vector fields that mapped the reference image to the 24 nonreference images. The high-pitch helically acquired original scans served as ground truths because they captured the instantaneous tissue positions during free breathing. Image similarity between the simulated and the original scans was assessed using deformable registration that evaluated the pointwise discordance throughout the lungs. Results: Qualitative comparisons using image overlays showed excellent agreement between the simulated images and the original images. Even large 2-cm diaphragm displacements were very well modeled, as was sliding motion across the lung–chest wall boundary. The mean error across the patient cohort was 1.15 ± 0.37 mm, and the mean 95th percentile error was 2.47 ± 0.78 mm. Conclusion: The proposed ground truth–based technique provided voxel-by-voxel accuracy analysis that could identify organ-specific or tumor-specific motion modeling errors for treatment planning. Despite a large variety of breathing patterns and lung deformations during the free-breathing scanning session, the 5-dimensionl CT technique was able to accurately reproduce the original helical CT scans, suggesting its applicability to a wide range of patients.« less
The baker’s map with a convex hole
NASA Astrophysics Data System (ADS)
Clark, Lyndsey; Hare, Kevin G.; Sidorov, Nikita
2018-07-01
We consider the baker’s map B on the unit square X and an open convex set which we regard as a hole. The survivor set is defined as the set of all points in X whose B-trajectories are disjoint from H. The main purpose of this paper is to study holes H for which (dimension traps) as well as those for which any periodic trajectory of B intersects (cycle traps). We show that any H which lies in the interior of X is not a dimension trap. This means that, unlike the doubling map and other one-dimensional examples, we can have for H whose Lebesgue measure is arbitrarily close to one. Also, we describe holes which are dimension or cycle traps, critical in the sense that if we consider a strictly convex subset, then the corresponding property in question no longer holds. We also determine such that for all convex H whose Lebesgue measure is less than δ. This paper may be seen as a first extension of our work begun in Clark (2016 Discrete Continuous Dyn. Syst. A 6 1249–69 Clark 2016 PhD Dissertation The University of Manchester; Glendinning and Sidorov 2015 Ergod. Theor. Dynam. Syst. 35 1208–28 Hare and Sidorov 2014 Mon.hefte Math. 175 347–65 Sidorov 2014 Acta Math. Hung. 143 298–312) to higher dimensions.
Economic decision making and the application of nonparametric prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2008-01-01
Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.
NASA Technical Reports Server (NTRS)
Stanfill, D. F.
1994-01-01
Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
Selecting a climate model subset to optimise key ensemble properties
NASA Astrophysics Data System (ADS)
Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.
2018-02-01
End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Teixeira, João
2018-01-01
Abstract Large‐scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid‐scale turbulence and convection—such as that they adjust instantaneously to changes in resolved‐scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary‐layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large‐scale models. Here we lay the theoretical foundations for an extended eddy‐diffusivity mass‐flux (EDMF) scheme that has explicit time‐dependence and memory of subgrid‐scale variables and is designed to represent all subgrid‐scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross‐sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large‐scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time‐dependent life cycle. PMID:29780442
Crustal structure of Central Sicily
NASA Astrophysics Data System (ADS)
Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo
2018-01-01
We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.
Thermodynamics of quantum systems with multiple conserved quantities
Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul
2016-01-01
Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems. PMID:27384384
Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces
NASA Astrophysics Data System (ADS)
Kamali, Seyedeh Mahsa; Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Faraon, Andrei
2016-05-01
Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multi-functional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymer substrate that locally modify near-infrared (λ=915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. The conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.
Stress analysis for structures with surface cracks
NASA Technical Reports Server (NTRS)
Bell, J. C.
1978-01-01
Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.
NASA Astrophysics Data System (ADS)
M. C. Sagis, Leonard
2001-03-01
In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.
Capacity estimation and verification of quantum channels with arbitrarily correlated errors.
Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie
2018-01-02
The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.
Interaction between a circular inclusion and an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Gupta, G. D.; Ratwani, M.
1975-01-01
The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.
A hyperspectral image projector for hyperspectral imagers
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.
2007-04-01
We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.
Mol, André; Dunn, Stanley M
2003-06-01
To assess the effect of the orientation of arbitrarily shaped bone chips on the correlation between radiographic estimates of bone loss and true mineral loss using digital subtraction radiography. Twenty arbitrarily shaped bone chips (dry weight 1-10 mg) were placed individually on the superior lingual aspect of the interdental alveolar bone of a dry dentate hemi-mandible. After acquiring the first baseline image, each chip was rotated 90 degrees and a second radiograph was captured. Follow-up images were created without the bone chips and after rotating the mandible 0, 1, 2, 4, and 6 degrees around a vertical axis. Aluminum step tablet intensities were used to normalize image intensities for each image pair. Follow-up images were registered and geometrically standardized using projective standardization. Bone chips were dry ashed and analyzed for calcium content using atomic absorption. No significant difference was found between the radiographic estimates of bone loss from the different bone chip orientations (Wilcoxon: P > 0.05). The correlation between the two series of estimates for all rotations was 0.93 (Spearman: P < 0.05). Linear regression analysis indicated that both correlates did not differ appreciably ( and ). It is concluded that the spatial orientation of arbitrarily shaped bone chips does not have a significant impact on quantitative estimates of changes in bone mass in digital subtraction radiography. These results were obtained in the presence of irreversible projection errors of up to six degrees and after application of projective standardization for image reconstruction and image registration.
NASA Astrophysics Data System (ADS)
Rojas, M.; de Souza, S. M.; Rojas, Onofre
2014-03-01
Typically two particles (spins) could be maximally entangled at zero temperature, and for a certain temperature the phenomenon of entanglement vanishes at the threshold temperature. For the Heisenberg coupled model or even the Ising model with a transverse magnetic field, one can observe some rise of entanglement even for a disentangled region at zero temperature. So we can understand this emergence of entanglement at finite temperature as being due to the mixing of some maximally entangled states with some other untangled states. Here, we present a simple one-dimensional Ising model with alternating Ising and Heisenberg spins in an arbitrarily oriented magnetic field, which can be mapped onto the classical Ising model with a magnetic field. This model does not show any evidence of entanglement at zero temperature, but surprisingly at finite temperature rise a pairwise thermal entanglement between two untangled spins at zero temperature when an arbitrarily oriented magnetic field is applied. This effect is a purely magnetic field, and the temperature dependence, as soon as the temperature increases, causes a small increase in concurrence, achieving its maximum at around 0.1. Even for long-range entanglement, a weak concurrence still survives. There are also some real materials that could serve as candidates that would exhibit this effect, such as Dy(NO3)(DMSO)2Cu(opba)(DMSO)2 [DMSO = dimethyl sulfoxide; opba = o-phenylenebis(oxamoto)] [J. Strečka, M. Hagiwara, Y. Han, T. Kida, Z. Honda, and M. Ikeda, Condens. Matter Phys. 15, 43002 (2012), 10.5488/CMP.15.43002].
What predicts the strength of simultaneous color contrast?
Ratnasingam, Sivalogeswaran; Anderson, Barton L.
2017-01-01
The perceived color of a uniform image patch depends not only on the spectral content of the light that reaches the eye but also on its context. One of the most extensively studied forms of context dependence is a simultaneous contrast display: a center-surround display containing a homogeneous target embedded in a homogenous surround. A number of models have been proposed to account for the chromatic transformations of targets induced by such surrounds, but they were typically derived in the restricted context of experiments using achromatic targets with surrounds that varied along the cardinal axes of color space. There is currently no theoretical consensus that predicts the target color that produces the largest perceived color difference for two arbitrarily chosen surround colors, or what surround would give the largest color induction for an arbitrarily chosen target. Here, we present a method for assessing simultaneous contrast that avoids some of the methodological issues that arise with nulling and matching experiments and diminishes the contribution of temporal adaption. Observers were presented with pairs of center-surround patterns and ordered them from largest to smallest in perceived dissimilarity. We find that the perceived difference for two arbitrarily chosen surrounds is largest when the target falls on the line connecting the two surrounds in color space. We also find that the magnitude of induction is larger for larger differences between chromatic targets and surrounds of the same hue. Our results are consistent with the direction law (Ekroll & Faul, 2012b), and with a generalization of Kirschmann's fourth law, even for viewing conditions that do not favor temporal adaptation. PMID:28245494
Prati, Gabriele; Pietrantoni, Luca
2013-01-01
The aim of the present study was to examine the comprehension of gesture in a situation in which the communicator cannot (or can only with difficulty) use verbal communication. Based on theoretical considerations, we expected to obtain higher semantic comprehension for emblems (gestures with a direct verbal definition or translation that is well known by all members of a group, or culture) compared to illustrators (gestures regarded as spontaneous and idiosyncratic and that do not have a conventional definition). Based on the extant literature, we predicted higher semantic specificity associated with arbitrarily coded and iconically coded emblems compared to intrinsically coded illustrators. Using a scenario of emergency evacuation, we tested the difference in semantic specificity between different categories of gestures. 138 participants saw 10 videos each illustrating a gesture performed by a firefighter. They were requested to imagine themselves in a dangerous situation and to report the meaning associated with each gesture. The results showed that intrinsically coded illustrators were more successfully understood than arbitrarily coded emblems, probably because the meaning of intrinsically coded illustrators is immediately comprehensible without recourse to symbolic interpretation. Furthermore, there was no significant difference between the comprehension of iconically coded emblems and that of both arbitrarily coded emblems and intrinsically coded illustrators. It seems that the difference between the latter two types of gestures was supported by their difference in semantic specificity, although in a direction opposite to that predicted. These results are in line with those of Hadar and Pinchas-Zamir (2004), which showed that iconic gestures have higher semantic specificity than conventional gestures.
ERIC Educational Resources Information Center
Smith, Frank
2001-01-01
Struggling students are often victimized by time constraints--arbitrarily imposed timetables for mastering material and meeting standards. People learn best from experience, not by information acquisition, skill development, rote memorization, or assessment. Reading, writing, arithmetic, scientific understanding, and civics require student…
NASA Astrophysics Data System (ADS)
Mannsfeld, S. C.; Fritz, T.
2004-02-01
The physical structure of organic-inorganic heteroepitaxial thin films is usually governed by a fine balance between weak molecule-molecule interactions and a weakly laterally varying molecule-substrate interaction potential. Therefore, in order to investigate the energetics of such a layer system one has to consider large molecular domains. So far, layer potential calculations for large domains of organic thin films on crystalline substrates were difficult to perform concerning the computational effort which stems from the vast number of atoms which have to be included. Here, we present a technique which enables the calculation of the molecule-substrate interaction potential for large molecular domains by utilizing potential energy grid files. This technique allows the investigation of the substrate influence in systems prepared by organic molecular beam epitaxy (OMBE), like 3,4,9,10-perylenetetracarboxylicdianhydride on highly oriented pyrolytic graphite. For this system the so-called point-on-line coincidence was proposed, a growth mode which has been controversially discussed in literature. Furthermore, we are able to provide evidence for a general energetic advantage of such point-on-line coincident domain orientations over arbitrarily oriented domains which substantiates that energetically favorable lattice structures in OMBE systems are not restricted to commensurate unit cells or coincident super cells.
Work extraction from quantum systems with bounded fluctuations in work.
Richens, Jonathan G; Masanes, Lluis
2016-11-25
In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.
Work extraction from quantum systems with bounded fluctuations in work
Richens, Jonathan G.; Masanes, Lluis
2016-01-01
In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations. PMID:27886177
Work extraction from quantum systems with bounded fluctuations in work
NASA Astrophysics Data System (ADS)
Richens, Jonathan G.; Masanes, Lluis
2016-11-01
In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.
Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.
2015-01-01
Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306
Existence and stability of periodic solutions of quasi-linear Korteweg — de Vries equation
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu; Preobrazhenskaia, M. M.
2017-01-01
We consider the scalar nonlinear differential-difference equation with two delays, which models electrical activity of a neuron. Under some additional suppositions for this equation well known method of quasi-normal forms can be applied. Its essence lies in the formal normalization of the Poincare - Dulac obtaining quasi-normal form and the subsequent application of the theorems of conformity. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which can be turned into a boundary value problem of the Korteweg - de Vries equation. The investigation of this boundary value problem allows us to draw a conclusion about the behaviour of the original equation. Namely, for a suitable choice of parameters in the framework of this equation is implemented buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.
Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.
Soo, Heino; Dean, David S; Krüger, Matthias
2017-01-01
We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.
Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
NASA Astrophysics Data System (ADS)
Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin
2015-01-01
The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.
Advanced time integration algorithms for dislocation dynamics simulations of work hardening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, Ryan B.; Aghaei, Amin; Cai, Wei
Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less
Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers
NASA Technical Reports Server (NTRS)
Lightsey, E. Glenn
2004-01-01
Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.
Life Outside the Golden Window: Statistical Angles on the Signal-to-Noise Problem
NASA Astrophysics Data System (ADS)
Wagman, Michael
2018-03-01
Lattice QCD simulations of multi-baryon correlation functions can predict the structure and reactions of nuclei without encountering the baryon chemical potential sign problem. However, they suffer from a signal-to-noise problem where Monte Carlo estimates of observables have quantum fluctuations that are exponentially larger than their average values. Recent lattice QCD results demonstrate that the complex phase of baryon correlations functions relates the baryon signal-to-noise problem to a sign problem and exhibits unexpected statistical behavior resembling a heavy-tailed random walk on the unit circle. Estimators based on differences of correlation function phases evaluated at different Euclidean times are discussed that avoid the usual signal-to-noise problem, instead facing a signal-to-noise problem as the time interval associated with the phase difference is increased, and allow hadronic observables to be determined from arbitrarily large-time correlation functions.
NASA Astrophysics Data System (ADS)
Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren
2017-08-01
Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:
Advanced time integration algorithms for dislocation dynamics simulations of work hardening
Sills, Ryan B.; Aghaei, Amin; Cai, Wei
2016-04-25
Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less
Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition
NASA Astrophysics Data System (ADS)
Ohkubo, I.; Christen, H. M.; Khalifah, P.; Sathyamurthy, S.; Zhai, H. Y.; Rouleau, C. M.; Mandrus, D. G.; Lowndes, D. H.
2004-02-01
We have designed an improved pulsed-laser deposition-continuous composition-spread (PLD-CCS) system that overcomes the difficulties associated with earlier related techniques. Our new PLD-CCS system is based on a precisely controlled synchronization between the laser firing, target exchange, and substrate translation/rotation, and offers more flexibility and control than earlier PLD-based approaches. Most importantly, the deposition energetics and the film thickness are kept constant across the entire composition range, and the resulting samples are sufficiently large to allow characterization by conventional techniques. We fabricated binary alloy composition-spread films composed of SrRuO 3 and CaRuO 3. Alternating ablation from two different ceramic targets leads to in situ alloy formation, and the value of x in Sr xCa x-1 RuO 3 can be changed linearly from 0 to 1 (or over any arbitrarily smaller range) along one direction of the substrate.
Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan
2018-04-10
In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.
Effects of entanglement in an ideal optical amplifier
NASA Astrophysics Data System (ADS)
Franson, J. D.; Brewster, R. A.
2018-04-01
In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.
Role of nuclear medicine in clinical urology and nephrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaufox, M.D.; Fine, E.; Lee, H.B.
The application of radionuclide studies to nephrologic and urologic practice has reached a measurable degree of maturity during the past several years. In spite of this, the utilization of these techniques in many institutions in the United States continues to be far less frequent than one would expect from the clinical advantages. The aim of this editorial is to try to place the role of nuclear medicine in urology and nephrology in perspective. At the present time, in spite of the large number of renal agents that have been developed, there is no practical ideal radiopharmaceutical that can serve asmore » a universal agent. Arbitrarily, one may reduce the chief armamentarium to only four radiopharmaceuticals; technetium-99m DTPA, I-131 OIH (orthoiodohippurate), technetium-99m glucoheptonate and technetium-99m DMSA. These agents are discussed with their relative advantages and disadvantages.« less
Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning
NASA Astrophysics Data System (ADS)
Caha, Libor; Landau, Zeph; Nagaj, Daniel
2018-06-01
We present a collection of results about the clock in Feynman's computer construction and Kitaev's local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying end-point terms, we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap requirement for the quantum-Merlin-Arthur-complete local Hamiltonian problem. We also translate this result into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of computation with Feynman's computer with only a logarithmic increase in the number of clock qubits. Finally, we tune and thus improve the costs (locality and gap scaling) of implementing a (pulse) clock with a single excitation.
NASA Astrophysics Data System (ADS)
Price, Layne C.
2015-11-01
We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.
1976-01-01
A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.
Single-sided magnetic resonance profiling in biological and materials science.
Danieli, Ernesto; Blümich, Bernhard
2013-04-01
Single-sided NMR was inspired by the oil industry that strived to improve the performance of well-logging tools to measure the properties of fluids confined downhole. This unconventional way of implementing NMR, in which stray magnetic and radio frequency fields are used to recover information of arbitrarily large objects placed outside the magnet, motivated the development of handheld NMR sensors. These devices have moved the technique to different scientific disciplines. The current work gives a review of the most relevant magnets and methodologies developed to generate NMR information from spatially localized regions of samples placed in close proximity to the sensors. When carried out systematically, such measurements lead to 'single-sided depth profiles' or one-dimensional images. This paper presents recent and most relevant applications as well as future perspectives of this growing branch of MRI. Copyright © 2012 Elsevier Inc. All rights reserved.
Black holes are neither particle accelerators nor dark matter probes.
McWilliams, Sean T
2013-01-04
It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.
Hidden dynamics in models of discontinuity and switching
NASA Astrophysics Data System (ADS)
Jeffrey, Mike R.
2014-04-01
Sharp switches in behaviour, like impacts, stick-slip motion, or electrical relays, can be modelled by differential equations with discontinuities. A discontinuity approximates fine details of a switching process that lie beyond a bulk empirical model. The theory of piecewise-smooth dynamics describes what happens assuming we can solve the system of equations across its discontinuity. What this typically neglects is that effects which are vanishingly small outside the discontinuity can have an arbitrarily large effect at the discontinuity itself. Here we show that such behaviour can be incorporated within the standard theory through nonlinear terms, and these introduce multiple sliding modes. We show that the nonlinear terms persist in more precise models, for example when the discontinuity is smoothed out. The nonlinear sliding can be eliminated, however, if the model contains an irremovable level of unknown error, which provides a criterion for systems to obey the standard Filippov laws for sliding dynamics at a discontinuity.
Coherent control of optical polarization effects in metamaterials
Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.
2015-01-01
Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071
A quantum approach to homomorphic encryption
Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.
2016-01-01
Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security. PMID:27658349
Particle creation by naked singularities in higher dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro
Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recastmore » in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.« less
NASA Astrophysics Data System (ADS)
Wang, Wenlong; Mandrà, Salvatore; Katzgraber, Helmut
We propose a patch planting heuristic that allows us to create arbitrarily-large Ising spin-glass instances on any topology and with any type of disorder, and where the exact ground-state energy of the problem is known by construction. By breaking up the problem into patches that can be treated either with exact or heuristic solvers, we can reconstruct the optimum of the original, considerably larger, problem. The scaling of the computational complexity of these instances with various patch numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and quantum annealing on the D-Wave 2X quantum annealer. The method can be useful for benchmarking of novel computing technologies and algorithms. NSF-DMR-1208046 and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via MIT Lincoln Laboratory Air Force Contract No. FA8721-05-C-0002.
Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama
2001-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.
Splitting of Van Hove singularities in slightly twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Li, Si-Yu; Liu, Ke-Qin; Yin, Long-Jing; Wang, Wen-Xiao; Yan, Wei; Yang, Xu-Qin; Yang, Jun-Kai; Liu, Haiwen; Jiang, Hua; He, Lin
2017-10-01
A variety of new and interesting electronic properties have been predicted in graphene monolayer doped to Van Hove singularities (VHSs) of its density of state. However, tuning the Fermi energy to reach a VHS of graphene by either gating or chemical doping is prohibitively difficult, owing to their large energy distance (˜3 eV). This difficulty can be easily overcome in twisted bilayer graphene (TBG). By introducing a small twist angle between two adjacent graphene sheets, we are able to generate two low-energy VHSs arbitrarily approaching the Fermi energy. Here, we report experimental studies of electronic properties around the VHSs of a slightly TBG through scanning tunneling microscopy measurements. The split of the VHSs is observed and the spatial symmetry breaking of electronic states around the VHSs is directly visualized. These exotic results provide motivation for further theoretical and experimental studies of graphene systems around the VHSs.
[Phosphatase activity in Amoeba proteus at pH 9.0].
Sopina, V A
2007-01-01
In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).
Special characteristics of population policy in the Middle East and North Africa.
Thorne, M C; Montague, J
1973-01-01
The 22 countries stretching from Morocco to Afghanistan, ranging fro m the tip of Africa to the rim of Asia, present a spectrum of population positions ranging from explicit governmental pronatalist to antinatalist policies to no explicity policy at all. High population growth rates throughout the area have evoked various interpretations and responses fr om these largely Islamic nations, which have been arbitrarily group for presentation into 5 categories. Practically all the nations offer some family planning services, even though the laws vary from strict prohibition to promotion through national family planning programs. However, in the past decade there has been remarkable movement toward articulated national population policies. This is likely to increase in the future despite problems due to intranational heterogeneity, Arab-Isr aeli hostility, certain values of Islamic culture and theology, and the current paucity of demographic and developmental data.
Conservative parallel simulation of priority class queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David
1992-01-01
A conservative synchronization protocol is described for the parallel simulation of queueing networks having C job priority classes, where a job's class is fixed. This problem has long vexed designers of conservative synchronization protocols because of its seemingly poor ability to compute lookahead: the time of the next departure. For, a job in service having low priority can be preempted at any time by an arrival having higher priority and an arbitrarily small service time. The solution is to skew the event generation activity so that the events for higher priority jobs are generated farther ahead in simulated time than lower priority jobs. Thus, when a lower priority job enters service for the first time, all the higher priority jobs that may preempt it are already known and the job's departure time can be exactly predicted. Finally, the protocol was analyzed and it was demonstrated that good performance can be expected on the simulation of large queueing networks.
Conservative parallel simulation of priority class queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
A conservative synchronization protocol is described for the parallel simulation of queueing networks having C job priority classes, where a job's class is fixed. This problem has long vexed designers of conservative synchronization protocols because of its seemingly poor ability to compute lookahead: the time of the next departure. For, a job in service having low priority can be preempted at any time by an arrival having higher priority and an arbitrarily small service time. The solution is to skew the event generation activity so that the events for higher priority jobs are generated farther ahead in simulated time than lower priority jobs. Thus, when a lower priority job enters service for the first time, all the higher priority jobs that may preempt it are already known and the job's departure time can be exactly predicted. Finally, the protocol was analyzed and it was demonstrated that good performance can be expected on the simulation of large queueing networks.
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Khosronejad, Ali
2016-02-01
Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.
Johnson, Eric O; Hancock, Dana B; Levy, Joshua L; Gaddis, Nathan C; Saccone, Nancy L; Bierut, Laura J; Page, Grier P
2013-05-01
A great promise of publicly sharing genome-wide association data is the potential to create composite sets of controls. However, studies often use different genotyping arrays, and imputation to a common set of SNPs has shown substantial bias: a problem which has no broadly applicable solution. Based on the idea that using differing genotyped SNP sets as inputs creates differential imputation errors and thus bias in the composite set of controls, we examined the degree to which each of the following occurs: (1) imputation based on the union of genotyped SNPs (i.e., SNPs available on one or more arrays) results in bias, as evidenced by spurious associations (type 1 error) between imputed genotypes and arbitrarily assigned case/control status; (2) imputation based on the intersection of genotyped SNPs (i.e., SNPs available on all arrays) does not evidence such bias; and (3) imputation quality varies by the size of the intersection of genotyped SNP sets. Imputations were conducted in European Americans and African Americans with reference to HapMap phase II and III data. Imputation based on the union of genotyped SNPs across the Illumina 1M and 550v3 arrays showed spurious associations for 0.2 % of SNPs: ~2,000 false positives per million SNPs imputed. Biases remained problematic for very similar arrays (550v1 vs. 550v3) and were substantial for dissimilar arrays (Illumina 1M vs. Affymetrix 6.0). In all instances, imputing based on the intersection of genotyped SNPs (as few as 30 % of the total SNPs genotyped) eliminated such bias while still achieving good imputation quality.
Research into Queueing Network Theory.
1977-09-01
and Zeigler, B. (1975) "Equilibrium properties of arbitrarily interconnected queueing netowrks ," Tech. Report 75-4, Computer and Communication...Associate. The project was extremely fortunate to secure the services of Dr. Wendel. Dr. Wendel was a project member for one month in the summer of
Stratigraphy of the Morrison and related formations, Colorado Plateau region, a preliminary report
Craig, Lawrence C.; ,
1955-01-01
Three subdivisions of the Jurassic rocks of the Colorado Plateau region are: the Glen Canyon group, mainly eolian and fluvial sedimentary rocks; the San Rafael group, marine and marginal marine sedimentary rocks; and the Morrison formation, fluvial and lacustrine sedimentary rocks. In central and eastern Colorado the Morrison formation has not been differ- entiated into members. In eastern Utah, northeastern Arizona, northwestern New Mexico, and in part of western Colorado, the Morrison may be divided into a lower part and an upper part; each part has two members which are di1Ierentiated on a lithologic basis. Where differentiated, the lower part of the Morrison consists either of the Salt Wash member or the Recapture member or both; these are equivalent in age and inter tongue and intergrade over a broad area in the vicinity of the Four Corners area of New Mexico, Colorado, Arizona, and Utah. The Salt Wash member is present in eastern Utah and parts of western Colorado, north- eastern Arizona, and northwestern New Mexico. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams diverging to the north and east from an apex in south-central Utah. The major source area of the Salt Wash was to the southwest of south-central Utah, probably in west-central Arizona and southeastern California. The member was derived mainly from sedimentary rocks. The Salt Wash deposits grade from predomi- nantly coarse texture at the apex of the 'fan' to predominantly flne texture at the margin of the 'fan'. The Salt Wash member has been arbitrarily divided into four facies: a con- glomera tic sandstone facies, a sandstone and mudstone facies, a claystone and lenticular sandstone facies, and a claystone and limestone facies. The Recapture member of the Morrison formation is present in northeastern Arizona, northwestern New Mexico, and small areas of southeastern Utah and southwestern Colorado near the Four Corners. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Recap- ture deposits grade from predominantly coarse texture sedimentary rocks to predominantly fine texture and have been arbitrarily divided into three facies: a conglomeratic sandstone facies, a sandstone facies, and a claystone and sandstone facies. The distribution of the facies indicates that the major source area of the Recapture was south of Gallup, N. Mex., probably in west-central New Mexico. The Recapture was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The upper part of the Morrison formation consists of the Westwater Canyon member and the Brushy Basin member. The Westwater Canyon member forms the lower portion of the upper part of the Morrison in northeastern Arizona, northwestern New Mexico, and places in southeastern Utah and southwestern Colorade near the Four Corners, and it intertongues and intergrades northward into the Brushy Basin member. The Westwater Canyon member was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Westwater deposits grade from predominantly coarse-textured sedimentary rocks to somewhat finer textured sedimentary rocks, and have been arbitrarily divided into two facies: a conglomeratic sandstone facies and a sandstone facies. The distribution of the facies indicates that the major source area of the Westwater was south of Gallup, N. Mex., probably in west-central New Mexico. The Westwater was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The similarity of the distribution and composition of the Westwater to the Recapture indicates that the Westwater represents essentially a continuation of deposition on the Recapture 'fan'; the Westwater contains, however, considerably coarser materials. Whereas the S
Coordinating a supply chain with a loss-averse retailer and effort dependent demand.
Li, Liying; Wang, Yong
2014-01-01
This study investigates the channel coordination issue of a supply chain with a risk-neutral manufacturer and a loss-averse retailer facing stochastic demand that is sensitive to sales effort. Under the loss-averse newsvendor setting, a distribution-free gain/loss-sharing-and-buyback (GLB) contract has been shown to be able to coordinate the supply chain. However, we find that a GLB contract remains ineffective in managing the supply chain when retailer sales efforts influence the demand. To effectively coordinate the channel, we propose to combine a GLB contract with sales rebate and penalty (SRP) contract. In addition, we discover a special class of gain/loss contracts that can coordinate the supply chain and arbitrarily allocate the expected supply chain profit between the manufacturer and the retailer. We then analyze the effect of loss aversion on the retailer's decision-making behavior and supply chain performance. Finally, we perform a numerical study to illustrate the findings and gain additional insights.
On the adequacy of current empirical evaluations of formal models of categorization.
Wills, Andy J; Pothos, Emmanuel M
2012-01-01
Categorization is one of the fundamental building blocks of cognition, and the study of categorization is notable for the extent to which formal modeling has been a central and influential component of research. However, the field has seen a proliferation of noncomplementary models with little consensus on the relative adequacy of these accounts. Progress in assessing the relative adequacy of formal categorization models has, to date, been limited because (a) formal model comparisons are narrow in the number of models and phenomena considered and (b) models do not often clearly define their explanatory scope. Progress is further hampered by the practice of fitting models with arbitrarily variable parameters to each data set independently. Reviewing examples of good practice in the literature, we conclude that model comparisons are most fruitful when relative adequacy is assessed by comparing well-defined models on the basis of the number and proportion of irreversible, ordinal, penetrable successes (principles of minimal flexibility, breadth, good-enough precision, maximal simplicity, and psychological focus).
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, H.U.G.; Gray, J.W.
1995-06-27
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.
Experimental investigation of measurement-induced disturbance and time symmetry in quantum physics
NASA Astrophysics Data System (ADS)
Curic, D.; Richardson, M. C.; Thekkadath, G. S.; Flórez, J.; Giner, L.; Lundeen, J. S.
2018-04-01
Unlike regular time evolution governed by the Schrödinger equation, standard quantum measurement appears to violate time-reversal symmetry. Measurement creates random disturbances (e.g., collapse) that prevent back-tracing the quantum state of the system. The effect of these disturbances is explicit in the results of subsequent measurements. In this way, the joint result of sequences of measurements depends on the order in time in which those measurements are performed. One might expect that if the disturbance could be eliminated this time-ordering dependence would vanish. Following a recent theoretical proposal [Bednorz, Franke, and Belzig, New J. Phys. 15, 023043 (2013), 10.1088/1367-2630/15/2/023043], we experimentally investigate this dependence for a kind of measurement that creates an arbitrarily small disturbance: weak measurement. We perform various sequences of a set of polarization weak measurements on photons. We experimentally demonstrate that, although the weak measurements are minimally disturbing, their time ordering affects the outcome of the measurement sequence for quantum systems.
Coordinating a Supply Chain with a Loss-Averse Retailer and Effort Dependent Demand
Li, Liying
2014-01-01
This study investigates the channel coordination issue of a supply chain with a risk-neutral manufacturer and a loss-averse retailer facing stochastic demand that is sensitive to sales effort. Under the loss-averse newsvendor setting, a distribution-free gain/loss-sharing-and-buyback (GLB) contract has been shown to be able to coordinate the supply chain. However, we find that a GLB contract remains ineffective in managing the supply chain when retailer sales efforts influence the demand. To effectively coordinate the channel, we propose to combine a GLB contract with sales rebate and penalty (SRP) contract. In addition, we discover a special class of gain/loss contracts that can coordinate the supply chain and arbitrarily allocate the expected supply chain profit between the manufacturer and the retailer. We then analyze the effect of loss aversion on the retailer's decision-making behavior and supply chain performance. Finally, we perform a numerical study to illustrate the findings and gain additional insights. PMID:25197696
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, Heinz-Ulrich G.; Gray, Joe W.
1995-01-01
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.
Maximum likelihood techniques applied to quasi-elastic light scattering
NASA Technical Reports Server (NTRS)
Edwards, Robert V.
1992-01-01
There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.
Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.
Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing
2014-04-01
Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.
Making Stargates: The Physics of Traversable Absurdly Benign Wormholes
NASA Astrophysics Data System (ADS)
Woodward, J. F.
Extremely short throat "absurdly benign" wormholes enabling near instantaneous travel to arbitrarily remote locations in both space and time - stargates - have long been a staple of science fiction. The physical requirements for the production of such devices were worked out by Morris and Thorne in 1988. They approached the issue of rapid spacetime transport by asking the question: what constraints do the laws of physics as we know them place on an "arbitrarily advanced culture" (AAC)? Their answer - a Jupiter mass of negative restmass matter in a structure a few tens of meters in size - seems to have rendered such things beyond the realm of the believably achievable. This might be taken as justification for abandoning further serious exploration of the physics of stargates. If such an investigation is pursued, however, one way to do so is to invert Morris and Thorne's question and ask: if "arbitrarily advanced aliens" (AAAs) have actually made stargates, what must be true of the laws of physics for them to have done so? Elementary arithmetic reveals that stargates would have an "exotic" density of on the order of 1022 gm/cm3, that is, orders of magnitude higher than nuclear density. Not only does one have to achieve this stupendous density of negative mass matter, it must be done, presumably, only with the application of "low" energy electromagnetic fields. We examine this problem, finding that a plausible solution does not depend on the laws of quantum gravity, as some have proposed. Rather, the solution depends on understanding the nature of electrons in terms of a semi-classical extension of the exact, general relativistic electron model of Arnowitt, Deser, and Misner (ADM), and Mach's Principle.
Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny
NASA Astrophysics Data System (ADS)
Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell
Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.
Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components
NASA Technical Reports Server (NTRS)
Kousen, Kenneth A.
1999-01-01
This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.
Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces
Hong, Sung Woo; Huh, June; Gu, Xiaodan; Lee, Dong Hyun; Jo, Won Ho; Park, Soojin; Xu, Ting; Russell, Thomas P.
2012-01-01
A simple, versatile approach to the directed self-assembly of block copolymers into a macroscopic array of unidirectionally aligned cylindrical microdomains on reconstructed faceted single crystal surfaces or on flexible, inexpensive polymeric replicas was discovered. High fidelity transfer of the line pattern generated from the microdomains to a master mold is also shown. A single-grained line patterns over arbitrarily large surface areas without the use of top-down techniques is demonstrated, which has an order parameter typically in excess of 0.97 and a slope error of 1.1 deg. This degree of perfection, produced in a short time period, has yet to be achieved by any other methods. The exceptional alignment arises from entropic penalties of chain packing in the facets coupled with the bending modulus of the cylindrical microdomains. This is shown, theoretically, to be the lowest energy state. The atomic crystalline ordering of the substrate is transferred, over multiple length scales, to the block copolymer microdomains, opening avenues to large-scale roll-to-roll type and nanoimprint processing of perfectly patterned surfaces and as templates and scaffolds for magnetic storage media, polarizing devices, and nanowire arrays. PMID:22307591
Lycett-Brown, Daniel; Luo, Kai H
2016-11-01
A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.
Nieder, Carsten; Andratschke, Nicolaus H; Grosu, Anca L
2014-09-01
Radiation therapy is one of the cornerstones of modern multidisciplinary cancer treatment. Normal tissue tolerance is critical as radiation-induced side effects may compromise organ function and quality of life. The importance of normal tissue research is reflected by the large number of scientific articles, which have been published between 2006 and 2010. The present study identified important areas of research as well as seminal publications. The article citation rate is among the potential indicators of scientific impact. Highly cited articles, arbitrarily defined as those with ≥15 citations, were identified via a systematic search of the citation database, Scopus. Up to 608 articles per year were published between 2006 and 2010, however, <10% of publications in each year accumulated ≥15 citations. This figure is notably low, when compared with other oncology studies. A large variety of preclinical and clinical topics, including toxicity prediction, the dose-volume relationship and radioprotectors, accumulated ≥15 citations. However, clinical prevention or mitigation studies were underrepresented. The following conclusion may be drawn from the present study; despite the improved technology that has resulted in superior dose distribution, clinical prevention or mitigation studies are critical and must receive higher priority, funding and attention.