Science.gov

Sample records for arbitrary ionic charge

  1. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds

    PubMed Central

    Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C.; Orimo, Shin-ichi

    2016-01-01

    Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures. PMID:27032978

  2. Brownian dynamics determine universality of charge transport in ionic liquids

    SciTech Connect

    Sangoro, Joshua R; Iacob, Ciprian; Mierzwa, Michal; Paluch, Marian; Kremer, Friedrich

    2012-01-01

    Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.

  3. Charge dynamics in ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Porfiri, Maurizio

    2008-11-01

    In this paper, we study the charge dynamics in ionic polymer metal composites (IPMCs) in response to a voltage difference applied across their electrodes. We use the Poisson-Nernst-Planck equations to model the time evolution of the electric potential and the concentration of mobile counterions. We present an analytical solution of the nonlinear initial-boundary value problem by using matched asymptotic expansions. We determine the charge and electric potential distributions as functions of time in the whole IPMC region. We show that in the bulk polymer region the IPMC is approximately electroneutral; in contrast, charge distribution boundary layers arise at the polymer-electrode interfaces. Prominent charge depletion and enrichment at the polymer-electrode interface are present even at moderately low input-voltage levels. We use the proposed analytical solution to derive a physics-based circuit model of IPMCs. The equivalent circuit comprises a linear resistor in series connection with a nonlinear capacitor. We derive closed-form expressions for the resistance and the capacitance by conducting a qualitative phase-plane analysis of the inner approximation of the asymptotic expansion. The circuit conductivity is independent of the IPMC dielectric constant and is proportional to the ion diffusivity; whereas, the capacitance is proportional to the square root of the dielectric constant and is independent of the diffusivity. The conductivity depends on the polymer thickness, while the capacitance is independent of it. The capacitance nonlinearity is extremely pronounced, and dramatic capacitance reduction is observed for moderately low voltage levels. We validate the proposed analytical solution along with the derived circuit model through extensive comparisons with finite element results available in the technical literature.

  4. Voltage charging enhances ionic conductivity in gold nanotube membranes.

    PubMed

    Gao, Peng; Martin, Charles R

    2014-08-26

    Ionically conductive membranes are used in many electrochemical processes and devices, including batteries, fuel cells, and electrolyzers. In all such applications, it is advantageous to use membranes with high ionic conductivity because membrane resistance causes a voltage loss suffered by the cell. We describe here a method for enhancing ionic conductivity in membranes containing small diameter (4 nm) gold nanotubes. This entails making the gold nanotube membrane the working electrode in an electrochemical cell and applying a voltage to the membrane. We show here that voltage charging in this way can increase membrane ionic conductivity by over an order of magnitude. When expressed in terms of the ionic conductivity of the electrolyte, κ, within an individual voltage-charged tube, the most negative applied voltage yielded a κ comparable to that of 1 M aqueous KCl, over 2 orders of magnitude higher than κ of the 0.01 M KCl solution contacting the membrane.

  5. Lattice models of ionic systems with charge asymmetry

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim N.; Kobelev, Vladimir; Kolomeisky, Anatoly B.

    2003-04-01

    The thermodynamics of a charge-asymmetric lattice gas of positive ions carrying charge q and negative ions with charge -zq is investigated using Debye-Hückel theory. Explicit analytic and numerical calculations, which take into account the formation of neutral and charged clusters and cluster solvation by the residual ions, are performed for z=2, 3, and 4. As charge asymmetry increases, the predicted critical point shifts to lower temperatures and higher densities. This trend agrees well with the results from recent Monte Carlo simulations for continuum charge-asymmetric hard-sphere ionic fluids and with the corresponding predictions from continuum Debye-Hückel theory.

  6. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  7. Charge transport in gapless electron-hole systems with arbitrary band dispersion

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.

    2015-05-01

    Using the semiclassical Boltzmann transport theory, we analytically consider dc charge transport in gapless electron-hole (both chiral and nonchiral) systems in the presence of resistive scattering due to static disorder arising from random quenched impurities in the background. We obtain the dependence of the Boltzmann conductivity on carrier density and temperature for arbitrary band dispersion in arbitrary dimensionality assuming long-range (˜1 /r ) Coulomb disorder and zero-range white-noise disorder [˜δ (r ) ]. We establish that the temperature and the density dependence of the Boltzmann conductivity manifests scaling behaviors determining, respectively, the intrinsic semimetallic or the extrinsic metallic property of the gapless system. Our results apply equally well to both chiral and nonchiral gapless systems, and provide a qualitative understanding of the dependence of the Boltzmann conductivity on the band dispersion in arbitrary dimensionality.

  8. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    PubMed

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  9. Charges, currents, and potentials in ionic channels of one conformation.

    PubMed Central

    Chen, D; Eisenberg, R

    1993-01-01

    Flux through an open ionic channel is analyzed with Poisson-Nernst-Planck (PNP) theory. The channel protein is described as an unchanging but nonuniform distribution of permanent charge, the charge distribution observed (in principle) in x-ray diffraction. Appropriate boundary conditions are derived and presented in some generality. Three kinds of charge are present: (a) permanent charge on the atoms of the protein, the charge independent of the electric field; (b) free or mobile charge, carried by ions in the pore as they flux through the channel; and (c) induced (sometimes called polarization) charge, in the pore and protein, created by the electric field, zero when the electric field is zero. The permanent charge produces an offset in potential, a built-in Donnan potential at both ends of the channel pore. The system is completely solved for bathing solutions of two ions. Graphs describe the distribution of potential, concentration, free (i.e., mobile) and induced charge, and the potential energy associated with the concentration of charge, as well as the unidirectional flux as a function of concentration of ions in the bath, for a distribution of permanent charge that is uniform. The model shows surprising complexity, exhibiting some (but not all) of the properties usually attributed to single filing and exchange diffusion. The complexity arises because the arrangement of free and induced charge, and thus of potential and potential energy, varies, sometimes substantially, as conditions change, even though the channel structure and conformation (of permanent charge) is strictly constant. Energy barriers and wells, and the concomitant binding sites and binding phenomena, are outputs of the PNP theory: they are computed, not assumed. They vary in size and location as experimental conditions change, while the conformation of permanent charge remains constant, thus giving the model much of its interesting behavior. PMID:7686784

  10. Electromechanical modeling of charge sensing in ionic polymers

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin M.; Leo, Donald J.

    2003-08-01

    A model for charge sensing due to imposed deformation in ionic polymer materials is presented. The basic concept of this model is that mechanical deformation induces charge at the surface of the polymer and produces a measureable discharge of current as the material is deformed. This discharge of current occurs when a short-circuit electrical boundary condition is applied across the material electrodes. An expression for charge density, electric field and electric potential under short-circuit conditions is developed from the electrostatic field equations. The solution for charge density is coupled with the mechanical deformation through a proportionality constant. Expressions for induced charge and current flow are then derived from the equations for electric displacement at the surface of the material. Experimental results support the basic form of the model and also demonstrate that the geometric scaling predicted in the model agrees with measured data. Analysis of the length scale predicted by the model produces qualitative agreement with previously published results but also points to the need for a greater understanding of the interfacial mechanics in the ionic polymer transducers.

  11. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries.

    PubMed

    Tyagi, Sandeep; Süzen, Mehmet; Sega, Marcello; Barbosa, Marcia; Kantorovich, Sofia S; Holm, Christian

    2010-04-21

    Simulating coarse-grained models of charged soft-condensed matter systems in presence of dielectric discontinuities between different media requires an efficient calculation of polarization effects. This is almost always the case if implicit solvent models are used near interfaces or large macromolecules. We present a fast and accurate method (ICC( small star, filled)) that allows to simulate the presence of an arbitrary number of interfaces of arbitrary shape, each characterized by a different dielectric permittivity in one-, two-, and three-dimensional periodic boundary conditions. The scaling behavior and accuracy of the underlying electrostatic algorithms allow to choose the most appropriate scheme for the system under investigation in terms of precision and computational speed. Due to these characteristics the method is particularly suited to include nonplanar dielectric boundaries in coarse-grained molecular dynamics simulations.

  12. Spatial inhomogeneities in ionic liquids, charged proteins, and charge stabilized colloids from collective variables theory.

    PubMed

    Patsahan, O; Ciach, A

    2012-09-01

    Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.

  13. Generalized charged Nariai solutions in arbitrary even dimensions with multiple magnetic charges

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2016-12-01

    Higher-dimensional solutions for Einstein-Maxwell equations that generalize the charged Nariai spacetime are obtained. The solutions presented here are made from the direct product of several 2-spaces of constant curvature. These solutions turn out to have many magnetic charges, contrary to the usual higher-dimensional generalization of the Nariai spacetime, which has no magnetic charge at all. These solutions are then used to generate black hole metrics. Finally, it is analyzed how these generalized Nariai solutions are modified in more general theories of gravity.

  14. Electric birefringence anomaly of solutions of ionically charged anisometric particles.

    PubMed

    Hoffmann, H; Gräbner, Dieter

    2015-02-01

    The term "electric birefringence anomaly" is known as the electric birefringence (EB) signal that occurs in solutions of ionically charged anisometric particles in a narrow concentration region. The signal is of opposite sign to the normal birefringence that occurs below and above this narrow concentration region. The normal electric birefringence signals in the dilute and more concentrated regions are due to the orientation of the particles in the direction of the applied electric field. The origin for the anomalous signal was not completely understood until now. The article summarises previous results in which the anomalous results had been observed but not well understood. It shows that the birefringence anomaly occurs in systems as diverse as micellar solutions, polyelectrolytes, solutions of clays, viruses and fibres. In all these systems the anomaly signals are present at the concentration when the length of the colloidal particles including the thickness of the electric double layer are about the same as the mean distance between the colloidal particles. Under these conditions the electric double layers of the particles overlap along the main axis of the particles but not in the direction across the particles. As a consequence of this situation a dipole is built up across the particles by the migration of the counter-ions of the particles in the electric field and this dipole leads to an orientation of the particles perpendicular to the electric field. The anomalous signal can usually be observed simultaneously with the normal signal. The amplitude of the anomalous signal can be larger than the amplitude of the normal signal. As a consequence the total birefringence changes its sign in the anomalous concentration region. The anomaly signal of the clays can also be explained by a fluctuating dipole around the particles, which is due to the fact that the centre of the ionic charges of the particles does not fall on the centre of the ionic charge of the counter

  15. Poynting flux in the neighbourhood of a point charge in arbitrary motion and radiative power losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-07-01

    We examine the electromagnetic fields in the neighbourhood of a ‘point charge’ in arbitrary motion and thereby determine the Poynting flux across a spherical surface of vanishingly small radius surrounding the charge. We show that the radiative power losses from a point charge turn out to be proportional to the scalar product of the instantaneous velocity and the first time-derivative of the acceleration of the charge. This may seem to be discordant with the familiar Larmor formula where the instantaneous power radiated from a charge is proportional to the square of acceleration. However, it seems that the root cause of the discrepancy actually lies in Larmor’s formula, which is derived using the acceleration fields but without due consideration for the Poynting flux associated with the velocity-dependent self-fields ‘co-moving’ with the charge. Further, while deriving Larmor’s formula, one equates the Poynting flux through a surface at some later time to the radiation loss by the enclosed charge at the retarded time. Poynting’s theorem, on the other hand, relates the outgoing radiation flux from a closed surface to the rate of energy decrease within the enclosed volume, all calculated for the same given instant only. Here we explicitly show the absence of any Poynting flux in the neighbourhood of an instantly stationary point charge, implying no radiative losses from such a charge, which is in complete conformity with energy conservation. We further show how Larmor’s formula is still able to serve our purpose in the vast majority of cases. It is further shown that Larmor’s formula in general violates momentum conservation and, in the case of synchrotron radiation, leads to a potentially incorrect conclusion about the pitch angle changes of the radiating charges, and that only the radiation reaction formula yields a correct result, consistent with special relativity.

  16. Conserved Killing charges of quadratic curvature gravity theories in arbitrary backgrounds

    SciTech Connect

    Devecioglu, Deniz Olgu; Sarioglu, Oezguer

    2011-01-15

    We extend the Abbott-Deser-Tekin procedure of defining conserved quantities of asymptotically constant-curvature spacetimes, and give an analogous expression for the conserved charges of geometries that are solutions of quadratic curvature gravity models in generic D dimensions and that have arbitrary asymptotes possessing at least one Killing isometry. We show that the resulting charge expression correctly reduces to its counterpart when the background is taken to be a space of constant curvature and, moreover, is background gauge invariant. As applications, we compute and comment on the energies of two specific examples: the three-dimensional Lifshitz black hole and a five-dimensional companion of the first, whose energy has never been calculated before.

  17. Retreating behavior of a charged ionic liquid droplet in a dielectric liquid under electric field

    NASA Astrophysics Data System (ADS)

    Ahn, Myung Mo; Im, Do Jin; Kang, In Seok

    2013-11-01

    Ionic liquids show great promise as excellent solvents or catalysts in energy and biological fields due to their unique chemical and physical properties. The ionic liquid droplets in microfluidic systems can also be used as a potential platform for chemical biological reactions. In order to control electrically the ionic liquid droplets in a microfluidic device, the charging characteristics of ionic liquid droplets need to be understood. In this work, the charging characteristics of various ionic liquids are investigated by using the parallel plate electrodes system. Under normal situation, a charged droplet shows bouncing motion between electrodes continuously. However, for some special ionic liquids, interesting retreating behavior of charged ionic liquid droplet has been observed. This retreating behavior of ionic liquid droplet has been analyzed experimentally by the image analysis and the electrometer signal analysis. Based on the hypothesis of charge leakage of the retreating ionic liquid droplets, FT-IR spectroscopy analysis has also been performed. The retreating behavior of ionic liquid droplet is discussed from the intermolecular point of view according to the species of ionic liquids. This research was supported by grant No. 2013R1A1A2011956 funded by the Ministry of Science, ICT and Future Planning (MSIP) and by grant No. 2013R1A1A2010483 funded by the Ministry of Education, Science and Technology (MEST) through the NRF.

  18. Ionic strength independence of charge distributions in solvation of biomolecules

    SciTech Connect

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  19. Ionic strength independence of charge distributions in solvation of biomolecules

    NASA Astrophysics Data System (ADS)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-01

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  20. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu H.; Keh, Huan J.

    2010-10-01

    An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa →0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.

  1. Charge detector for the measurement of ionic solutes.

    PubMed

    Yang, Bingcheng; Chen, Yongjing; Mori, Masanobu; Ohira, Shin-Ichi; Azad, Abul K; Dasgupta, Purnendu K; Srinivasan, Kannan

    2010-02-01

    We describe a flow-through ionic charge detector in the form of a three-compartmented system. A central water channel is separated from two outer channels bearing water (or a dilute electrolyte) by a cation-exchange membrane (CEM) and an anion-exchange membrane (AEM). Independent fluid input/output ports address all channels. One platinum electrode is put in each outer channel. When the AEM-side electrode is positive with respect to the CEM-side electrode and voltage (approximately 1-10 V) is applied, the observed background current is from the transport of H(+)/OH(-) through the CEM/AEM to the negative/positive electrodes, respectively. The H(+) and OH(-) are generated by the ionization of water, in part aided by the electric field. If an electrolyte (X(+)Y(-)) is injected in to the central channel, X(+) and Y(-) migrate through the CEM and AEM to the negative and positive electrodes, respectively, and generate a current pulse. The integrated area of the current signal (coulombs) elicited by this electrolyte injection is dependent on a number of variables, the most important being the central channel residence time and the applied voltage (V(app)); these govern the transport of the injected electrolyte to/through the membranes. Other parameters include electrode placement, fluid composition, and outer channel flow rates. For strong electrolytes, depending on the operating conditions, the current peak area (hereinafter called the measured charge signal, Q(m)) can both be less or more than the charge represented by the electrolyte injected (Q(i)). Q(m) is less than Q(i) if transport to/through the membranes is subquantitative. Q(m) can be greater than Q(i) at higher V(app). At constant V(app) more voltage is dropped across the membranes as the central channel becomes more conductive and water dissociation at the membrane surface is enhanced. Effectively, the membranes experience a greater applied voltage as the central channel becomes more conductive. The resulting

  2. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.

    PubMed

    Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven

    2017-02-08

    Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.

  3. Determination of the Ionic Charge States of SEPs Using the University of Chicago IMP-8 Instrument

    NASA Astrophysics Data System (ADS)

    Dietrich, W.

    We use a new method to calculate the mean ionization charge state of solar energetic particles (SEPs) observed with the University of Chicago Cosmic Ray Nuclear Composition experiment on the IMP-8 satellite. The method, using the time to maximum flux, is demonstrated for several gradual SEP events, including the events on 29 September 1989, 19 October 1989, 24 October 1989, and 6 November 1997. Mean ionic charge states are deduced for heavy ions with energies in the range ~10- 500 MeV/nucleon. The ionic charge determination is made only during the onset of the SEP events. These mean charge states agree well with previous measurements for SEP events both at low energy (~0.5-4 MeV/nucleon reported by ISEE-3) and at higher energies (~200-500 MeV/nucleon reported by LDEF). The mean ionic charge states are then used to determine an average temperature and source region for these particles.

  4. Using FT-IR spectroscopy to measure charge organization in ionic liquids.

    PubMed

    Burba, Christopher M; Janzen, Jonathan; Butson, Eric D; Coltrain, Gage L

    2013-07-25

    A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids at 30 °C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements; thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids.

  5. The mean ionic charge of silicon in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.

    1985-01-01

    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.

  6. New method of calculating the wakefields of a point charge in a waveguide of arbitrary cross section

    NASA Astrophysics Data System (ADS)

    Baturin, S. S.; Kanareykin, A. D.

    2016-05-01

    A new method for calculating the Cherenkov wakefield acting on a point charged particle passing through a longitudinally homogeneous structure lined with layer(s) of an arbitrary retarding (dielectric, resistive, or corrugated) material has been developed. In this paper we present a rigorous derivation of the expressions for the fields that are valid at the cross section of the particle on the basis of a conformal mapping method. This new formalism allows reduction of the loss factor calculation to a simple derivation of a conformal mapping function from the arbitrary cross section onto a circular disc. We generalize these results to the case of a bunch with an arbitrary transverse distribution by deriving a two-dimensional Green function at the cross section of the particle. Consequently, for the first time analytical expressions for the transverse distributions of the electric field Ez for the most commonly used cylindrical, planar and elliptical cross section geometries are found. The proposed approach significantly decreases simulation time and opens new possibilities in optimizing wakefield effects resulting from short charged particle bunches for FEL and Linear Collider applications.

  7. Charge transport and structural dynamics in ultra-thin films of polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Cosby, Tyler; Berdzinski, Stefan; Strehmel, Veronica; Benson, Roberto; Sangoro, Joshua

    Ion conduction and structural dynamics in a series of ultra-thin films of imidazolium based polymerized ionic liquids are investigated using broadband dielectric spectroscopy, atomic force microscopy, and ellipsometry. No alteration in the characteristic charge transport rate is observed between bulk sample and films as thin as 12nm. These results are discussed within the recent approaches proposed to explain the confinement effects on structural dynamics in polymers and low molecular weight ionic liquids. NSF DRM Polymers Program.

  8. Charge Transport and Dynamics in Confined Ammonium and Phosphonium-based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Harris, Matthew; Cosby, Tyler; Tsunashima, Katsuhiko; Sangoro, Joshua

    Charge transport and structural dynamics in a homologous series of ammonium and phosphonium ionic liquids confined in silica nanopores are investigated by broadband dielectric spectroscopy and Fourier transform infrared spectroscopy. The impact of the central atom of the cation on the physicochemical properties as well as the interplay between confinement effects and pore-wall interactions through silica surface silanization are investigated. The results are discussed within the framework of current understanding of confinement effects in ionic liquid systems, especially in comparison to imidazolium-based ionic liquids.

  9. Charge Transport and Dynamics in Confined Phosphonium-based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Tsunashima, Katsuhiko; Sangoro, Joshua

    Charge transport and structural dynamics in a homologous series of phosphonium-based ionic liquids confined in silica nanopores are investigated by broadband dielectric spectroscopy and Fourier transform infrared spectroscopy. The impact of alkyl chain length and hydrophobic aggregation on the physicochemical properties as well as the interplay between confinement effects and pore-wall interactions through silica surface silanization are investigated. The results are discussed within the framework of current understanding of confinement effects in ionic liquid systems, especially in comparison to imidazolium-based ionic liquids. NSF DMR Polymers Program.

  10. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites

    SciTech Connect

    Almora, Osbel; Guerrero, Antonio; Garcia-Belmonte, Germà

    2016-01-25

    Identification of specific operating mechanisms becomes particularly challenging when mixed ionic-electronic conductors are used in optoelectronic devices. Ionic effects in perovskite solar cells are believed to distort operation curves and possess serious doubts about their long term stability. Current hysteresis and switchable photovoltaic characteristics have been connected to the kinetics of ion migration. However, the nature of the specific ionic mechanism (or mechanisms) able to explain the operation distortions is still poorly understood. It is observed here that the local rearrangement of ions at the electrode interfaces gives rise to commonly observed capacitive effects. Charging transients in response to step voltage stimuli using thick CH{sub 3}NH{sub 3}PbI{sub 3} samples show two main polarization processes and reveal the structure of the ionic double-layer at the interface with the non-reacting contacts. It is observed that ionic charging, with a typical response time of 10 s, is a local effect confined in the vicinity of the electrode, which entails absence of net mobile ionic concentration (space-charge) in the material bulk.

  11. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Almora, Osbel; Guerrero, Antonio; Garcia-Belmonte, GermÃ

    2016-01-01

    Identification of specific operating mechanisms becomes particularly challenging when mixed ionic-electronic conductors are used in optoelectronic devices. Ionic effects in perovskite solar cells are believed to distort operation curves and possess serious doubts about their long term stability. Current hysteresis and switchable photovoltaic characteristics have been connected to the kinetics of ion migration. However, the nature of the specific ionic mechanism (or mechanisms) able to explain the operation distortions is still poorly understood. It is observed here that the local rearrangement of ions at the electrode interfaces gives rise to commonly observed capacitive effects. Charging transients in response to step voltage stimuli using thick CH3NH3PbI3 samples show two main polarization processes and reveal the structure of the ionic double-layer at the interface with the non-reacting contacts. It is observed that ionic charging, with a typical response time of 10 s, is a local effect confined in the vicinity of the electrode, which entails absence of net mobile ionic concentration (space-charge) in the material bulk.

  12. Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations.

    PubMed

    Angenendt, Knut; Johansson, Patrik

    2011-06-23

    The solvation of lithium salts in ionic liquids (ILs) leads to the creation of a lithium ion carrying species quite different from those found in traditional nonaqueous lithium battery electrolytes. The most striking differences are that these species are composed only of ions and in general negatively charged. In many IL-based electrolytes, the dominant species are triplets, and the charge, stability, and size of the triplets have a large impact on the total ion conductivity, the lithium ion mobility, and also the lithium ion delivery at the electrode. As an inherent advantage, the triplets can be altered by selecting lithium salts and ionic liquids with different anions. Thus, within certain limits, the lithium ion carrying species can even be tailored toward distinct important properties for battery application. Here, we show by DFT calculations that the resulting charge carrying species from combinations of ionic liquids and lithium salts and also some resulting electrolyte properties can be predicted.

  13. Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS.

    PubMed

    Villar-Garcia, Ignacio J; Smith, Emily F; Taylor, Alasdair W; Qiu, Fulian; Lovelock, Kevin R J; Jones, Robert G; Licence, Peter

    2011-02-21

    Ionic liquid surfaces can become electrically charged during X-ray photoelectron spectroscopy experiments, due to the flux of photoelectrons leaving the surface. This causes a shift in the measured binding energies of X-ray photoelectron peaks that depends on the magnitude of the surface charging. Consequently, a charge correction method is required for ionic liquids. Here we demonstrate the nature and extent of surface charging in ionic liquids and model it using chronopotentiometry. We report the X-ray photoelectron spectra for a range of imidazolium based ionic liquids and investigate the use of long alkyl chains (C(n)H(2n+1), n ≥ 8) and the imidazolium nitrogen, both of which are part of the ionic liquid chemical structure, as internal references for charge correction. Accurate and reproducible binding energies are obtained which allow comparisons to be made across ionic liquid-based systems.

  14. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors.

    PubMed

    Forse, Alexander C; Griffin, John M; Merlet, Céline; Bayley, Paul M; Wang, Hao; Simon, Patrice; Grey, Clare P

    2015-06-10

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors.

  15. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors

    PubMed Central

    2015-01-01

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552

  16. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  17. Orientational ordering of ionic liquids near a charged mica surface.

    PubMed

    Payal, Rajdeep Singh; Balasubramanian, Sundaram

    2012-05-14

    The self-assembly of ions in room-temperature ionic liquids adsorbed on a mica surface is studied using molecular dynamics simulations. Four liquids from the 1-methyl,n-alkylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)mim][NTf(2)]) family are investigated, where n ranges between 2 and 8. Cations with ethyl or butyl groups are found to orient with the hydrocarbon tails lying parallel to the surface, while the hexyl and octyl tails of cations are observed to be oriented perpendicular to it. The crossover in the orientational preference matches recent observations of surface forces of these liquids.

  18. Charged-particle transport in gases in electric and magnetic fields crossed at arbitrary angles: Multiterm solution of Boltzmann's equation.

    PubMed

    White, R D; Ness, K F; Robson, R E; Li, B

    1999-08-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles psi. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equation in the hydrodynamic regime [Ness, Phys. Rev. A 47, 327 (1993)] is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a weighted sum of Maxwellian distributions at different temperatures. Results are given for charged-particle swarms in certain model gases over a range of psi and field strengths. The variation of the transport coefficients with psi is addressed using physical arguments. The errors associated with the two-term approximation and inadequacies of Legendre polynomial expansions are highlighted.

  19. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes

    NASA Astrophysics Data System (ADS)

    Vatamanu, Jenel; Vatamanu, Mihaela; Borodin, Oleg; Bedrov, Dmitry

    2016-11-01

    The structural properties of electrolytes consisting of solutions of ionic liquids in a polar solvent at charged electrode surfaces are investigated using classical atomistic simulations. The studied electrolytes consisted of tetraethylammonium tetrafluoroborate (NEt4-BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate (c2mim-BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate (c8mim-BF4) salts dissolved in acetonitrile solvent. We discuss the influence of electrolyte concentration, chemical structure of the ionic salt, temperature, conducting versus semiconducting nature of the electrode, electrode geometry and surface roughness on the electric double layer structure and capacitance and compare these properties with those obtained for pure room temperature ionic liquids. We show that electrolytes consisting of solutions of ions can behave quite differently from pure ionic liquid electrolytes.

  20. Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.

    PubMed

    Qiu, Yinghua; Ma, Jian; Chen, Yunfei

    2016-05-17

    Through molecular dynamics simulations considering thermal vibration of surface atoms, ionic behaviors in concentrated NaCl solutions confined between discretely charged silicon surfaces have been investigated. The electric double layer structure was found to be sensitive to the density and distribution of surface charges. Due to the discreteness of the surface charge, a slight charge inversion appeared which depended on the surface charge density, bulk concentration, and confinement. In the nanoconfined NaCl solutions concentrated from 0.2 to 4.0 M, the locations of accumulation layers for Na(+) and Cl(-) ions remained stable, but their peak values increased. The higher the concentration was, the more obvious the charge inversion appeared. In 4.0 M NaCl solution, Na(+) and Cl(-) ions show obvious alternating layered distributions which may correspond to the solidification found in experiments. By changing surface separation, the confinement had a large effect on the ionic distribution. As both surfaces approached each other, many ions and water molecules were squeezed out of the confined space. Two adjacent layers in ion or water distribution profiles can be forced closer to each other and merge together. From ionic hydration analysis, the coordination number of Na(+) ions in highly confined space was much lower than that in the bulk.

  1. Coherent Synchrotron Radiation and Space Charge for a 1-D Bunch on an Arbitrary Planar Orbit

    SciTech Connect

    Warnock, R.L.; /SLAC

    2008-01-08

    Realistic modeling of coherent synchrotron radiation (CSR) and the space charge force in single-pass systems and rings usually requires at least a two-dimensional (2-D) description of the charge/current density of the bunch. Since that leads to costly computations, one often resorts to a 1-D model of the bunch for first explorations. This paper provides several improvements to previous 1-D theories, eliminating unnecessary approximations and physical restrictions.

  2. Crystalline polymorphism induced by charge regulation in ionic membranes.

    PubMed

    Leung, Cheuk-Yui; Palmer, Liam C; Kewalramani, Sumit; Qiao, Baofu; Stupp, Samuel I; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2013-10-08

    The crystallization of molecules with polar and hydrophobic groups, such as ionic amphiphiles and proteins, is of paramount importance in biology and biotechnology. By coassembling dilysine (+2) and carboxylate (-1) amphiphiles of various tail lengths into bilayer membranes at different pH values, we show that the 2D crystallization process in amphiphile membranes can be controlled by modifying the competition of long-range and short-range interactions among the polar and the hydrophobic groups. The pH and the hydrophobic tail length modify the intermolecular packing and the symmetry of their crystalline phase. For hydrophobic tail lengths of 14 carbons (C14), we observe the coassembly into crystalline bilayers with hexagonal molecular ordering via in situ small- and wide-angle X-ray scattering. As the tail length increases, the hexagonal lattice spacing decreases due to an increase in van der Waals interactions, as demonstrated by atomistic molecular dynamics simulations. For C16 and C18 we observe a reentrant crystalline phase transition sequence, hexagonal-rectangular-C-rectangular-P-rectangular-C-hexagonal, as the solution pH is increased from 3 to 10.5. The stability of the rectangular phases, which maximize tail packing, increases with increasing tail length. As a result, for very long tails (C22), the possibility of observing packing symmetries other than rectangular-C phases diminishes. Our work demonstrates that it is possible to systematically exchange chemical and mechanical energy by changing the solution pH value within a range of physiological conditions at room temperature in bilayers of molecules with ionizable groups.

  3. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.

    PubMed

    He, Yadong; Huang, Jingsong; Sumpter, Bobby G; Kornyshev, Alexei A; Qiao, Rui

    2015-01-02

    Understanding the dynamic charge storage in nanoporous electrodes with room-temperature ionic liquid electrolytes is essential for optimizing them to achieve supercapacitors with high energy and power densities. Herein, we report coarse-grained molecular dynamics simulations of the cyclic voltammetry of supercapacitors featuring subnanometer pores and model ionic liquids. We show that the cyclic charging and discharging of nanopores are governed by the interplay between the external field-driven ion transport and the sloshing dynamics of ions inside of the pore. The ion occupancy along the pore length depends strongly on the scan rate and varies cyclically during charging/discharging. Unlike that at equilibrium conditions or low scan rates, charge storage at high scan rates is dominated by counterions while the contribution by co-ions is marginal or negative. These observations help explain the perm-selective charge storage observed experimentally. We clarify the mechanisms underlying these dynamic phenomena and quantify their effects on the efficiency of the dynamic charge storage in nanopores.

  4. Effect of surface bilayer charges on the magnetic field around ionic channels

    NASA Astrophysics Data System (ADS)

    Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  5. A multi-physical model for charge and mass transport in a flexible ionic polymer sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Asaka, Kinji; Takagi, Kentaro; Aabloo, Alvo; Horiuchi, Tetsuya

    2016-04-01

    An ionic polymer material can generate electrical potential and function as a bio-sensor under a non-uniform deformation. Ionic polymer-metal composite (IPMC) is a typical flexible ionic polymer sensor material. A multi-physical sensing model is presented at first based on the same physical equations in the physical model for IPMC actuator we obtained before. Under an applied bending deformation, water and cation migrate to the direction of outside electrode immediately. Redistribution of cations causes an electrical potential difference between two electrodes. The cation migration is strongly restrained by the generated electrical potential. And the migrated cations will move back to the inner electrode under the concentration diffusion effect and lead to a relaxation of electrical potential. In the whole sensing process, transport and redistribution of charge and mass are revealed along the thickness direction by numerical analysis. The sensing process is a revised physical process of the actuation, however, the transport properties are quite different from those of the later. And the effective dielectric constant of IPMC, which is related to the morphology of the electrode-ionic polymer interface, is proved to have little relation with the sensing amplitude. All the conclusions are significant for ionic polymer sensing material design.

  6. The mean ionic charges of N, Ne, MG, SI and S in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.; Fan, C. Y.; Fisk, L. A.

    1985-01-01

    The mean ionic charges of nitrogen, neon, magnesium, silicon, and sulfur in solar flare particle events were determined for 12 flares during the time interval from September 1978 to September 1979. The observations were carried out with the MPI/UoMd ULEZEQ Sensor on the ISEE-3 satellite comparing the results with mean charge states established in a hot coronal plasma under equilibrium conditions, different temperatures for different elements are discussed. These range from approx. 2 million K to 7 million K in a single flare. From flare to flare the variation in temperature for each element is less than the variation between different ion species.

  7. Rate limiting activity of charge transfer during lithiation from ionic liquids

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marco-Tulio F.; Lin, Xinrong; Gullapalli, Hemtej; Grinstaff, Mark W.; Ajayan, Pulickel M.

    2016-10-01

    Given the increased use of room temperature ionic liquid electrolytes in Li-ion batteries, due to their non-flammability and negligible volatility, this study evaluates the lithiation kinetics to understand and improve the rate performance of Li-ion batteries. Lithium titanate spinel is used as a model electrode and the electrolyte is composed of LiTFSI and TFSI-coordinated alkoxy-modified phosphonium ionic liquid. Based on the analysis of activation energies for each process, we report that the charge-transfer reaction at the electrode/electrolyte interface is the rate-limiting step for cell operation. This finding is further supported by the observation that a 50-fold decrease in charge-transfer resistance at higher temperatures leads to a significant performance improvement over that of a traditional organic electrolyte at room temperature. Charge-transfer resistance and electrolyte wetting on the electrode surface are critical processes for optimal battery performance, and such processes need to be included when designing new ionic liquids in order to exceed the power density obtained with the use of current carbonate-based electrolytes.

  8. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants.

    PubMed

    Nakamura, Yuki; Okachi, Manami; Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2015-12-15

    We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters.

  9. New Estimates of Inferred Ionic Charge States for Solar Energetic Particle Events with ACE and STEREO

    NASA Astrophysics Data System (ADS)

    Labrador, A. W.; Sollitt, L. S.; Cohen, C. M.; Cummings, A. C.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; Stone, E.; von Rosenvinge, T. T.; Wiedenbeck, M. E.

    2012-12-01

    Solar energetic particle (SEP) mean ionic charge states can depend on source temperatures and populations (e.g. seed populations) and conditions during acceleration and transport such as stripping. Multi-spacecraft observations of charge states from widely separated spacecraft may reveal evidence for seed populations that vary with longitude. In this presentation, we report new estimates of inferred high energy ionic charge states using the Sollitt et al. (2008) method that fits SEP energy-dependent decay times for SEP event elements to derive mean charge states. In the method, intensity decay times during SEP events are fitted for each element for various energies, and then the energy dependence of the decay times is fitted for each element. Finally, charge-to-mass ratios relative to that of a calibration element (carbon in this case) are obtained, and when Q(C)=5.9 is assumed for calibration, mean charge states for other elements can be inferred. Previously, ACE/SIS and ACE/ULEIS data were applied to three SEP events (Nov. 6, 1997; Nov. 4, 2001; Apr. 21, 2002) with this method, and last year, we reported new results for the Dec. 6, 2006 SEP event compatible with SAMPEX/MAST results. Additional work continues to generalize and extend the software to use publicly available online data from ACE and the two STEREO spacecraft. Energy ranges are those covered by the instruments on ACE (e.g. reference element C at <.1 MeV/nuc from ULEIS to ~64 MeV/nuc from SIS) and on STEREO (e.g. C at 3.2 - 33 MeV/nuc from LET). Initial candidate SEP events for multi-spacecraft charge state estimates are those of Mar. 8, 2011, Mar. 21, 2011, Jan. 24, 2012, and Mar. 4, 2012. Results from events observed by single spacecraft may also be reported.

  10. Conformations of polyelectrolyte macromolecules with different charge density in solutions of different ionic strengths

    NASA Astrophysics Data System (ADS)

    Dommes, O. A.; Okatova, O. V.; Pavlov, G. M.

    2016-11-01

    Studies of charged polymer chains are interesting in both fundamental and applied aspects. Especially, polyelectrolytes attract huge attention of researchers due to their ability to form interpolymer complexes with synthetic and biopolymers. The study was carried out on the fractions of hydrophilic copolymers of N-methyl-N-vinyl acetamide and N-methyl-N-vinyl amine hydrochloride of different degrees of polymerization and of different charge density using methods of molecular hydrodynamics. Hydrodynamic and conformational characteristics as well as molar masses of isolated molecules were estimated. In addition, the intrinsic viscosity of fractions was studied at the extreme ionic strengths - in distilled water (∼10-6M) and in 6M NaCl. Scaling relations for intrinsic viscosity, sedimentation and translational diffusion coefficients with molar mass were obtained. Conformational behavior of macromolecules with different linear charge density was compared.

  11. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion.

    PubMed

    Knorr, Anne; Ludwig, Ralf

    2015-12-02

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3-4 kJmol(-1). The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

  12. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    SciTech Connect

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  13. Effect of cation symmetry on the organization of ionic liquids near a charged mica surface.

    PubMed

    Payal, Rajdeep Singh; Balasubramanian, Sundaram

    2014-07-16

    Atomistic molecular dynamics simulations have been carried out to understand the effect of the symmetry of cations on the microscopic organization of ionic liquids near a charged mica surface. Ionic liquids with a 1,3-alkylimidazolium ([C(n)C(m)im](+)) cation and a bis(trifluoromethylsulfonyl)imide ([NTf2](-)) anion were investigated. Apart from symmetry, the length of the alkyl group attached to the cation is found to crucially determine the ion structure near the solid surface. In the first adsorbed layer, the ring planes of cations with shorter alkyl groups (less than four carbon atoms) are oriented either parallel or perpendicular to the surface. However, cations with longer alkyl tails are exclusively observed to have their ring planes parallel to the mica surface. The alkyl groups too show a similar dependence of their orientation on the tail length. Further, symmetric cations with alkyl groups of intermediate length are more highly structured at the interface than their asymmetric counterparts.

  14. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.

    PubMed

    Scott; Paul; Kaler

    2000-10-15

    Electrode polarization effects have long aggravated the efforts of low frequency analysis, particularly those investigations carried out on biological material or in highly conductive media. Beginning from elementary equations of electrostatics and hydrodynamics, a comprehensive model is devised to account for the screening of a general planar electrode by an ionic double layer. The surface geometry of the planar electrode is left unspecified to include any type of micromachined array. Building on the previous work by DeLacey and White (1982, J. Chem. Soc. Faraday Trans. 2 78, 457) using a variational theorem, we extend their numerical results with compact analytic solutions, analogous to the Debye-Hückel potential for dc systems, but applicable now to dynamic ac experiments. The variational approach generates functions that are not restricted by perturbation expansions or numerical convergence, representing optimal approximations to the exact solutions. Copyright 2000 Academic Press.

  15. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    SciTech Connect

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  16. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid.

    PubMed

    Capozza, R; Benassi, A; Vanossi, A; Tosatti, E

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  17. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    NASA Astrophysics Data System (ADS)

    Capozza, R.; Benassi, A.; Vanossi, A.; Tosatti, E.

    2015-10-01

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  18. Electrostatics in ionic solution : work and energy, charge regulation, and in homogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Boon, N. J. H.

    2012-01-01

    This thesis concerns the electrostatic properties of charged objects that are immersed into an ionic solvent, for example water with dissolved salt. Typically, the ions inside such a solvent form layers of countercharge close to the charged objects, causing `screening' of the charges. By employing Density Functional Theory (DFT) one is able integrate out the degrees of freedom of the ions and find relations that describe the effective electrostatic properties of the charged objects. One finds that for a large parameter regime the electrostatic potential everywhere in the solvent should satisfy the well established Poisson-Boltzmann equation. We study the electrostatic capacity of porous electrodes in salt water, and derive a method to reversibly extract electric energy from salinity gradients that occur for example at an estuary where sea- and river water meet. However, in the main part of this thesis we consider charged colloidal particles, and study the effect of internal porosity as well as heterogeneities in the surface-charge density (patchy particles) on colloid-colloid interactions. In a far-field analysis we derive equations that describe these interactions for particles with nonvanishing multipole moments, for example `Janus' colloids with a strong dipole component. If such particles locally have a high surface charge density, then the nonlinear dependence of the counterion density on the local charge density leads to a generalisation of charge renormalisation from purely monopolar to dipolar, quadrupolar, etc., including `mode couplings'. In a more detailed approach, which turns out to be important for colloidal particles at smaller distances from each other, we consider the chemical processes that lead to surface charge, and specify a parameter regime in which charging can be described by a single `chargeability' parameter. As we show in this thesis, the phase diagrams we obtain within this regime have many similarities with a `constant surface potential

  19. Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding.

    PubMed

    Knorr, Anne; Stange, Peter; Fumino, Koichi; Weinhold, Frank; Ludwig, Ralf

    2016-02-16

    Direct spectroscopic evidence for hydrogen-bonded clusters of like-charged ions is reported for ionic liquids. The measured infrared O-H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion-corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like-charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT-D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces.

  20. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    SciTech Connect

    Emin, David; Akhtari, Massoud; Ellingson, B. M.; Mathern, G. W.

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  1. Protein diffusion through charged nanopores with different radii at low ionic strength.

    PubMed

    Stroeve, Pieter; Rahman, Masoud; Naidu, Lekkala Dev; Chu, Gilbert; Mahmoudi, Morteza; Ramirez, Patricio; Mafe, Salvador

    2014-10-21

    The diffusion of two similar molecular weight proteins, bovine serum albumin (BSA) and bovine haemoglobin (BHb), through nanoporous charged membranes with a wide range of pore radii is studied at low ionic strength. The effects of the solution pH and the membrane pore diameter on the pore permeability allow quantifying the electrostatic interaction between the charged pore and the protein. Because of the large screening Debye length, both surface and bulk diffusion occur simultaneously. By increasing the pore diameter, the permeability tends to the bulk self-diffusion coefficient for each protein. By decreasing the pore diameter, the charges on the pore surface electrostatically hinder the transport even at the isoelectric point of the protein. Surprisingly, even at pore sizes 100 times larger than the protein, the electrostatic hindrance still plays a major role in the transport. The experimental data are qualitatively explained using a two-region model for the membrane pore and approximated equations for the pH dependence of the protein and pore charges. The experimental and theoretical results should be useful for designing protein separation processes based on nanoporous charged membranes.

  2. The entrance system laboratory prototype for an advanced mass and ionic charge composition experiment.

    PubMed

    Allegrini, F; Desai, M I; Livi, R; Livi, S; McComas, D J; Randol, B

    2009-10-01

    Electrostatic analyzers (ESA) have been used extensively for the characterization of plasmas in a variety of space environments. They vary in shape, geometry, and size and are adapted to the specific particle population to be measured and the configuration of the spacecraft. Their main function is to select the energy per charge of the particles within a passband. An energy-per-charge range larger than that of the passband can be sampled by varying the voltage difference between the ESA electrodes. The voltage sweep takes time and reduces the duty cycle for a particular energy-per-charge passband. Our design approach for an advanced mass and ionic charge composition experiment (AMICCE) has a novel electrostatic analyzer that essentially serves as a spectrograph and selects ions simultaneously over a broad range of energy-per-charge (E/q). Only three voltage settings are required to cover the entire range from approximately 10 to 270 keV/q, thus dramatically increasing the product of the geometric factor times the duty cycle when compared with other instruments. In this paper, we describe the AMICCE concept with particular emphasis on the prototype of the entrance system (ESA and collimator), which we designed, developed, and tested. We also present comparisons of the laboratory results with electrostatic simulations.

  3. Determination of Surface Charge of Titanium Dioxide (Anatase) at High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Strongin, D. R.

    2014-12-01

    Charge development on mineral surfaces is an important control on the fate of minor and trace elements in a wide range of environments, including in possible radioactive waste repositories. Formation waters have often a high ionic strength. In this study, we determined the zeta potential (ζ) of anatase in potassium chloride solutions with concentrations up to 3M (25°C). The zeta potential is the potential at the hydrodynamic shear plane. In this study, we made use of the electro-acoustic effect. This effect is based on the development of a measureable potential/current when the electrical double layer outside the shearplane is separated from a charged particle through rapid oscillation induced by a sound wave. The advantage of this type of measurement is that the particles are not subjected to a high electric field (common to typical zeta potential measurements), which leads to electrode reactions and a shift of solution pH. Measurements were collected by subtracting the ion vibration current (IVI) due to the presence of potassium and chloride ions from the CVI. The correction is necessary for measurements in solutions with I > 0.25 M. This subtraction was done at each of the measurement conditions by centrifuging the slurrly, measuring the IVI of the supernatant, reconstituting the slurry, and then measuring CVI of the slurry. Subtraction of IVI at each condition is critical because IVI changes with pH and accounts for most of raw signal. The results show that the anatase isoelectric point shifts from a pH ~6.5 to a value of ~4.5 at 1M KCl. At ionic strength in excess of 1 M KCl, the surface appears to be slightly negatively charged accross the pH range accessible by this technique (pH 2.5-10). The loss of an isoelectric point suggests that KCl is no longer an indifferent electrolyte at 1 M KCl and higher. The results are in disagreement with earlier measurements in which anatase was shown to have a positive charge at high ionic strength across the pH scale. The

  4. Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.

    PubMed

    Dujko, S; White, R D; Petrović, Z Lj; Robson, R E

    2010-04-01

    A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models.

  5. β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: effect of ionic strength.

    PubMed

    Qin, Li; Xu, Yisheng; Han, Haoya; Liu, Miaomiao; Chen, Kaimin; Wang, Siyi; Wang, Jie; Xu, Jun; Li, Li; Guo, Xuhong

    2015-12-15

    Poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PMATAC) modified magnetic nanoparticles (NPs) with a high zeta potential of ca. 50mV were synthesized by atom transfer radical polymerization (ATRP). The prepared NPs consist of a magnetic core around 13nm and a PMATAC shell around 20nm attached on the surface of magnetic nanoparticles. Thermodynamic binding parameters between β-lactoglobulin and these polycationic NPs were investigated at different ionic strengths by high-resolution turbidimetry, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Both turbidity and ITC show that binding affinities for BLG display a non-monotonic ionic strength dependence trend and a maximum appears at ionic strength of 50mM. Such observation should arise from the coeffects of protein charge anisotropy visualized by DelPhi electrostatic modeling and the strong electrostatic repulsion among highly charged NPs at a variety of ionic strengths.

  6. Constraints on CME Evolution from in situ Observations of Ionic Charge States

    NASA Technical Reports Server (NTRS)

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.

    2010-01-01

    We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.

  7. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    PubMed

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments.

  8. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    SciTech Connect

    Yao, Yi; Berkowitz, Max L. E-mail: ykanai@unc.edu; Kanai, Yosuke E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  9. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Berkowitz, Max L.; Kanai, Yosuke

    2015-12-01

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  10. Influence of Solute Charge and Pyrrolidinium Ionic Liquid Alkyl Chain Length on Probe Rotational Reorientation Dynamics

    SciTech Connect

    Guo, Jianchang; Mahurin, Shannon Mark; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W

    2014-01-01

    In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively-charged sulforhodamine 640 is slower than that of its positively-charged counterpart rhodamine 6G. An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are independent of this solvent parameter.

  11. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer.

    PubMed

    Yao, Yi; Berkowitz, Max L; Kanai, Yosuke

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na(+) and K(+) ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  12. Estimation of the ionic charge of non-metallic species into an electrical discharge through a web application

    NASA Astrophysics Data System (ADS)

    Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.

    2016-08-01

    Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.

  13. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    SciTech Connect

    Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.

  14. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  15. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  16. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  17. Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids.

    PubMed

    Izgorodina, Ekaterina I; MacFarlane, Douglas R

    2011-12-15

    The nature of hydrogen bonding was compared in neutral complexes and negatively charged complexes consisting of either the HF molecule or the halide anion (fluoride and chloride) and the C-H bond in the methane molecule with a varying degree of fluorination (such as CH(4), CH(2)F(2), and CHF(3)). Both linear (C(3v) symmetry) and nonlinear (C(2v) symmetry) hydrogen-bonded complexes were studied. Symmetry-adapted perturbation theory was used to decompose interaction energies into fundamental components such as Coulomb, repulsion, induction and dispersion to analyze the interplay among these forces in stabilizing hydrogen bonding. In the linear charged complexes, both Coulomb attraction and induction significantly contributed to the stabilization of hydrogen bonding. In the nonlinear charged complexes, mainly Coulomb attraction contributed to the HB complex stabilization, with the inductive forces playing a less important role. Contrary to the neutral complexes, dispersion forces played only a marginal role in the charged complexes. Interplay between the fundamental forces was also investigated in the ion pairs of the imidazolium-based ionic liquid, [C(2)mim]Cl, that were categorized as either (1) typical ion-ion interaction, with the anion interacting from above or below the imidazolium plane; or (2) hydrogen-bonding interaction, with the anion interacting with the C2-H bond of the imidazolium cation. Both types of interactions were found to induce similar charge transfers, and the analysis of the energetic components revealed only a slight difference in the ion pairs studied: (1) both interactions were electrostatically driven, between 86% and 88% of the overall attractive energy, with the electrostatic component being slightly lower in the hydrogen-bonded ion pairs by ~8 kJ mol(-1); and (2) dispersion forces were found to be stronger in the typical ion-ion interactions by ~15 kJ mol(-1) and could be possible only due to the fact that the anion was able to move

  18. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model.

    PubMed

    Sharma, P; Mišković, Z L

    2015-10-07

    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential.

  19. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  20. Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration.

    PubMed

    Reiche, Katharina; Hartl, Josef; Blume, Alfred; Garidel, Patrick

    2017-01-01

    Liquid-liquid phase separation (LLPS) of a monoclonal antibody solution was investigated at low ionic strength in the presence of oligovalent anions, such as citrate, trimellitate, pyromellitate and mellitate. Phase separation was observed at the isoelectric point of the antibody at pH8.7 as well as in more acidic pH regions in the presence of the tested oligovalent ions. This can be attributed to charge neutralization via binding of the oligovalent anions to the positively charged antibody. The influence of the anion concentration on liquid-liquid phase separation with respect to the net charge of the antibody was examined. Similarities to the formation of a complex coacervate were shown to apply. These findings enable us to understand the usage of excipients to rationally induce or avoid liquid-liquid phase separation at low ionic strength. Furthermore we present a method to directly examine the competition of different ions for the solvation shell, called buffer equilibration.

  1. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species

    NASA Astrophysics Data System (ADS)

    Ge, Suxiang; Cai, Lejuan; Li, Dapeng; Fa, Wenjun; Zhang, Yange; Zheng, Zhi

    2015-12-01

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In2S3 nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In2S3 nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  2. Effect of surface charge density and electro-osmotic flow on ionic current in a bipolar nanopore fluidic diode

    NASA Astrophysics Data System (ADS)

    Pal Singh, Kunwar; Kumar, Manoj

    2011-10-01

    We have simulated bipolar nanopore fluidic diodes for different values of surface charge densities, electrolyte concentrations, and thickness of transition zone. Nanopore enrichment leads to increased nanopore conductivity with the surface charge density at low electrolyte concentrations. Potential drop across the nanopore and electric field inside the nanopore decreases. Forward current and ionic current rectification peaks for a specific value of surface charge density. Even though the electro-osmotic current component remains small as compared to other components, its non-inclusion in the modeling leads to serious errors in the solutions. Significant ion current rectification can be obtained even if transition zone between oppositely charged zones is not narrow. The effect of the surface charge is screened by counterions at higher electrolyte concentrations, which leads to reduced electrolyte polarization and a decrease in the ion current rectification.

  3. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive.

    PubMed

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-05-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene-conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions.

  4. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive

    PubMed Central

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-01-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene–conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions. PMID:27386541

  5. Reorientational dynamics of charged and neutral solutes in 1-alkyl-3-methylimidazoilum bis(trifluoromethylsulfonyl)imide ionic liquids: Realization of ionic component of hydrogen bond

    NASA Astrophysics Data System (ADS)

    Sahu, Prabhat Kumar; Sarkar, Moloy

    2016-05-01

    Role of electrostatic interaction on rotational relaxation dynamics of two charged solutes, sodium 8-methoxypyrene-1,3,6-trisulfonate (MPTS), 1-pyrenesulfonic acid sodium salt (1-PSA) and neutral perylene has been studied in two structurally similar but chemically distinguishable imidazolium-based ionic liquids (ILs). Analysis of the results reveals that rotational relaxation of MPTS is significantly hindered even in the IL where acidic C2-H of the imidazolium moiety is replaced by the methyl group. Moreover, rotational relaxation of neutral perylene is found to be faster than mononegative 1-PSA which is again observed to be faster than that of tri-negative MPTS in the same ILs.

  6. Observation of Charge Inversion of an Ionic Liquid at the Solid Salt-Liquid Interface by Sum Frequency Generation Spectroscopy.

    PubMed

    Peñalber, Chariz Y; Baldelli, Steven

    2012-04-05

    Sum frequency generation (SFG) vibrational spectroscopy of the ionic liquid, 1-butyl-3-methylimidazolium dicyanamide [BMIM][DCA], in contact with two different solid salt surfaces, BaF2(111) single crystal and solid NaCl{100}, are discussed in this Letter. This investigation describes the nature of an ionic liquid-(solid) salt interface using SFG, contributing a new understanding to the molecular-level interactions involved in salts, which are conceptually similar compounds (of purely ionic character) but of different physical properties (liquid versus solid at room temperature). Results show the presence of [BMIM](+) at the NaCl{100} surface and [DCA](-) at the BaF2(111) surface. [BMIM](+) cations adhere closely via Coulombic interactions to the negatively charged NaCl{100} surface, while [DCA](-) anions subsequently have a strong electrostatic affinity to the positively charged BaF2(111) surface. Ions of the ionic liquid adsorb to the solid salt surface to form a Helmholtz-like electric double layer.

  7. Influence of ionic strength and beta2-glycoprotein I concentration on agglutination of like-charged phospholipid membranes.

    PubMed

    Perutková, Šárka; Frank-Bertoncelj, Mojca; Rozman, Blaž; Kralj-Iglič, Veronika; Iglič, Aleš

    2013-11-01

    The effect of ionic strength on adhesion between negatively charged giant unilamellar vesicles induced by beta2-glycoprotein I (β2-GPI) was studied experimentally and theoretically. Measuring the effective angle of contact between adhering vesicles indicated that the strength of adhesion between vesicles decreases with increasing ionic strength, and increases with concentration of β2-GPI. In the theoretical part we focused on the study of the average orientation of β2-GPI near the charged membrane and its role in mediating the attractive interactions between the vesicles. β2-GPI proteins were modelled as rods with internal distribution of electric charge. The predictions of Monte Carlo simulations show orthogonal orientation of some of the membrane attached β2-GPI in narrow gap between two vesicles. On the contrary, at larger distances between vesicles the proteins are parallelly attached to the membrane surface. A local minimum of the free energy corresponding to β2-GPI-mediated adhesion of two neighbouring vesicles was predicted. The strength of adhesion was confirmed to decrease at high ionic strength.

  8. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  9. The effect of various quantum mechanically derived partial atomic charges on the bulk properties of chloride-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Zolghadr, Amin Reza; Ghatee, Mohammad Hadi; Moosavi, Fatemeh

    2016-08-01

    Partial atomic charges using various quantum mechanical calculations for [Cnmim]Cl (n = 1, 4) ionic liquids (ILs) are obtained and used for development of molecular dynamics simulation (MD) force fields. The isolated ion pairs are optimized using HF, B3LYP, and MP2 methods for electronic structure with 6-311++G(d,p) basis set. Partial atomic charges are assigned to the atomic center with CHELPG and NBO methods. The effect of these sets of partial charges on the static and dynamic properties of ILs is evaluated by performing a series of MD simulations and comparing the essential thermodynamic properties with the available experimental data and available molecular dynamics simulation results. In contrast to the general trends reported for ionic liquids with BF4, PF6, and iodide anions (in which restrained electrostatic potential (RESP) charges are preferred), partial charges derived by B3LYP-NBO method are relatively good in prediction of the structural, dynamical, and thermodynamic energetic properties of the chloride based ILs.

  10. Effect of dense plasmas on exchange-energy shifts in highly charged ions: An alternative approach for arbitrary perturbation potentials

    SciTech Connect

    Rosmej, F.; Bennadji, K.; Lisitsa, V. S.

    2011-09-15

    An alternative method of calculation of dense plasma effects on exchange-energy shifts {Delta}E{sub x} of highly charged ions is proposed which results in closed expressions for any plasma or perturbation potential. The method is based on a perturbation theory expansion for the inner atomic potential produced by charged plasma particles employing the Coulomb Green function method. This approach allows us to obtain analytic expressions and scaling laws with respect to the electron temperature T, density n{sub e}, and nuclear charge Z. To demonstrate the power of the present method, two specific models were considered in detail: the ion sphere model (ISM) and the Debye screening model (DSM). We demonstrate that analytical expressions can be obtained even for the finite temperature ISM. Calculations have been carried out for the singlet 1s2p{sup 1} P{sub 1} and triplet 1s2p{sup 3} P{sub 1} configurations of He-like ions with charge Z that can be observed in dense plasmas via the He-like resonance and intercombination lines. Finally we discuss recently available purely numerical calculations and experimental data.

  11. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report

    SciTech Connect

    Nguyen, Thuc-Quyen; Bazan, Guillermo; Mikhailovsky, Alexander

    2014-04-15

    Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced

  12. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-based polymer electrolytes embedded with ionic liquid

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2015-12-01

    In the present paper, we have studied dynamics and relaxation of the charge carriers in polymethylmethacrylate-lithium bis(trifluoromethane sulfonyl)imide polymer electrolytes embedded with 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. We have analyzed the frequency dependent conductivity spectra using the random free-energy barrier model coupled with the contribution of electrode polarization in the low frequency region. The temperature dependence of ionic conductivity, and relaxation time obtained from the analysis of the spectra exhibits Vogel-Tammann-Fulcher type behavior. The Barton-Nakajima-Namikawa relation is consistent with the results obtained from the random free-energy barrier model. The scaling of ac conductivity spectra has been performed to understand the effect of temperature as well as the composition on the relaxation mechanism. The analysis of the ac conductivity also clearly indicates the existence of a nearly constant loss phenomenon at low temperatures or at high frequencies.

  13. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    DOE PAGES

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; ...

    2015-11-02

    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10-3 S cm-1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  14. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    SciTech Connect

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; Fang, Youxing; Veith, Gabriel M.; Sun, Xiao-Guang; Dai, Sheng

    2015-11-02

    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10-3 S cm-1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  15. Conformal weights of charged Rényi entropy twist operators for free scalar fields in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Dowker, J. S.

    2016-04-01

    I compute the conformal weights of the twist operators of free scalar fields for charged Rényi entropy in both odd and even dimensions. Explicit expressions can be found, in odd dimensions as a function of the chemical potential in the absence of a conical singularity and thence by images for all integer coverings. This method, developed some time ago, is equivalent, in results, to the replica technique. A review is given. The same method applies for even dimensions but a general form is more immediately available. For no chemical potential, the closed form in the covering order is written in an alternative way related to old trigonometric sums. Some derivatives are obtained. An analytical proof is given of a conjecture made by Bueno, Myers and Witczak-Krempa regarding the relation between the conformal weights and a corner coefficient (a universal quantity) in the Rényi entropy.

  16. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres.

    PubMed

    Yu, Liang; Zhang, Yatao; Wang, Yuanming; Zhang, Haoqin; Liu, Jindun

    2015-04-28

    Silica spheres modified by poly (ionic liquid) brushes, a novel positively charged nanomaterial is prepared by atom transfer radical polymerization (ATRP). A high flux positively charged loose nanofiltration membrane is fabricated via "blending-phase inversion" method. The morphology structures, hydrophilicity, thermal and mechanical properties, permeation performance of these membranes are investigated in detail. The results reveal that the hybrid membranes have enhanced surface hydrophilicity, water permeability, thermal stability, and mechanical properties. Characterization of membrane separation properties shows that the hybrid membranes possess higher salt permeability and relatively higher rejection for reactive dyes, which may open opportunities for the recycling of reactive dyes wastewater. Moreover, such hybrid membranes have an outstanding operational stability and salts concentration showed little effect on the separation properties.

  17. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    SciTech Connect

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.

    2014-08-14

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.

  18. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations

    NASA Astrophysics Data System (ADS)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m :-n electrolyte. A perturbation series is developed in terms of g =4 π κ b , where b a n d 1 /κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m ≠n ), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  19. Ionic Blocks

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    "Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…

  20. Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states

    SciTech Connect

    Ohashi, Hayato Higashiguchi, Takeshi Suzuki, Yuhei; Kawasaki, Masato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Kanehara, Tatsuhiko; Aida, Yuya; Nakamura, Nobuyuki; Torii, Shuichi; Makimura, Tetsuya; Jiang, Weihua

    2014-01-21

    We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasing ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.

  1. Gradual improvements of charge carrier mobility at ionic liquid/rubrene single crystal interfaces

    NASA Astrophysics Data System (ADS)

    Yokota, Yasuyuki; Hara, Hisaya; Morino, Yusuke; Bando, Ken-ichi; Ono, Sakurako; Imanishi, Akihito; Okada, Yugo; Matsui, Hiroyuki; Uemura, Takafumi; Takeya, Jun; Fukui, Ken-ichi

    2016-02-01

    We report evolution of electric characteristics of an electric double layer field-effect transistor based on the ionic liquid/rubrene single crystal interfaces. In contrast to usual devices, the field effect mobility was found to gradually increase with time for a day, followed by minor long-term fluctuations. Although the details of the evolution were somewhat device dependent, the final values of the mobility turned out to be 3-4 times larger irrespective of the initial values. These observations are explained by the evolution of the flat interface by defect-induced spontaneous dissolution of rubrene molecules at the ionic liquid/rubrene single crystal interfaces, revealed by frequency modulation atomic force microscopy.

  2. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers.

    PubMed

    Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun

    2017-02-28

    The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10(7) M(-1) in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10(15) M(-2) and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and

  3. Charge ordering induces a smectic phase in oblate ionic liquid crystals.

    PubMed

    Ganzenmüller, G C; Patey, G N

    2010-09-24

    We report a computer simulation study of an electroneutral mixture of oppositely charged oblate ellipsoids of revolution with aspect ratio A=1/3. In contrast with hard or soft repulsive ellipsoids, which are purely nematic, this system exhibits a smectic-A phase in which charges of equal sign are counterintuitively packed in layers perpendicular to the nematic director.

  4. Ionic fluids containing both strongly and weakly interacting ions of the same charge have unique ionic and chemical environments as a function of ion concentration.

    PubMed

    Wang, Hui; Kelley, Steven P; Brantley, Jimmy W; Chatel, Gregory; Shamshina, Julia; Pereira, Jorge F B; Debbeti, Varun; Myerson, Allan S; Rogers, Robin D

    2015-04-07

    Liquid multi-ion systems made by combining two or more salts can exhibit charge ordering and interactions not found in the parent salts, leading to new sets of properties. This is investigated herein by examining a liquid comprised of a single cation, 1-ethyl-3-methylimidazolium ([C2mim](+)), and two anions with different properties, acetate ([OAc](-)) and bis(trifluoromethylsulfonyl)imide ([NTf2](-)). NMR and IR spectroscopy indicate that the electrostatic interactions are quite different from those in either [C2mim][OAc] or [C2mim][NTf2]. This is attributed to the ability of [OAc](-) to form complexes with the [C2mim](+) ions at greater than 1:1 stoichiometries by drawing [C2mim](+) ions away from the less basic [NTf2](-) ions. Solubility studies with molecular solvents (ethyl acetate, water) and pharmaceuticals (ibuprofen, diphenhydramine) show nonlinear trends as a function of ion content, which suggests that solubility can be tuned through changes in the ionic compositions.

  5. Self-Consistent Determination of Atomic Charges of Ionic Liquid through a Combination of Molecular Dynamics Simulation and Density Functional Theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-02-09

    A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.

  6. Mean ionic charge of silicon in He-3-rich solar flares

    SciTech Connect

    Luhn, A.; Klecker, B.; Hovestadt, D.; Moebius, E.

    1987-06-01

    The charge state of Si in solar flares with enhanced He-3 is investigated on the basis of measurements obtained at a sunward distance of about 230 earth radii by the ultralow-energy Z, E, and Q sensor of ISEE 3 during 1978-1979. The data are presented in tables and graphs and characterized. The charge is found to have a mean of about 14 and a 99-percent-confidence-level lower bound of 11.7, as compared to 11.0 + or - 0.3 for normal flare events. Also presented are corrections to the mean Fe charges reported by Klecker et al. (1984). Both mean charge states indicate a source temperature of about 10 million K and appear to be incompatible with the mechanism proposed by Fisk (1978) to explain He-3 enrichment. 35 references.

  7. Model of photo-induced neutral-ionic phase transition in organic charge-transfer salts

    NASA Astrophysics Data System (ADS)

    Yartsev, V. M.

    1998-01-01

    One-dimensional donor-acceptor mixed chains are modeled by a periodic DADA tetramer. Electron coupling to intramolecular vibrations are taken into account explicitly. Generalized adiabatic potentials are calculated for the cases of regular and dimerized stacks which are characteristic, respectively, of quasi-neutral (N) and quasi-ionic (I) phases of a tetrathiafulvalene-chloranil compound. A sharp difference in life-times of photo-induced I-states in the N-phase and N-states in the I-phase is discussed within the periodic DADA tetramer model.

  8. Results from the Heavy Ions In Space (HIIS) experiment on the ionic charge state of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.; Kleis, Thomas

    1995-01-01

    It has long been known that low-energy solar energetic particles (SEP's) are partially-ionized. For example, in large, so-called 'gradual' solar energetic particle events, at approximately 1 MeV/nucleon the measured mean ionic charge state, Q, of Fe ions is 14.1 +/- 0.2, corresponding to a plasma temperature of approximately 2 MK in the coronal or solar-wind source material. Recent studies, which have greatly clarified the origin of solar energetic particles and their relation to solar flares, suggest that ions in these SEP events are accelerated not at a flare site, but by shocks propagating through relatively low-density regions in the interplanetary medium. As a result, the partially-ionized states observed at low energies are expected to continue to higher energies. However, up to now there have been no high-energy measurements of ionic charge states to confirm this notion. We report here HIIS observations of Fe-group ions at 50-600 MeV/nucleon, at energies and fluences which cannot be explained by fully-ionized galactic cosmic rays, even in the presence of severe geomagnetic cutoff suppression. Above approximately 200 MeV/nucleon, all features of our data -- fluence, energy spectrum, elemental composition, and arrival directions -- can be explained by the large SEP events of October 1989, provided that the mean ionic charge state at these high energies is comparable to the measured value at approximately 1 MeV/nucleon. By comparing the HIIS observations with measurements in interplanetary space in October 1989, we determine the mean ionic charge state of SEP Fe ions at approximately 200-600 MeV/nucleon to be Q = 13.4 plus or minus 1.0, in good agreement with the observed value at approximately 1 MeV/nucleon. The source of the ions below approximately 200 MeV/nucleon is not yet clear. Partially-ionized ions are less effectively deflected by the Earth's magnetic field than fully-ionized cosmic rays and therefore have greatly enhanced access to low-Earth orbit

  9. Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    In molecular simulations of the diffusion of EMIM+ and TESI- ions in slit-shaped micropores under conditions similar to those during charging show that in pores that accommodate only a single layer of ions, ions diffuse increasingly faster as the pore becomes charged (with diffusion coefficients even reaching similar to 5 x 10-9 m2/s), unless the pore becomes very highly charged. In pores wide enough to fit more than one layer of ions, ion diffusion is slower than in the bulk and changes modestly as the pore becomes charged. Moreover, analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore during charging is correlated most strongly with the dense (or loose) ion packing inside the pore. Finally, the molecular details of the ions and the precise width of the pores modify these trends weakly, except when the pore is so narrow that the ion conformation relaxation is strongly constrained by the pore walls.

  10. Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE PAGES

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; ...

    2015-12-07

    In molecular simulations of the diffusion of EMIM+ and TESI- ions in slit-shaped micropores under conditions similar to those during charging show that in pores that accommodate only a single layer of ions, ions diffuse increasingly faster as the pore becomes charged (with diffusion coefficients even reaching similar to 5 x 10-9 m2/s), unless the pore becomes very highly charged. In pores wide enough to fit more than one layer of ions, ion diffusion is slower than in the bulk and changes modestly as the pore becomes charged. Moreover, analysis of these results revealed that the fast (or slow) diffusionmore » of ions inside a micropore during charging is correlated most strongly with the dense (or loose) ion packing inside the pore. Finally, the molecular details of the ions and the precise width of the pores modify these trends weakly, except when the pore is so narrow that the ion conformation relaxation is strongly constrained by the pore walls.« less

  11. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  12. Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): influence of the cation charge of the ionic liquid.

    PubMed

    Hojniak, Sandra D; Khan, Asim Laeeq; Hollóczki, Oldamur; Kirchner, Barbara; Vankelecom, Ivo F J; Dehaen, Wim; Binnemans, Koen

    2013-12-05

    Supported ionic liquid membranes (SILMs) are promising tools for the separation of carbon dioxide from other gases. In this paper, new imidazolium, pyrrolidinium, piperidinium, and morpholinium ionic liquids with a triethylene glycol side chain and tosylate anions, as well as their symmetrical dicationic analogues, have been synthesized and incorporated into SILMs. The selectivities for CO2/N2 and CO2/CH4 separations have been measured. The selectivities exhibited by the dicationic ionic liquids are up to two times higher than the values of the corresponding monocationic ionic liquids. Quantum chemical calculations have been used to investigate the difference in the interaction of carbon dioxide with monocationic and dicationic ionic liquids. The reason for the increased gas separation selectivity of the dicationic ionic liquids is two-fold: (1) a decrease in permeance of nitrogen and methane through the ionic liquid layer, presumably due to their less favorable interactions with the gases, while the permeance of carbon dioxide is reduced much less; (2) an increase in the number of interaction sites for the interactions with the quadrupolar carbon dioxide molecules in the dicationic ionic liquids, compared to the monocationic analogues.

  13. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero

  14. Trace Element Partitioning under Crustal and Uppermost Mantle Conditions: The Influences of Ionic Radius, Cation Charge, Pressure, and Temperature

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Blundy, J. D.

    2003-12-01

    The controls on partitioning of trace elements between crystals and silicate melts were initially the subject of crystal-chemical, rather than petrogenetic interest. Goldschmidt (1937) systematized his observations of elemental concentrations in minerals as a means of understanding and predicting element behavior during crystallization from liquids or gases. Thus, he proposed his three "rules" of element partitioning, which may be summarized as follows: (i) Any two ions of the same charge and very similar ionic radius have essentially the same crystal-liquid partition coefficient (D=[i]xtl/[i]liq, where [i] refers to the concentration of element i). (ii) If there is a small difference of ionic radius, the smaller ion enters the crystal preferentially, e.g., DMg2+>DFe2+, DK+>DRb+>DCs+. (iii) For ions of similar radius but different charges, the ion with the higher charge enters the crystal preferentially, i.e., DSc3+>DMg2+>DLi+, DCa2+>DNa+, and DBa2+>DK+. These principles were taught to generations of students and, as we will show below, under certain circumstances, retain a degree of validity. They are neither, however, universally correct nor do they have any quantitative applicability. The aim of this chapter is to summarize the ways in which Goldschmidt's work has been amplified through a combination of theory and experimental measurement in order to quantify crystal-liquid partitioning behavior.Since the development of accurate methods of determining element concentration at the ppm level, the trace-element contents of igneous rocks have frequently been used to model their chemical evolution. These studies use estimated crystal-liquid partition coefficients together with solutions for the differential equations describing, e.g., fractional crystallization or fractional melting (Schilling and Winchester, 1967; Gast, 1968; Shaw, 1970) to model evolution of the melt during precipitation or dissolution of the crystalline phases. Generally, because of lack of data

  15. When Like Charged Ions Attract in Ionic Liquids: Controlling the Formation of Cationic Clusters by the Interaction Strength of the Counterions.

    PubMed

    Strate, Anne; Niemann, Thomas; Michalik, Dirk; Ludwig, Ralf

    2017-01-09

    The properties of ionic liquids are described by a subtle balance between Coulomb interaction, hydrogen bonding, and dispersion forces. We show that lowering the attractive Coulomb interaction by choosing weakly coordinating anions leads to the formation of cationic clusters. These clusters of like-charged ions are stabilized by cooperative hydrogen bonding and controlled by the interaction potential of the anion. IR and NMR spectroscopy combined with computational methods are used to detect and characterize these unusual, counter-intuitively formed clusters. They can be only observed for weakly coordinating anions. When cationic clusters are formed, cyclic tetramers are particularly stable. Therein, cooperative hydrogen-bond attraction can compete with like-charge repulsion. We present a simple but effective spectroscopic scale for the possibility of like-charge attraction in ionic liquids, based on IR and NMR signatures.

  16. An ionic charge-transfer dyad prepared cost-effectively from a tetrathiafulvalene carboxylate anion and a TMPyP cation.

    PubMed

    Xue, Li-Jun; Huo, Peng; Li, Yan-Hong; Hou, Jin-Le; Zhu, Qin-Yu; Dai, Jie

    2016-01-28

    Great progress has been made in combining a TTF moiety with a porphyrin unit by covalent bonds, but only a few examples were reported in which TTF and porphyrin assembled by noncovalent interactions. In contrast to the energy- and time-consuming synthetic procedures for the covalent system, the assembly of a non-covalent ionic system would be a cost-effective way to construct donor-acceptor ensembles. Herein a new type of ionic TTF-porphyrin dyad is obtained. A methylated tetra(4-pyridyl) porphyrin (5,10,15,20-tetrakis-(N-methyl-4-pyridyl)-porphyrin, TMPyP) is selected as the cation, and TTF-bicarboxylate (L(1)) or TTF-tetracarboxylate (L(2)) is used as the anion. Crystal structures of two TTF-TMPyP ionic D-A compounds, TMPyP-(HL(1))4·3H2O (1) and TMPyP-(H2L(2))2·5H2O (2), were characterized by single-crystal X-ray diffraction. The strong ionic interaction enhances the charge-transfer between the regular mixed-stacking donors and acceptors, which are investigated comprehensively by spectral, electrochemical and theoretical studies. The variation in properties between L(1) and L(2) is of great advantage to understand the influence factors for charge-transfer. The charge-transfer properties can be modulated not only by the nature of the donor or the acceptor, but also the cation-anion ratio in the salt, which shows great flexibility of the D-A ionic dyad in the design and preparation of new charge-transfer systems.

  17. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    SciTech Connect

    Tindjong, R.; McClintock, P. V. E.; Luchinsky, D. G.; Kaufman, I.; Eisenberg, R. S.

    2009-04-23

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  18. Solar Wind Sputtering of Lunar Soil Analogs: The Effect of Ionic Charge and Mass

    NASA Technical Reports Server (NTRS)

    Hijazi, H.; Bannister, M. E.; Meyer, F. W.; Rouleau, C. M.; Barghouty, A. F.; Rickman, D. L.; Hijazi, H.

    2014-01-01

    In this contribution we report sput-tering measurements of anorthite, an analog material representative of the lunar highlands, by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the heavier solar wind constituents), in the charge state range +1 to +9, and had a fixed solar-wind-relevant impact velocity of approximately 310 km/s or 500 eV/ amu. The goal of the measurements was to determine the sputtering contribution of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction.

  19. The ionic charge of Copper-64 complexes conjugated to an engineered antibody effects biodistribution

    SciTech Connect

    Dearling, Jason L. J.; Smith, Suzanne V.; Paterson, Brett M.; Akurathi, Vamisidhar; Betanzos-Lara, Soledad; Treves, S. Ted; Voss, Stephan D.; White, Jonathan M.; Huston, James S.; Donnelly, Paul S.; Packard, Alan B.

    2015-04-15

    The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper, and are therefore a promising option for labeling proteins with ⁶⁴Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.18-ΔCH2 (MW 120 kDa) with ⁶⁴Cu showed high tracer retention in the kidneys,(>38% injected dose per gram (ID/g) 48 h post-injection), presumably because the high local positive charge on the CuII-SarAr moiety resulted in increased binding of the labeled protein to the negatively charged basal cells of the glomerulus. To test this hypothesis, ch14.18-ΔCH2 was conjugated with a series of Sar derivatives of decreasing positive charge and three commonly used macrocyclic polyaza polycarboxylate (PAC) BFCs. The immunoconjugates were labeled with ⁶⁴Cu and injected into mice, and PET/CT images were obtained at 24 and 48 h post injection (p.i.). At 48 h p.i., ex vivo biodistribution was carried out. In addition, to demonstrate the potential of metastasis detection using ⁶⁴Cu-labeled ch14.18-ΔCH2, a preclinical imaging study of intrahepatic neuroblastoma tumors was performed carried out. Reducing the positive charge on the Sar chelators decreased kidney uptake of Cu-labeled ch14.18-ΔCH2 by more than 6-fold, from >45 ID/g to <6% ID/g, while the uptake in most other tissues, including liver, was relatively unchanged. However, despite this dramatic decrease, the renal uptake of the PAC BFCs was generally lower than that of the Sar derivatives, as was the liver uptake. Uptake of ⁶⁴Cu-labeled ch14.18-ΔCH2 in neuroblastoma hepatic metastases was detected using PET.

  20. The ionic charge of Copper-64 complexes conjugated to an engineered antibody effects biodistribution

    DOE PAGES

    Dearling, Jason L. J.; Smith, Suzanne V.; Paterson, Brett M.; ...

    2015-04-15

    The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper, and are therefore a promising option for labeling proteins with ⁶⁴Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.18-ΔCH2 (MW 120 kDa) with ⁶⁴Cu showed high tracer retention in the kidneys,(>38% injected dose per gram (ID/g) 48 h post-injection), presumably because the high local positive charge on the CuII-SarAr moiety resulted in increased binding of the labeled protein to the negatively charged basal cells ofmore » the glomerulus. To test this hypothesis, ch14.18-ΔCH2 was conjugated with a series of Sar derivatives of decreasing positive charge and three commonly used macrocyclic polyaza polycarboxylate (PAC) BFCs. The immunoconjugates were labeled with ⁶⁴Cu and injected into mice, and PET/CT images were obtained at 24 and 48 h post injection (p.i.). At 48 h p.i., ex vivo biodistribution was carried out. In addition, to demonstrate the potential of metastasis detection using ⁶⁴Cu-labeled ch14.18-ΔCH2, a preclinical imaging study of intrahepatic neuroblastoma tumors was performed carried out. Reducing the positive charge on the Sar chelators decreased kidney uptake of Cu-labeled ch14.18-ΔCH2 by more than 6-fold, from >45 ID/g to <6% ID/g, while the uptake in most other tissues, including liver, was relatively unchanged. However, despite this dramatic decrease, the renal uptake of the PAC BFCs was generally lower than that of the Sar derivatives, as was the liver uptake. Uptake of ⁶⁴Cu-labeled ch14.18-ΔCH2 in neuroblastoma hepatic metastases was detected using PET.« less

  1. First-Principles United Atom Force Field for the Ionic Liquid BMIM(+)BF4(-): An Alternative to Charge Scaling.

    PubMed

    Son, Chang Yun; McDaniel, Jesse G; Schmidt, J R; Cui, Qiang; Yethiraj, Arun

    2016-04-14

    Molecular dynamics study of ionic liquids (ILs) is a challenging task. While accurate fully polarizable atomistic models exist, they are computationally too demanding for routine use. Most nonpolarizable atomistic models predict diffusion constants that are much lower than experiment. Scaled charge atomistic models are cost-effective and give good results for single component ILs but are in qualitative error for the phase behavior of mixtures, due to inaccurate prediction of the IL cohesive energy. In this work, we present an alternative approach for developing computationally efficient models that importantly preserves both the correct dynamics and cohesive energy of the IL. Employing a "top-down" approach, a hierarchy of coarse-grained models for BMIM(+)BF4(-) are developed by systematically varying the polarization/atomic resolution of the distinct functional groups. Parametrization is based on symmetry-adapted perturbation theory (SAPT) calculations involving the homomolecular species; all cross interactions are obtained from mixing rules, and there are no adjustable parameters. We find that enhanced dynamics from a united-atom description counteracts the effect of reduced polarization, enabling computationally efficient models that exhibit quantitative agreement with experiment for both static and dynamic properties. We give explicit suggestions for reduced-description models that are computationally more efficient, more accurate, and more fundamentally sound than existing nonpolarizable atomistic models.

  2. Light scattering studies on solutions of charged rod-like fd-virus at very low ionic strength

    NASA Astrophysics Data System (ADS)

    Schulz, Susanne F.; Maier, Erich E.; Weber, R.

    1989-01-01

    Light scattering experiments are reported on semidilute, aqueous solutions of rod-like fd-virus (length L=880 nm, molecular weight 16.4×106 dalton) near the overlap concentration c*=1 particle/length3. In solutions of very low ionic strength, a liquid-like structure with a significant intensity maximum of the elastically scattered light is observed. The structure is caused by the electrostatic interaction of the charged rods. It vanishes, when enough salt is added so that the interaction potential is screened on the interparticle distance. The scattering vector qmax of the maximum scales with the fd concentration as c1/2. The experimental values for qmaxL fit very well to Monto Carlo simulations if the concentration is scaled to c*. Dynamic light scattering of the fd solutions reflects the influence of the static structure factor in the same way as observed for interacting spherical macromolecules: The first cumulant of the field correlation function divided by the square of the scattering vector shows a behavior reciprocal to that of the static structure factor.

  3. Rotational Diffusion of Charged and Nondipolar Solutes in Ionic Liquid-Organic Solvent Mixtures: Evidence for Stronger Specific Solute-Solvent Interactions in Presence of Organic Solvent.

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2015-08-20

    Rotational diffusion of a charged solute, rhodamine 110 (R110), and a nondipolar solute, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP), has been investigated in ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([BMIM][FAP]), with 0.8 mole fraction of dibenzyl ether (DBE). This study has been undertaken to find out how specific interactions between the solute and the ionic liquid are affected upon dilution with a nondipolar solvent. It has been observed that at a given viscosity (η) and temperature (T), the reorientation times of R110 increase by 40-60% in the ionic liquid-organic solvent mixtures compared to ones in the corresponding neat ionic liquids. In the case of DMDPP, the influence of DBE is less pronounced, and its reorientation times increase by 25-50% at a given η/T. The addition of DBE weakens the numerous interactions prevailing between the cations and the anions of the ionic liquids, which results in stronger specific interactions between the solutes and the constituent ions, consequently leading to slower rotation of the solutes.

  4. Charged local anesthetics block ionic conduction in the sheep cardiac sarcoplasmic reticulum calcium release channel.

    PubMed Central

    Tinker, A; Williams, A J

    1993-01-01

    We have examined the effect of the charged local anesthetics QX314, QX222, and Procaine on monovalent cation conduction in the Ca2+ release channel of the sheep cardiac sarcoplasmic reticulum. All three blockers only affect cation conductance when present at the cytoplasmic face of the channel. QX222 and Procaine act as voltage-dependent blockers. With 500 Hz filtering, this is manifest as a relatively smooth reduction in single-channel current amplitude most prominent at positive holding potentials. Quantitative analysis gives an effective valence of approximately 0.9 for both ions and Kb(0)s of 9.2 and 15.8 mM for QX222 and Procaine, respectively. Analysis of the concentration dependence of block suggests that QX222 is binding to a single site with a Km of 491 microM at a holding potential of 60 mV. The use of amplitude distribution analysis, with the data filtered at 1 to 2 kHz, reveals that the voltage and concentration dependence of QX222 block occurs largely because of changes in the blocker on rate. The addition of QX314 has a different effect, leading to the production of a substate with an amplitude of approximately one-third that of the control. The substate's occurrence is dependent on holding potential and QX314 concentration. Quantitative analysis reveals that the effect is highly voltage dependent, with a valence of approximately 1.5 caused by approximately equal changes in the on and off rates. Kinetic analysis of the concentration dependence of the substate occurrence reveals positive cooperativity with at least two QX314s binding to the conduction pathway, and this is largely accounted for by changes in the on rate. A paradoxical increase in the off rate at high positive holding potentials and with increasing QX314 concentration at 80 mV suggests the existence of a further QX314-dependent reaction that is both voltage and concentration dependent. The substate block is interpreted physically as a form of partial occlusion in the vestibule of the

  5. On the physical origin of the cation-anion intermediate bond in ionic liquids Part I. Placing a (weak) hydrogen bond between two charges.

    PubMed

    Lehmann, Sebastian B C; Roatsch, Martin; Schöppke, Matthias; Kirchner, Barbara

    2010-07-21

    The intermediate bond forces in ionic liquids are investigated from static quantum chemical calculations at various methods and two basis sets. The experimentally observed red-shift of the donor-proton bond stretching frequency due to a bond elongation is confirmed by all methods. Comparing Hartree-Fock to second-order Møller-Plesset perturbation theory, the Hartree-Fock method gives in many cases an erroneous description of the geometries. Furthermore, the Hartree-Fock interaction energies can deviate up to 60 kJ mol(-1) from Møller-Plesset perturbation theory indicating the importance of dispersion interaction. While the usual trends of decreasing stability or interaction energies with increasing ion sizes are found, the geometries involving hydrogen atoms do not change this order of total interaction energies. Therefore, the hydrogen bond is not the most important interaction for ion pairs with regard to the total interaction energy. On the other hand, the different established analysis methods give rise to hydrogen bonding in several ion pairs. Charge analysis reveals the hydrogen-bonding character of the ion pair and shows, depending on the type of ions combined and further on the type of conformers considered, that a hydrogen bond can be present. The possibility of hydrogen bonding is also shown by an analysis of the frontier orbitals. Calculating potential energy surfaces and observing from this the change in the donor proton bond indicates that regular hydrogen bonds are possible in ion pairs of ionic liquids. Thereby, the maximum of bond elongation exceeds the one of a usual hydrogen bond by far. The more salt-like hydrogen-bonded ion pair [NH(4)][BF(4)] exhibits a steeper maximum than the more ionic liquid like ion pair [EtNH(3)][BF(4)]. The fact that imidazolium-based ionic liquids as [Emim][Cl] can display two faces, hydrogen bonding and purely ionic bonding, points to a disturbing rather than stabilizing role of hydrogen bonding on the interaction of

  6. Universal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Bohidar, H B

    2012-09-13

    This study reports pH dependent stability of protein dispersions of five common proteins, bovine serum albumin (BSA), human serum albumin (HSA), immunoglobulin (IgG), β-lactoglobulin (β-Lg), and gelatin-B (Gel-B), all having isoelectric pH, pI ≈ 5, in room temperature ionic liquid solutions of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride (concentration 0-0.2% w/v). Molecular hydrophobicity index, (H-index = hydrophobicity/hydrophilicity) of these molecules spanned the range 0.43-0.87. Electrophoretic characteristics, surface tension data and hydrodynamic size information revealed that IL solutions provide dispersion stability owing to specific protein-IL binding which did not alter their pI values though their surface charge was considerably screened. Change in maximum (ζ(max)) and minimum (ζ(min)) zeta potential values observed at pH ~3 (maximum protonated state) and pH ~8 (maximum deprotonated state) could be described universally as function of IL concentration, c as Δζ(x) = [1 - exp(-ac)] where Δζ(x) is either |(ζ(max) - ζ(w))|/ζ(w) or |(ζ(min) - ζ(w))|/ζ(w), and ζ(w) is the corresponding value in water. Tensiometry data showed two major stages of protein-IL interactions: (i) for c < cmc of IL, the IL molecules selectively bind with imidazolium cation through electrostatic forces forming protein-IL (complex) and (ii) for c> cmc free IL-aggregates begin to form. Similarly, we can define Δγ(x) as either |(γ(max) - γ(w))|/γ(w) at pH 3 or |(γ(min) - γ(w))|/γ(w) at pH 8. Both Δζ(x) and Δγ(x) showed linear dependence with c, Δγ(min, max) (or Δζ(min, max)) = (1 - K(γ) (or K(ζ)) H-index), where the slopes K(ζ) and K(γ) defined intermolecular interactions. Hydrodynamic radii data revealed protein stabilization, circular dichroism spectra implied retention of secondary structures, and Raman spectra confirmed a marginal increase in water structure. Results concluded that selective binding of IL molecules to protein surface in

  7. Ionic Structure at Dielectric Interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  8. A Self-Consistent Charge-Embedding Methodology for ab initio Qantum Chemical Custer Modeling of Ionic Solids and Surfaces: Application to the (001) Surface of Hematite

    SciTech Connect

    Batista, Enrique; Friesner, Richard A.

    2002-07-16

    To ab initio simulate an ionic crystal using a cluster of atoms, one must surround that cluster with point charges. These point charges add the effect of the electrostatic potential of the rest of the crystal on the electronic structure of the quantum cluster. The value of the point charges has to be chosen to reproduce the crystal field in the region of the cluster. In this work, a method to compute the necessary point charges is presented. The algorithm to choose the point charges is an extension of the one presented by Derenzo et al. [J. Chem. Phys. 2000, 112, 2074]. The method consists of a self-consistent loop, fitting in each iteration the value of the point charges to reproduce the electrostatic field, calculated from the quantum simulation, in the region of the cluster. This method was then applied to the study of the (001) basal surface of hematite, R-Fe2O3. As the cluster size is systematically increased, it is shown that to fully converge the electrostatic effect on the electronic structure of the cluster, clusters of the order of 60 atoms are necessary. As a convergence parameter for the cluster to the bulk behavior, we used the ionization energy of the cluster. In the limit of an infinite cluster, we obtained the work function of hematite to be 5.6 eV.

  9. Numerical study of density functional theory with mean spherical approximation for ionic condensation in highly charged confined electrolytes

    NASA Astrophysics Data System (ADS)

    Joubaud, R.; Bernard, O.; Delville, A.; Ern, A.; Rotenberg, B.; Turq, P.

    2014-06-01

    We investigate numerically a density functional theory (DFT) for strongly confined ionic solutions in the canonical ensemble by comparing predictions of ionic concentration profiles and pressure for the double-layer configuration to those obtained with Monte Carlo (MC) simulations and the simpler Poisson-Boltzmann (PB) approach. The DFT consists of a bulk (ion-ion) and an ion-solid part. The bulk part includes nonideal terms accounting for long-range electrostatic and short-range steric correlations between ions and is evaluated with the mean spherical approximation and the local density approximation. The ion-solid part treats the ion-solid interactions at the mean-field level through the solution of a Poisson problem. The main findings are that ionic concentration profiles are generally better described by PB than by DFT, although DFT captures the nonmonotone co-ion profile missed by PB. Instead, DFT yields more accurate pressure predictions than PB, showing in particular that nonideal effects are important to describe highly confined ionic solutions. Finally, we present a numerical methodology capable of handling nonconvex minimization problems so as to explore DFT predictions when the reduced temperature falls below the critical temperature.

  10. The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Zhonglin; Duan, Donghong; Sun, Yanbo; Wei, Guoqiang; Hao, Xiaogang; Liu, Shibin; Han, Yunxia; Meng, Weijuan

    2016-10-01

    Pyrrolidinium-based ionic liquids (ILs), such as PYR13TFSI, PYR14TFSI, and PYR1(2O1)TFSI, exhibit high thermal and electrochemical stability with wide electrochemical windows as electrolytes for application to rechargeable Li-O2 batteries. In this work, several fundamental properties of three ILs are measured: the ionic conductivity, oxygen solubility, and oxygen diffusion coefficient. The oxygen electro-reduction kinetics is characterized using cyclic voltammetry. The performances of Li-O2 batteries with these IL electrolytes are also investigated using electrochemical impedance spectroscopy and galvanostatic discharge-charge tests. The results demonstrate that the PYR1(2O1)TFSI electrolyte battery has a higher first-discharge voltage than the PYR13TFSI electrolyte and PYR14TFSI electrolyte batteries. Both PYR13TFSI- and PYR1(2O1)TFSI-based batteries exhibit higher first-discharge capacities and better cycling stabilities than the PYR14TFSI-based battery for 30 cycles. A theoretical analysis of the experimental results shows that the diffusion coefficient and solubility of oxygen in the electrolyte remarkably affect the discharge capacity and cycling stability of the batteries. Particularly, the oxygen diffusion coefficient of the IL electrolyte can effectively facilitate the electrochemical oxygen electro-reduction reaction and oxygen concentration distribution in the catalyst layers of air electrodes. The oxygen diffusion coefficient and oxygen solubility improvements of IL electrolytes can enhance the discharge-charge performances of Li-O2 batteries.

  11. Statistical mechanics of dust charging in a multi-ion plasma with negative and positive ionic species

    SciTech Connect

    Mishra, S. K.; Misra, Shikha

    2015-02-15

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a multi-ion plasma comprising of multiple charged negative and positive ions is investigated. Two specific situations where the complex plasma is viz., (i) dark (no emission from dust) and (ii) irradiated by laser light (causing photoemission from dust) have been taken into account. The analytical formulation includes the population balance equation for the charged dust particles along with number and energy balance of the complex plasma constituents. The departure of the results for multi-ion plasma from that in case of usual singly charged positive ion plasma is graphically illustrated and discussed. In contrast to electron-ion plasma, significant number of particles is seen to acquire opposite charge in case of pure positive-negative ion plasma, even in the absence of electron emission from the dust grains. The effects of various plasma parameters viz., number density, particle size, and work function of dust on charge distribution have also been examined.

  12. Dipolar self-consistent field theory for ionic liquids between charged plates: Effects of dielectric contrast between cation and anion under external electrostatic fields

    NASA Astrophysics Data System (ADS)

    Nakamura, Issei

    We develop a new dipolar self-consistent field theory (DSCFT) for both incompressible and compressible ionic liquids under external electrostatic fields. Our theory accounts for the difference between the dipole moments and the molecular volumes of the cation and anion, and the double layer caused by the strong association of the ions with the electrodes. To date, few theoretical studies have considered the dielectric contrast between the cation and anion. Thus, our study focuses on the effect of the dielectric inhomogeneity on the ion distribution and the capacitance. Our theory shows that the capacitance changes with the applied voltage in agreement with experimental observations. Importantly, the dielectric contrast and the difference in molecular volumes between the cation and anion have equal effects on the magnitude of the capacitance. We also consider compressible ionic liquids by developing a hybrid of DSCFT combined with Monte Carlo simulations. We then demonstrate that the hard-core nature of the ions causes oscillations in the density profile and dielectric value near the charged plates. Accordingly, the dielectric constants derived from the classical theories of Onsager and Kirkwood are shown to be gross approximations of the true situation in nanochannels. National Natural Science Foundation of China (21474112).

  13. Response of an environment-sensitive intramolecular charge transfer probe towards solubilization of liposome membranes by a non-ionic detergent: association and dissociation kinetics.

    PubMed

    Paul, Bijan Kumar; Guchhait, Nikhil

    2012-10-01

    The present report describes an endeavor to follow the solubilization of DMPC and DMPG liposome membranes by a non-ionic detergent Triton X-100 on the lexicon of environment-sensitive intramolecular charge transfer (ICT) photophysics of an extrinsic molecular probe 5-(4-dimethylamino-phenyl)-penta-2, 4-dienoic acid methyl ester (DPDAME). The prospective applicability of the probe to function as a reporter for detergent-sequestered solubilization of liposome membranes is argued on the basis of comparison of the spectral properties of the probe in various environments. Fluorescence anisotropy study delineates the degree of motional restriction imposed on the probe in different microheterogeneous assemblies. The kinetics of association of the probe with the liposome membranes and the dissociation kinetics of TX-100-sequestered solubilization process of the liposomes have been monitored by the stopped-flow fluorescence technique and the results are rationalized in relevance to fluorescence anisotropy study.

  14. Response of an environment-sensitive intramolecular charge transfer probe towards solubilization of liposome membranes by a non-ionic detergent: Association and dissociation kinetics

    NASA Astrophysics Data System (ADS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2012-10-01

    The present report describes an endeavor to follow the solubilization of DMPC and DMPG liposome membranes by a non-ionic detergent Triton X-100 on the lexicon of environment-sensitive intramolecular charge transfer (ICT) photophysics of an extrinsic molecular probe 5-(4-dimethylamino-phenyl)-penta-2, 4-dienoic acid methyl ester (DPDAME). The prospective applicability of the probe to function as a reporter for detergent-sequestered solubilization of liposome membranes is argued on the basis of comparison of the spectral properties of the probe in various environments. Fluorescence anisotropy study delineates the degree of motional restriction imposed on the probe in different microheterogeneous assemblies. The kinetics of association of the probe with the liposome membranes and the dissociation kinetics of TX-100-sequestered solubilization process of the liposomes have been monitored by the stopped-flow fluorescence technique and the results are rationalized in relevance to fluorescence anisotropy study.

  15. Arbitrary Metrics in Psychology

    ERIC Educational Resources Information Center

    Blanton, Hart; Jaccard, James

    2006-01-01

    Many psychological tests have arbitrary metrics but are appropriate for testing psychological theories. Metric arbitrariness is a concern, however, when researchers wish to draw inferences about the true, absolute standing of a group or individual on the latent psychological dimension being measured. The authors illustrate this in the context of 2…

  16. Modeling of ionic liquids

    NASA Astrophysics Data System (ADS)

    Tatlipinar, Hasan

    2017-02-01

    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  17. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network

    NASA Astrophysics Data System (ADS)

    Ghasemi, S. Alireza; Hofstetter, Albert; Saha, Santanu; Goedecker, Stefan

    2015-07-01

    Based on an analysis of the short-range chemical environment of each atom in a system, standard machine-learning-based approaches to the construction of interatomic potentials aim at determining directly the central quantity, which is the total energy. This prevents, for instance, an accurate description of the energetics of systems in which long-range charge transfer or ionization is important. We propose therefore not to target directly with machine-learning methods the total energy but an intermediate physical quantity, namely, the charge density, which then in turn allows us to determine the total energy. By allowing the electronic charge to distribute itself in an optimal way over the system, we can describe not only neutral but also ionized systems with unprecedented accuracy. We demonstrate the power of our approach for both neutral and ionized NaCl clusters where charge redistribution plays a decisive role for the energetics. We are able to obtain chemical accuracy, i.e., errors of less than a millihartree per atom compared to the reference density functional results for a huge data set of configurations with large structural variety. The introduction of physically motivated quantities which are determined by the short-range atomic environment via a neural network also leads to an increased stability of the machine-learning process and transferability of the potential.

  18. Positively and Negatively Charged Ionic Modifications to Cellulose Assessed as Cotton-Based Protease-Lowering and Haemostatic Wound Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapp...

  19. Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces.

    PubMed

    Riley, John K; An, Junxue; Tilton, Robert D

    2015-12-29

    The interactions between silica nanoparticles grafted with a brush of cationic poly(2-(dimethylamino) ethyl methacrylate) (SiO2-g-PDMAEMA) and anionic surfactant sodium dodecyl sulfate (SDS) is investigated by dynamic light scattering, electrophoretic mobility, quartz crystal microbalance with dissipation, ellipsometry, and atomic force microscopy. SiO2-g-PDMAEMA exhibits pH-dependent charge and size properties which enable the SDS binding to be probed over a range of electrostatic conditions and brush conformations. SDS monomers bind irreversibly to SiO2-g-PDMAEMA at low surfactant concentrations (∼10(-4) M) while exhibiting a pH-dependent threshold above which cooperative, partially reversible SDS binding occurs. At pH 5, SDS binding induces collapse of the highly charged and swollen brush as observed in the bulk by DLS and on surfaces by QCM-D. Similar experiments at pH 9 suggest that SDS binds to the periphery of the weakly charged and deswollen brush and produces SiO2-g-PDMAEMA/SDS complexes with a net negative charge. SiO2-g-PDMAEMA brush collapse and charge neutralization is further confirmed by colloidal probe AFM measurements, where reduced electrosteric repulsions and bridging adhesion are attributed to effects of the bound SDS. Additionally, sequential adsorption schemes with SDS and SiO2-g-PDMAEMA are used to enhance deposition relative to SiO2-g-PDMAEMA direct adsorption on silica. This work shows that the polyelectrolyte brush configuration responds in a more dramatic fashion to SDS than to pH-induced changes in ionization, and this can be exploited to manipulate the structure of adsorbed layers and the corresponding forces of compression and friction between opposing surfaces.

  20. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  1. Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seitaro; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-11-01

    Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 °C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0-+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li|electrolyte|LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0-4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles.

  2. Direct determination of the ionic charge distribution of heavy ions in Fe-rich solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Hovestadt, D.; Moebius, E.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1983-01-01

    The first direct determination of the iron charge distribution in the energy range 0.3-1.0 MeV/nucleon during Fe-rich and He-3-rich solar energetic particle events is reported. The deterimination was made on the basis of ISEE-3 data for the event from August 1978 to October 1979. The enrichment of He-3 iron relative to oxygen was found to be directly correlated with the enrichment of He-3 to He-4. Average ion charge distributions were computed for: (1) He-3-rich periods which were also Fe-rich and had a He-3/He-4 ratio of 0.1 and (2) periods with a He-3/He-4 ratio of less than 0.1. It is found that the mean iron charge state for He-3-rich periods was in the range 19.5 (+ or - 1.5) and only 14 (+ or - 1) for the time periods with He-3/He-4 less than ratio of 0.1. The reduced data are found to be in good agreement with the theoretical predictions of Fisk (1978), suggesting a temperature in the source region above 5 million degrees K for Fe-rich and He-3-rich solar energetic particle events.

  3. Ionic Specificity in pH Regulated Charged Interfaces: Fe[superscript 3+]versus La[superscript 3+

    SciTech Connect

    Wang, Wenjie; Park, Rebecca Y.; Meyer, David H.; Travesset, Alex; Vaknin, David

    2012-03-26

    We determine the distribution of two trivalent ions Fe{sup 3+} and La{sup 3+} next to two different amphiphilic charged interfaces as ions or complexes, consisting of the phosphate lipid dihexadecyl phosphate (DHDP) and the fatty acid arachidic acid (AA). These amphiphiles provide a wide range of pK{sub a} values, from 2.1 (DHDP) to 5.1 (AA), thus allowing manipulation of the surface charge over extremely low pH (pH {approx}1 or larger), and the two ions provide two limiting cases of specificity for the amphiphiles. We find that La{sup 3+} distribution is mostly sensitive to the surface charge, whereas the Fe{sup 3+} binding depends on its character in the solution and is highly specific, as indicated by the crucial role played by iron complexes (Fe(OH){sub 3} or Fe(OH){sup 2+}) forming covalent bonds even for an uncharged interface. The implications of the results to other ions and/or amphiphilic interfaces are also discussed.

  4. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns.

    PubMed

    Talebi, Mohammad; Nordborg, Anna; Gaspar, Andras; Lacher, Nathan A; Wang, Qian; He, Xiaoping Z; Haddad, Paul R; Hilder, Emily F

    2013-11-22

    In this work, the suitability of employing shallow pH gradients generated using single component buffer systems as eluents through cation-exchange (CEX) monolithic columns is demonstrated for the high-resolution separation of monoclonal antibody (mAb) charge variants in three different biopharmaceuticals. A useful selection of small molecule buffer species is described that can be used within very narrow pH ranges (typically 1 pH unit) defined by their buffer capacity for producing controlled and smooth pH profiles when used together with porous polymer monoliths. Using very low ionic strength eluents also enabled direct coupling with electrospray ionisation mass spectrometry. The results obtained by the developed pH gradient approach for the separation of closely related antibody species appear to be consistent with those obtained by imaged capillary isoelectric focusing (iCE) in terms of both resolution and separation profile. Both determinants of resolution, i.e., peak compression and peak separation contribute to the gains in resolution, evidently through the Donnan potential effect, which is increased by decreasing the eluent concentration, and also through the way electrostatic charges are distributed on the protein surface. Retention mechanisms based on the trends observed in retention of proteins at pH values higher than the electrophoretic pI are also discussed using applicable theories. Employing monolithic ion-exchangers is shown to enable fast method development, short analysis time, and high sample throughput owing to the accelerated mass transport of the monolithic media. The possibility of short analysis time, typically less than 15 min, and high sample throughput is extremely useful in the assessment of charge-based changes to the mAb products, such as during manufacturing or storage.

  5. Modulation of cellulase activity by charged lipid bilayers with different acyl chain properties for efficient hydrolysis of ionic liquid-pretreated cellulose.

    PubMed

    Mihono, Kai; Ohtsu, Takeshi; Ohtani, Mai; Yoshimoto, Makoto; Kamimura, Akio

    2016-10-01

    The stability of cellulase activity in the presence of ionic liquids (ILs) is critical for the enzymatic hydrolysis of insoluble cellulose pretreated with ILs. In this work, cellulase was incorporated in the liposomes composed of negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and zwitterionic phosphatidylcholines (PCs) with different length and degree of unsaturation of the acyl chains. The liposomal cellulase-catalyzed reaction was performed at 45°C in the acetate buffer solution (pH 4.8) with 2.0g/L CC31 as cellulosic substrate. The crystallinity of CC31 was reduced by treating with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) at 120°C for 30min. The liposomal cellulase continuously catalyzed hydrolysis of the pretreated CC31 for 48h producing glucose in the presence of 15wt% [Bmim]Cl. The charged lipid membranes were interactive with [Bmim](+), as elucidated by the [Bmim]Cl-induced alterations in fluorescence polarization of the membrane-embedded 1,6-diphenyl-1,3,5-hexatriene (DPH) molecules. The charged membranes offered the microenvironment where inhibitory effects of [Bmim]Cl on the cellulase activity was relieved. The maximum glucose productivity GP of 10.8 mmol-glucose/(hmol-lipid) was obtained at the reaction time of 48h with the cellulase incorporated in the liposomes ([lipid]=5.0mM) composed of 50mol% POPG and 1,2-dilauroyl-sn-glycero-3-phosohocholine (DLPC) with relatively short and saturated acyl chains.

  6. Charging Properties of Cassiterite (alpha-SnO2) Surfaces in NaCl and RbCl Ionic Media.

    SciTech Connect

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas; Wesolowski, David J

    2009-09-01

    The acid-base properties of cassiterite ({alpha}-SnO{sub 2}) surfaces at 10-50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated that the terminal SnOH{sub 2} group is more acidic than the bridging Sn{sub 2}OH group, with protonation constants (log K{sub H}) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural {alpha}-TiO{sub 2} (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na{sup +} and Rb{sup +}, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na{sup +} between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb{sup +} is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na{sup +}/Rb{sup +} was formulated. According to the SCM, the deprotonated terminal group (SnOH{sup -0.40}) and the protonated bridging group (Sn{sub 2}OH{sup +0.36}) dominate the surface speciation over the entire pH range of this study (2.7-10). The

  7. Charging Properties of Cassiterite (alpha-SnO2) surfaces in NaCl and RbCl Ionic Media.

    SciTech Connect

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas; Wesolowski, David J

    2009-09-01

    The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated that the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing

  8. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  9. Electrochemical Film Formation on Magnesium Metal in an Ionic Liquid That Dissolves Metal Triflate and Its Application to an Active Material with Anion Charge Carrier.

    PubMed

    Shiga, Tohru; Kato, Yuichi; Inoue, Masae

    2016-11-16

    Irregular metallic growth at the anode during recharging of batteries can seriously influence the safety of batteries. To address this problem, we have attempted to design active anode materials with anion charge carriers and recently observed the formation and dissolution of an electrochemical film by triflate anions (CF3SO3(-)) at the surface of magnesium in an ionic liquid (IL) electrolyte of Mg(CF3SO3)2, which represents a rare anode material. The effect of heterogeneous cations on film formation was examined in this work. In an IL that dissolves NaCF3SO3, sodium ions with a lower reduction potential than Mg(2+)/Mg would not be expected to assist film formation. However, to our surprise, we discovered that some sodium ions are involved in film formation. The sodium ions are believed to act as a cross-linking point for the formation of a film network, which resulted in fairly good reversibility for film formation. In a Ce(CF3SO3)3-IL electrolyte, an electrochemically formed film free of Ce(3+) was obtained. The trivalent cerium cations were deactivated and transformed to an oxide on Mg metal. However, the reversibility of film formation in the Ce(CF3SO3)3 system did not meet the expected level. By coupling the film formation and dissolution behavior with a V2O5 cathode, a rechargeable battery was fabricated with dual ion transport species of Na(+) or Ce(3+) for the cathode and CF3SO3(-) for the anode. The unique battery with NaCF3SO3 is demonstrated to exhibit good discharge/charge performance with long-term cyclability.

  10. Spatial profiles of electron density, electron temperature, average ionic charge, and EUV emission of laser-produced Sn plasmas for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Tomita, Kentaro; Tsukiyama, Syoichi; Eguchi, Toshiaki; Uchino, Kiichiro; Kouge, Kouichiro; Tomuro, Hiroaki; Yanagida, Tatsuya; Wada, Yasunori; Kunishima, Masahito; Kodama, Takeshi; Mizoguchi, Hakaru

    2017-03-01

    Spatial profiles of the electron density (n e), electron temperature (T e), and average ionic charge (Z) of laser-produced Sn plasmas for EUV lithography, whose conversion efficiency (CE) is sufficiently high for practical use, were measured using a collective Thomson scattering (TS) technique. For plasma production, Sn droplets of 26 µm diameter were used as a fuel. First, a picosecond-pulsed laser was used to expand a Sn target. Next, a CO2 laser was used to generate plasmas. By changing the injection timing of the picosecond and CO2 lasers, three different types of plasmas were generated. The CEs of the three types of plasmas differed, and ranged from 2.8 to 4.0%. Regarding the different plasma conditions, the spatial profiles of n e, T e, and Z clearly differed. However, under all plasma conditions, intense EUV was only observed at a sufficiently high T e (> 25 eV) and in an adequate n e range [1024–(2 × 1025) m‑3]. These plasma parameters lie in the efficient-EUV light source range, as predicted by simulations.

  11. Charge-storage performance of Li/LiFePO4 cells with additive-incorporated ionic liquid electrolytes at various temperatures

    NASA Astrophysics Data System (ADS)

    Wongittharom, Nithinai; Wang, Chueh-Han; Wang, Yi-Chen; Fey, George Ting-Kuo; Li, Hui-Ying; Wu, Tzi-Yi; Lee, Tai-Chou; Chang, Jeng-Kuei

    2014-08-01

    Butylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid (IL) with LiTFSI solute is used as a base electrolyte for Li/LiFePO4 cells. Three kinds of electrolyte additive, namely vinylene carbonate (VC), gamma-butyrolactone (γ-BL), and propylene carbonate (PC), with various concentrations are introduced. The thermal stability, flammability, and electrochemical properties of the electrolytes are investigated. At 25 °C, the additives (γ-BL is found to be the most effective) can significantly improve the capacity, high-rate performance, and cyclability of the cells. With an increase in temperature to 50 °C, the benefits of the additives gradually become insignificant. At 75 °C, the additives even have adverse effects. At such an elevated temperature, in the plain IL electrolyte (without additives), a LiFePO4 capacity of 152 mAh g-1 is found at 0.1 C. 77% of this capacity can be retained when the rate is increased to 3 C. These values are superior to those found for the additive-incorporated IL and conventional organic electrolytes. Moreover, negligible capacity loss is measured after 100 charge-discharge cycles at 75 °C in the plain IL electrolyte.

  12. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  13. Arbitrary order permanent Cartesian multipolar electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Boateng, H. A.; Todorov, I. T.

    2015-01-01

    Recently, there has been a concerted effort to implement advanced classical potential energy surfaces by adding higher order multipoles to fixed point charge electrostatics in a bid to increase the accuracy of simulations of condensed phase systems. One major hurdle is the unwieldy nature of the expressions which in part has limited developers mostly to including only dipoles and quadrupoles. In this paper, we present a generalization of the Cartesian formulation of electrostatic multipolar interactions that enables the specification of an arbitrary order of multipoles. Specifically, we derive formulas for arbitrary order implementation of the particle mesh Ewald method and give a closed form formula for the stress tensor in the reciprocal space. In addition, we provide recurrence relations for common electrostatic potentials employed in molecular simulations, which allows for the generalization to arbitrary order and guarantees a computational cost that scales as O(p3) for Cartesian multipole interactions of order p.

  14. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects.

    PubMed

    Kinraide, Thomas B; Yermiyahu, Uri

    2007-09-01

    Equilibrium constants for binding to plant plasma membranes have been reported for several metal ions, based upon adsorption studies and zeta-potential measurements. LogK values for the ions are these: Al(3+), 4.30; La(3+), 3.34; Cu(2+), 2.60; Ca(2+) and Mg(2+), 1.48; Na(+) and K(+), 0 M(-1). These values correlate well with logK values for ion binding to many organic and inorganic ligands. LogK values for metal ion binding to 12 ligands were normalized and averaged to produce a scale for the binding of 49 ions. The scale correlates well with the values presented above (R(2)=0.998) and with ion binding to cell walls and other biomass. The scale is closely related to the charge (Z) and Pauling electronegativity (PE) of 48 ions (all but Hg(2+)); R(2)=0.969 for the equation (Scale values)=-1.68+Z(1.22+0.444PE). Minimum rhizotoxicity of metal ions appears to be determined by binding strengths: log a(PM,M)=1.60-2.41exp[0.238(Scale values)] determines the value of ion activities at the plasma membrane surface (a(PM,M)) that will ensure inhibition of root elongation. Additional toxicity appears to be related to softness, accounting for the great toxicity of Ag(+), for example. These binding-strength values correlate with additional physiological effects and are suitable for the computation of cell-surface electrical potentials.

  15. Measuring the Effect of Ion-Induced Drift-Gas Polarization on the Electrical Mobilities of Multiply-Charged Ionic Liquid Nanodrops in Air

    NASA Astrophysics Data System (ADS)

    Fernández-García, Juan; Fernández de la Mora, Juan

    2013-12-01

    The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI+] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z = Z SM, mod ( d m + d g , z, m), where d m = (6 m/ πρ)1/3 is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7 %) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ɛ * , this effect is accurately described by a simple correction factor of the form Z/ Z SM, mod = δ(1 - βɛ *), where kTɛ * is the potential energy due to the ion-induced dipole ( polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance ( d m + d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, β ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m / δ ≈ 1.42 ± 0.03.

  16. A novel measuring method for arbitrary optical vortex by three spiral spectra

    NASA Astrophysics Data System (ADS)

    Ni, Bo; Guo, Lana; Yue, Chengfeng; Tang, Zhilie

    2017-02-01

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex.

  17. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  18. How arbitrary is language?

    PubMed Central

    Monaghan, Padraic; Shillcock, Richard C.; Christiansen, Morten H.; Kirby, Simon

    2014-01-01

    It is a long established convention that the relationship between sounds and meanings of words is essentially arbitrary—typically the sound of a word gives no hint of its meaning. However, there are numerous reported instances of systematic sound–meaning mappings in language, and this systematicity has been claimed to be important for early language development. In a large-scale corpus analysis of English, we show that sound–meaning mappings are more systematic than would be expected by chance. Furthermore, this systematicity is more pronounced for words involved in the early stages of language acquisition and reduces in later vocabulary development. We propose that the vocabulary is structured to enable systematicity in early language learning to promote language acquisition, while also incorporating arbitrariness for later language in order to facilitate communicative expressivity and efficiency. PMID:25092667

  19. Modeling electrokinetics in ionic liquids.

    PubMed

    Wang, Chao; Bao, Jie; Pan, Wenxiao; Sun, Xin

    2017-03-17

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electro-osmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on a curved ion-selective surface. We also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems. This article is protected by copyright. All rights reserved.

  20. Thermodynamics and micro heterogeneity of ionic liquids.

    PubMed

    Gomes, Margarida F Costa; Lopes, J N Canongia; Padua, A A H

    2010-01-01

    The high degree of organisation in the fluid phase of room-temperature ionic liquids has major consequences on their macroscopic properties, namely on their behaviour as solvents. This nanoscale self-organisation is the result of an interplay between two types of interaction in the liquid phase - Coulomb and van der Waals - that eventually leads to the formation of medium-range structures and the recognition of some ionic liquids as composed of a high-charge density, cohesive network permeated by low-charge density regions.In this chapter, the structure of the ionic liquids will be explored and some of their consequences to the properties of ionic liquids analyzed.

  1. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  2. A Simple Arbitrary Solid Slicer

    SciTech Connect

    Yao, J

    2005-06-23

    The intersection of a given plane and an arbitrary (possibly non-convex, with multiple connectivities) meshed solid is exactly expressed by a set of planar cross-sections. A rule for marching on the edges of an arbitrary polyhedron is set for obtaining the topology of the cross-section. The method neither seeks triangulation of the surface mesh nor utilizes look-up tables, therefore it has optimal efficiency.

  3. Ionic Channels in Thunderclouds

    NASA Astrophysics Data System (ADS)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  4. First principles approach to ionicity of fragments

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-01

    We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  5. Effect of microwave radiation on surface charge, surface sites and ionic state of iron, and the activity of crocidolite asbestos fibres

    NASA Astrophysics Data System (ADS)

    Gulumian, M.; Pollak, H.

    1998-12-01

    Surface charge, surface sites, and the content of ferrous ions of crocidolite asbestos fibres are some of the properties which are considered to play a role in determining their activity in biological systems. Any treatment which changes these properties may therefore change their activity and subsequently increase or decrease their toxicity in biological surroundings. Surfaces of crocidolite fibres are shown to be negatively charged. In the present study, microwave radiation at 300°C was able to increase the number of positive charges within the bulk of the crocidolite fibres. In the presence of atmospheric oxygen, this increase could simultaneously reduce the hydroxyl groups on the surface of the fibres. The increase in positive charge was monitored by: (i) Mössbauer spectroscopy, where a change in the oxidation state of iron from ferrous to ferric was observed, (ii) visual microscopic observations of the irradiated fibres where there was an increase in their aggregation, and (iii) the difficulty to suspend these radiated fibres in solution. A decrease in the number of the surface hydroxyl groups on the other hand, was monitored by infrared spectroscopy. The reduction in the activity of the radiated crocidolite fibres was investigated by studying their ability to peroxidize lipids. Results have shown that changes in their surface charge, surface site and a reduction of the content of ferrous ions produce a concomitant decrease in their ability to initiate lipid peroxidation.

  6. Arbitrary shape surface Fresnel diffraction.

    PubMed

    Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-04-09

    Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to O(N²) in one dimensional or O(N⁴) in two dimensional cases, where N is the number of sampling points. However, the calculation cost of the proposed method is O(N log N) in one dimensional or O(N² log N) in two dimensional cases using non-uniform fast Fourier transform.

  7. Ionic conductors for solid oxide fuel cells

    SciTech Connect

    Krumpelt, M.; Bloom, I.D.; Pullockaran, J.D.; Myles, K.M.

    1991-12-31

    An electrolyte that operates at temperatures ranging from 600{degree}C to 800{degree}C is discussed. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  8. Ionic conductors for solid oxide fuel cells

    DOEpatents

    Krumpelt, Michael; Bloom, Ira D.; Pullockaran, Jose D.; Myles, Kevin M.

    1993-01-01

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  9. Representing Arbitrary Boosts for Undergraduates.

    ERIC Educational Resources Information Center

    Frahm, Charles P.

    1979-01-01

    Presented is a derivation for the matrix representation of an arbitrary boost, a Lorentz transformation without rotation, suitable for undergraduate students with modest backgrounds in mathematics and relativity. The derivation uses standard vector and matrix techniques along with the well-known form for a special Lorentz transformation. (BT)

  10. Ionic complex of risedronate with positively charged deoxycholic acid derivative: evaluation of physicochemical properties and enhancement of intestinal absorption in rats.

    PubMed

    Park, Jin Woo; Byun, Youngro

    2014-12-01

    Risedronate is widely used clinically to treat osteoporosis, Paget's disease, hypercalcemia, bone metastasis, and multiple myeloma. However, its oral efficacy is restricted due to its low bioavailability and severe gastrointestinal adverse effects. This study was designed to evaluate the effect of deoxycholic acid derivatives on the permeability and oral bioavailability of risedronate by increasing its lipophilicity and affinity to bile transporters. We synthesized two bile acid derivatives, N(α)-deoxycholyl-L-lysyl-methylester (DCK) and N(α)-deoxycholyl-L-lysyl-hydroxide (HDCK) as oral absorption enhancers. After ionic complex formation with the bile acid derivatives, the complexes were characterized by powder X-ray diffraction. Their artificial membrane permeabilities and bioavailabilities in rats were investigated in comparison with pure risedronate. Complex formation with DCK or HDCK demonstrated that risedronate existed in an amorphous form in the complex. A physical complex of risedronate with DCK enhanced the apparent membrane permeability of risedronate significantly but pure risedronate was not permeable. An in vivo study revealed that the C max and AUClast of risedronate/DCK (1:2) complex were 1.92- and 2.64-fold higher than those of pure risedronate, respectively. Thus, the risedronate/DCK complex can improve the oral absorption of risedronate and patient compliance by reducing dose frequency and adverse reactions.

  11. Macrocyclic lanthanide complexes as artificial nucleases and ribonucleases: effects of pH, metal ionic radii, number of coordinated water molecules, charge, and concentrations of the metal complexes.

    PubMed

    Chang, C Allen; Wu, Bo Hong; Kuan, Bu Yuan

    2005-09-19

    We have been interested in the design, synthesis, and characterization of artificial nucleases and ribonucleases by employing macrocyclic lanthanide complexes because their high thermodynamic stability, low kinetic lability, high coordination number, and charge density (Lewis acidity) allow more design flexibility and stability. In this paper, we report the study of the use of the europium(III) complex, EuDO2A+ (DO2A is 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane) and other lanthanide complexes (i.e., LaDO2A+, YbDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA where K21DA is 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid, EDDA is ethylenediamine-N,N'-diacetic acid, and HEDTA is N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid), as potential catalysts for the hydrolysis of the phosphodiester bond of BNPP (sodium bis(4-nitrophenyl)-phosphate). For the pH range 7.0-11.0 studied, EuDO2A+ promotes BNPP hydrolysis with the quickest rates among LaDO2A+, EuDO2A+, and YbDO2A+. This indicates that charge density is not the only factor affecting the reaction rates. Among the four complexes, EuDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA, with their respective number of inner-sphere coordinated water molecules three, two, five, and three, EuEDDA+, with the greatest number of inner-sphere coordinated water molecules and a positive charge, promotes BNPP hydrolysis more efficiently at pH below 8.4, and the observed rate trend is EuEDDA+ > EuDO2A+ > EuK21DA+ > EuHEDTA. At pH > 8.4, the EuEDDA+ solution becomes misty and precipitates form. At pH 11.0, the hydrolysis rate of BNPP in the presence of EuDO2A+ is 100 times faster than that of EuHEDTA, presumably because the positively charged EuDO2A+ is more favorable for binding with the negatively charged phosphodiester compounds. The logarithmic hydrolysis constants (pKh) were determined, and are reported in the parentheses, by fitting the kinetic k(obs) data vs pH for EuDO2A+ (8.4), LaDO2A+ (8.4), YbDO2A+ (9.4), EuK21DA+ (7

  12. Perturbative gadgets at arbitrary orders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen P.; Farhi, Edward

    2008-06-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.

  13. Arbitrary bending plasmonic light waves.

    PubMed

    Epstein, Itai; Arie, Ady

    2014-01-17

    We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.

  14. Photonic Arbitrary Waveform Generation Technology

    DTIC Science & Technology

    2006-06-01

    filters or ring resonator based technologies [26-29]. Key aspects of the filter technology are the flatness of the filter channel, the crosstalk...photodetectors would also be warranted. 28 References [1] K. Nosu, “ Advanced coherent lightwave technologies ,” IEEE Commun. Magn,, vol. 26...AFRL-SN-RS-TR-2006-208 Final Technical Report June 2006 PHOTONIC ARBITRARY WAVEFORM GENERATION TECHNOLOGY University of

  15. Long range electrostatic forces in ionic liquids.

    PubMed

    Gebbie, Matthew A; Smith, Alexander M; Dobbs, Howard A; Lee, Alpha A; Warr, Gregory G; Banquy, Xavier; Valtiner, Markus; Rutland, Mark W; Israelachvili, Jacob N; Perkin, Susan; Atkin, Rob

    2017-01-19

    Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids which revealed remarkable long range forces that appear to be electrostatic in origin. Evidence has accumulated demonstrating long range surface forces for several different combinations of ionic liquids and electrically charged surfaces, as well as for concentrated mixtures of inorganic salts in solvent. The original interpretation of these forces, that ionic liquids could be envisioned as "dilute electrolytes," was controversial, and the origin of long range forces in ionic liquids remains the subject of discussion. Here we seek to collate and examine the evidence for long range surface forces in ionic liquids, identify key outstanding questions, and explore possible mechanisms underlying the origin of these long range forces. Long range surface forces in ionic liquids and other highly concentrated electrolytes hold diverse implications from designing ionic liquids for energy storage applications to rationalizing electrostatic correlations in biological self-assembly.

  16. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  17. Multistability, ionic doping, and charge dynamics in electrosynthesized polypyrrole, polymer-nanoparticle blend nonvolatile memory, and fixed p-i-n junction polymer light-emitting electrochemical cells

    NASA Astrophysics Data System (ADS)

    Simon, Daniel Theodore

    A variety of factors make semiconducting polymers a fascinating alternative for both device development and new areas of fundamental research. Among these are solution processability, low cost, flexibility, and the strong dependence of conduction on the presence of charge compensating ions. With the lack of a complete fundamental understanding of the materials, and the growing demand for novel solutions to semiconductor device design, research in the field can take many, often multifaceted, routes. Due to ion-mediated conduction and versatility of fabrication, conducting polymers can provide a route to the study of neural signaling. In the first of three research topics presented, junctions of polypyrrole electropolymenzed on microelectrode arrays are demonstrated. Indi vidual junctions, when synthesized in a three-electrode configuration, exhibit current switching behavior analogous to neural weighting. Junctions copolymerized with thiophene exhibit current rectification and the nonlinear current-voltage behavior requisite for complex neural systems. Applications to larger networks, and eventual use in analysis of signaling, are discussed. In the second research topic, nonvolatile resistive memory consisting of gold nanoparticles embedded in a polymer film is examined using admittance spectroscopy. The frequency dependence of the devices indicates space-charge-limited transport in the high-conductivity "on" state, and similar transport in the lower-conductivity "off' state. Furthermore, a larger do capacitance of the on state indicates that a greater amount of filling of midgap trap levels introduced by the nanoparticles increases conductivity, leading to the memory effect. Implications on the question as to whether or not the on state is the result of percolation pathways is discussed. The third and final research topic is a presentation of enhanced efficiency of polymer light-emitting electrochemical cells (LECs) by means of forming a doping self

  18. Depolarization of water in protic ionic liquids.

    PubMed

    Zahn, Stefan; Wendler, Katharina; Delle Site, Luigi; Kirchner, Barbara

    2011-09-07

    A mixture of the protic ionic liquid mono-methylammonium nitrate with 1.6 wt% water was investigated from Car-Parrinello molecular dynamics simulations. In contrast to imidazolium-based ionic liquids, the cation possesses strong directional hydrogen bonds to water and all hydrogen bonds in the mixture have a comparable strength. This results in a good incorporation of water into the hydrogen bond network of mono-methylammonium nitrate and a tetrahedral hydrogen bond coordination of water. Hence, one might expect a larger dipole moment of water in the investigated mixture compared to neat water due to the good hydrogen bond network incorporation and the charged vicinity of water in the protic ionic liquid. However, the opposite is observed pointing to strong electrostatic screening in protic ionic liquids. Additionally, the influence of water on the properties of the protic ionic liquid is discussed.

  19. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2014-02-01

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  20. Theoretical investigation of the ionic selectivity of polyelectrolyte multilayer membranes in nanofiltration.

    PubMed

    Dirir, Yonis Ibrahim; Hanafi, Yamina; Ghoufi, Aziz; Szymczyk, Anthony

    2015-01-13

    Polyelectrolyte multilayer membranes have proven to be promising materials for ion nanofiltration. In this work, we implement a continuum mesoscopic transport model developed in previous works (Szymczyk, A.; Zhu, H.; Balannec, B. Langmuir 2010, 26, 1214; Szymczyk, A.; Zhu, H.; Balannec, B. J. Phys. Chem. B 2010, 114, 10143) to investigate the pressure-driven transport of electrolyte mixtures through this kind of membrane. The model accounts for an inhomogeneous distribution of the fixed charge through an arbitrary number of polyelectrolyte bilayers. We show that accounting for the multiple bipolar charge distribution resulting from the layer-by-layer assembly of polyelectrolytes with opposite charge is responsible for the increase in the Na(+)/Mg(2+) selectivity reported experimentally with respect to conventional nanofiltration membranes. The model also allows the rationalizing of the seemingly contradictory experimental results reported in the literature (i.e., the increase or decrease in the selectivity with the number of bilayers or the existence of an optimum number of bilayers). It is shown, however, that the nonmonotonous variation of the ionic selectivity does not originate from the multibipolar distribution of the fixed charge through polyelectrolyte multilayer membranes but from the existence of an optimum skin layer thickness.

  1. Phase Behavior of Ionic Microgels

    NASA Astrophysics Data System (ADS)

    Gottwald, D.; Likos, C. N.; Kahl, G.; Löwen, H.

    2004-02-01

    We employ effective interaction potentials between spherical polyelectrolyte microgels in order to investigate theoretically the structure, thermodynamics, and phase behavior of ionic microgel solutions. Combining a genetic algorithm with accurate free energy calculations we are able to perform an unrestricted search of candidate crystal structures. Hexagonal, body-centered orthogonal, and trigonal crystals are found to be stable at high concentrations and charges of the microgels, accompanied by reentrant melting behavior and fluid-fcc-bcc transitions below the overlap concentration.

  2. Phase behavior of ionic microgels.

    PubMed

    Gottwald, D; Likos, C N; Kahl, G; Löwen, H

    2004-02-13

    We employ effective interaction potentials between spherical polyelectrolyte microgels in order to investigate theoretically the structure, thermodynamics, and phase behavior of ionic microgel solutions. Combining a genetic algorithm with accurate free energy calculations we are able to perform an unrestricted search of candidate crystal structures. Hexagonal, body-centered orthogonal, and trigonal crystals are found to be stable at high concentrations and charges of the microgels, accompanied by reentrant melting behavior and fluid-fcc-bcc transitions below the overlap concentration.

  3. Arbitrary Inequality in Reputation Systems

    NASA Astrophysics Data System (ADS)

    Frey, Vincenz; van de Rijt, Arnout

    2016-12-01

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.

  4. Arbitrary Inequality in Reputation Systems.

    PubMed

    Frey, Vincenz; van de Rijt, Arnout

    2016-12-20

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.

  5. Arbitrary Inequality in Reputation Systems

    PubMed Central

    Frey, Vincenz; van de Rijt, Arnout

    2016-01-01

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited. PMID:27995957

  6. Influence of resonant charge exchange on the viscosity of partially ionized plasma in a magnetic field

    SciTech Connect

    Zhdanov, V. M. Stepanenko, A. A.

    2013-12-15

    The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.

  7. Generalization of the electronic susceptibility for arbitrary molecular geometries.

    PubMed

    Scherrer, Arne; Dreßler, Christian; Ahlert, Paul; Sebastiani, Daniel

    2016-04-14

    We generalize the explicit representation of the electronic susceptibility χ[R](r, r') for arbitrary molecular geometries R. The electronic susceptibility is a response function that yields the response of the molecular electronic charge density at linear order to an arbitrary external perturbation. We address the dependence of this response function on the molecular geometry. The explicit representation of the molecular geometry dependence is achieved by means of a Taylor expansion in the nuclear coordinates. Our approach relies on a recently developed low-rank representation of the response function χ[R](r, r') which allows a highly condensed storage of the expansion and an efficient application within dynamical chemical environments. We illustrate the performance and accuracy of our scheme by computing the vibrationally induced variations of the response function of a water molecule and its resulting Raman spectrum.

  8. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    SciTech Connect

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  9. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  10. Unravelling nanoconfined films of ionic liquids

    SciTech Connect

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain; Perkin, Susan

    2014-09-07

    The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the “squeezing out” of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting.

  11. Optical arbitrary waveform characterization using linear spectrograms.

    PubMed

    Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M

    2010-08-01

    We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.

  12. Two-body quantum propagation in arbitrary potentials

    NASA Astrophysics Data System (ADS)

    Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido

    2016-08-01

    We have implemented a unitary, numerically exact, Fourier split step method, based on a proper Suzuki-Trotter factorization of the quantum evolution operator, to propagate a two-body complex in arbitrary external potential landscapes taking into account exactly the internal structure. We have simulated spatially indirect Wannier-Mott excitons - optically excited electron-hole pairs with the two charges confined to different layers of a semiconductor heterostructure with prototypical 1D and 2D potentials emphasizing the effects of the internal dynamics and the insufficiency of mean-field methods in this context.

  13. Nonlinear capacitance and electrochemical response of ionic liquid-ionic polymers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-04-01

    In this paper we present a physics-based model for the electrochemical response of ionic liquid-ionic polymer transducers (IPTs) and show how the mobile ionic liquid ions influence the charging characteristics and actuation performance of a device. It is assumed that a certain fraction of the ionic liquid ions exist as "free," making for a total of 3 mobile ions. This leads to predictions of distinctly different charging characteristics for ionic liquid versus water-based IPTs, since for the latter there is only a single mobile ion. The large ionic liquid ions are modeled by including steric effects in a set of modified Nernst-Planck/Poisson equations, and the resulting system of equations is solved using the method of matched asymptotic expansions (MAE). The inclusion of steric effects allows for a realistic description of boundary layer composition near actuator operating voltages (~1 V). Analytical expressions for the charge transferred and differential capacitance are derived as a function of the fraction of free ionic liquid ions, influence of steric effects in formation of the electric double layer, and applied voltage. It is shown that the presence of free ionic liquid ions tends to increase the overall amount of charge transferred, and also leads to a nonmonotonic capacitance-voltage curve. We suggest that these results could be used to experimentally identify the extent of free ionic liquid ion movement and to test the validity of the assumptions made in the underlying theory. A comparison with numerical results shows that while the MAE solution procedure gives valid results for capacitance and charge transferred, it cannot predict the dynamic response due to the presence of multiple time scales in the current decay. This is in contrast to previous results in analyzing water-based IPTs, where the MAE solution is in good agreement with numerical results at all times and applied voltages due to the presence of only a single mobile ion. By examining the

  14. Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Drozdov, A. D.; deClaville Christiansen, J.

    2015-03-01

    A model is developed for the elastic response of a polyelectrolyte gel under unconstrained and constrained swelling in a water bath with an arbitrary pH, where a monovalent salt is dissolved. A gel is treated as a three-phase medium consisting of an equivalent polymer network, solvent (water), and solute (mobile ions). Transport of solvent and solute is thought of as their diffusion through the network accelerated by an electric field formed by mobile and fixed ions and accompanied by chemical reactions (self-ionization of water molecules, dissociation of functional groups attached to polymer chains, and formation of ion pairs between bound charges and mobile counter-ions). Constitutive equations are derived by means of the free energy imbalance inequality for an arbitrary three-dimensional deformation with finite strains. Adjustable parameters in the governing relations are found by fitting equilibrium swelling diagrams on several hydrogels. The effects of pH, ionic strength of solution, and constraints on equilibrium water uptake are studied numerically.

  15. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution.

    PubMed

    Egwolf, Bernhard; Tavan, Paul

    2004-01-22

    We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations, which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.

  16. Charge-ordering transitions without charge differentiation

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pardo, Victor; Pickett, Warren

    2013-03-01

    The distorted perovskite nickelate system RNiO3 (R=rare earth except La) undergoes a metal-insulator transition (MIT) at a temperature that varies smoothly with the R ionic radius. This MIT is accompanied by structural transition which leads to two inequivalent Ni sites in the cell, and has been explained by charge ordering (CO): charge is transferred between the Ni1 and Ni2 sites in a long-range ordered fashion. Experimental data on core binding energies, ionic radii, and Mossbauer shifts are interpreted in terms of Ni cation charges of 3 +/- δ with, for example, δ ~ 0.3 for YNiO3. Making use of first principles DFT results and a new approach not invoking integration of the charge density, we find[2] that the Ni 3 d occupation is identical (to high accuracy) for the two Ni sites. We also present results for other compounds (La2VCuO6, YNiO3, CaFeO3, AgNiO2, V4O7), all of which have distinct ``charge states'' that have identical 3 d occupation. This quantitative procedure will be discussed and some implications will be outlined. DOE Grant No. DE-FG02-04ER46111 and Ramon y Cajal Program

  17. Perylenediimide-surfactant complexes: thermotropic liquid-crystalline materials via ionic self-assembly.

    PubMed

    Guan, Ying; Zakrevskyy, Yuriy; Stumpe, Joachim; Antonietti, Markus; Faul, Charl F J

    2003-04-07

    In this communication we present the facile preparation and characterisation of thermotropic liquid-crystalline materials from the ionic self-assembly of a charged perylenediimide derivative and oppositely charged surfactants.

  18. Solvation and Reaction in Ionic Liquids

    SciTech Connect

    Maroncelli, Mark

    2010-10-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  19. Ionic electrostatic excitations along biological membranes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2011-02-01

    A theoretical analysis of ionic electrostatic excitations of a charged biological membrane is presented within the framework of the fluid theory for surface ions inside and outside the cell, in conjunction with the Poisson's equation. General expressions of dispersion relations are obtained for electrostatic oscillations of intrinsic cellular with different shapes and symmetries.

  20. Double layers and double wells in arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2016-06-01

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.

  1. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  2. On the stability of IrCl6(3-) and other triply charged anions: solvent stabilization versus ionic fragmentation and electron detachment for the IrCl6(3-).(H2O)n n = 0-10 microsolvated clusters.

    PubMed

    Boxford, William E; Dessent, Caroline E H

    2005-07-07

    The intrinsic gas-phase stability of the IrCl(6)(3-) trianion and its microsolvated clusters, IrCl(6)(3-).(H(2)O)(n) n = 1-10, have been investigated using density functional theory (DFT) calculations. Although IrCl(6)(3-) is known to exist as a stable complex ion in bulk solutions, our calculations indicate that the bare trianion is metastable with respect to decay via both electron detachment and ionic fragmentation. To estimate the lifetime of IrCl(6)(3-), we have computed the electron tunneling probability using an adaption of the Wentzel-Kramer-Brillouin theory and predict that the trianion will decay spontaneously via electron tunneling on a time scale of 2.4 x 10(-13) s. The global minimum structure for IrCl(6)(3-).H(2)O was found to contain a bifurcated hydrogen bond, whereas for IrCl(6)(3-).(H(2)O)(2), two low energy minima were identified; one involving two bifurcated water-ion hydrogen bonds and a second combining a bifurcated hydrogen bond with a water-water hydrogen bond. Clusters based on each of these structural motifs were obtained for all of the n = 3-10 systems, and the effect of solvation on the possible decay pathways was explored. The calculations reveal that solvation stabilizes IrCl(6)(3-) with respect to both electron detachment decay and ionic fragmentation, with the magnitude of the repulsive Coulomb barrier for ionic fragmentation increasing smoothly with sequential solvation. This study is the first to compare the propensity for electron detachment versus ionic fragmentation decay for a sequentially solvated triply charged anion.

  3. Image method for Coulomb energy for many-body system of charged dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan; Freed, Karl

    2015-03-01

    Ion polarization is important for understanding ion solvation and the stability of ion clusters in polymeric materials which typically exhibit a low and spatially inhomogeneous dielectric permittivity. The simplest approach for modeling ion polarization involves treating the ions as charged spheres with an internal dielectric permittivity differing from that of the medium. The surface polarization contribution to the electrostatic energy for a system of such dielectric spheres can be evaluated perturbatively. We derived closed-form expressions for this energy as a function of the positions of an arbitrary number of polarized surfaces. Our approach is a generalization of the image method for conducting spheres. Using this approach, we calculated the polarization corrections to the cohesion energy for ion clusters and for densely packed ionic crystals. The method can be readily adapted for investigating ion polarization effects in both Monte Carlo and molecular dynamics simulations.

  4. Radicals in ionic liquids.

    PubMed

    Strehmel, Veronika

    2012-05-14

    Stable radicals and recombination of photogenerated lophyl radicals are investigated in ionic liquids. The 2,2,6,6-tetramethylpiperidine-1-yloxyl derivatives contain various substituents at the 4-position to the nitroxyl group, including hydrogen-bond-forming or ionic substituents that undergo additional interactions with the individual ions of the ionic liquids. Some of these spin probes contain similar ions to ionic liquids to avoid counter-ion exchange with the ionic liquid. Depending on the ionic liquid anion, the Stokes-Einstein theory or the Spernol-Gierer-Wirtz theory can be applied to describe the temperature dependence of the average rotational correlation time of the spin probe in the ionic liquids. Furthermore, the spin probes give information about the micropolarity of the ionic liquids. In this context the substituent at the 4-position to the nitroxyl group plays a significant role. Covalent bonding of a spin probe to the imidazolium ion results in bulky spin probes that are strongly immobilized in the ionic liquid. Furthermore, lophyl radical recombination in the dark, which is chosen to understand the dynamics of bimolecular reactions in ionic liquids, shows a slow process at longer timescale and a rise time at a shorter timescale. Although various reactions may contribute to the slower process during lophyl radical recombination, it follows a second-order kinetics that does not clearly show solvent viscosity dependence. However, the rise time, which may be attributed to radical pair formation, increases with increasing solvent viscosity.

  5. Functional ionic liquids for enhancement of Li-ion transfer: the effect of cation structure on the charge-discharge performance of the Li4Ti5O12 electrode.

    PubMed

    Shimizu, Masahiro; Usui, Hiroyuki; Sakaguchi, Hiroki

    2016-02-21

    As the development of high energy-density Li-ion batteries moves ahead, ensuring safety of the batteries has become increasingly important. Among the unique physicochemical properties of ionic liquids, thermal stability can be one of the answers to the challenge. The use of ionic liquids, however, causes critical issues concerning the kinetics of Li-ion transfer at the electrode-electrolyte interface. In the present study, ionic liquids consisting of 1-((2-methoxyethoxy)methyl)-1-methylpiperidinium (PP1MEM) or 1-hexyl-1-methylpiperidinium (PP16) and bis(trifluoromethanesulfonyl)amide (TFSA) were applied to an electrolyte for Li-ion batteries, and we investigated the effect of cation structure on interfacial Li-ion transfer using Li4Ti5O12 as a model electrode by means of Raman spectroscopy and electrochemical impedance spectroscopy. It was found that the ether functional group in the PP1MEM cation has the meaningful function; the cation structure reduces the electrostatic interaction between the Li ion and TFSA anions in an ionic liquid electrolyte. The solvation number of the TFSA anion per Li ion consequently became smaller than that in PP16-TFSA, and the lower solvation number in PP1MEM-TFSA allowed the facile Li-ion diffusion in the electrolyte bulk rather than the interfacial Li-ion transfer and significantly improved the rate performance. The results offer the prospect of utilization of PP1MEM-TFSA as an electrolyte solvent. The knowledge obtained from this study contributes to the development of next-generation Li-ion batteries having both high energy density and high safety.

  6. Arbitrary segments of absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Nie, Linru; Chen, Chongyang; Wang, Chaojie

    2017-01-01

    In previous research work, investigators have reported only one or two segments of absolute negative mobility (ANM) in a periodic potential. In fact, many segments of ANM also occur in the system considered here. We investigate transport of an inertial particle in a gating ratchet periodic potential subjected to a constant bias force. Our numerical results show that its mean velocity can decrease with the bias force increasing, i.e. ANM phenomenon. Furthermore, the ANM can take place arbitrary segments, even up to more than thirty. Intrinsic physical mechanism and conditions for arbitrary segments of ANM to occur are discussed in detail.

  7. Understanding the polarity of ionic liquids.

    PubMed

    Ab Rani, M A; Brant, A; Crowhurst, L; Dolan, A; Lui, M; Hassan, N H; Hallett, J P; Hunt, P A; Niedermeyer, H; Perez-Arlandis, J M; Schrems, M; Welton, T; Wilding, R

    2011-10-06

    The polarities of a wide range of ionic liquids have been determined using the Kamlet-Taft empirical polarity scales α, β and π*, with the dye set Reichardt's Dye, N,N-diethyl-4-nitroaniline and 4-nitroaniline. These have been compared to measurements of these parameters with different dye sets and to different polarity scales. The results emphasise the importance of recognising the role that the nature of the solute plays in determining these scales. It is particularly noted that polarity scales based upon charged solutes can give very different values for the polarity of ionic liquids compared to those based upon neutral probes. Finally, the effects of commonplace impurities in ionic liquids are reported.

  8. Falcon: automated optimization method for arbitrary assessment criteria

    DOEpatents

    Yang, Tser-Yuan; Moses, Edward I.; Hartmann-Siantar, Christine

    2001-01-01

    FALCON is a method for automatic multivariable optimization for arbitrary assessment criteria that can be applied to numerous fields where outcome simulation is combined with optimization and assessment criteria. A specific implementation of FALCON is for automatic radiation therapy treatment planning. In this application, FALCON implements dose calculations into the planning process and optimizes available beam delivery modifier parameters to determine the treatment plan that best meets clinical decision-making criteria. FALCON is described in the context of the optimization of external-beam radiation therapy and intensity modulated radiation therapy (IMRT), but the concepts could also be applied to internal (brachytherapy) radiotherapy. The radiation beams could consist of photons or any charged or uncharged particles. The concept of optimizing source distributions can be applied to complex radiography (e.g. flash x-ray or proton) to improve the imaging capabilities of facilities proposed for science-based stockpile stewardship.

  9. Capacity of arbitrary-order orbital angular momentum multiplexing system

    NASA Astrophysics Data System (ADS)

    Zhao, Yaqin; Zhong, Xin; Ren, Guanghui; He, Shengyang; Wu, Zhilu

    2017-03-01

    Arbitrary-order orbital angular momentum multiplexing (AOAMM) systems utilize OAM modes with both integer and fractional topological charges which are non-orthogonal. In this paper, the transmission matrix and the capacity per unit bandwidth, i.e., the spectral efficiency (SE) of an AOAMM system is derived based on the spatial cross correlations of the OAM submodes under different aperture conditions. The results show that in limited apertures, the SEs of AOAMM systems increase dramatically as the interval of two adjacent OAM submodes decreases by losing orthogonality. AOAMM systems are effective choices for satisfying the explosive growth of the communication requirements. This paper provides insight into the selection of spatially multiplexing approaches and the design of interference mitigation techniques for AOAMM systems with increased SEs.

  10. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2011-01-04

    An enzyme charge ladder was used to examine the role of electrostatic interactions involved in biocatalysis at the solid-liquid interface. The reactive substrate consisted of an immobilized bovine serum albumin (BSA) multilayer prepared using a layer-by-layer technique. The zeta potential of the BSA substrate and each enzyme variant was measured to determine the absolute charge in solution. Enzyme adsorption and the rate of substrate surface hydrolysis were monitored for the enzyme charge ladder series to provide information regarding the strength of the enzyme-substrate interaction and the rate of interfacial biocatalysis. First, each variant of the charge ladder was examined at pH 8 for various solution ionic strengths. We found that for positively charged variants the adsorption increased with the magnitude of the charge until the surface became saturated. For higher ionic strength solutions, a greater positive enzyme charge was required to induce adsorption. Interestingly, the maximum catalytic rate was not achieved at enzyme saturation but at an invariable intermediate level of adsorption for each ionic strength value. Furthermore, the maximum achievable reaction rate for the charge ladder was larger for higher ionic strength values. We propose that diffusion plays an important role in interfacial biocatalysis, and for strong enzyme-substrate interaction, the rate of diffusion is reduced, leading to a decrease in the overall reaction rate. We investigated the effect of substrate charge by varying the solution pH from 6.1 to 8.7 and by examining multiple ionic strength values for each pH. The same intermediate level of adsorption was found to maximize the overall reaction rate. However, the ionic strength response of the maximum achievable rate was clearly dependent on the pH of the experiment. We propose that this observation is not a direct effect of pH but is caused by the change in substrate surface charge induced by changing the pH. To prove this

  11. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2016-09-01

    Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions). Both behaviors are in agreement with the exact statistical mechanical analysis and reasons for their appearances are investigated. Exact but surprisingly simple expressions for the decay parameter κ of the screened electrostatics are obtained, which replace the classical expression for the Debye-Hückel parameter κDH (the reciprocal Debye length). The expressions are applicable both for cases with plain exponential and oscillatory behaviors. The key importance of nonlocal electrostatics is thereby demonstrated explicitly. Dielectric properties of ionic liquids and other electrolytes are investigated, in particular the static dielectric function ɛ ˜ ( k ) and some effective relative permittivities ( Er eff and Er ∗ ), which take roles that the dielectric constant ɛr has for polar liquids consisting of electroneutral molecules. The dielectric constant in the latter case, which is the limit of ɛ ˜ ( k ) when the wave number k → 0, can be expressed solely in terms of dipolar features of the molecules. In contrast to this, the effective dielectric permittivities of ionic liquids have contributions also from quadrupolar, octupolar, and higher multipolar features of the constituent ions. The "dielectric constant" of electrolytes does not exist since ɛ ˜ ( k ) → ∞ when k → 0, a well-known effect of perfect screening. The effective relative

  12. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions.

    PubMed

    Kjellander, Roland

    2016-09-28

    Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions). Both behaviors are in agreement with the exact statistical mechanical analysis and reasons for their appearances are investigated. Exact but surprisingly simple expressions for the decay parameter κ of the screened electrostatics are obtained, which replace the classical expression for the Debye-Hückel parameter κDH (the reciprocal Debye length). The expressions are applicable both for cases with plain exponential and oscillatory behaviors. The key importance of nonlocal electrostatics is thereby demonstrated explicitly. Dielectric properties of ionic liquids and other electrolytes are investigated, in particular the static dielectric function ϵ̃(k) and some effective relative permittivities (Er(eff) and Er(∗)), which take roles that the dielectric constant εr has for polar liquids consisting of electroneutral molecules. The dielectric constant in the latter case, which is the limit of ϵ̃(k) when the wave number k → 0, can be expressed solely in terms of dipolar features of the molecules. In contrast to this, the effective dielectric permittivities of ionic liquids have contributions also from quadrupolar, octupolar, and higher multipolar features of the constituent ions. The "dielectric constant" of electrolytes does not exist since ϵ̃(k)→∞ when k → 0, a well-known effect of perfect screening. The effective relative permittivities, Er

  13. Interaction between heterogeneously charged surfaces: Surface patches and charge modulation

    NASA Astrophysics Data System (ADS)

    Ben-Yaakov, Dan; Andelman, David; Diamant, Haim

    2013-02-01

    When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is crucial in determining the intersurface interaction. In the present work we study the interaction between two charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with respect to each other. For quenched random charge distributions we find that due to the presence of the ionic solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial in the case of large charged domains.

  14. Exploring the location and orientation of 4-( N, N-dimethylamino) cinnamaldehyde in anionic, cationic and non-ionic micelles

    NASA Astrophysics Data System (ADS)

    Panja, Subhasis; Chowdhury, Papia; Chakravorti, Sankar

    2003-01-01

    This Letter reports probing of non-ionic, anionic and cationic micelles utilizing different dual emission properties of 4-( N, N-dimethylamino) cinnamaldehyde. Twisted intramolecular charge transfer (TICT) band is more enhanced and blue shifted in non-ionic micelle than those are in ionic micelles. In non-ionic micelle, the molecule enters in the core region whereas, in ionic micelles, it is anchored in the interfacial region with different orientations. Micellar-water interface electric field in ionic micelles was found to have profound effect on TICT decay time. Interestingly, inorganic salt-counterion binding helps the acceptor moiety to enter into the core region in anionic micelle.

  15. Mesoscale studies of ionic closed membranes with polyhedral geometries

    NASA Astrophysics Data System (ADS)

    Olvera de la Cruz, Monica

    2016-06-01

    Large crystalline molecular shells buckle spontaneously into icosahedra while multicomponent shells buckle into various polyhedra. Continuum elastic theory explains the buckling of closed shells with one elastic component into icosahedra. A generalized elastic model, on the other hand, describes the spontaneous buckling of inhomogeneous shells into regular and irregular polyhedra. By co-assembling water-insoluble anionic (-1) amphiphiles with cationic (3+) amphiphiles, we realized ionic vesicles. Results revealed that surface crystalline domains and the unusual shell shapes observed arise from the competition of ionic correlations with charge-regulation. We explain here the mechanism by which these ionic membranes generate a mechanically heterogeneous vesicle.

  16. Polar interface phonons in ionic toroidal systems.

    PubMed

    Nguyen, N D; Evrard, R; Stroscio, Michael A

    2016-09-01

    We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus.

  17. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-04

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient.

  18. Potential flow about arbitrary biplane wing sections

    NASA Technical Reports Server (NTRS)

    Garrick, I E

    1937-01-01

    A rigorous treatment is given of the problem of determining the two-dimensional potential flow around arbitrary biplane cellules. The analysis involves the use of elliptic functions and is sufficiently general to include the effects of such elements as the section shapes, the chord ratio, gap, stagger, and decalage, which elements may be specified arbitrarily. The flow problem is resolved by making use of the methods of conformal representation. Thus the solution of the problem of transforming conformally two arbitrary contours into two circles is expressed by a pair of simultaneous integral equations, for which a method of numerical solution is outlined. As an example of the numerical process, the pressure distribution over certain arrangements of the NACA 4412 airfoil in biplane combinations is presented and compared with the monoplane pressure distribution.

  19. General Potential Theory of Arbitrary Wing Sections

    NASA Technical Reports Server (NTRS)

    Theodorsen, T.; Garrick, I. E.

    1979-01-01

    The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.

  20. Quantum Fidelity for Arbitrary Gaussian States.

    PubMed

    Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano

    2015-12-31

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  1. The arbitrariness and normativity of social conventions.

    PubMed

    Al-Amoudi, Ismael; Latsis, John

    2014-06-01

    This paper investigates a puzzling feature of social conventions: the fact that they are both arbitrary and normative. We examine how this tension is addressed in sociological accounts of conventional phenomena. Traditional approaches tend to generate either synchronic accounts that fail to consider the arbitrariness of conventions, or diachronic accounts that miss central aspects of their normativity. As a remedy, we propose a processual conception that considers conventions as both the outcome and material cause of much human activity. This conceptualization, which borrows from the économie des conventions as well as critical realism, provides a novel perspective on how conventions are nested and defined, and on how they are established, maintained and challenged.

  2. Unsteady aerodynamic modeling for arbitrary motions

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Ashley, H.; Breakwell, J. V.

    1977-01-01

    A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.

  3. Fraunhofer diffraction by arbitrary-shaped obstacles.

    PubMed

    Malinka, Aleksey V; Zege, Eleonora P

    2009-08-01

    We consider Fraunhofer diffraction by an ensemble of large arbitrary-shaped screens that are randomly oriented in the plane of a wavefront and have edges of arbitrary shape. It is shown that far outside the main diffraction peak the differential scattering cross section behaves asymptotically as theta(-3), where theta is the diffraction angle. Moreover, the differential scattering cross section depends only on the length of the contours bordering the screens and does not depend on the shape of the obstacles. As both strictly forward and total diffraction cross sections are specified by obstacle area only, the differential cross section of size-distributed obstacles is expected to be nearly independent of obstacle shape over the entire region of the diffraction angles.

  4. Quantum Fidelity for Arbitrary Gaussian States

    NASA Astrophysics Data System (ADS)

    Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano

    2015-12-01

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  5. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    SciTech Connect

    Yao, Wenlong

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  6. Probabilistically teleporting arbitrary two-qubit states

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-12-01

    In this paper we make use of two non-maximally entangled three-qubit channels for probabilistically teleporting arbitrary two particle states from a sender to a receiver. We also calculate the success probability of the teleportation. In the protocol we use two measurements of which one is a POVM and the other is a projective measurement. The POVM provides the protocol with operational advantage.

  7. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  8. Evaluation of permanently charged electrofibrous filters

    SciTech Connect

    Biermann, A.H.; Lum, B.Y.; Bergman, W.

    1982-10-18

    These studies showed that loading the permanently charged filters with captured aerosols will lead to a neutralization of the filter charge. The transfer from the captured aerosol to the fiber surface and the subsequent neutralization of fiber charge. The increased efficiency is due to the additional mechanical capture by the particle deposits. The minimum efficiency obtained during the loading of solid aerosols is determined by the aerosol charge, with highly charged aerosols producing a lower minimum. Permanently charged filters lose their fiber charge when exposed to organic solvents or ionic water solutions. The fiber charge neutralization was minimized by coating the charged fibers with a polymer. Several different coating techniques were examined. Unfortunately, preventing the neutralization of fiber charge is not sufficient to prevent a deterioration of filter efficiency.

  9. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems.

  10. Ionic liquids in tribology.

    PubMed

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  11. Non-classical diffusion in ionic liquids.

    PubMed

    Taylor, Alasdair W; Licence, Peter; Abbott, Andrew P

    2011-06-07

    In this study the diffusion coefficient of neutral and cationic ferrocenyl-derivatives have been characterised in a range of 1-alkyl-3-methylimidazolium ionic liquids of the general form [C(n)C(1)Im](+)[X](-). The electrochemistry of ferrocene, 1-ferrocenylmethylimidazole (FcC(1)Im), 1-ferrocenylmethylimidazolium bis(trifluoromethanesulfonyl)imide ([FcC(1)C(1)Im][Tf(2)N]) and N,N,N,N-trimethylferrocenyl-methylammonium bis(trifluoromethanesulfonyl)imide ([FcC(1)NMe(3)][Tf(2)N]), in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(2)C(1)Im][Tf(2)N]) was investigated. It was shown that the diffusion coefficients of each were not significantly affected by the presence and location of a positive charge on the ferrocenyl-derivative, suggesting that coulombic solvent-solute interactions did not hinder motion of these species in ionic liquids. The diffusion coefficients for [FcC(1)C(1)Im][Tf(2)N] in five [C(n)C(1)Im][X] ionic liquids were determined as a function of temperature and the data shown to disobey the Stokes-Einstein equation. This observation is consistent with the fact that ionic liquids are glass formers, systems in which non-Stokesian behaviour is well documented. Measured diffusion coefficient data was used to determine correlation length in the ionic liquid and was found to correlate with the average size of holes, or voids, within the ionic liquid. This interpretation suggests that a model by which a migrating species can jump between voids or holes within the liquid is highly appropriate and is consistent with the observed behaviour measured across a range of temperatures.

  12. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas.

  13. Gaussian Quadrature Formulae for Arbitrary Positive Measures

    PubMed Central

    Fernandes, Andrew D.; Atchley, William R.

    2007-01-01

    We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student’s t, inverse-gamma, beta, and Fisher’s F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218

  14. Confined systems within arbitrary enclosed surfaces

    NASA Astrophysics Data System (ADS)

    Burrows, B. L.; Cohen, M.

    2016-06-01

    A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.

  15. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  16. Fixed Junction Photovoltaic Devices Based On Polymerizable Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Limanek, Austin; Leger, Janelle, , Dr.

    Recently, polymer-based photovoltaic devices (PPVs) have received significant attention as a possible affordable, large area and flexible solar energy technology. In particular, research on chemically fixed p-i-n junctions in polymer photovoltaic devices has shown promising results. These devices are composed of ionic monomers in a polymer matrix sandwiched between two electrodes. When a potential is applied, the ionic monomers migrate towards their corresponding electrodes, enabling electrochemical doping of the polymer. This leads to the formation of bonds between the polymer and ionic monomers, resulting in the formation of a chemically fixed p-i-n junction. However, early devices suffered from long charging times and low overall response. This has been attributed to the low phase compatibility between the ionic monomers and the polymer. It has been shown for light-emitting electrochemical cells, replacing the ionic monomers with polymerizable ionic liquids (PILs) mitigates these challenges. We will present the use of PILs as the dopant in fixed junction PPV devices. Preliminary devices demonstrate significantly improved performance, decreased charging times, and high open circuit voltages. This research supported by the National Science Foundation DMR-1057209.

  17. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  18. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  19. Radiation from an Accelerated Point Charge and Non-Inertial Observers

    ERIC Educational Resources Information Center

    Leonov, A. B.

    2012-01-01

    It is known that observers comoving with a uniformly accelerated point charge detect the electromagnetic field of a charge as a static electric field. We show that one can find a similar family of observers, which detect the field of a charge as a static electric field, in the general case of arbitrary point-charge motion. We find the velocities…

  20. Are Ionic Liquids Chemically Stable?

    PubMed

    Wang, Binshen; Qin, Li; Mu, Tiancheng; Xue, Zhimin; Gao, Guohua

    2017-02-27

    Ionic liquids have attracted a great deal of interest in recent years, illustrated by their applications in a variety of areas involved with chemistry, physics, biology, and engineering. Usually, the stabilities of ionic liquids are highlighted as one of their outstanding advantages. However, are ionic liquids really stable in all cases? This review covers the chemical stabilities of ionic liquids. It focuses on the reactivity of the most popular imidazolium ionic liquids at structural positions, including C2 position, N1 and N3 positions, and C4 and C5 positions, and decomposition on the imidazolium ring. Additionally, we discuss decomposition of quaternary ammonium and phosphonium ionic liquids and hydrolysis and nucleophilic reactions of anions of ionic liquids. The review aims to arouse caution on potential decomposition of ionic liquids and provides a guide for better utilization of ionic liquids.

  1. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    PubMed

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-07

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  2. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    SciTech Connect

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-07

    The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the simulation

  3. Arbitrary Order Hierarchical Bases for Computational Electromagnetics

    SciTech Connect

    Rieben, R N; White, D; Rodrigue, G

    2002-12-20

    We present a clear and general method for constructing hierarchical vector bases of arbitrary polynomial degree for use in the finite element solution of Maxwell's equations. Hierarchical bases enable p-refinement methods, where elements in a mesh can have different degrees of approximation, to be easily implemented. This can prove to be quite useful as sections of a computational domain can be selectively refined in order to achieve a greater error tolerance without the cost of refining the entire domain. While there are hierarchical formulations of vector finite elements in publication (e.g. [1]), they are defined for tetrahedral elements only, and are not generalized for arbitrary polynomial degree. Recently, Hiptmair, motivated by the theory of exterior algebra and differential forms presented a unified mathematical framework for the construction of conforming finite element spaces [2]. In [2], both 1-form (also called H(curl)) and 2-form (also called H(div)) conforming finite element spaces and the definition of their degrees of freedom are presented. These degrees of freedom are weighted integrals where the weighting function determines the character of the bases, i.e. interpolatory, hierarchical, etc.

  4. Neutron scattering from charged polymer lattices

    SciTech Connect

    Hayter, J.B.

    1987-12-02

    Aqueous suspensions of charged polymer latex particles exhibit several forms of ordered structure, the particular form depending on the size, number density and charge of the latex particles, and on the ionic strength of the aqueous medium. At low ionic strength, the inter-particle potential may become sufficiently long-ranged to generate crystalline order, which usually shows bcc symmetry at low density and becomes fcc above about 3% volume fraction of latex in the system. As the ionic strength increases, the crystalline structure melts, and ordered liquid structures develop. This paper reviews some of the recent small-angle neutron scattering experiments on polymer latex suspensions, in the light of new theoretical methods which permit in situ analysis of the particle size and charge. The discussion also encompasses new experimental methods for studying latex structures under dynamic shear conditions.

  5. Ionic Adsorption and Desorption of CNT Nanoropes

    PubMed Central

    Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow

    2016-01-01

    A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment. PMID:28335306

  6. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals

    SciTech Connect

    Lee, Jin Hong; Han, Kee Sung; Lee, Je Seung; Lee, Albert S.; Park, Seo Kyung; Hong, Sung Yun; Lee, Jong-Chan; Mueller, Karl T.; Hong, Soon Man; Koo, Chong Min

    2016-09-08

    We investigated a novel ionic mixture of an imidazolium-based room temperature IL containing ethylene oxide functionalized phosphite anion and a lithium salt that self-assembles into a smectic-ordered IL crystal. The two key features in this work are the unique origin of the smectic order of the ionic mixtures and the facilitated ion transport behavior in the smectic ordered IL crystal. In fact, the IL crystals are self-assembled through Coulombic interactions between ion species, not through the hydrophilic-phobic interactions between charged ion heads and hydrophobic long alkyl pendants or the steric interaction between mesogenic moieties. Furthermore, the smectic order in the IL crystal ionogel facilitates exceptional and remarkable ionic transport. Large ionic conductivity, viscoelastic robustness, and additional electrochemical stability of the IL crystal ionogels provide promising opportunities for future electrochemical applications.

  7. Electrostatic attraction between ionic reverse micelles with dielectric discontinuity

    NASA Astrophysics Data System (ADS)

    Chen, Peilong

    2002-11-01

    We have calculated the thermally-averaged electrostatic attractive potential between two spherical ionic reverse micelles in a medium of a different dielectric constant. Specifically the attractions between the charge density fluctuations in one micelle and interface polarizations on the other are computed. For water-in-oil microemulsions, we find that these contributions completely overwhelm those from correlated fluctuations in charge densities between two micelles.

  8. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance.

  9. Stretchable, transparent, ionic conductors.

    PubMed

    Keplinger, Christoph; Sun, Jeong-Yun; Foo, Choon Chiang; Rothemund, Philipp; Whitesides, George M; Suo, Zhigang

    2013-08-30

    Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. We demonstrate a transparent actuator that can generate large strains and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.

  10. Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift

    DTIC Science & Technology

    2015-05-18

    SECURITY CLASSIFICATION OF: We studied the temperature-dependence of mass and charge transport (ionic conductivity , self-diffusion, fluidity, and...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 temperature dependence, conductivity , self-diffusion, fluidity, organic liquid...Shift Report Title We studied the temperature-dependence of mass and charge transport (ionic conductivity , self-diffusion, fluidity, and dielectric

  11. Ion trajectory simulation for electrode configurations with arbitrary geometries.

    PubMed

    Wu, Guangxiang; Cooks, R Graham; Ouyang, Zheng; Yu, Meng; Chappell, William J; Plass, Wolfgang R

    2006-09-01

    A multi-particle ion trajectory simulation program ITSIM 6.0 is described, which is capable of ion trajectory simulations for electrode configurations with arbitrary geometries. The electrode structures are input from a 3D drawing program AutoCAD and the electric field is calculated using a 3D field solver COMSOL. The program CreatePot acts as interface between the field solver and ITSIM 6.0. It converts the calculated electric field into a field array file readable by ITSIM 6.0 and ion trajectories are calculated by solving Newton's equation using Runge-Kutta integration methods. The accuracy of the field calculation is discussed for the ideal quadrupole ion trap in terms of applied mesh density. Electric fields of several different types of devices with 3D geometry are simulated, including ion transport through an ion optical system as a function of pressure. Ion spatial distributions, including the storage of positively charged ions only and simultaneous storage of positively/negatively charged ions in commercial linear ion traps with various geometries, are investigated using different trapping modes. Inelastic collisions and collision induced dissociation modeled using RRKM theory are studied, with emphasis on the fragmentation of n-butylbenzene inside an ideal quadrupole ion trap. The mass spectrum of 1,3-dichlorobenzene is simulated for the rectilinear ion trap device and good agreement is observed between the simulated and the experimental mass spectra. Collisional cooling using helium at different pressures is found to affect mass resolution in the rectilinear ion trap.

  12. A multiprojection noncontact fluorescence tomography setup for imaging arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Garofalakis, A.; Zacharakis, G.; Economou, E. N.; Mamalaki, C.; Kioussis, D.; Ntziachristos, V.; Ripoll, J.

    2005-04-01

    Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores in-vivo. Due to this fact, there has been great interest in developing imaging systems offering quantitative information on the location and concentration of chromophores and fluorescent probes. However, most imaging systems currently used in research make use of fiber technology for delivery and detection, which restricts the size of the photon collecting arrays leading to insufficient spatial sampling and field of view. To enable large data sets and full 360o angular measurements, we developed a novel imaging system that enables 3D imaging of fluorescent signals in bodies of arbitrary shapes in a non-contact geometry in combination with a 3D surface reconstruction algorithm. The system consists of a rotating subject holder and a lens coupled Charge Coupled Device (CCD) camera in combination with a fiber coupled laser scanning device. An Argon ion laser is used as the source and different filters are used for the detection of various fluorophores or fluorescing proteins. With this new setup a large measurements dataset can be achieved while the use of inversion models give a high capacity for quantitative 3D reconstruction of fluorochrome distributions as well as high spatial resolution. The system is currently being tested in the observation of the distribution of Green Fluorescent Protein (GFP) expressing T-lymphocytes in order to study the function of the immune system in a murine model.

  13. Polymerizable ionic liquid crystals.

    PubMed

    Jazkewitsch, Olga; Ritter, Helmut

    2009-09-17

    Polymerizable vinylimidazolium ionic liquids (ILs) that contain mesogenic coumarin and biphenyl units, respectively, have been synthesized. The N-alkylation of N-vinylimidazole with bromoalkylated mesogenic units 7-(6-bromohexyloxy)coumarin (1) and 4,4'-bis(6-bromohexyloxy)biphenyl (2) was then carried out. The thermal behavior of the obtained ILs 3 and 4 was investigated by differential scanning calorimetry and polarizing optical microscopy. These measurements showed that the attached mesogenic units induce the self-assembly of ILs and, therefore, the occurrence of liquid crystalline phases. Subsequently, the ionic liquid crystals (ILCs) 3 and 4 were polymerized by a free-radical mechanism.

  14. Generalized sheath criterion for arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-01-01

    In this research, we study the generalized sheath criterion for plasmas with an arbitrary degree of electron degeneracy and temperature, ranging from the classical dilute regime to the fully degenerate quantum plasmas. The latter may be relevant to warm dense matter and/or laboratory high energy density matter or even astrophysical stellar plasmas. The hydrostatic one dimensional model is used to establish the generalized Bohm's criterion for sheath entrance ion speed limits, and the small amplitude theory of the sheath problem, which accurately describes the sheath parameters for lower ion acoustic Mach numbers, is developed. Our results indicate that the sheath characteristic parameters such as electrostatic potential and density profiles, as well as the wall potential and the sheath length, are significantly affected by plasma parameters such as the ion and electron temperature and number densities in the plasma region. In particular, there are fundamental differences between sheath structures of the dilute classical plasmas and those of dense quantum ones.

  15. Aerodynamic shape optimization of arbitrary hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.; Sheffer, Scott G.

    1991-01-01

    A new method was developed to optimize, in terms of aerodynamic wave drag minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while maintaining the initial volume and length of the vehicle. This new method uses either a surface fitted Fourier series to represent the vehicle's geometry or an independent point motion algorithm. In either case, the coefficients of the Fourier series or the spatial locations of the points defining each cross section were varied and a numerical optimization algorithm based on a quasi-Newton gradient search concept was used to determine the new optimal configuration. Results indicate a significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low CPU costs. In the case of a cone, the results agreed well with known analytical optimum ogive shapes. The procedure is capable of accepting more complex flow field analysis codes.

  16. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  17. Optimization of ionic conductivity in doped ceria

    PubMed Central

    Andersson, David A.; Simak, Sergei I.; Skorodumova, Natalia V.; Abrikosov, Igor A.; Johansson, Börje

    2006-01-01

    Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy–dopant interactions, represented by association (binding) energies of vacancy–dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately. PMID:16478802

  18. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  19. Streptococcus mutans and Streptococcus intermedius adhesion to fibronectin films are oppositely influenced by ionic strength.

    PubMed

    Busscher, Henk J; van de Belt-Gritter, Betsy; Dijkstra, Rene J B; Norde, Willem; van der Mei, Henny C

    2008-10-07

    Bacterial adhesion to protein-coated surfaces is mediated by an interplay of specific and nonspecific interactions. Although nonspecific interactions are ubiquitously present, little is known about the physicochemical mechanisms of specific interactions. The aim of this paper is to determine the influence of ionic strength on the adhesion of two streptococcal strains to fibronectin films. Streptococcus mutans LT11 and Streptococcus intermedius NCTC11324 both possess antigen I/II with the ability to bind fibronectin from solution, but S. intermedius binds approximately 20x less fibronectin than does the S. mutans strain under identical conditions. Both strains as well as fibronectin films are negatively charged in low ionic strength phosphate buffered saline (PBS, 10x diluted), but bacteria appear uncharged in high ionic strength PBS. Physicochemical modeling on the basis of overall cell surface properties (cell surface hydrophobicity and zeta potentials) demonstrates that both strains should favor adhesion to fibronectin films in a high ionic strength environment as compared to in a low ionic strength environment, where electrostatic repulsion between equally charged surfaces is dominant. Adhesion of S. intermedius to fibronectin films in a parallel plate flow chamber was completely in line with this modeling, while in addition atomic force microscopy (AFM) indicated stronger adhesion forces upon retraction between fibronectin-coated tips and the cell surfaces in high ionic strength PBS than in low ionic strength PBS. Thus, the dependence of the interaction on ionic strength is dominated by the overall negative charge on the interacting surfaces. Adhesion of S. mutans to fibronectin films, however, was completely at odds with theoretical modeling, and the strain adhered best in low ionic strength PBS. Moreover, AFM indicated weaker repulsive forces upon approach between fibronectin-coated tips and the cell surfaces in low ionic strength PBS than in high ionic

  20. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  1. Periodic ground state for the charged massive Schwinger model

    SciTech Connect

    Nagy, S.; Sailer, K.; Polonyi, J.

    2004-11-15

    It is shown that the charged massive Schwinger model supports a periodic vacuum structure for arbitrary charge density, similar to the common crystalline layout known in solid state physics. The dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in terms of the original fermionic variables.

  2. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  3. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  4. Fun with Ionic Compounds

    ERIC Educational Resources Information Center

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  5. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  6. Ionic colloidal crystals: Ordered, multicomponent structures via controlled heterocoagulation.

    PubMed

    Maskaly, Garry R; García, R Edwin; Carter, W Craig; Chiang, Yet-Ming

    2006-01-01

    We propose a new type of ordered colloid, the "ionic colloidal crystal" (ICC), which is stabilized by attractive electrostatic interactions analogous to those in atomic ionic materials. The rapid self-organization of colloids via this method should result in a diversity of orderings that are analogous to ionic compounds. Most of these complex structures would be difficult to produce by other methods. We use a Madelung summation approach to evaluate the conditions where ICC's are thermodynamically stable. Using this model, we compare the relative electrostatic energies of various structures showing that the regions of ICC stability are determined by two dimensionless parameters representing charge balance and the spatial extent of the electrostatic interactions. Parallels and distinctions between ICC's and classical ionic crystals are discussed. Monte Carlo simulations are utilized to examine the glass transition and melting temperatures, between which crystallization can occur, of a model system having the rocksalt structure. These tools allow us to make a first-order prediction of the experimentally accessible regions of surface charge, particle size, ionic strength, and temperature where ICC formation is probable.

  7. Superradiance instability of small rotating AdS black holes in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Delice, Ã.-zgür; Durǧut, Türküler

    2015-07-01

    We investigate the stability of D dimensional singly rotating Myers-Perry-AdS black holes under superradiance against scalar field perturbations. It is well known that small four dimensional rotating or charged Anti-de Sitter (AdS) black holes are unstable against superradiance instability of a scalar field. Recent works extended the existence of this instability to five dimensional rotating charged AdS black holes or static charged AdS black holes in arbitrary dimensions. In this paper we analytically prove that rotating small AdS black holes in arbitrary dimensions also shows superradiance instability irrespective of the value of the (positive) angular momentum quantum number. To do this we solve the Klein-Gordon equation in the slow rotation, low frequency limit. By using the asymptotic matching technique, we are able to calculate the real and imaginary parts of the correction terms to the frequency of the scalar field due to the presence of the black hole, confirming the presence of superradiance instability. We see that, unlike in the case of static AdS black holes, the analytical method is valid for rotating AdS black holes for any value of angular momentum number and spacetime dimensions. For comparison we derive the corresponding correction terms for Myers-Perry black holes in the black hole bomb formalism in the Appendix and see that the results are in agreement.

  8. Charge Renormalization and Charge Oscillation in Asymmetric Primitive Model of Electrolytes

    NASA Astrophysics Data System (ADS)

    Ding, Mingnan; Liang, Yihao; Lu, Bing-Sui; Xing, Xiangjun

    2016-12-01

    Debye charging method is generalized to study the linear response properties of the asymmetric primitive model for electrolytes. Analytic results are obtained for the effective charge distributions of constituent ions inside the electrolyte, from which all static linear response properties of the system follow. It is found that, as the ion density increases, both the screening length and the dielectric constant receive substantial renormalization due to ionic correlations. Furthermore, the valence of larger ion is substantially renormalized upward by ionic correlations, while those of smaller ions remain approximately the same. For sufficiently high density, the system exhibits charge oscillations. The threshold ion density for charge oscillation is much lower than the corresponding values for symmetric electrolytes. Our results agree well with large-scale Monte Carlo simulations, and find good agreement in general, except for the case of small ion sizes (d = 4 Å) near the charge oscillation threshold.

  9. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  10. Understanding rigid body motion in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Leyvraz, Francois

    2015-05-01

    Why would anyone wish to generalize the already unappetizing subject of rigid body motion to an arbitrary number of dimensions? At first sight, the subject seems to be both repellent and superfluous. The author will try to argue that an approach involving no specific three-dimensional constructs is actually easier to grasp than the traditional approach and might thus be generally useful to understand rigid body motion both in three dimensions and in the general case. Specific differences between the viewpoint suggested here and the usual one include the following: here angular velocities are systematically treated as antisymmetric matrices, a symmetric tensor I quite different from the moment of inertia tensor plays a central role, whereas the latter is shown to be a far more complex object, namely a tensor of rank four. A straightforward way to define it is given. The Euler equation is derived and the use of Noether’s theorem to obtain conserved quantities is illustrated. Finally the equations of motion for a heavy top as well as for two bodies linked by a spherical joint are derived to display the simplicity and the power of the method.

  11. Heterotic string in an arbitrary background field

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    1985-10-01

    An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N=1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N=1 supersymmetric nonlinear and N=2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories.

  12. Ionic electroactive hybrid transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.

    2005-05-01

    Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized

  13. Morphology-induced low temperature conductivity in ionic liquids

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera de la Cruz Team

    Ionic liquids exhibit nano-scale liquid crystalline order depending on the polymeric details of salt molecules. The resulting morphology and temperature behavior are key factors in determining the room temperature conductivity of ionic liquids. Here we discuss the phase behavior and related ionic conductivities of dry ionic liquids with volume fractions close to unity by using extensive molecular dynamics simulations. Temperature dependence, effective persistence length of tails, and excluded volume symmetry of amphiphilic ionic liquid molecules are investigated in large scale systems with short and long-range electrostatics. Our results suggest that by adjusting stiffness of the amphiphilic molecules and excluded volume interactions, lamellar or interconnected 3D phases can be obtained. Resulting phases have significant effects on the conductive properties. If there is no excluded volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the excluded volume interactions become asymmetric, lamellar phases are replaced by interconnected phases consist of charged groups. Within temperature ranges that morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments of ionic liquid-based liquid Center of Bio-inspried Energy Center (CBES).

  14. Observation of highly decoupled conductivity in protic ionic conductors.

    PubMed

    Wojnarowska, Zaneta; Wang, Yangyang; Paluch, Krzysztof J; Sokolov, Alexei P; Paluch, Marian

    2014-05-21

    Ionic liquids (ILs) are key materials for the development of a wide range of emerging technologies. Protic ionic liquids, an important class of ILs, have long been envisioned as promising anhydrous electrolytes for fuel cells. It is well known that in comparison to all other cations, protons exhibit abnormally high conductivity in water. Such superprotonic dynamics was expected in protic ionic conductors as well. However, many years of extensive studies led to the disappointing conclusion that this is not the case and most protic ionic liquids display subionic behavior. Therefore, the relatively low conductivity seems to be the main obstacle for the application of protic ionic liquids in fuel cells. Using dielectric spectroscopy, herein we report the observation of highly decoupled conductivity in a newly synthesized protic ionic conductor. We show that its proton transport is strongly decoupled from the structural relaxation, in terms of both temperature dependence and characteristic rates. This finding offers a fresh look on the charge transport mechanism in PILs and also provides new ideas for design of anhydrous materials with exceptionally high proton conductivity.

  15. Osmotic Pressure in Ionic Microgel Dispersions

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2015-03-01

    Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  16. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  17. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating

    PubMed Central

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (−1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices. PMID:26852799

  18. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating

    NASA Astrophysics Data System (ADS)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (‑1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  19. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure

    NASA Astrophysics Data System (ADS)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C.; Giles, Carlos

    2016-06-01

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114]+ and [N1444]+ proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444]+ as to [N1114]+ because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114]+ cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  20. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Giles, Carlos

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114](+) and [N1444](+) proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444](+) as to [N1114](+) because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114](+) cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  1. Toward complementary ionic circuits: the npn ion bipolar junction transistor.

    PubMed

    Tybrandt, Klas; Gabrielsson, Erik O; Berggren, Magnus

    2011-07-06

    Many biomolecules are charged and may therefore be transported with ionic currents. As a step toward addressable ionic delivery circuits, we report on the development of a npn ion bipolar junction transistor (npn-IBJT) as an active control element of anionic currents in general, and specifically, demonstrate actively modulated delivery of the neurotransmitter glutamic acid. The functional materials of this transistor are ion exchange layers and conjugated polymers. The npn-IBJT shows stable transistor characteristics over extensive time of operation and ion current switch times below 10 s. Our results promise complementary chemical circuits similar to the electronic equivalence, which has proven invaluable in conventional electronic applications.

  2. Super ionic conductive glass

    DOEpatents

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  3. Super ionic conductive glass

    DOEpatents

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  4. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  5. Vibrational Spectroscopy of Ionic Liquids.

    PubMed

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-01-04

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  6. Arbitrary Shape Deformation in CFD Design

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2014-01-01

    Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.

  7. Electrotunable Lubricity with Ionic Liquid Nanoscale Films

    PubMed Central

    Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting “squeezing-out” of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

  8. Internal Charging

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  9. Lattice summations for spread out particles: Applications to neutral and charged systems

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Brańka, A. C.

    2013-01-01

    This work is concerned with the lattice energy of periodic assemblies of mass and charge distributions of the form, exp (-αp2), where α is an adjustable positive variable and {p} is the vector from the lattice site or average position. The energy of interaction between two distributions is the density-weighted integral of the interactions between the volume elements of each distribution. Reciprocal space lattice summation formulas derived for particles represented by gaussian smeared-out density distributions are applied to the gaussian potential and a bounded version of the soft-sphere potential for a range of exponents. Two types of spatial broadening are considered, continuous or physical broadening (PB) and broadening resulting from the time average of point particle positions, so-called "time" broadening (TB). For neutral mass distributions a reciprocal space lattice summation formula is derived which is applied to the bounded soft-sphere potential. For the charged systems, the methodology described in Heyes [J. Chem. Phys. 74, 1924 (1981), 10.1063/1.441285] is used, which for the PB case gives the Ewald-like formulas derived by Gingrich and Wilson [Chem. Phys. Lett. 500, 178 (2010), 10.1016/j.cplett.2010.10.010] using a different method. Another expression for the lattice energy of the spread out charge distributions is derived which is cast entirely in terms of a summation over the reciprocal lattice vectors, without the arbitrary charge spreading function used in the Ewald method. The effects of charge spreading on a generalized definition of the Madelung constant (M) for a selection of crystal lattices are shown to be insignificant for route mean square displacements up to values typical of melting of an ionic crystal. When the length scale of the charge distribution becomes comparable to or greater than the mean inter particle spacing, however, the effects of charge broadening on the lattice energy are shown to be significant. In the PB case, M → 0

  10. Quantifying the effect of ionic screening with protein-decorated graphene transistors.

    PubMed

    Ping, Jinglei; Xi, Jin; Saven, Jeffery G; Liu, Renyu; Johnson, A T Charlie

    2017-03-15

    Liquid-based applications of biomolecule-decorated field-effect transistors (FETs) range from biosensors to in vivo implants. A critical scientific challenge is to develop a quantitative understanding of the gating effect of charged biomolecules in ionic solution and how this influences the readout of the FETs. To address this issue, we fabricated protein-decorated graphene FETs and measured their electrical properties, specifically the shift in Dirac voltage, in solutions of varying ionic strength. We found excellent quantitative agreement with a model that accounts for both the graphene polarization charge and ionic screening of ions adsorbed on the graphene as well as charged amino acids associated with the immobilized protein. The technique and analysis presented here directly couple the charging status of bound biomolecules to readout of liquid-phase FETs fabricated with graphene or other two-dimensional materials.

  11. Electrochemical properties of the double layer of an ionic liquid using a dimer model electrolyte and density functional theory.

    PubMed

    Henderson, Douglas; Wu, Jianzhong

    2012-03-01

    Most theoretical studies of the properties of an electrolyte, including an ionic liquid, treat the electrolyte as a mixture of charged hard spheres in a solvent modeled as a dielectric continuum. However, ionic liquids generally consist of nonspherical ions that are not dissolved in a solvent. A simple extension of the primitivel model of electrolytes is to represent an ionic liquid as a mixture of charged hard spheres (negative monovalent ions in our case) and nonspherical ions consisting of a dimer of two touching hard spheres, one of which is charged (monovalent and positive in our case) and the other is neutral. This simple model has been used previously by Federov et al. and by ourselves. Here, we use the classical density functional theory to study the interfacial properties of the model ionic liquid over a range of electrode charges and two electrolyte concentrations. For simplicity, all of the spheres have the same diameter. In contrast to the simulations of Federov and Kornyshev, we find that a plot of the differential capacitance of the dimer electrolyte versus the surface potential typically exhibits only a single hump. Also, differing from the studies of Lamperski et al. for a spherical electrolyte, which showed a decline of the maximal differential capacitance as the ionic concentration decreases, the maximum of the differential capacitance of the dimer electrolyte increases slightly with decreasing ionic concentration. Our theoretical results show other unexpected effects of the geometry of ionic species on the electrochemical properties of the electric double layer of an ionic liquid.

  12. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    SciTech Connect

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P.; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  13. Viscoelastic Nanomechanics of Ionically Cross-linked Polyelectrolyte Networks

    NASA Astrophysics Data System (ADS)

    Han, Biao; Lee, Daeyeon; Han, Lin

    2015-03-01

    Understanding the mechanics of ionic polyelectrolyte networks is critical for applications where nm-to-um mechanics is the key to success. This study aims to reveal the roles of ionic cross-links and fixed charges in the viscoelasticity of layer-by-layer poly(allylamine hydrochloride)/poly(acrylic acid) microfilms, PAH/PAA, a complex held by pH-sensitive amine-carboxyl links. AFM-nanoindentation and force relaxation (tip R =12.5um) was performed at ionic strength(IS) =0.01-1.0M, pH =5.5-2.0 (pKa of PAA =2.3). When pH changes from 5.5 to 2.0, the films swell for 4x from densely linked, net neutral state to loosely linked, positively charged one. A >100x reduction in indentation modulus was observed at all IS, suggesting the dominance of decrease in cross-link density. In most states, more than 90% force relaxation was observed, where cross-link breaking/reformation likely dominates viscoelasticity. However, at pH =2.5 and IS =0.01M, when electrical double layer repulsion is important (Debye length =3nm), relaxation was about 60%, highlighting the contribution of fixed charges. In summary, this study revealed unique viscoelastic behaviors of PAH/PAA due to the pH- and IS-dependent cross-link and charge densities.

  14. Graphene-ionic liquid composites

    DOEpatents

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  15. Design of Energetic Ionic Liquids

    DTIC Science & Technology

    2009-05-12

    effectiveness of the FMO method in both providing accurate results and reducing computational requirements, timings were performed for the ionic liquid ...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Design of Energetic Ionic Liquids 5b. GRANT NUMBER 5c...Design of Energetic Ionic Liquids challenge project is to address several key technical issues and challenges associated with the characterization

  16. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  17. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  18. Electrolytes between dielectric charged surfaces: Simulations and theory

    SciTech Connect

    Santos, Alexandre P. dos Levin, Yan

    2015-05-21

    We present a simulation method to study electrolyte solutions in a dielectric slab geometry using a modified 3D Ewald summation. The method is fast and easy to implement, allowing us to rapidly resum an infinite series of image charges. In the weak coupling limit, we also develop a mean-field theory which allows us to predict the ionic distribution between the dielectric charged plates. The agreement between both approaches, theoretical and simulational, is very good, validating both methods. Examples of ionic density profiles in the strong electrostatic coupling limit are also presented. Finally, we explore the confinement of charge asymmetric electrolytes between neutral surfaces.

  19. Charge fluctuations in nanoscale capacitors.

    PubMed

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  20. Charge Fluctuations in Nanoscale Capacitors

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  1. Aggregation and Charge Behavior of Metallic and Nonmetallic Nanoparticles in the Presence of Competing Similarly-Charged Inorganic Ions

    EPA Science Inventory

    The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...

  2. [Theoretical investigation of the saturation correction for ionization chambers irradiated with pulsed beams of arbitrary pulse length].

    PubMed

    Karsch, Leonhard; Pawelke, Jörg

    2014-09-01

    In ionization chambers, not all released charge is collected due to the recombination of charge carriers. This effect is taken into account by the saturation correction factor kS. A physical description of the correction factor has been established for pulsed radiation. However, it is only accurate when the pulse length is short compared with the collection time of the ionization chamber. In this paper we develop a description of the saturation correction for radiation pulses of arbitrary length. For this, a system of partial differential equations is solved iteratively. The numerical solutions are verified experimentally for a Roos ionization chamber (PTW TM34001) exposed to a pulsed electron beam. The results of this iterative procedure describe the experimental data well. The calculations are also possible for beam structures which are experimentally hard to get and thereby contribute to a better understanding and correct description of the saturation correction at arbitrary pulse length. Among other things the pulse length dependent distributions of the charge carriers in the ionization chamber is calculated, inclusive of the transition to the conditions prevailing in the case of continuous irradiation. Furthermore is shown that the formula for kS established by Hochhäuser and Balk is applicable even at arbitrary pulse length, if pulse duration dependent effective values are used for the parameters a and p. These effective values have been determined for the Roos chamber at pulse lengths up to 300 μs.

  3. Microwave beam power transmission at an arbitrary range

    NASA Technical Reports Server (NTRS)

    Pinero, L. R.; Christian, J. L., Jr.; Acosta, R. J.

    1992-01-01

    The power transfer efficiency between two circular apertures at an arbitrary range is obtained numerically. The apertures can have generally different sizes and arbitrary taper illuminations. The effects of distance and taper illumination on the transmission efficiency are investigated for equal size apertures. The result shows that microwave beam power is more effective at close ranges, namely distances less than 2D(exp 2)/lambda. Also shown was the power transfer efficiency increase with taper illumination for close range distances. A computer program was developed for calculating the power transfer efficiency at an arbitrary range.

  4. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  5. Electrostatic correlations on the ionic selectivity of cylindrical membrane nanopores

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2014-02-01

    We characterize the role of electrostatic fluctuations on the charge selectivity of cylindrical nanopores confining electrolyte mixtures. To this end, we develop an extended one-loop theory that can account for correlation effects induced by the surface charge, nanoconfinement of the electrolyte, and interfacial polarization charges associated with the low permittivity membrane. We validate the quantitative accuracy of the theory by comparisons with previously obtained Monte-Carlo simulation data from the literature, and scrutinize in detail the underlying forces driving the ionic selectivity of the nanopore. In the biologically relevant case of electrolytes with divalent cations such as CaCl2 in negatively charged nanopores, electrostatic correlations associated with the dense counterion layer in the channel result in an increase of the pore coion density with the surface charge. This peculiarity analogous to the charge inversion phenomenon remains intact for dielectrically inhomogeneous pores, which indicates that the effect should be observable in nanofiltration membranes or DNA-blocked nanopores characterized by a low membrane permittivity. Our results show that a quantitatively accurate consideration of correlation effects is necessary to determine the ionic selectivity of nanopores in the presence of electrolytes with multivalent counterions.

  6. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity.

    PubMed

    Small, Leo J; Wheeler, David R; Spoerke, Erik D

    2015-10-28

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.

  7. Diff-invariant kinetic terms in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Villaseñor, Eduardo J.

    2002-06-01

    We study the physical content of quadratic diff-invariant Lagrangians in arbitrary dimensions by using covariant symplectic techniques. This paper extends previous results in dimension four. We discuss the difference between the even and odd dimensional cases.

  8. Skin effect with arbitrary specularity in Maxwellian plasma

    SciTech Connect

    Latyshev, A. V.; Yushkanov, A. A.

    2010-11-15

    The problem of the skin effect with arbitrary specularity in Maxwellian plasma with specular-diffuse boundary conditions is solved. A new analytical method is developed that makes it possible to obtain a solution up to an arbitrary degree of accuracy. The method is based on the idea of symmetric continuation of not only the electric field, but also electron distribution function. The solution is obtained in a form of von Neumann series.

  9. Closed description of arbitrariness in resolving quantum master equation

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.

  10. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  11. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  12. The equilibrium structure of lithium salt solutions in ether-functionalized ammonium ionic liquids.

    PubMed

    Figueiredo, Pedro Henrique; Siqueira, Leonardo J A; Ribeiro, Mauro C C

    2012-10-11

    Molecular dynamics simulations have been performed for ionic liquids based on a ternary mixture of lithium and ammonium cations and a common anion, bis(trifluoromethylsulfonyl)imide, [Tf(2)N](-). We address structural changes resulting from adding Li(+) in ionic liquids with increasing length of an ether-functionalized chain in the ammonium cation. The calculation of static structure factors reveals the lithium effect on charge ordering and intermediate range order in comparison with the neat ionic liquids. The charge ordering is modified in the lithium solution because the coordination of [Tf(2)N](-) toward Li(+) is much stronger than ammonium cations. Intermediate range order is observed in neat ionic liquids based on ammonium cations with a long chain, but in the lithium solutions, there is also a nonhomogenous distribution of Li(+) cations. The presence of Li(+) enhances interactions between the ammonium cations due to correlations between the oxygen atom of the ether chain and the nitrogen atom of another ammonium cation.

  13. In silico rational design of ionic liquids for the exfoliation and dispersion of boron nitride nanosheets.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2016-01-14

    A requirement for exploiting most of the unique properties of boron-nitride (BN) nanosheets is their isolation from the bulk material. A rational design of task-specific ionic liquids (ILs) through DFT simulations is reported in this work. The applied computational protocol allowed the screening of large IL families, which was carried out bearing in mind the achievement of strong π-π stacking between the anions and BN nanosheets as well as a negative charge transfer from the anion to the surface. The selected ionic liquids yielded strong interaction energies with BN nanosheets and high charge transfer values, while the main features of the ionic liquid are not affected in the presence of nanosheets. DFT simulations provided a detailed picture of the interaction mechanism and useful structure-property relationships in the search of a new ionic liquid for BN exfoliation.

  14. Structural investigation of room-temperature ionic liquids and high-temperature ionic melts using triplet correlation functions

    NASA Astrophysics Data System (ADS)

    Dhabal, Debdas; Gupta, Aditya; Kashyap, Hemant K.

    2017-03-01

    We use means of molecular dynamics simulation to understand the local structural arrangements in three trihexyltetradecylphosphonium (P6,6,6 ,14 +) based room-temperature ionic liquids (RTILs) by using triplet correlation functions (TCFs) along with pair correlation functions (PCFs) and X-ray scattering structure functions (S(q)s). The anions in these RTILs are either spherically symmetric but with different effective sizes (bromide (Br-) and tetrafluoroborate (BF4-)) or angular such as dicyanamide (DCA-). The simulated PCFs, S(q)s, and TCFs of the three RTILs have been compared with three high-temperature ionic melts (HTIMs); NaBr, NaCl, and NaF. In general, the pair correlation function gives angle-averaged probability as a function of inter-particle distance whereas the TCFs associated with equilateral and isosceles triangle configurations can be used to delineate angle-resolved information of liquids structure within nearest solvation shells. For the three ionic liquids studied, a very careful examination of co-ionic and counter-ionic TCFs associated with the equilateral triangular configuration within the nearest solvation shells of the ions reveals that co-ions (cat-cat-cat and an-an-an) favor close-packed local arrangement, but with lower probability for the DCA- RTIL. Co-ionic and counter-ionic TCFs obtained for HTIMs are found to be similar to that of RTILs with spherical anions. The TCFs associated with the isosceles triangle configuration signify that the ionic liquid with Br- anions tends to exhibit larger anion-cation-anion angle than that in the other two RTILs. Moreover, diffused counter-ionic angular correlations are observed in the DCA- system. We also observed angle-dependent charge ordering in all the three RTILs although its extent is enhanced for RTILs with spherical anions, very similar to what we find for NaBr, NaCl, and NaF melts. This study suggests that the presence of charge ordering is a generic feature of both the RTILs and HTIMs.

  15. Pyrrolidinium ionic liquid crystals.

    PubMed

    Goossens, Karel; Lava, Kathleen; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Driesen, Kris; Görller-Walrand, Christiane; Binnemans, Koen; Cardinaels, Thomas

    2009-01-01

    N-alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2- thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group C(n)H(2n+1) was varied from eight to twenty carbon atoms (n = 8, 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour purity.

  16. Component analysis of a mixed beam generated by vacuum electrospray of an ionic liquid

    SciTech Connect

    Fujiwara, Yukio; Saito, Naoaki; Nonaka, Hidehiko; Ichimura, Shingo

    2012-03-15

    Vacuum electrospray of a quaternary ammonium ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl) amide (DEME-TFSA), was investigated to develop a primary ion source for secondary ion mass spectrometry (SIMS). Since the ionic liquid contains many methyl and ethyl groups as well as protons, its beam is expected to efficiently produce protonated molecules for SIMS analysis of organic materials. Experimental results showed that the beam consisted of charged particles of m/z about 1000 and charged droplets of m/z > 10{sup 5}. The current components of both the charged particles and droplets changed with the applied voltage and the flow rate of the ionic liquid. With decreasing flow rate, the current component of the charged droplets increased, whereas that of the charged particles decreased. The m/z values of the charged droplets diminished with decreasing flow rate and increasing capillary voltage. In addition to masses and charge numbers, the numbers of the charged droplets and the charged particles were estimated.

  17. Shockwave Absorption using Network-forming Ionic glass

    NASA Astrophysics Data System (ADS)

    Lee, Jaejun; Yang, Ke; Moore, Jeffrey; Sottos, Nancy; MURI SWED Collaboration

    2015-06-01

    Network-forming ionic glasses composed of di-ammonium cations and citrate anions exhibit significant potential for dissipation of shock wave energy. The long alkyl side chains in the di-ammonium cation form a soft matrix, while the negatively charged heads of anions segregate into hard nanophase domains. Similar to polyurea, which has microphase separation of soft and hard domains, we hypothesize that shock wave dissipation of the ionic glass occurs by bond breaking in the hard domains and/or pressure-induced phase transition. By employing size-tunable alkyl side chains in the cations, we examine the effect of the relative soft domain size on energy dissipation. A series of thin film (ca. 50 μm) ionic glass specimens are subjected to laser-induced compressive stress waves and the transmitted response measured interferometrically. Structural changes of the ionic glass due to shock wave impact are characterized by x-ray diffraction. When compared directly to polyurea films of identical thickness and geometry, the ionic glass showed superior shock-wave mitigating performance. ONR MURI program.

  18. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  19. An imidazolium based ionic liquid electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Matic, Aleksandar; Ahn, Jou-Hyeon; Jacobsson, Per

    An electrolyte for lithium batteries based on the ionic liquid 3-methy-1-propylimidazolium bis(trifluoromethysulfony)imide (PMIMTFSI) complexed with lithium bis(trifluoromethysulfony)imide (LiTFSI) at a molar ratio of 1:1 has been investigated. The electrolyte shows a high ionic conductivity (∼1.2 × 10 -3 S cm -1) at room temperature. Over the whole investigated temperature range the ionic conductivity is more than one order of magnitude higher than for an analogue electrolyte based on N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py 14TFSI) complexed with LiTFSI and used here as a benchmark. Raman results indicate furthermore that the degree of lithium coordinated TFSI is slightly lower in the electrolyte based on PMIMTFSI and thus that the Li + charge carriers should be higher than in electrolytes based on Py 14TFSI. An ionic liquid gel electrolyte membrane was obtained by soaking a fibrous fully interconnected membrane, made of electrospun P(VdF-HFP), in the electrolyte. The gel electrolyte was cycled in Li/ionic liquid polymer electrolyte/Li cells over 15 days and in Li/LiFePO 4 cells demonstrating good interfacial stability and highly stable discharge capacities with a retention of >96% after 50 cycles (∼146 mAh g -1).

  20. Fast dynamic holographic recording based on conductive ionic metal-alkanoate liquid crystals and smectic glasses.

    PubMed

    Klimusheva, G; Bugaychuk, S; Garbovskiy, Yu; Kolesnyk, O; Mirnaya, T; Ishchenko, A

    2006-01-15

    Recordings of dynamic holograms with microsecond relaxation times under the action of nanosecond laser pulses are obtained in composites on the base of a novel class of liquid crystals (LCs) in ionic metal-alkanoates. Holographic parameters and relaxation characteristics are measured for doped lyotropic ionic LC, for sandwichlike cells (consisting of a dye layer and a layer of the lyotropic ionic LC), and for colored ionic smectic glasses. The structure of the materials is investigated by use of the small-angle x-ray technique. The mechanism of resonance nonlinearity in photosensitive centers and mechanisms of the grating erasure connected with a charge transport in the ionic conductive LC matrix are discussed.

  1. Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Profatilova, Irina A.; Choi, Nam-Soon; Roh, Sae Weon; Kim, Sung Soo

    The electrochemical and thermal properties of graphite electrodes with electrolytes containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) and N-methyl, N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MPPpTFSI) ionic liquids are investigated. The ionic liquids undergo extensive reductive decomposition on a graphite electrode during the first charge. The effect of a fluoroethylene carbonate (FEC) additive on the reductive decomposition of the ionic liquids is examined by electrochemical, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. Thermal reactions between a lithiated graphite electrode and an ionic liquid-containing electrolyte are investigated with differential scanning calorimetry (DSC). The introduction of an ionic liquid can effectively reduce the exothermic heat evolution from the thermal reactions between a lithiated graphite electrode and an electrolyte.

  2. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.

    PubMed

    Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas

    2016-09-19

    Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered.

  3. Synthesis, characterization and applications of ionic supramolecular assemblies

    NASA Astrophysics Data System (ADS)

    Lin, Xinrong

    Supramolecular ionic assemblies not only provide alternatives to conventional polymers, but also introduce unique and interesting functions for the design of "smart" polymeric assemblies for use in a number of fields due to their programmable and reversible properties. Research in the area has led to an understanding of the connection between molecular contributions and macroscopic properties, as well as a range of applications from material processing/manufacuturing to energy transfer and storage. To this end, we have developed a library of charged building blocks based on ionic liquids to create functional supramolecular ionic assemblies. The polymeric ionic assemblies prepared from a di-phosphonium and poly (acrylic acid) were first studied and found to have the potential to be utilized as "smart" materials due to their ability to reversibly respond to stimuli such as temperature and pressure. With the interest of elucidating the molecular contributions to the bulk macroscopic material properties, six supramolecular assemblies were sequentially characterized in terms of thermal, rheological and X-ray studies. The effect of side alkyl chain was found to dramatically change the material properties. A second type of supramolecular assembly was investigated based on a poly-phosphonium ionic liquid, which was complexed with a number of carboxylic acids. The material properties were easily manipulated from a sticky fiber to a brittle solid by changing the composition of the carboxylic acid. A crosslinked supramolecular assembly combining ionic interactions and weak covalent bonds, specifically disulfide bonds, was next designed and characterized. The network properties could be switched between "on and off" using mild conditions. The polymeric ionic networks and their building block ionic liquids are also of interest as safe electrolytes in energy storage devices due to their non-flammability, non-volatility, etc. We have identified one ionic liquid with superior

  4. Synthesis and properties of dicationic ionic liquids containing a siloxane structural moiety

    NASA Astrophysics Data System (ADS)

    Glukhov, L. M.; Krasovskiy, V. G.; Chernikova, E. A.; Kapustin, G. I.; Kustov, L. M.; Koroteev, A. A.

    2015-12-01

    Five new ionic liquids formed by doubly charged cations containing a siloxane moiety and bis(trifluoromethylsulfonyl) imide anion are synthesized and characterized. Their thermal stability is studied by means of TGA; melting points (glass transition temperatures) and densities are measured. The temperature dependences of kinematic viscosity of the obtained ionic liquids are presented along with their approximations by the Vogel-Tammann-Fulcher equation.

  5. Arbitrary amplitude electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2008-12-01

    The properties of different types of electro-acoustic (namely ion-acoustic (IA), dust ion-acoustic (DIA), and dust-acoustic (DA)) solitary waves (SWs) in an adiabatic dusty plasma (containing negatively charged cold dust, adiabatic hot ions and inertia-less adiabatic hot electrons) are investigated by the pseudo-potential approach. The combined effects of the adiabatic electrons and ions, and negatively charged dust on the basic properties (critical Mach number, amplitude and width) of the arbitrary amplitude electro-acoustic SWs are systematically and explicitly examined. It is found that the combined effects of the adiabatic electrons and ions, and negatively charged dust significantly modify the basic properties (critical Mach number, amplitude and width) of the SWs. It is also found that due to the effect of the adiabaticity of electrons, the negative DIA SWs (which are found to exist in a dusty plasma containing isothermal electrons, cold ions and negatively charged static dust) disappear, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA SWs for any possible set of dusty plasma parameters.

  6. Raman study of the pressure-induced neutral-to-ionic transition in tetrathiafulvalene chloranil

    NASA Astrophysics Data System (ADS)

    Hanfland, M.; Brillante, A.; Girlando, A.; Syassen, K.

    1988-07-01

    The pressure-induced phase transition from a neutral regular stack to an ionic dimerized stack (NR-ID) in the tetrathiafulvalene chloranil charge-transfer crystal has been studied by Raman spectroscopy. An accurate estimate of the change of ionicity during the phase transition is obtained from calculations of mode frequencies which are based on the trimer (NR phase) and dimer (ID phase) models of the electron-molecular-vibration interaction. The possibility of the formation of ionic dimers embedded in neutral chains as precursors of the phase change is discussed.

  7. Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids

    PubMed Central

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113

  8. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    EPA Pesticide Factsheets

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  9. Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels.

    PubMed

    Liu, Qian; Xiao, Kai; Wen, Liping; Lu, Heng; Liu, Yahui; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Bo, Zhishan; Jiang, Lei

    2015-09-23

    In living systems, ion conduction plays a major role in numerous cellular processes and can be controlled by biological ion channels in response to specific environmental stimuli. This article describes biomimetic ionic gates for ion conduction based on sodium and potassium activated nanochannels. The Na(+) activated ionic gate and K(+) activated ionic gate were developed by immobilizing the alkali metal cation-responsive functional molecules, 4'-aminobenzo-15-crown-5 and 4'-aminobenzo-18-crown-6, respectively, onto the conical polyimide nanochannels. When the ionic gate was in the presence of the specific alkali metal cation, positively charged complexes formed between the crown ether and the alkali metal cation. On the basis of the resulting changes in surface charge, wettability and effective pore size, the nanochannel can achieve reversible switching. The switching behaviors of the two complexes differed due to the differences in binding strength between the two complexes. The Na(+) activated ionic gate is able to open and close to control the ion conduction through the nanochannel, and the K(+) activated ionic gate enables selective cation and anion conduction through the nanochannel. The Na(+) and K(+) activated ionic gates show great promise for use in clinical medicine, biosensors and drug delivery based on their high sensitivity and selectivity of being activated, and good stability.

  10. Dielectric spectroscopy of ionic microgel suspensions.

    PubMed

    Mohanty, P S; Nöjd, S; Bergman, M J; Nägele, G; Arrese-Igor, S; Alegria, A; Roa, R; Schurtenberger, P; Dhont, J K G

    2016-12-06

    The determination of the net charge and size of microgel particles as a function of their concentration, as well as the degree of association of ions to the microgel backbone, has been pursued in earlier studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle interactions that interfere with the characterization of single-particle properties. Here we introduce dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The advantage of dielectric spectroscopy over other experimental methods is that the polarization due to mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated relaxation modes, which are due to the polarization of the mobile charges within the microgel particles, the diffuse double layer around the particles, and the polymer backbone. Expressions for the full frequency dependence of the electrode-polarization contribution to the measured dielectric response are derived, and a theory is proposed for the polarization resulting from the mobile charges within the microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net charge and the size of the microgel particles are found to be strongly varying with concentration. A very small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of chemical association of protons to the polymer backbone.

  11. Ionic liquids as surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Safonova, E. A.

    2010-10-01

    Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

  12. Fluctuation of surface charge in membrane pores.

    PubMed Central

    Bashford, C Lindsay; Alder, Glenn M; Pasternak, Charles A

    2002-01-01

    Surface charge in track-etched polyethylene terephthalate (PET) membranes with narrow pores has been probed with a fluorescent cationic dye (3,3'-diethyloxacarbocyanine iodide (diO-C2-(3))) using confocal microscopy. Staining of negatively charged PET membranes with diO-C2-(3) is a useful measure of surface charge for the following reasons: 1) the dye inhibits K(+) currents through the pores and reduces their selectivity for cations; 2) it inhibits [3H]-choline+ transport and promotes 36Cl- transport across the membrane in a pH- and ionic-strength-dependent fashion; and 3) staining of pores by diO-C2-(3) is reduced by low pH and by the presence of divalent cations such as Ca2+ and Zn2+. Measurement of the time dependence of cyanine staining of pores shows fluctuations of fluorescence intensity that occur on the same time scale as do fluctuations of ionic current in such pores. These data support our earlier proposal that fluctuations in ionic current across pores in synthetic and biological membranes reflect fluctuations in the surface charge of the pore walls in addition to molecular changes in pore proteins. PMID:11916860

  13. Sensitivity of Superfolder GFP to Ionic Agents

    PubMed Central

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.

    2014-01-01

    Superfolder variant of the green fluorescent protein (sfGFP) became a favorite probe for examination of the unfolding–refolding processes of fluorescent proteins with beta-barrel structure owing to its reversible unfolding in comparison with other fluorescent proteins. Its benefit is the proper folding even in fusion constructions with poorly folded polypeptides. We noticed that guanidine thiocyanate affects not only the structure of protein but its chromophore directly. Therefore we studied the influence of ionic denaturants and salts including guanidine thiocyanate, guanidine hydrochloride, sodium chloride and sodium thiocyanate on spectral features of sfGFP. It was shown that moderate amounts of the studied agents do not disrupt sfGFP structure but provoke pronounced alteration of its spectral characteristics. Changes in absorption and CD spectra in visible spectral range indicate the specific binding of SCN− and Cl− anions in the sfGFP chromophore vicinity. The anion binding results in the redistribution of sfGFP molecules with neutral and anionic chromophores. This also hinders the proton transfer in the chromophore excited state, considerably decreasing the fluorescence intensity of sfGFP. Our results indicate that when ionic denaturants are used in the studies of fluorescent protein folding their effect on fluorophore charge state should be taken into account. PMID:25347822

  14. Ionic composition of the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1983-01-01

    Several different ion species have been positively identified in the earth's radiation belts. Besides protons, there are substantial fluxes of helium, carbon and oxygen ions, and there are measurable quantities of even heavier ions. European, American and Soviet space experimenters have reported ion composition measurements over wide ranges of energies: at tens of keV (ring-current energies) and below, and at hundreds of keV and above. There is still a gap in the energy coverage from several tens to several hundreds of keV where little observational data are available. In this review emphasis is placed on the radiation belt ionic structure above 100 keV. Both quiet time conditions and geomagnetic storm periods are considered, and comparison of the available space observations is made with theoretical analysis of geomagnetically trapped ion spatial, energy and charge state distributions.

  15. Ionic solutions of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A.

    2016-11-01

    Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.

  16. Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics

    PubMed Central

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-01-01

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  17. Comparison of three ionic liquid-tolerant cellulases by molecular dynamics.

    PubMed

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-02-17

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme's secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme's behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study.

  18. Ionic diffusion in single crystals of vermiculite

    SciTech Connect

    Maraqah, H.R.

    1993-01-01

    Novel guest-host compounds, based on single crystal vermiculite, were synthesized by diffusive techniques through a new hydrogen vermiculite. Single crystals were chosen because of the ease of characterization. An investigation of the ion transport properties of these single crystals was done to determine the mechanism of conductivity including the predominant charge carrier. Measurements of the ionic conductivity using impedance spectroscopy and X-ray lattice parameters of the ion-exchanged samples strongly suggest that the native cations and not protons are the major current carriers. Single crystals of hydrogen vermiculite were synthesized at room temperature by ion exchange from sodium-vermiculite using 1 molar acetic acid for a one week. Subsequent ion exchange with other cations was found to be much enhanced. Thus transition metals were exchanged in about a week in contrast to the need of several months using previous methods. The ionic conductivity of hydrogen vermiculite was measured and shown to be much lower than that of many other monovalent cations in the same host lattice. Its enthalpy of motion is also much lower. These marked differences suggest that protonic species do not play a significant role in charge transport in these layered materials. These materials were characterized by x-ray powder diffraction, thermogravimetric analysis and acid-base titration. Hydrogen-vermiculite was found to react with organic bases, like methylamine, ethylamine, n-butylamine, n-hexylamine, n-octylamine, n-decylamine, aniline, acrylamide, methacrylaminde, urea, 1,10phenanthroline, and 1,1phenanthroline ferrous sulfate complex, to undergo ion exchange with metal cations like sodium, zinc, copper(II) ions and polymerization reactions could be performed in the galleries of the structure like pyrrole and aniline. Its behavior was compared with that of powdered montmorillonite.

  19. Ionic Conductivity of Nanostructured Block Copolymer and Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan L.; Virgili, Justin M.; Segalman, Rachel A.

    2010-03-01

    Block copolymer and ionic liquid mixtures are of interest for creating ionically conductive, thermally stable, and nanostructured membranes. For mixtures of poly(styrene-b-2-vinylpyridine) (S2VP) and the ionic liquid bis(trifluoromethanesulfonyl)imide ([Im][TFSI]), nanostructured ion-conducting domains are formed due to [Im][TFSI] selectively residing in the P2VP domains of the block copolymer. The dependence of ionic conductivity on temperature, ionic liquid loading, and volume fraction of PS in the neat block copolymer was investigated for membranes with the matrix phase being P2VP/[Im][TFSI]. It was determined that the temperature dependence of conductivity follows the Vogel-Tamman-Fulcher equation, with the activation energy determined by the ratio of [Im][TFSI] to 2VP monomers. The overall weight fraction of [Im][TFSI] in the mixtures, however, is the dominating factor determining conductivity, regardless of PS volume fraction. The insight gained from this work will be important for further investigation into the effect on the ion transport properties of ionic liquids when confined to minority nanostructured domains.

  20. Chiral discrimination by ionic liquids: impact of ionic solutes.

    PubMed

    Brown, Christopher J; Hopkins, Todd A

    2015-04-01

    Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester-based ionic liquids, including L- and D-alanine methyl ester, L-proline methyl ester, L-leucine methyl ester, and L-valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)3(3-) (where dpa = 2,6-pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)3(3-) and this concentration-dependence was different in each of the ionic liquids. Ionic liquids with L-leucine methyl ester and L-valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)3(3-) salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids.

  1. Photonic arbitrary waveform generator based on Taylor synthesis method.

    PubMed

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang

    2016-10-17

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.

  2. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  3. Ionic thermoelectric gating organic transistors

    PubMed Central

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  4. Ionic thermoelectric gating organic transistors

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (~100 μV K-1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (~10,000 μV K-1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins.

  5. Novel approaches to ionic chromatography

    SciTech Connect

    Dasgupta, P.K.

    1990-11-01

    Research during this reporting period, continued on ionic chromatography. Major progress has been made towards on-line on-demand generation of ultrapure chemicals by electrochemical means. The concentration of the generated material is governed electrochemically.

  6. Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone.

    PubMed

    Park, Mi-Ran; Seo, Bo-Bae; Song, Soo-Chang

    2013-01-01

    A dual ionic interaction system composed of a positively charged polyelectrolyte complex (PEC) containing human growth hormone (hGH) and anionic thermosensitive hydrogel has been suggested for sustained delivery of bioactive hGH. The PEC was prepared by ionic interaction between negatively charged hGH and positively charged protamine sulfate (PS) to suppress diffusion of hGH. Moreover, we loaded the positively charged PEC into an anionic, injectable, and thermosensitive poly(organophosphazene) hydrogel to enhance sustained release of hGH by dual ionic interactions. PS formed a spherical complex with hGH, and their ionic interaction grew stronger with increasing amounts of PS. From a weight ratio of 0.5, the PS/hGH complex had a size and zeta-potential that were constantly maintained around 500 nm and +8 mV, respectively, in 0.9% NaCl. The PEC-loaded hydrogels suppressed the initial burst release of hGH and extended the release period in vitro and in vivo. In a pharmacokinetic study in rats, the PEC-loaded anionic hydrogel extended half-life 13-fold with similar area under the curve (AUC) compared to hGH solution. Furthermore, single injection of PEC-loaded anionic hydrogel showed a more increased growth rate than daily injection of hGH solution for 7 days in hypophysectomized rats, demonstrating its potential as an injectable, sustained delivery system that can release bioactive hGH.

  7. Dynamic effects in thin liquid films containing ionic surfactants

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Tsekov, R.; Ivanova, D. S.

    2010-03-01

    This paper is dedicated to studying dynamic effects in thin liquid films (TLF) containing ionic surfactants. The standard theory of TLF drainage has been developed without considering the electrical double layer (EDL) in the hydrodynamic equations, although EDL always exists. In addition, it has been found that this theory very well describes the drainage of TLF containing non-ionic surfactants in the presence of electrolytes. The inclusion of EDL into the hydrodynamics of TLF complicates the theory, producing additional dynamic effects during film drainage. For example, a gradient of electrostatic disjoining pressure across the film arises, thus causing non-uniform electrostatic repulsion between the film surfaces. This paper analyzes the hydrodynamics of TLF with EDL. A new equation of drainage was derived. This equation accounts for the non-uniform distribution of surface charges during the films drainage, which is coupled with non-uniform electrostatic repulsion between the film surfaces and results in faster film drainage. The theory was tested with drainage experiments on TLF with ionic surfactants. Foam films containing sodium dodecyl sulfate (SDS) in the presence and in the absence of added electrolyte were studied and the experimental data compared to the theoretical predictions. The experimental results, however, disagree with the theory. For example, the kinetic equation predicted faster film drainage for foam films at low ionic strength; at high ionic strength the theory tends to wReynolds drainagew. Inversely, the experiment exhibited slower drainage than predicted by the Reynolds equation in both cases of low and high ionic strengths. Numerical simulations yielded V/VRe<1. In addition, cases of wpositivew and wnegativew velocity of film surfaces were shown. Despite the sign of the velocity the dependence V/VRe<1 remained. The analysis showed similarity between the experimental data and the prediction of the Manev-Tsekov-Radoev (MTR) drainage model at

  8. Biopolymer Processing Using Ionic Liquids

    DTIC Science & Technology

    2014-08-07

    AFRL-OSR-VA-TR-2014-0181 (YIP-11) BIOPOLYMER PROCESSING USING IONIC LIQUIDS William Reichert UNIVERSITY OF SOUTH ALABAMA 08/07/2014 Final Report...3. DATES COVERED (From - To) May 2011-May 2014 4. TITLE AND SUBTITLE iopolymer Processing using Ionic Liquids for Feedstock Chemicals 5a...reaction and degradation products of the conversion of chitin and chitosan, and 3) investigate the effects of various reaction conditions, such as

  9. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  10. Nonrelativistic equations of motion for particles with arbitrary spin

    SciTech Connect

    Fushchich, V.I.; Nikitin, A.G.

    1981-09-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found.

  11. Quark-gluon vertex in arbitrary gauge and dimension

    NASA Astrophysics Data System (ADS)

    Davydychev, A. I.; Osland, P.; Saks, L.

    2001-01-01

    One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.

  12. Ranking solvent interactions and dielectric constants with [Pt(mesBIAN)(tda)]: A cautionary tale for polarity determinations in ionic liquids.

    PubMed

    Baker, Gary A; Rachford, Aaron A; Castellano, Felix N; Baker, Sheila N

    2013-04-02

    The solvatochromic properties of [Pt(mesBIAN)(tda)] are studied in traditional molecular solvents and ionic liquids and duly compared along established empirical solvent parameter scales. The charge-transfer absorption band of [Pt(mesBIAN)(tda)] is determined to be primarily dependent upon solvent acidity and dipolarity. Notably, ionic liquids do not obey the same well-behaved trend as molecular solvents, highlighting the complexity and domain (nano)segregation inherent to ionic liquids.

  13. Sonofragmentation of Ionic Crystals.

    PubMed

    Kim, Hyo Na; Suslick, Kenneth S

    2017-02-24

    Mechanochemistry deals with the interface between the chemical and the mechanical worlds and explores the physical and chemical changes in materials caused by an input of mechanical energy. As such, the chemical and physical effects of ultrasound, i.e., sonochemistry, are forms of mechanochemistry. In this paper, the fragmentation of ionic crystals during ultrasonic irradiation of slurries has been quantitatively investigated: the rate of fragmentation depends strongly on the strength of the materials (as measured by Vickers hardness or by Young's modulus). This is a mechanochemical extension of the Bell-Evans-Polanyi Principle or Hammond's Postulate: activation energies for solid fracture correlate with binding energies of solids. Sonofragmentation is unaffected by slurry loading or liquid vapor pressure, but is suppressed by increasing liquid viscosity. The mechanism of the particle breakage is consistent with a direct interaction between the shockwaves created by the ultrasound (through acoustic cavitation) and the solid particles in the slurry. Fragmentation is proposed to occur from defects in the solids induced by compression-expansion, bending, or torsional distortions of the crystals.

  14. Hydrophobic ionic liquids

    SciTech Connect

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  15. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  16. Three-Dimensional Simultaneous Arbitrary-Way Orbital Angular Momentum Generator Based on Transformation Optics

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Deng, Li; Hong, Wei Jun; Jiang, Wei Xiang; Zhu, Jian Feng; Zhou, Mi; Wang, Ling; Li, Shu Fang; Peng, Biao

    2016-12-01

    In wireless communications, people utilize the technology of diversity against multipath fading, so as to improve the reliability of communication equipment. One of the long-standing problems in diversity antennas is the limited number of diversity in a certain space. In this paper, we provide a solution to this issue by a three-dimensional (3D) simultaneous arbitrary-way orbital angular momentum (OAM) generator (3D SAWOG) based on transformation optics. The proposed 3D SAWOG consists of a metamaterial block and a group of transformation cylinders, by which arbitrary-way planar wavefronts can be converted to helical wavefronts with various topological charges simultaneously. The 2D four-way OAM generator and the 3D SAWOG are analyzed, designed, and simulated. The simulation results validate the performance of a 3D SAWOG successfully, indicating that the proposed model possess a high mode purity and expansibility. The SAWOG can be used as a novel diversity antenna array due to the orthogonal property among different modes, which could provide more degrees of freedom than traditional dual-polarization antennas, further improving the reliability of the communication systems.

  17. Three-Dimensional Simultaneous Arbitrary-Way Orbital Angular Momentum Generator Based on Transformation Optics

    PubMed Central

    Zhang, Chen; Deng, Li; Hong, Wei Jun; Jiang, Wei Xiang; Zhu, Jian Feng; Zhou, Mi; Wang, Ling; Li, Shu Fang; Peng, Biao

    2016-01-01

    In wireless communications, people utilize the technology of diversity against multipath fading, so as to improve the reliability of communication equipment. One of the long-standing problems in diversity antennas is the limited number of diversity in a certain space. In this paper, we provide a solution to this issue by a three-dimensional (3D) simultaneous arbitrary-way orbital angular momentum (OAM) generator (3D SAWOG) based on transformation optics. The proposed 3D SAWOG consists of a metamaterial block and a group of transformation cylinders, by which arbitrary-way planar wavefronts can be converted to helical wavefronts with various topological charges simultaneously. The 2D four-way OAM generator and the 3D SAWOG are analyzed, designed, and simulated. The simulation results validate the performance of a 3D SAWOG successfully, indicating that the proposed model possess a high mode purity and expansibility. The SAWOG can be used as a novel diversity antenna array due to the orthogonal property among different modes, which could provide more degrees of freedom than traditional dual-polarization antennas, further improving the reliability of the communication systems. PMID:27929132

  18. Current rectification for transport of room-temperature ionic liquids through conical nanopores

    SciTech Connect

    Jiang, Xikai; Liu, Ying; Qiao, Rui

    2016-02-09

    Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and the structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.

  19. Current rectification for transport of room-temperature ionic liquids through conical nanopores

    DOE PAGES

    Jiang, Xikai; Liu, Ying; Qiao, Rui

    2016-02-09

    Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less

  20. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect

    Cavalcante, Ary de Oliveira; Ribeiro, Mauro C. C.; Skaf, Munir S.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  1. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  2. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient

  3. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana G

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer

  4. Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids.

    PubMed

    Podgoršek, A; Jacquemin, J; Pádua, A A H; Costa Gomes, M F

    2016-05-25

    A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

  5. Electronic and ionic conductivities in superionic Li4C60

    NASA Astrophysics Data System (ADS)

    Quintavalle, D.; Márkus, B. G.; Jánossy, A.; Simon, F.; Klupp, G.; Győri, M. A.; Kamarás, K.; Magnani, G.; Pontiroli, D.; Riccò, M.

    2016-05-01

    The 10 GHz microwave conductivity, σ (T ) and high field, 222 GHz electron spin resonance (HF-ESR) of Li4C60 fulleride is measured in a wide temperature range. We suggest that the majority of ESR active sites and at least some of the charge carriers for σ (T ) are electrons bound to a small concentration of surplus or vacancy ions in the polymer phase. Both σ (T ) and the ESR line shape depend on ionic motion. A change of the activation energy of σ (T ) at 125 K coincides with the onset of the ionic DC conductivity. The ESR line shape is determined mainly by Li ionic motion within octahedral voids below 150 K. At higher temperatures, fluctuations due to ionic diffusion change the environment of defects from axial to effectively isotropic on the ESR time scale. σ (T ) data up to 700 K through the depolymerization transition confirm that the monomeric phase of Li4C60 is a metal.

  6. Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism

    ERIC Educational Resources Information Center

    Choi, Su-Jin

    2012-01-01

    This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…

  7. Arbitrary unitary transformations on optical states using a quantum memory

    SciTech Connect

    Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy

    2014-12-04

    We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.

  8. Information balance in quantum teleportation with an arbitrary pure state

    SciTech Connect

    Li Li; Chen Zengbing

    2005-07-15

    We study a general teleportation scheme with an arbitrary two-party pure state and derive a tight bound of the teleportation fidelity with a predesigned estimation of the unknown state to be teleported. This bound shows a piecewise balance between information gain and state disturbance. We also explain possible physical significance of the balance.

  9. Chaotic correlations in barrier billiards with arbitrary barriers

    NASA Astrophysics Data System (ADS)

    Osbaldestin, A. H.; Adamson, L. N. C.

    2013-06-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation.

  10. Structure of cyano-anion ionic liquids: X-ray scattering and simulations.

    PubMed

    Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W

    2016-07-14

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.

  11. Multilayer ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Leo, Donald J.

    2003-07-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation, and control. The transducer consists of two to four individual layers each approximately 200 microns thick. The transducers are connected in parallel to minimize the electric field requirements for actuation. The tradeoff in deflection and force can be controlled by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer but has an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. Experiments on transducers with one to three layers are performed and the results are compared to Newbury"s equivalent circuit model, which was modified to accommodate the multilayer polymers. The modification was performed on four different boundary conditions, two electrical the series and the parallel connection, and two mechanical the zero interfacial friction and the zero slip on the interface. Results demonstrate that the largest obstacle to obtaining good performance is water transport between the individual layers. Water crossover produces a near short circuit electrical condition and produces feedthrough between actuation layers and sensing layers. Electrical feedthrough due to water crossover eliminates the ability to produce a transducer that has combined sensing and actuation properties. Eliminating water crossover through good insulation enables the development of a small (5 mm x 30 mm) transducer that has sensing and actuation bandwidth on the order of 100 Hz.

  12. Electric-double-layer field-effect transistors with ionic liquids.

    PubMed

    Fujimoto, Takuya; Awaga, Kunio

    2013-06-21

    Charge carrier control is a key issue in the development of electronic functions of semiconductive materials. Beyond the simple enhancement of conductivity, high charge carrier accumulation can realize various phenomena, such as chemical reaction, phase transition, magnetic ordering, and superconductivity. Electric double layers (EDLs), formed at solid-electrolyte interfaces, induce extremely large electric fields. This results in a high charge carrier accumulation in the solid, much more effectively than solid dielectric materials. In the present review, we describe recent developments in the field-effect transistors (FETs) with gate dielectrics of ionic liquids, which have attracted much attention due to their wide electrochemical windows, low vapor pressures, and high chemical and physical stability. We explain the capacitance effects of ionic liquids, and describe the various combinations of ionic liquids and organic and inorganic semiconductors that are used to achieve such effects as high transistor performance, insulator-metal transitions, superconductivity, and ferromagnetism, in addition to the applications of the ionic-liquid EDL-FETs in logic devices. We discuss the factors controlling the mobility and threshold voltage in these types of FETs, and show the ionic liquid dependence of the transistor performance.

  13. Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association?

    PubMed

    Harris, Kenneth R

    2016-12-01

    There have long been arguments supporting the concept of ion association in molten salts and ionic liquids, largely based on differences between the conductivity and that predicted from self-diffusion coefficients by the Nernst-Einstein equation for noninteracting ions. It is known from molecular dynamics simulations that even simple models based on charged hard spheres show such a difference due to the (anti)-correlation of ion motions. Formally this is expressed as a difference between the velocity cross-correlation coefficient of the oppositely charged ions and the mean of those for the two like-charged ions. This article examines molten salt and ionic liquid transport property data, comparing simple and model associated salts (ZnCl2, PbCl2, and TlCl) including weakly dissociated molecular liquids (H2O, HCOOH, H2SO4). Analysis employing Laity resistance coefficients (rij) shows that the common ion-association rationalization is flawed, consistent with recent direct measurements of the degree of ionicity in ionic liquid chlorides and with theoretical studies. However, the protic ionic liquids [PyrOMe][BF4] and [DBUH][CH3SO3] have larger than usual NE deviation parameters (>0.5), and large negative like-ion rii, analogous to those of ZnCl2. Structural, spectroscopic, and theoretical studies are suggested to determine whether these are indeed genuine examples of association.

  14. Protonated alcohols are examples of complete charge-shift bonds.

    PubMed

    Anderson, Peter; Petit, Alban; Ho, Junming; Mitoraj, Mariusz Pawel; Coote, Michelle L; Danovich, David; Shaik, Sason; Braïda, Benoît; Ess, Daniel H

    2014-11-07

    Accurate gas-phase and solution-phase valence bond calculations reveal that protonation of the hydroxyl group of aliphatic alcohols transforms the C-O bond from a principally covalent bond to a complete charge-shift bond with principally "no-bond" character. All bonding in this charge-shift bond is due to resonance between covalent and ionic structures, which is a different bonding mechanism from that of traditional covalent bonds. Until now, charge-shift bonds have been previously identified in inorganic compounds or in exotic organic compounds. This work showcases that charge-shift bonds can occur in common organic species.

  15. Multiphysics simulation of corona discharge induced ionic wind

    SciTech Connect

    Cagnoni, Davide; Agostini, Francesco; Christen, Thomas; Parolini, Nicola; Stevanović, Ivica; Falco, Carlo de

    2013-12-21

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  16. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    PubMed

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  17. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  18. Recrystallized quinolinium ionic liquids for electrochemical analysis

    NASA Astrophysics Data System (ADS)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian

    2016-11-01

    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  19. Ionic strength dependent vesicle adsorption and phase behavior of anionic phospholipids on a gold substrate.

    PubMed

    Pramanik, Sumit Kumar; Seneca, Senne; Ethirajan, Anitha; Neupane, Shova; Renner, Frank Uwe; Losada-Pérez, Patricia

    2016-03-08

    The authors report on the effect of ionic strength on the formation of supported vesicle layers of anionic phospholipids 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) and dimyristoylphosphatidylserine (DMPS) onto gold. Using quartz crystal microbalance with dissipation monitoring the authors show that vesicle adsorption is mainly governed by NaCl concentration, reflecting the importance of electrostatic interactions in anionic lipids, as compared to zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine. At low ionic strength, low or no adsorption is observed as a result of vesicle-vesicle electrostatic repulsion. At medium ionic strength, the negative charges of DMPG and DMPS are screened resulting in larger adsorption and a highly dissipative intact vesicle layer. In addition, DMPS exhibits a peculiar behavior at high ionic strength that depends on the temperature of the process.

  20. Ion field-evaporation from ionic liquids infusing carbon xerogel microtips

    SciTech Connect

    Perez-Martinez, C. S. Lozano, P. C.

    2015-07-27

    Ionic liquid ion sources capable of producing positive and negative molecular ion beams from room-temperature molten salts have applications in diverse fields, from materials science to space propulsion. The electrostatic stressing of these ionic liquids places the liquid surfaces in a delicate balance that could yield unwanted droplet emission when not properly controlled. Micro-tip emitter configurations are required to guarantee that these sources will operate in a pure ionic regime with no additional droplets. Porous carbon based on resorcinol-formaldehyde xerogels is introduced as an emitter substrate. It is demonstrated that this material can be shaped to the required micron-sized geometry and has appropriate transport properties to favor pure ionic emission. Time-of-flight mass spectrometry is used to verify that charged particle beams contain solvated ions exclusively.

  1. Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui; Jiang, Xikai

    2013-01-01

    Electrically driven ionic transport of room-temperature ionic liquids (RTILs) through nanopores is studied using atomistic simulations. The results show that in nanopores wetted by RTILs a gradual dewetting transition occurs upon increasing the applied voltage, which is accompanied by a sharp increase in ionic current. These phenomena originate from the solvent-free nature of RTILs and are in stark contrast with the transport of conventional electrolytes through nanopores. Amplification is possible by controlling the properties of the nanopore and RTILs, and we show that it is especially pronounced in charged nanopores. The results highlight the unique physics of nonequilibrium transport of RTILs in confined geometries and point to potential experimental approaches for manipulating ionic transport in nanopores, which can benefit diverse techniques including nanofluidic circuitry and nanopore analytics.

  2. Higher energy and safety of lithium-ion batteries with ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Yabuuchi, Naoaki; Katayama, Yasushi; Miura, Takashi

    2010-04-01

    Ionic liquid has been utilized as safe electrolyte solution for lithium-ion batteries. Reversible charge / discharge cycling of the graphite electrode in the ionic liquid has been achieved with polyacrylic acid polymer binder, which can suppress the organic cation intercalation to the graphite. Cycleability of the graphite-silicon composite electrodes prepared with polyacrylate binder was significantly improved in comparison to the conventional PVdF binder, and it has been demonstrated that the reversible cycling with 1000 mAh g-1 for 30 cycling test is possible in ionic liquid. The possibility of the safe and high-energy lithium-ion battery is discussed through the preliminary study on Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 based positive electrode and graphite-silicon-polyacrylate composite negative electrode with the ionic liquid electrolyte.

  3. High Pressure as a Key Factor to Identify the Conductivity Mechanism in Protic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Wang, Y.; Pionteck, J.; Grzybowska, K.; Sokolov, A. P.; Paluch, M.

    2013-11-01

    In this Letter we report the relation between ionic conductivity and structural relaxation in supercooled protic ionic liquids (PILs) under high pressure. The results of high-pressure dielectric and volumetric measurements, combined with rheological and temperature-modulated differential scanning calorimetry experiments, have revealed a fundamental difference between the conducting properties under isothermal and isobaric conditions for three PILs with different charge transport mechanisms (Grotthuss vs vehicle). Our findings indicate a breakdown of the fractional Stokes-Einstein relation and Walden rule when the ionic transport is controlled by fast proton hopping. Consequently, we demonstrate that the studied PILs exhibit significantly higher conductivity than one would expect taking into account that they are in fact a mixture of ionic and neutral species. Thus, the examined herein samples represent a new class of “superionic” materials desired for many advanced applications.

  4. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes.

    PubMed

    Javier, Anna E; Patel, Shrayesh N; Hallinan, Daniel T; Srinivasan, Venkat; Balsara, Nitash P

    2011-10-10

    Charging ahead: separate values for the simultaneous electronic and ionic conductivity of a conjugated polymer containing poly(3-hexylthiophene) and poly(ethylene oxide) (P3HT-PEO) were determined by using ac impedance and dc techniques. P3HT-PEO was used as binder, and transporter of electronic charge and Li(+) ions in a LiFePO(4) cathode, which was incorporated into solid-state lithium batteries.

  5. Influence of ionic association, transport properties, and solvation on the catalytic hydrogenation of 1,3-cyclohexadiene in ionic liquids.

    PubMed

    Podgoršek, Ajda; Salas, Gorka; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Fenet, Bernard; Chauvin, Yves

    2011-10-27

    The influence of the nature of two different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(1)C(4)Im][NTf(2)], on the catalytic hydrogenation of 1,3-cyclohexadiene with [Rh(COD)(PPh(3))(2)][NTf(2)] (COD = 1,5-cyclooctadiene) was studied. Initially, the effect of different concentrations of 1,3-cyclohexadiene on the molecular interactions and on the structure in two ionic liquids was investigated by NMR and by molecular dynamic simulations. It was found that in both ionic liquids 1,3-cyclohexadiene is solvated preferentially in the lipophilic regions. Furthermore, the higher solubility of 1,3-cyclohexadiene in [C(1)C(4)Im][NTf(2)] and the smaller positive values of the excess molar enthalpy of mixing for the 1,3-cyclohexadiene + [C(1)C(4)Im][NTf(2)] system in comparison with 1,3-cyclohexadiene + [C(1)C(1)C(4)Im][NTf(2)] indicate more favorable interactions between 1,3-cyclohexadiene and the C(1)C(4)Im(+) cation than with the C(1)C(1)C(4)Im(+) cation. Subsequently, diffusivity and conductivity measurements of the 1,3-cyclohexadiene + ionic liquid mixtures at different compositions allowed a characterization of mass and charge transport in the media and access to the ionicity of ionic liquids in the mixture. From the dependence of the ratio between molar conductivity and the conductivity inferred from NMR diffusion measurements, Λ(imp)/Λ(NMR), on concentration of 1,3-cyclohexadiene in the ionic liquid mixture, it was found that increasing the amount of 1,3-cyclohexadiene leads to a decrease in the ionicity of the medium. Finally, the reactivity of the catalytic hydrogenation of 1,3-cyclohexadiene using [Rh(COD)(PPh(3))(2)][NTf(2)] performed in [C(1)C(4)Im][NTf(2)] at different compositions of 1,3-cyclohexadiene and in [C(1)C(1)C(4)Im][NTf(2)] at one composition was related linearly to the viscosity, hence the reaction rate is

  6. Ionic liquid effects on a multistep process. Increased product formation due to enhancement of all steps.

    PubMed

    Keaveney, Sinead T; Haines, Ronald S; Harper, Jason B

    2015-09-07

    The reaction of a series of substituted benzaldehydes with hexylamine was examined in acetonitrile and an ionic liquid. In acetonitrile, as the electron withdrawing nature of the substituent increases, the overall addition-elimination process becomes faster as does the build-up of the aminol intermediate. Under equivalent conditions in an ionic liquid, less intermediate build up is observed, and the effect on the rate on varying the substituent is different to that in acetonitrile. Extensive kinetic analysis shows that the ionic liquid solvent increases the rate constant of all steps of the reaction, resulting in faster product formation relative to acetonitrile; these effects increase with the proportion of ionic liquid in the reaction mixture. Differences in the equilibrium position of the addition step in the ionic liquid were found to account for both the decrease in intermediate build up relative to acetonitrile, as well as the differing trend in the overall rate of product formation as the substituent was changed. The microscopic origins of these ionic liquid effects were probed through temperature dependent analyses, highlighting the subtle balance of interactions between the ionic liquid and species along the reaction coordinate, particularly the importance of charge development in the transition state.

  7. Clickable Poly(ionic liquids): A Materials Platform for Transfection.

    PubMed

    Freyer, Jessica L; Brucks, Spencer D; Gobieski, Graham S; Russell, Sebastian T; Yozwiak, Carrie E; Sun, Mengzhen; Chen, Zhixing; Jiang, Yivan; Bandar, Jeffrey S; Stockwell, Brent R; Lambert, Tristan H; Campos, Luis M

    2016-09-26

    The potential applications of cationic poly(ionic liquids) range from medicine to energy storage, and the development of efficient synthetic strategies to target innovative cationic building blocks is an important goal. A post-polymerization click reaction is reported that provides facile access to trisaminocyclopropenium (TAC) ion-functionalized macromolecules of various architectures, which are the first class of polyelectrolytes that bear a formal charge on carbon. Quantitative conversions of polymers comprising pendant or main-chain secondary amines were observed for an array of TAC derivatives in three hours using near equimolar quantities of cyclopropenium chlorides. The resulting TAC polymers are biocompatible and efficient transfection agents. This robust, efficient, and orthogonal click reaction of an ionic liquid, which we term ClickabIL, allows straightforward screening of polymeric TAC derivatives. This platform provides a modular route to synthesize and study various properties of novel TAC-based polymers.

  8. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Boatz, Jerry A; Vaghjiani, Ghanshyam L; Friedman, Jeffrey F; Eyet, Nicole; Viggiano, A A

    2011-04-21

    Room-temperature ionic liquids exert vanishingly small vapor pressures under ambient conditions. Under reduced pressure, certain ionic liquids have demonstrated volatility, and they are thought to vaporize as intact cation-anion ion pairs. However, ion pair vapors are difficult to detect because their concentration is extremely low under these conditions. In this Letter, we report the products of reacting ions such as NO(+), NH4(+), NO3(-), and O2(-) with vaporized aprotic ionic liquids in their intact ion pair form. Ion pair fragmentation to the cation or anion as well as ion exchange and ion addition processes are observed by selected-ion flow tube mass spectrometry. Free energies of the reactions involving 1-ethyl-3-methylimidazolium bis-trifluoromethylsulfonylimide determined by ab initio quantum mechanical calculations indicate that ion exchange or ion addition are energetically more favorable than charge-transfer processes, whereas charge-transfer processes can be important in reactions involving 1-butyl-3-methylimidazolium dicyanamide.

  9. Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent.

    PubMed

    Pas, Steven J; Dargusch, Matthew S; MacFarlane, Douglas R

    2011-07-07

    The properties of ionic liquids give rise to applications in diverse technology areas including mechanical engineering, mining, aerospace and defence. The arbitrary physical property that defines an ionic liquid is a melting point below 100 °C, and as such, an understanding of crystallisation phenomena is extremely important. This is the first report dealing with the mechanism of crystallisation in ionic liquids. Assuming crystallisation of the ionic liquids is a thermal or mass diffusion-controlled process, the values of the isothermal Avrami exponent obtained from three different ionic liquids with three different anions and cations all indicate that growth occurs with a decreasing nucleation rate (n=1.8-2.2). For one of the ionic liquids it was possible to avoid crystallisation by fast cooling and then observe a devitrification upon heating through the glass transition. The isothermal Avrami exponent of devitrification suggested growth with an increasing nucleating rate (n=4.1), compared to a decreasing nucleation rate when crystallisation occurs on cooling from the melt (n=2.0). Two non-isothermal methods were employed to determine the Avrami exponent of devitrification. Both non-isothermal Avrami exponents were in agreement with the isothermal case (n=4.0-4.15). The applicability of JMAK theory suggests that the nucleation event in the ionic liquids selected is a random stochastic process in the volume of the material. Agreement between the isothermal and non-isothermal techniques for determining the Avrami exponent of devitrification suggests that the pre-exponential factor and the activation energy are independent of thermal history. The heating rate dependence of the glass transition enabled the calculation of the fragility index, which suggests that the ionic liquid is a "strong" glass former. This suggests that the temperature dependence of the rate constant could be close to Arrhenius, as assumed by JMAK theory. More generally, therefore, it can be

  10. Ionic resistance and permselectivity tradeoffs in anion exchange membranes.

    PubMed

    Geise, Geoffrey M; Hickner, Michael A; Logan, Bruce E

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data.

  11. Geometric quantization of curvature energy in equipotential surfaces of ionic crystals

    NASA Astrophysics Data System (ADS)

    Gandy, Paul J. F.; Klinowski, Jacek

    2002-06-01

    The curvature energies of triply periodic minimal surfaces (TPMS) and zero equipotential surfaces (ZEPS) of ionic crystals are both quantized with the Euler-Poincaré characteristic as the "quantum number," and the curvature energy of the TPMS larger than that of the corresponding ZEPS. Quantization is imposed by the charge-defined metric.

  12. Higher-spin charges in Hamiltonian form. II. Fermi fields

    NASA Astrophysics Data System (ADS)

    Campoleoni, A.; Henneaux, M.; Hörtner, S.; Leonard, A.

    2017-02-01

    We build the asymptotic higher-spin charges associated with "improper" gauge transformations for fermionic higher-spin gauge fields on Anti de Sitter backgrounds of arbitrary dimension. This is achieved within the canonical formalism. We consider massless fields of spin s+1/2, described by a symmetric spinor-tensor of rank s in the Fang-Fronsdal approach. We begin from a detailed analysis of the spin 5/2 example, for which we cast the Fang-Fronsdal action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary half-integer spin. Our construction generalises to higher-spin fermionic gauge fields the known Hamiltonian derivation of supercharges in AdS supergravity.

  13. Space charge and screening in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Abrams, Daniel L.

    2016-11-01

    Undoped bilayer graphene is a two-dimensional semimetal with a low-energy excitation spectrum that is parabolic in the momentum. As a result, the screening of an arbitrary external charge Ze is accompanied by a reconstruction of the ground state: valence band electrons (for Z  >  0) are promoted to form a space charge around the charge while the holes leave the physical picture. The outcome is a flat neutral object resembling the regular atom except that for Z\\gg 1 it is described by a strictly linear Thomas-Fermi theory. This theory also predicts that the bilayer’s static dielectric constant is the same as that of a two-dimensional electron gas in the long-wavelength limit.

  14. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  15. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  16. Quantifying the intrinsic surface charge density and charge-transfer resistance of the graphene-solution interface through bias-free low-level charge measurement

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei; Johnson, A. T. Charlie

    2016-07-01

    Liquid-based bio-applications of graphene require a quantitative understanding of the graphene-liquid interface, with the surface charge density of adsorbed ions, the interfacial charge transfer resistance, and the interfacial charge noise being of particular importance. We quantified these properties through measurements of the zero-bias Faradaic charge-transfer between graphene electrodes and aqueous solutions of varying ionic strength using a reproducible, low-noise, minimally perturbative charge measurement technique. The measurements indicated that the adsorbed ions had a negative surface charge density of approximately -32.8 mC m-2 and that the specific charge transfer resistance was 6.5 ± 0.3 MΩ cm2. The normalized current noise power spectral density for all ionic concentrations tested collapsed onto a 1/fα characteristic with α = 1.1 ± 0.2. All the results are in excellent agreement with predictions of the theory for the graphene-solution interface. This minimally perturbative method for monitoring charge-transfer at the sub-pC scale exhibits low noise and ultra-low power consumption (˜fW), making it suitable for use in low-level bioelectronics in liquid environments.

  17. Surface tension of ionic liquids and ionic liquid solutions.

    PubMed

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  18. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  19. On 4 D, =1 massless gauge superfields of arbitrary superhelicity

    NASA Astrophysics Data System (ADS)

    Gates, S. James; Koutrolikos, Konstantinos

    2014-06-01

    We present an alternative method of exploring the component structure of an arbitrary super-helicity (integer Y = s, or half odd integer Y = s+1 /2 for any integer s) irreducible representation of the Super-Poincaré group. We use it to derive the component action and the SUSY transformation laws. The effectiveness of this approach is based on the equations of motion and their properties, like the Bianchi identities. These equations are generated by the superspace action when it is expressed in terms of prepotentials. For that reason we reproduce the superspace action for arbitrary superhelicity, using unconstrained superfields. The appropriate, to use, superfields are dictated by the representation theory of the group and the requirement that there is a smooth limit between the massive and massless case.

  20. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.

    PubMed

    Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret

    2008-01-01

    In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.

  1. Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures.

    PubMed

    Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong

    2013-01-01

    The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors.

  2. Rapid Teaching of Arbitrary Matching in Individuals with Intellectual Disabilities

    PubMed Central

    Morro, Greg; Mackay, Harry A.; Carlin, Michael T.

    2014-01-01

    This research extended to arbitrary matching-to-sample procedures a method that was successful in rapidly establishing identity matching in children with and without intellectual disabilities (Mackay et al., 2002). The method involves increasing the number of identical comparison stimuli in a choice array in order to create a homogenous background that makes the target more salient, thus likely to prompt selection. The number of comparison stimuli then is faded systematically contingent on accurate responding. This method unites cognitive research on visual search and behavior analytic research on conditional stimulus control. Two experiments examined use of the method to teach arbitrary relations between visual stimuli (numerals and colors and their printed names) and between visual and auditory stimuli (e.g., numerals and colors and their dictated names). Results demonstrated the generality of the method to symbolic matching. This finding is important for conceptual reasons and for its relevance to special education. PMID:25408559

  3. Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures

    PubMed Central

    Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong

    2013-01-01

    The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors. PMID:23917790

  4. Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system

    PubMed Central

    Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei

    2016-01-01

    As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634

  5. Delivering sound energy along an arbitrary convex trajectory.

    PubMed

    Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian

    2014-10-15

    Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory.

  6. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  7. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    SciTech Connect

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.

  8. Creating arbitrary quantum vibrational states in a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Burkard, Guido

    2016-11-01

    We theoretically study the creation of single- and multiphonon Fock states and arbitrary superpositions of quantum phonon states in a nanomechanical carbon nanotube (CNT) resonator. In our model, a doubly clamped CNT resonator is initialized in the ground state, and a single electron is trapped in a quantum dot which is formed by an electric gate potential and brought into the magnetic field of a micromagnet. The preparation of arbitrary quantum phonon states is based on the coupling between the mechanical motion of the CNT and the electron spin which acts as a nonlinearity. We assume that electrical driving pulses with different frequencies are applied on the system. The quantum information is transferred from the spin qubit to the mechanical motion by the spin-phonon coupling, and the electron spin qubit can be reset by the single-electron spin resonance. We describe Wigner tomography which can be applied at the end to obtain the phase information of the prepared phonon states.

  9. Kinematic dynamo theory for an arbitrary mean flow

    NASA Astrophysics Data System (ADS)

    Hoyng, P.

    1984-11-01

    Arbitrary, incompressible mean flow (vo) in kinematic dynamo theory is analyzed via stochastic differential equations. When the first order smoothing approximation is made the only effect of a nonzero vo is that in the definition of the tensors the turbulent velocity v is replaced by the effect of passive advection by vo. Dynamo action depends only on velocity correlations measured in a frame comoving with and distorted by the mean flow through passive advection. Conclusions apply when the analysis is extended to arbitrary order, relevant for a long correlation time. The result admits straightforward evaluation for given model mean flows. The shear in vo causes a (kinematic) anisotropy in the tensors. This can be a large effect, which comes on top of the intrinsic (dynamical) anisotropy in the velocity correlation functions. Conditions for applicability are very large magnetic Reynolds number; incompressible flows; stationary vo; and correlation time period of the dynamo.

  10. Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.

  11. Fast RBF OGr for solving PDEs on arbitrary surfaces

    NASA Astrophysics Data System (ADS)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  12. Convergence Rates for Arbitrary Statistical Moments of Random Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Brown, Winton G.; Viola, Lorenza

    2010-06-01

    We consider a class of random quantum circuits where at each step a gate from a universal set is applied to a random pair of qubits, and determine how quickly averages of arbitrary finite-degree polynomials in the matrix elements of the resulting unitary converge to Haar measure averages. This is accomplished by mapping the superoperator that describes t order moments on n qubits to a multilevel SU(4t) Lipkin-Meshkov-Glick Hamiltonian. We show that, for arbitrary fixed t, the ground-state manifold is exactly spanned by factorized eigenstates and, under the assumption that a mean-field ansatz accurately describes the low-lying excitations, the spectral gap scales as 1/n in the thermodynamic limit. Our results imply that random quantum circuits yield an efficient implementation of γ approximate unitary t designs.

  13. Chordwise and compressibility corrections for arbitrary planform slender wings

    NASA Technical Reports Server (NTRS)

    Levin, D.; Seginer, A.

    1982-01-01

    The Lomax and Sluder method for adapting slender-wing theory to delta or rectangular wings by making chordwise and compressibility corrections is extended to cover wings of any arbitrary planform in subsonic and supersonic flows. The numerical accuracy of the present work is better than that of the Lomax-Sluder results. Comparison of the results of this work with those of the vortex-lattice method and Kernel function method for a family of Gothic and arrowhead wings shows good agreement. A universal curve is proposed for the evaluation of the lift coefficient of a low aspect ratio wing of an arbitrary planform in subsonic flow. The location of the center of pressure can also be estimated.

  14. Quantum interface to charged particles in a vacuum

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroshi

    2015-11-01

    A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [Okamoto and Nagatani, Appl. Phys. Lett. 104, 062604 (2014), 10.1063/1.4865244]. Either a clockwise or counterclockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the device's properties, sources of errors, and possible applications are studied in detail. In particular, applications include detection of a charged particle essentially without applying a classical force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.

  15. Ion transport and softening in a polymerized ionic liquid

    SciTech Connect

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.

  16. Ion transport and softening in a polymerized ionic liquid

    DOE PAGES

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; ...

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as themore » Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.« less

  17. Inorganic chemistry and IONiC: an online community bringing cutting-edge research into the classroom.

    PubMed

    Jamieson, Elizabeth R; Eppley, Hilary J; Geselbracht, Margret J; Johnson, Adam R; Reisner, Barbara A; Smith, Sheila R; Stewart, Joanne L; Watson, Lori A; Williams, B Scott

    2011-07-04

    This Viewpoint highlights creative ways that members of the Interactive Online Network of Inorganic Chemists (IONiC) are using journal articles from Inorganic Chemistry to engage undergraduate students in the classroom. We provide information about specific educational materials and networking features available free of charge to the inorganic community on IONiC's web home, the Virtual Inorganic Pedagogical Electronic Resource (VIPEr, www.ionicviper.org ) and describe the benefits of joining this community.

  18. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    PubMed

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  19. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  20. Sum uncertainty relations for arbitrary N incompatible observables

    PubMed Central

    Chen, Bin; Fei, Shao-Ming

    2015-01-01

    We formulate uncertainty relations for arbitrary N observables. Two uncertainty inequalities are presented in terms of the sum of variances and standard deviations, respectively. The lower bounds of the corresponding sum uncertainty relations are explicitly derived. These bounds are shown to be tighter than the ones such as derived from the uncertainty inequality for two observables [Phys. Rev. Lett. 113, 260401 (2014)]. Detailed examples are presented to compare among our results with some existing ones. PMID:26370360

  1. Exact equation for curved stationary flames with arbitrary gas expansion.

    PubMed

    Kazakov, Kirill A

    2005-03-11

    An exact equation describing freely propagating stationary flames with arbitrary values of the gas expansion coefficient is obtained. This equation respects all conservation laws at the flame front, and provides a consistent nonperturbative account of the effect of vorticity produced by the curved flame on the front structure. It is verified that the new equation is in agreement with the approximate equations derived previously in the case of weak gas expansion.

  2. Adaptive Haar transforms with arbitrary time and scale splitting

    NASA Astrophysics Data System (ADS)

    Egiazarian, Karen O.; Astola, Jaakko T.

    2001-05-01

    The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm for computation of the introduced tree-structured Haar transforms is presented. It requires 2(N - 1) additions and 3N - 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.

  3. Arbitrary waveform generator to improve laser diode driver performance

    SciTech Connect

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  4. Light evolution in arbitrary two-dimensional waveguide arrays

    SciTech Connect

    Szameit, Alexander; Pertsch, Thomas; Dreisow, Felix; Nolte, Stefan; Tuennermann, Andreas; Peschel, Ulf; Lederer, Falk

    2007-05-15

    We introduce an analytical formula for the dynamics of light propagation in a two-dimensional waveguide lattice including diagonal coupling. A superposition of infinite arrays created by imaginary sources is used to derive an expression for boundary reflections. It is shown analytically that for large propagation distances the propagating field reaches uniformity. Furthermore, periodic field recovery is studied and discrete anomalous refraction and diffraction are investigated in arbitrary two-dimensional lattices.

  5. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2002-10-19

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  6. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2004-01-28

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  7. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter

    2016-06-01

    We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.

  8. Irreducible Cartesian tensors of highest weight, for arbitrary order

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2016-03-01

    A closed form expression is presented for the irreducible Cartesian tensor of highest weight, for arbitrary order. Two proofs are offered, one employing bookkeeping of indices and, after establishing the connection with the so-called natural tensors and their projection operators, the other one employing purely coordinate-free tensor manipulations. Some theorems and formulas in the published literature are generalized from SO(3) to SO(n), for dimensions n ≥ 3.

  9. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  10. Scattering of point source illumination by an arbitrary configuration

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard

    1994-01-01

    The problem of electromagnetic scattering of an incident plane wave by an arbitrary configuration of obstacles was solved by Twersky. In this report, the results are extended to point source incidence corresponding to a Hertz dipole. Knowledge of the response of a fixed configuration of scatterers excited by a point source may provide insight to improve the accuracy of the values of bulk parameters for clouds which have been found using plane wave excitation.

  11. Growing multiplex networks with arbitrary number of layers

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2015-12-01

    This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.

  12. A compact, multichannel, and low noise arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  13. A compact, multichannel, and low noise arbitrary waveform generator.

    PubMed

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  14. A compact, multichannel, and low noise arbitrary waveform generator

    SciTech Connect

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  15. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    PubMed

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-07

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.

  16. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform†

    PubMed Central

    Sun, Gongchen; Senapati, Satyajyoti

    2016-01-01

    A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551

  17. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-07-22

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  18. CHARGE Association.

    PubMed

    Chakraborty, Semanti; Chakraborty, Jayanta

    2012-12-01

    We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy), gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age), GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 μIU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient's karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness.[1] These anomalies have a higher probability of occurring together. In this report, we have described a boy with CHARGE

  19. Design of Energetic Ionic Liquids

    DTIC Science & Technology

    2010-04-15

    dynamics and structure in imidazolium -based ionic liquids/water mixtures. [15] The results of density and molar volume profile from MD simulations are...depending upon their respective attachment to boron or oxygen). The large blue sphere represents imidazolium ring. (b) The average sizes of cation

  20. Fluctuating hydrodynamics for ionic liquids

    NASA Astrophysics Data System (ADS)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  1. Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Fraden, Seth

    2004-12-01

    The viruses studied are genetically engineered, charged, semiflexible filamentous bacteriophages that are structurally identical to M13 virus, but differ either in contour length or surface charge. While varying contour length (L) we assume the persistence length (P) remains constant, and thus we alter the rod flexibility (L/P) . Surface charge is altered both by changing solution pH and by comparing two viruses, fd and M13, which differ only by the substitution of one charged for one neutral amino acid per virus coat protein. We measure both the isotropic and cholesteric coexistence concentrations as well as the nematic order parameter after unwinding the cholesteric phase in a magnetic field as a function of rod surface charge, rod length, solution ionic strength, and solution pH . The isotropic-cholesteric transition experimental results agree semiquantitatively with theoretical predictions for semiflexible, charged rods at high ionic strength, but disagree at low ionic strength.

  2. An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites.

    PubMed

    Das, Sankar; Noe, Jody C; Paik, Sehmi; Kitten, Todd

    2005-10-01

    Modifications were made to published arbitrary primed polymerase chain reaction (AP-PCR) procedures that resulted in increased specificity and sensitivity. Several arbitrary primer sequences were also evaluated, resulting in recommendations for primer design.

  3. Mueller matrix for an ensemble of particles of arbitrary shape with an arbitrary square integrable orientation distribution function

    SciTech Connect

    Paramonov, L.E.

    1994-12-01

    Scattering of electromagnetic radiation from the elementary volume containing particles of an arbitrary shape with an arbitrary square integrable orientation distribution function is considered. Based on the T-matrix approach and the quantum theory of angular momentum, an analytical method is suggested for estimating the Mueller matrix elements and the Stokes vector of radiation scattered from an ensemble of particles in the case of an arbituary number of incident radiation sources. The constructive existence theorem is proved for the expansion of the scattering matrix elements as a power series in Wigner functions in the elementary volume having a rotational symmetry relative to the direction of the incident radiation propagation. Corollaries of the results obtained are considered. 24 refs.

  4. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    USGS Publications Warehouse

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  5. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  6. Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Madjet, Mohamed E.; Mahmoud, Khaled A.

    2016-03-01

    Recent experiments revealed a great potential of MXene nanosheets for water desalination applications as ultrathin, high-flux, and size/charge-selective sieving membranes. Here, we conduct first-principles density functional theory calculations to explore possible mechanisms for the charge-selective ionic transport through Ti3C2(OH)2 MXene. We find that the charge selectivity originates from the charged nature of the MXene layers. For example, due to the electrostatic interactions, ions of different charge states have different energy barriers for the intercalation between the MXene layers. In addition, the system shows dynamic response to the intercalating ions, even in their hydrated states, by changing the interlayer spacing. Our findings highlight the importance of membrane surface charges on the ion sieving performance.

  7. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  8. Ionic resistance measurements of battery separators

    SciTech Connect

    Danko, T.; Sybeldon, A.

    1997-12-01

    The performance of a battery is affected by the ionic resistance of the separator used to separate the anode from the cathode. If the ionic resistance is too high, the power output from the battery is diminished because the flow of ions is hindered. This paper examines issues that affect the ionic resistance of regenerated cellulose membranes. In particular, changes in the pore size, or molecular weight cut off, of the membranes are correlated with ionic resistance to show that changes in molecular weight cut off do effect ionic resistance.

  9. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  10. X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation-anion interactions and a comparison to imidazolium-based analogues.

    PubMed

    Men, Shuang; Lovelock, Kevin R J; Licence, Peter

    2011-09-07

    We investigate seven 1-alkyl-1-methylpyrrolidinium-based ionic liquids, [C(n)C(1)Pyrr][X], using X-ray photoelectron spectroscopy (XPS). The electronic environment for each element is analysed and a robust fitting model is developed for the C 1s region that applies to each of the ionic liquids studied. This model allows accurate charge correction and the determination of reliable and reproducible binding energies for each ionic liquid studied. The electronic interaction between the cation and anion is investigated for ionic liquids with one and also two anions. i.e., mixtures. Comparisons are made to imidazolium-based ionic liquids; in particular, a detailed comparison is made between [C(8)C(1)Pyrr][X] and [C(8)C(1)Im][X](-), where X(¬) is common to both ionic liquids.

  11. What Learning to See Arbitrary Motion Tells Us about Biological Motion Perception

    ERIC Educational Resources Information Center

    Hiris, Eric; Krebeck, Aurore; Edmonds, Jennifer; Stout, Alexandra

    2005-01-01

    In separate studies, observers viewed upright biological motion, inverted biological motion, or arbitrary motion created from systematically randomizing the positions of point-light dots. Results showed that observers (a) could learn to detect the presence of arbitrary motion, (b) could not learn to discriminate the coherence of arbitrary motion,…

  12. Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites**

    PubMed Central

    Walsh, Aron; Scanlon, David O; Chen, Shiyou; Gong, X G; Wei, Su-Huai

    2015-01-01

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. This behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance. PMID:25504875

  13. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  14. Thermally Stimulated Discharge Current Analysis of Polymeric Solid-State Ionic Conductors

    NASA Astrophysics Data System (ADS)

    Xu, Haisheng; Gu, Qingchao; Fan, Maosen; Yang, Changzheng

    1997-06-01

    Thermally Stimulated Discharge Current (TSDC) analysis was used to study the electrical properties of two systems of polymeric solid-state ionic conductors. One system consisted of LiClO4 doped polyethylene glycol polyurethaneureas (PEUU) characterized by bi-ionic conduction and the other system was based on a sulfonated polyethylene oxide polyurethane ionomer (SPUI) characterized by a single-ion transport mechanism. TSDC spectra of the PEUU as well as SPUI matrices showed four peaks (, , , and ). These peaks are found to be related to the local motion of polyether soft segments, glass transition, Maxwell-Wagner-Sillars interfacial polarization and transport of charged ionic species, respectively. The discharge currents without polarization varying with temperature for both, the PEUU-LiClO4 complex and SPUI, are also measured. These curves of discharge current show only one peak which is attributed to transport of charged ionic species. The temperature range in which the discharge current exhibits a steep increase is consistent with the temperature range in which a turning point appears on the plot of lg i versus 1000/T obtained by ac impedance analysis. The experimental results demonstrate that the TSDC analysis is a valuable tool for studying polymeric solid-state ionic conductors.

  15. Active Control of Protein and Ionic Transport through Semiconducting Conical Nanopores

    NASA Astrophysics Data System (ADS)

    James, Teena; Kalinin, Yevgeniy; Chan, Chih-Chieh; Randhawa, Jatinder; Gaevski, Mikhail; Gracias, David

    2013-03-01

    Nanopores with conical geometries have been found to rectify ionic current in electrolytes. While nanopores in semiconducting membranes offer the ability to modulate ionic transport, the fabrication of conical nanopores in silicon has proven challenging. Here, we report the discovery that Au nanoparticle-assisted plasma etching results in the formation of conical etch profiles in Si. We show that this process provides a versatile means to fabricate nanopores on Si substrates with variable pore-diameters and cone-angles. When in contact with aqueous electrolyte solution (pH>3), the nanopore was found to exhibit negative surface charge due to de-protonation of the Si-OH surface groups. The rectification ratio of ionic current through the pore was thus found to be variable by altering the pH, owing to the amphoteric nature of Si-OH surface groups (pKa 6.9) and was also dependent on the ionic strengths, agreeing with the theoretical predictions based on Poisson -Nernst -Planck equation. We demonstrate that these semiconducting conical nanopores can function as ionic switches with high on-off ratios, by varying Si surface charge through voltage gating. Further, we demonstrate voltage gated control over protein translocation through these pores.

  16. Ionic channels in biological membranes- electrostatic analysis of a natural nanotube

    NASA Astrophysics Data System (ADS)

    Eisenberg, Bob

    1998-06-01

    Ionic channels are proteins with holes down their middle that control access to biological cells and thus govern an enormous range of biological functions important in health and disease. A substantial fraction of the drugs used in clinical medicine act directly or indirectly on channels. Channels have a simple well-defined structure, and the fundamental mechanism of ionic motion is known to be electrodiffusion. The current through individual channel molecules can easily be measured, and is in fact measured in hundreds if not thousands of laboratories everyday. Thus, ionic channels are ideal objects for physical investigation: on the one hand, they are well-defined structures following simple physics, on the other hand they are of general biological importance. A simple theory of ion permeation through a channel is presented, in which diffusion occurs according to Fick's law and drift according to Ohm's law, in the electric field determined by all the charges present. This theory accounts for permeation in the channels studied to date in a wide range of solutions. Interestingly, the theory works because the shape of the electric field is a sensitive function of experimental conditions, e.g. ion concentration. Rate constants for flux are sensitive functions of ionic concentration because the fixed charge of the channel protein is shielded by the ions in and near it. Such shielding effects are not included in traditional theories of ionic channels, or other proteins, for that matter.

  17. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  18. Should Gaseous BF3 and SiF4 Be Described as Ionic Compounds?

    NASA Astrophysics Data System (ADS)

    Haaland, Arne; Helgaker, Trygve; Ruud, Kenneth; Shorokhov, D. J.

    2000-08-01

    The atomic charges in BF3 calculated by the "atoms in molecules" approach are +2.58 and -0.87 for B and F, respectively; in SiF4 the calculated charges are +3.42 and -0.86, and it has therefore been suggested that these molecules should be described as fully ionic (R. J. Gillespie, J. Chem. Educ. 1998, 75, 923). However, atomic charges calculated by an alternative approach (from the atomic polar tensors) are lower by more than 30%. Calculations based on a spherical ion model show that this model underestimates the mean bond energies of BF3 and SiF4 by more than 40%, and calculations based on a polarizable ion model indicate that the F- ions are considerably distorted in the direction of polar covalency. It is concluded, therefore, that a description in terms of a completely ionic model may be misleading.

  19. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

    PubMed

    Zeng, Lu; Yang, Zhe; Zhang, Huacheng; Hou, Xu; Tian, Ye; Yang, Fu; Zhou, Jianjun; Li, Lin; Jiang, Lei

    2014-02-26

    Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

  20. VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY

    SciTech Connect

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew; Xu, Ren-Kou

    2016-09-19

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.

  1. Augmentation of hemagglutination by low ionic conditions.

    PubMed

    Rosenfield, R E; Shaikh, S H; Innella, F; Kaczera, Z; Kochwa, S

    1979-01-01

    Short incubation at 37 C, 80 per cent reduction in ionic concentration and removal of liquid phases after each reaction step, provided the basis for the construction of four new serologic tests for alloantibodies to human erythrocytes. In the first, the incubation fluid was replaced with protamine sulfate to aggregate intensely the evaluated red blood cells. After dispersal by phosphate buffer, residual antibody mediated agglutination could be discerned. As a second method, this low ionic polycation (LIP) test was followed by a normal ionic IgG antiglobulin test (LIP-AGT). A third method employed low ionic washing of erythrocytes and low ionic antiglobulin serum (LIAGT). Finally, a modified LIP test was conducted entirely under low ionic conditions and followed by a low ionic antiglobulin test (modified LIP-AGT). LIP, LIP-AGT and LIAGT were successfully employed for all routine blood bank serology tests. Their sensitivity and impact on blood bank performance are described.

  2. Magnetic confinement system using charged ammonia targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1979-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  3. Overcharging and charge reversal in the electrical double layer around the point of zero charge.

    PubMed

    Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo

    2010-02-07

    The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the

  4. Surface charge and calcium channel saturation in bullfrog sympathetic neurons

    PubMed Central

    1995-01-01

    Currents carried by Ba2+ through calcium channels were recorded in the whole-cell configuration in isolated frog sympathetic neurons. The effect of surface charge on the apparent saturation of the channel with Ba2+ was examined by varying [Ba2+]o and ionic strength. The current increased with [Ba2+]o, and the I-V relation and the activation curve shifted to more positive voltages. The shift of activation could be described by Gouy-Chapman theory, with a surface charge density of 1 e- /140 A2, calculated from the Grahame equation. Changes in ionic strength (replacing N-methyl-D-glucamine with sucrose) shifted the activation curve as expected for a surface charge density of 1 e-/85 A2, in reasonable agreement with the value from changing [Ba2+]o. The instantaneous I-V for fully activated channels also changed with ionic strength, which could be described either by a low surface charge density (less than 1 e-/1,500 A2), or by block by NMG with Kd approximately 300 mM (assuming no surface charge). We conclude that the channel permeation mechanism sees much less surface charge than the gating mechanism. The peak inward current saturated with an apparent Kd = 11.6 mM for Ba2+, while the instantaneous I-V saturated with an apparent Kd = 23.5 mM at 0 mV. This discrepancy can be explained by a lower surface charge near the pore, compared to the voltage sensor. After correction for a surface charge near the pore of 1 e-/1,500 A2, the instantaneous I-V saturated as a function of local [Ba2+]o, with Kd = 65 mM. These results suggest that the channel pore does bind Ba2+ in a saturable manner, but the current-[Ba2+]o relationship may be significantly affected by surface charge. PMID:7608653

  5. Variable Charge Soils: Mineralogy and Chemistry

    SciTech Connect

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

    2003-11-01

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on

  6. Structures and Electronic Properties of Lithium Chelate-Based Ionic Liquids.

    PubMed

    Si, Dawei; Chen, Kexian; Yao, Jia; Li, Haoran

    2016-04-28

    The conformations, electronic properties, and interaction energies of four chelate-based ionic liquids [Li(EA)][Tf2N], [Li(HDA)][Tf2N], [Li(DEA)][Tf2N], and [Li(DOBA)][Tf2N] have been theoretically explored. The reliability of the located conformers has been confirmed via the comparison between the simulated and experimental infrared spectra. Our results show that the N-Li and O-Li coordinate bonds in cation are elongated as the numbers of coordinate heteroatoms of alkanolamine ligands to Li(+) increased. Also the binding energies between Li(+) and ligands are increased and the interaction energies between cations and Tf2N anion are decreased. The cation-anion interaction energies follow the order of [Li(DOBA)][Tf2N] < [Li(HDA)][Tf2N] < [Li(DEA)][Tf2N] < [Li(EA)][Tf2N], which fall within the energetic ranges of conventional ionic liquids. Interestingly, the strongest stabilization orbital interactions in these ionic liquids and their cations revealed by the natural bond orbital analysis lie in the interaction between the lone pair (LP) of the coordinate heteroatoms in ligands or anion as donors and the vacant valence shell nonbonding orbital (LP*) of Li(+) as acceptors, which are very different from that of conventional ionic liquids. Moreover, the charges transferred from cations to anion are quite similar, and the charge of Li(+) is proposed for possibly predicting the order of the interaction energies of ionic liquids in series. The present study allows for the deeper understanding the differences between chelate-based ionic liquids and conventional ionic liquids.

  7. Defect Physics and Ionic conduction in Solid Electrolyte Interphase for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    The ionic conduction through the solid electrolyte interphase (SEI) is important to the rate capability of the battery. The origin of ionic conduction in the SEI is defect formation and transport. In this study, we developed a theoretical method based on density functional theory to calculate the ionic conductivity in LiF, an important SEI component, in contact with electrode materials. Seventeen native defects with their relevant charge states were investigated to determine the dominant defects on various electrodes. The contacted electrode serves as a Li reservoir with adjustable Li chemical potential (μLi) for defect formation. The formation energy and diffusion barrier of defects were mapped to ionic conductivity by the Nernst-Einstein relationship. The main defect is Schottky pair in the intrinsic region and Li ion vacancy in the p-type region. The ionic conductivity is calculated to be approximately 10-31 S/cm when LiF is in contact with an anode but it can increase to 10-12 S/cm on a cathode. Comparing with other SEI components, the ionic conductivity is very low in LiF if it is coated on an anode surface. However, due to the low concentration of electronic carriers, LiF can act as a good passivation layer on the electrode and prevent further electrolyte decomposition. This work is supported by Department of Energy and National Science Foundation.

  8. Statistical analysis of intrahelical ionic interactions in alpha-helices and coiled coils.

    PubMed

    Meier, Markus; Burkhard, Peter

    2006-08-01

    There are many controversies concerning whether ionic interactions in alpha-helices and coiled coils actually contribute to the stabilisation and formation of these structures. Here we used a statistical approach to probe this question. We extracted unique alpha-helical and coiled coil structures from the protein database and analysed the ionic interactions between positively and negatively charged residues. The ionic interactions were categorized according to the type, spacing and order of the residues involved. Separate datasets were produced depending on the number of alpha-helices in the coiled coils and the mutual orientation of the helices. We compared the frequency of residue configurations able to form ionic interactions with their probability to form the interaction. We found a correlation between the two variables in alpha-helices, antiparallel two-stranded coiled coils and parallel two-stranded coiled coils. This indicates that some ionic interactions are indeed important for the formation and stabilisation of alpha-helices and coiled coils. We concluded that the configurations, which have simultaneously a large probability to form the ionic interaction and a frequent occurrence, are those, which have the most stabilising effect. These are the 4RE, 3ER and 4ER interactions.

  9. Effects of Ionic Strength on Passive and Iontophoretic Transport of Cationic Permeant Across Human Nail

    PubMed Central

    Smith, Kelly A.; Hao, Jinsong; Li, S. Kevin

    2010-01-01

    Purpose Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Methods Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Results Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. Conclusions The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems. PMID:19267187

  10. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.

  11. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.

    PubMed

    Chen, Jie-Jie; Li, Wen-Wei; Li, Xue-Liang; Yu, Han-Qing

    2012-04-07

    Efficient technologies/processes for CO(2) capture are greatly desired, and ionic liquids are recognized as promising materials for this purpose. However, the mechanisms for selectively capturing CO(2) by ionic liquids are unclear. In this study, the interactions between CO(2) and 1-n-amino-alkyl-3-methyl-imidazolium tetrafluoroborate, an amino imidazolium ionic liquid (AIIL), in its CO(2) capturing process, are elucidated with both quantum chemistry and molecular dynamics approaches on the molecular level. The effects of the straight aminoalkyl chain length in imidazolium-based cations on CO(2) capture are explored, and thereby the factors governing CO(2) capture for this ionic liquid family, e.g., ionic liquid structure, charge distribution, intermolecular interactions, thermodynamic properties and absorption kinetics, are analyzed. Molecular dynamics simulations are used to study the diffusion of the involved compounds and liquid structures of the CO(2)-AIIL systems. The results show that the amino-alkyl chain length plays an important role in governing the absorption properties of AIILs, including the free energies of absorption, equilibrium constants, desorption temperature, absorption rate constants, diffusion coefficients, and organization of CO(2) around cations and anions. This study provides useful information about rational design of ionic liquids for efficient CO(2) capture.

  12. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs.

    PubMed

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-11

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid-semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics.

  13. Nanostructured liquid crystals combining ionic and electronic functions.

    PubMed

    Yazaki, Sanami; Funahashi, Masahiro; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2010-06-09

    New molecular materials combining ionic and electronic functions have been prepared by using liquid crystals consisting of terthiophene-based mesogens and terminal imidazolium groups. These liquid crystals show thermotropic smectic A phases. Nanosegregation of the pi-conjugated mesogens and the ionic imidazolium moieties leads to the formation of layered liquid-crystalline (LC) structures consisting of 2D alternating pathways for electronic charges and ionic species. These nanostructured materials act as efficient electrochromic redox systems that exhibit coupled electrochemical reduction and oxidation in the ordered bulk states. For example, compound 1 having the terthienylphenylcyanoethylene mesogen and the imidazolium triflate moiety forms the smectic LC nanostructure. Distinct reversible electrochromic responses are observed for compound 1 without additional electrolyte solution on the application of double-potential steps between 0 and 2.5 V in the smectic A phase at 160 degrees C. In contrast, compound 2 having a tetrafluorophenylterthiophene moiety and compound 3 having a phenylterthiophene moiety exhibit irreversible cathodic reduction and reversible anodic oxidation in the smectic A phases. The use of poly(3,4-ethylenedioxythiophene)-poly(4-styrene sulfonate) (PEDOT-PSS) as an electron-accepting layer on the cathode leads to the distinct electrochromic responses for 2 and 3. These results show that new self-organized molecular redox systems can be built by nanosegregated pi-conjugated liquid crystals containing imidazolium moieties with and without electroactive thin layers on the electrodes.

  14. Differential ionic permeation of DNA-modified electrodes.

    PubMed

    Ceres, Donato M; Udit, Andrew K; Hill, Haley D; Hill, Michael G; Barton, Jacqueline K

    2007-01-25

    Ionic permselectivity of DNA films has been investigated by the analysis of the electrochemical response of methylene blue (MB) as a function of pH and ionic strength on DNA-modified electrodes in aqueous p-nitrophenol (p-NP) and phosphate buffers. We have observed a linear Pourbaix diagram in p-NP buffer indicating that the reduction of MB occurs with a two-electron plus one-proton reaction. Interestingly, in phosphate buffer the Pourbaix diagram is curved and this suggests that the thermodynamics of MB incorporated in the film depend also on the ratio of mono- versus divalent anions in the bulk. This result indicates that DNA films do not behave as pure ion-exclusion films, but instead there is a differential permselectivity that depends on the identity of the anions. Based on this consideration of the ionic distribution in the films, we provide a new method for the analysis of the DNA surface coverage based on AC impedance of an anionic species, ferricyanide. The methodology is of particular value in analyzing DNA hybridization and dehybridization. This approach presents an advantage compared to standard ruthenium hexammine assays since our methodology is insensitive to film morphology, and is highly sensitive to the amount of negative charge on the surface.

  15. Ionic-covalent character of metal and nonmetal oxides.

    PubMed

    Duffy, J A

    2006-12-14

    The acid-base properties of oxidic media are quantified in terms of the optical basicity concept, which serves to correlate many properties with chemical constitution. Optical basicity values, Lambda, have been assigned to 25 oxides such that they relate to Lambda for crystalline CaO being taken as unity. Since Lambda for an oxide is proportional to the degree of negative charge borne by the oxide-(-II) atom or ion, it follows that optical basicity should go hand-in-hand with the ionic/covalent nature of the cation-oxide-(-II) bonding. Unfortunately, this assumption produces many anomalies and trends that do not fit normal inorganic trends. The problem is resolved by adjusting the influence of ionic forms to the bonding by taking into account the heats of formation. In contrast to the (Pauling) electronegativity treatment of oxides, this procedure allows assignment of percentage ionicity to the bonding, and the trends in these in the Periodic Table are as expected for inorganic oxides.

  16. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  17. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  18. Ion transport and softening in a polymerized ionic liquid

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach

  19. Physiochemical charge stabilization of silver nanoparticles and its antibacterial applications

    NASA Astrophysics Data System (ADS)

    Vanitha, G.; Rajavel, K.; Boopathy, G.; Veeravazhuthi, V.; Neelamegam, P.

    2017-02-01

    Environmental standardization and stabilization of surface charges of silver nanoparticles (AgNPs) is important in biological systems and interest in bio-interfacial interaction. Different synthesized AgNPs in chemical reduced (AgNO3 (0.01, 0.1 and 0.5 M); NaBH4 and Na3C6H5O7) garnered for analysis of physico-chemical charge stabilization by means of different pH (1-13) and ionic interferences (NaCl, Ca(NO3)2, Na2CO3 and NaNO3). The uniform sized (size: ∼22 nm) and highly charged (zeta potential: -37.9 mV) AgNPs with uniform dispersion remains unaltered in high ionic interferences. Highest antifungal activity of AgNPs against Candida albicans and moderate activity against Staphylococcus aureus are correlated.

  20. Enhanced Born charge and proximity to ferroelectricity in thallium halides

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua; Singh, David J.

    2010-04-01

    Electronic-structure and lattice-dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tlp and halogen- p states. The large Born charges cause giant splitting between longitudinal and transverse-optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show that cubic TlBr develops ferroelectric instabilities upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.

  1. Bessel-like optical beams with arbitrary trajectories.

    PubMed

    Chremmos, Ioannis D; Chen, Zhigang; Christodoulides, Demetrios N; Efremidis, Nikolaos K

    2012-12-01

    A method is proposed for generating Bessel-like optical beams with arbitrary trajectories in free space. The method involves phase-modulating an optical wavefront so that conical bundles of rays are formed whose apexes write a continuous focal curve with pre-specified shape. These ray cones have circular bases on the input plane; thus their interference results in a Bessel-like transverse field profile that propagates along the specified trajectory with a remarkably invariant main lobe. Such beams can be useful as hybrids between non-accelerating and accelerating optical waves that share diffraction-resisting and self-healing properties.

  2. Thomson scattering in a magnetic field. II - Arbitrary field orientation

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    This paper presents solutions to the equation of transfer for Thomson scattering in a constant magnetic field of arbitrary orientation. Results from several atmospheres are combined to give the flux from a dipole star. The results are compared to the polarization data of the magnetic white dwarf Grw + 70 deg 8247. The fit is good, though it implies a very large polarization in the ultraviolet. Thomson scattering is not thought to be an important opacity source in white dwarfs, so the good fit is either fortuitous or is perhaps explained by assuming the magnetic field affects the polarization processes in all opacities similarly.

  3. Conditioning arbitrary stimuli to cigarette smoke intake: a preliminary study.

    PubMed

    Payne, T J; Etscheidt, M; Corrigan, S A

    1990-01-01

    This study represents an attempt to classically condition arbitrary stimuli to cigarette smoke intake. A smoker either smoked or mock-smoked a cigarette in two discriminative contexts for 20 sessions. The contingencies were reversed during an additional last two sessions. Measures of heart rate, skin temperature, and puff duration were monitored during all sessions. Results suggested that both manipulations of smoke delivery and context cues were related to puff duration. The pattern of psychophysiological reactivity was mixed and not easily interpreted. This experimental paradigm may be useful in the investigation of conditioning factors underlying addictive behaviors.

  4. Shrinking an arbitrary object as one desires using metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun; Yang, Xin Mi; Ma, Hui Feng; Cheng, Qiang

    2011-05-01

    Based on transformation optics, we present a shrinking device, which can transform an arbitrary object virtually into a small-size object with different material parameters as one desires. Such an illusion device will confuse the detectors or the viewers, and hence the real size and material parameters of the enclosed object cannot be perceived. We fabricated and measured a shrinking device by using metamaterials, which works at the nonresonant frequency and has low loss. The device has been validated by both numerical simulations and experiments on circular and square objects. Good shrinking performance has been demonstrated.

  5. Controlling electromagnetic fields at boundaries of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  6. Arbitrary GRIN component fabrication in optically driven diffusive photopolymers.

    PubMed

    Urness, Adam C; Anderson, Ken; Ye, Chungfang; Wilson, William L; McLeod, Robert R

    2015-01-12

    We introduce a maskless lithography tool and optically-initiated diffusive photopolymer that enable arbitrary two-dimensional gradient index (GRIN) polymer lens profiles. The lithography tool uses a pulse-width modulated deformable mirror device (DMD) to control the 8-bit gray-scale intensity pattern on the material. The custom polymer responds with a self-developing refractive index profile that is non-linear with optical dose. We show that this nonlinear material response can be corrected with pre-compensation of the intensity pattern to yield high fidelity, optically induced index profiles. The process is demonstrated with quadratic, millimeter aperture GRIN lenses, Zernike polynomials and GRIN Fresnel lenses.

  7. Kustaanheimo-Stiefel transformation with an arbitrary defining vector

    NASA Astrophysics Data System (ADS)

    Breiter, Slawomir; Langner, Krzysztof

    2017-02-01

    Kustaanheimo-Stiefel (KS) transformation depends on the choice of some preferred direction in the Cartesian 3D space. This choice, seldom explicitly mentioned, amounts typically to the direction of the first or the third coordinate axis in Celestial Mechanics and atomic physics, respectively. The present work develops a canonical KS transformation with an arbitrary preferred direction, indicated by what we call a defining vector. Using a mix of vector and quaternion algebra, we formulate the transformation in a reference frame independent manner. The link between the oscillator and Keplerian first integrals is given. As an example of the present formulation, the Keplerian motion in a rotating frame is re-investigated.

  8. Partitioning and modularity of graphs with arbitrary degree distribution

    NASA Astrophysics Data System (ADS)

    Reichardt, Jörg; Bornholdt, Stefan

    2007-07-01

    We solve the graph bipartitioning problem in dense graphs with arbitrary degree distribution using the replica method. We find the cut size to scale universally with ⟨k⟩ . In contrast, earlier results studying the problem in graphs with a Poissonian degree distribution had found a scaling with ⟨k⟩ [Fu and Anderson, J. Phys. A 19, 1605 (1986)]. Our results also generalize to the problem of q partitioning. They can be used to find the expected modularity Q [Newman and Girvan, Phys. Rev. E 69, 026113 (2004)] of random graphs and allow for the assessment of the statistical significance of the output of community detection algorithms.

  9. Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Kapela, Tomasz; Simó, Carles

    2017-03-01

    We set up a methodology for computer assisted proofs of the existence and the KAM stability of an arbitrary periodic orbit for Hamiltonian systems. We give two examples of application for systems with two and three degrees of freedom. The first example verifies the existence of tiny elliptic islands inside large chaotic domains for a quartic potential. In the 3-body problem we prove the KAM stability of the well-known figure eight orbit and two selected orbits of the so called family of rotating eights. Some additional theoretical and numerical information is also given for the dynamics of both examples.

  10. Algebraic Classification of Weyl Anomalies in Arbitrary Dimensions

    SciTech Connect

    Boulanger, Nicolas

    2007-06-29

    Conformally invariant systems involving only dimensionless parameters are known to describe particle physics at very high energy. In the presence of an external gravitational field, the conformal symmetry may generalize to the Weyl invariance of classical massless field systems in interaction with gravity. In the quantum theory, the latter symmetry no longer survives: A Weyl anomaly appears. Anomalies are a cornerstone of quantum field theory, and, for the first time, a general, purely algebraic understanding of the universal structure of the Weyl anomalies is obtained, in arbitrary dimensions and independently of any regularization scheme.

  11. Isotropy theorem for arbitrary-spin cosmological fields

    SciTech Connect

    Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez E-mail: maroto@ucm.es

    2014-03-01

    We show that the energy-momentum tensor of homogeneous fields of arbitrary spin in an expanding universe is always isotropic in average provided the fields remain bounded and evolve rapidly compared to the rate of expansion. An analytic expression for the average equation of state is obtained for Lagrangians with generic power-law kinetic and potential terms. As an example we consider the behavior of a spin-two field in the standard Fierz-Pauli theory of massive gravity. The results can be extended to general space-time geometries for locally inertial observers.

  12. Arbitrary waveform generation using optical direct digital synthesis

    NASA Astrophysics Data System (ADS)

    Chester-Parsons, J.

    2013-11-01

    The objective of this paper is to describe the progress of a project designed to build on recent photonic capabilities in order to develop an ultra-wide band, true Arbitrary Waveform Generator (AWG) capable of providing radar quality signals in the 500MHz to 20GHz spectrum using photonic integration. Within this scope, it is planned to create a single channel radar environment simulator based on a photonic waveform generator, which will demonstrate the dynamic range, stability, and high signal fidelity required to simulate the modern complex radar environment. The paper will present recent measurements of critical parameters that are vital for the practical realisation of this system on a chip.

  13. Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations

    NASA Astrophysics Data System (ADS)

    Koskinen, Pekka

    2016-09-01

    A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.

  14. Image processing technique for arbitrary image positioning in holographic stereogram

    NASA Astrophysics Data System (ADS)

    Kang, Der-Kuan; Yamaguchi, Masahiro; Honda, Toshio; Ohyama, Nagaaki

    1990-12-01

    In a one-step holographic stereogram, if the series of original images are used just as they are taken from perspective views, three-dimensional images are usually reconstructed in back of the hologram plane. In order to enhance the sense of perspective of the reconstructed images and minimize blur of the interesting portions, we introduce an image processing technique for making a one-step flat format holographic stereogram in which three-dimensional images can be observed at an arbitrary specified position. Experimental results show the effect of the image processing. Further, we show results of a medical application using this image processing.

  15. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    SciTech Connect

    Hernaski, C. A.; Vargas-Paredes, A. A.; Helayeel-Neto, J. A.

    2009-12-15

    In this paper, we reassess a particular R{sup 2}-type gravity action in D dimensions, recently studied by Nakasone and Oda, now taking torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is nonpropagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions.

  16. Scattering matrix of arbitrary tight-binding Hamiltonians

    NASA Astrophysics Data System (ADS)

    Ramírez, C.; Medina-Amayo, L. A.

    2017-03-01

    A novel efficient method to calculate the scattering matrix (SM) of arbitrary tight-binding Hamiltonians is proposed, including cases with multiterminal structures. In particular, the SM of two kinds of fundamental structures is given, which can be used to obtain the SM of bigger systems iteratively. Also, a procedure to obtain the SM of layer-composed periodic leads is described. This method allows renormalization approaches, which permits computations over macroscopic length systems without introducing additional approximations. Finally, the transmission coefficient of a ring-shaped multiterminal system and the transmission function of a square-lattice nanoribbon with a reduced width region are calculated.

  17. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  18. Charging Graphene for Energy Storage

    SciTech Connect

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  19. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    PubMed

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  20. Ionic contamination detection. Final report

    SciTech Connect

    Benkovich, M.G.

    1994-04-01

    The effectiveness of Meter A and B for detecting ionic contamination was evaluated and compared on the following types of samples: (1) copper panels, (2) printed wiring boards with through-hold components (lCs), (3) printed wiring boards with surface-mounted components, and (4) mixed-technology printed wiring boards (both through-hole and surface-mount components). The extraction efficiency of the two meters was calculated