Sample records for arbitrary lagrange-eulerian ale

  1. Subscale Fast Cookoff Testing and Modeling for the Hazard Assessment of Large Rocket Motors

    DTIC Science & Technology

    2001-03-01

    41 LIST OF TABLES Table 1 Heats of Vaporization Parameter for Two-liner Phase Transformation - Complete Liner Sublimation and/or Combined Liner...One-dimensional 2-D Two-dimensional ALE3D Arbitrary-Lagrange-Eulerian (3-D) Computer Code ALEGRA 3-D Arbitrary-Lagrange-Eulerian Computer Code for...case-liner bond areas and in the grain inner bore to explore the pre-ignition and ignition phases , as well as burning evolution in rocket motor fast

  2. ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.

    ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.

  3. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  4. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  5. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  6. A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi

    2017-11-01

    A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.

  7. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  8. Modeling Propagation of Shock Waves in Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Molitoris, J D

    2005-08-19

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. Atmore » melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.« less

  9. Modeling Propagation of Shock Waves in Metals

    NASA Astrophysics Data System (ADS)

    Howard, W. M.; Molitoris, J. D.

    2006-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  10. A coupled ALE-AMR method for shock hydrodynamics

    DOE PAGES

    Waltz, J.; Bakosi, J.

    2018-03-05

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  11. A coupled ALE-AMR method for shock hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J.; Bakosi, J.

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  12. Developing a Learning Algorithm-Generated Empirical Relaxer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  13. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  14. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation

    PubMed Central

    Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick

    2016-01-01

    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations’ outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798

  15. Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-Eulerian Approach

    NASA Astrophysics Data System (ADS)

    Melis, Matthew E.

    2003-01-01

    Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.

  16. Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-eulerian Approach

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.

  17. Blast Fragmentation Modeling and Analysis

    DTIC Science & Technology

    2010-10-31

    weapons device containing a multiphase blast explosive (MBX). 1. INTRODUCTION The ARL Survivability Lethality and Analysis Directorate (SLAD) is...velocity. In order to simulate the highly complex phenomenon, the exploding cylinder is modeled with the hydrodynamics code ALE3D , an arbitrary...Lagrangian-Eulerian multiphysics code, developed at Lawrence Livermore National Laboratory. ALE3D includes physical properties, constitutive models for

  18. Computational Study of the Richtmyer-Meshkov Instability with a Complex Initial Condition

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Reilly, David; Greenough, Jeffrey; Ranjan, Devesh

    2014-11-01

    Results are presented for a computational study of the Richtmyer-Meshkov instability with a complex initial condition. This study covers experiments which will be conducted at the newly-built inclined shock tube facility at the Georgia Institute of Technology. The complex initial condition employed consists of an underlying inclined interface perturbation with a broadband spectrum of modes superimposed. A three-dimensional staggered mesh arbitrary Lagrange Eulerian (ALE) hydrodynamics code developed at Lawerence Livermore National Laboratory called ARES was used to obtain both qualitative and quantitative results. Qualitative results are discussed using time series of density plots from which mixing width may be extracted. Quantitative results are also discussed using vorticity fields, circulation components, and energy spectra. The inclined interface case is compared to the complex interface case in order to study the effect of initial conditions on shocked, variable-density flows.

  19. Modeling the Propagation of Shock Waves in Metals

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael

    2005-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.

  20. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  1. An arbitrary Lagrangian–Eulerian finite element formulation for a poroelasticity problem stemming from mixture theory

    DOE PAGES

    Costanzo, Francesco; Miller, Scott T.

    2017-05-22

    In this paper, a finite element formulation is developed for a poroelastic medium consisting of an incompressible hyperelastic skeleton saturated by an incompressible fluid. The governing equations stem from mixture theory and the application is motivated by the study of interstitial fluid flow in brain tissue. The formulation is based on the adoption of an arbitrary Lagrangian–Eulerian (ALE) perspective. We focus on a flow regime in which inertia forces are negligible. Finally, the stability and convergence of the formulation is discussed, and numerical results demonstrate agreement with the theory.

  2. An arbitrary Lagrangian–Eulerian finite element formulation for a poroelasticity problem stemming from mixture theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costanzo, Francesco; Miller, Scott T.

    In this paper, a finite element formulation is developed for a poroelastic medium consisting of an incompressible hyperelastic skeleton saturated by an incompressible fluid. The governing equations stem from mixture theory and the application is motivated by the study of interstitial fluid flow in brain tissue. The formulation is based on the adoption of an arbitrary Lagrangian–Eulerian (ALE) perspective. We focus on a flow regime in which inertia forces are negligible. Finally, the stability and convergence of the formulation is discussed, and numerical results demonstrate agreement with the theory.

  3. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, L; Springer, H K; Mace, J

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitatemore » the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.« less

  4. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    DTIC Science & Technology

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  5. Modeling The Shock Initiation of PBX-9501 in ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, L; Springer, H K; Mace, J

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrivemore » at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.« less

  6. Diffuse interface simulation of bubble rising process: a comparison of adaptive mesh refinement and arbitrary lagrange-euler methods

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan

    2018-06-01

    Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.

  7. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode`s and pde`s. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  8. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode's and pde's. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  9. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGES

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  10. A 3D finite element ALE method using an approximate Riemann solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, V. P.; Morgan, N. R.

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  11. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  12. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    DOE PAGES

    Burton, Donald E.; Morgan, Nathaniel Ray; Charest, Marc Robert Joseph; ...

    2017-11-22

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian–Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense thatmore » it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. Particularly, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. Our paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.« less

  13. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    NASA Astrophysics Data System (ADS)

    Burton, D. E.; Morgan, N. R.; Charest, M. R. J.; Kenamond, M. A.; Fung, J.

    2018-02-01

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian-Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense that it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. In particular, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. The paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.

  14. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, Donald E.; Morgan, Nathaniel Ray; Charest, Marc Robert Joseph

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian–Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense thatmore » it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. Particularly, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. Our paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.« less

  15. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  16. Evaluation of an Eulerian multi-material mixture formulation based on a single inverse deformation gradient tensor field

    DOE PAGES

    Ghaisas, N. S.; Subramaniam, A.; Lele, S. K.; ...

    2017-12-31

    We report high energy-density solids undergoing elastic-plastic deformations coupled to compressible fluids are a common occurrence in engineering applications. Examples include problems involving high-velocity impact and penetration, cavitation, and several manufacturing processes, such as cold forming. Numerical simulations of such phenomena require the ability to handle the interaction of shock waves with multi-material interfaces that can undergo large deformations and severe distortions. As opposed to Lagrangian (Benson 1992) and arbitrary Lagrangian-Eulerian (ALE) methods (Donea et al. 2004), fully Eulerian methods use grids that do not change in time. Consequently, Eulerian methods do not suffer from difficulties on account of meshmore » entanglement, and do not require periodic, expensive, remap operations.« less

  17. Evaluation of an Eulerian multi-material mixture formulation based on a single inverse deformation gradient tensor field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaisas, N. S.; Subramaniam, A.; Lele, S. K.

    We report high energy-density solids undergoing elastic-plastic deformations coupled to compressible fluids are a common occurrence in engineering applications. Examples include problems involving high-velocity impact and penetration, cavitation, and several manufacturing processes, such as cold forming. Numerical simulations of such phenomena require the ability to handle the interaction of shock waves with multi-material interfaces that can undergo large deformations and severe distortions. As opposed to Lagrangian (Benson 1992) and arbitrary Lagrangian-Eulerian (ALE) methods (Donea et al. 2004), fully Eulerian methods use grids that do not change in time. Consequently, Eulerian methods do not suffer from difficulties on account of meshmore » entanglement, and do not require periodic, expensive, remap operations.« less

  18. Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, N D; Kaiser, T B; Anderson, R W

    2009-09-28

    ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.

  19. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    PubMed

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less

  1. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  2. Mine Blast Loading: Experiments and Simulations

    DTIC Science & Technology

    2010-04-01

    plates by approximately 50%. We investigated the root cause for this discrepancy. The simulations calculate a turbulent-like flow field characterized...Toussaint [19] evaluated two numerical methods, Smooth Particle Hydrodynamics ( SPH ) and Arbitrary Lagrangian Eulerian (ALE), to simulate a mine blast on...That is, the mine blast products were not flowing along the solid plate boundary in the simulations as freely as they should. 6 In particular, the V

  3. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    PubMed

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  4. Acoustic streaming: an arbitrary Lagrangian–Eulerian perspective

    PubMed Central

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-01-01

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid–structure interaction problems in microacoustofluidic devices. After the formulation’s exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches. PMID:29051631

  5. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  6. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  7. Verification of transport equations in a general purpose commercial CFD code.

    NASA Astrophysics Data System (ADS)

    Melot, Matthieu; Nennemann, Bernd; Deschênes, Claire

    2016-11-01

    In this paper, the Verification and Validation methodology is presented. This method aims to increase the reliability and the trust that can be placed into complex CFD simulations. The first step of this methodology, the code verification is presented in greater details. The CFD transport equations in steady state, transient and Arbitrary Eulerian Lagrangian (ALE, used for transient moving mesh) formulations in Ansys CFX are verified. It is shown that the expected spatial and temporal order of convergence are achieved for the steady state and the transient formulations. Unfortunately this is not completely the case for the ALE formulation. As for a lot of other commercial and in-house CFD codes, the temporal convergence of the velocity is limited to a first order where a second order would have been expected.

  8. Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong

    2018-05-01

    Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.

  9. Surface tension models for a multi-material ALE code with AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wangyi; Koniges, Alice; Gott, Kevin

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  10. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE PAGES

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    2018-04-02

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  11. Surface tension models for a multi-material ALE code with AMR

    DOE PAGES

    Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...

    2017-06-01

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  12. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  13. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  14. Comet Impacts as a Source of Methane on Titan

    NASA Astrophysics Data System (ADS)

    Howard, Michael; Goldman, N.; Vitello, P. A.

    2006-12-01

    We model comet impacts on Titan as a possible source of atmospheric methane. That is, we study the formation of methane in comet impacts using chemical equilibrium calculations coupled with arbitrary Lagrange-Eulerian (ALE) hydrodynamics. That is, we study the chemical transformation of comet material under high pressure and temperature conditions as it impacts Titan. We assume that the comet is composed of ice, graphite, nitrogen and some hydrocarbons. For certain pressure and temperature regimes, in chemical equilibrium, a significant amount of ice and graphite can be transformed into methane. As a result, we find that a significant amount of methane can be formed in comet collisions on Titan. The methane is formed in the post-impact vapor clouds that form as the comet material expands and cools. We use molecular dynamics to construct an equation of state for the ice surface structures and the comet material. We also study kinetic processes for methane formation during the expansion and cooling phase. We discuss the implication of our results for comets as a possible source of abiotic methane on Titan and its implications on the origin of life. We also discuss the various uncertainties in our model. * This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  15. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Fried, L E; Vitello, P A

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data,more » including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.« less

  16. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics

    NASA Astrophysics Data System (ADS)

    Velechovský, J.; Kuchařík, M.; Liska, R.; Shashkov, M.; Váchal, P.

    2013-12-01

    We present a new flux-corrected approach for remapping of velocity in the framework of staggered arbitrary Lagrangian-Eulerian methods. The main focus of the paper is the definition and preservation of coordinate invariant local bounds for velocity vector and development of momentum remapping method such that the radial symmetry of the radially symmetric flows is preserved when remapping from one equiangular polar mesh to another. The properties of this new method are demonstrated on a set of selected numerical cyclic remapping tests and a full hydrodynamic example.

  17. Hyperviscosity for unstructured ALE meshes

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.; Ulitsky, Mark S.; Miller, Douglas S.

    2013-01-01

    An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian-Eulerian simulations. Changes to the Eulerian model (dubbed 'hyperviscosity') are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier-Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.

  18. Numerical modeling of pulsed laser-material interaction and of laser plume dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qiang; Shi, Yina

    2015-03-10

    We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. A new second order accurate diffusion solver has been implemented for the thermal conduction and radiation transport on distorted mesh. The results of numerical simulation of pulsed laser ablation are presented. The influences of different processes, such as time evolution of the surfacemore » temperature, interspecies interactions (elastic collisions, recombination-dissociation reaction), interaction with an ambient gas are examined. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.« less

  19. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    NASA Astrophysics Data System (ADS)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  20. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  1. A general higher-order remap algorithm for ALE calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, Vincent P

    2011-01-05

    A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problemsmore » were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.« less

  2. Numerical simulation of fluid flow through simplified blade cascade with prescribed harmonic motion using discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk

    2018-06-01

    This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.

  3. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  4. Comparison of Numerical Modeling Methods for Soil Vibration Cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Jiandong; Zhang, Enguang

    2018-01-01

    In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.

  5. Momentum Advection on a Staggered Mesh

    NASA Astrophysics Data System (ADS)

    Benson, David J.

    1992-05-01

    Eulerian and ALE (arbitrary Lagrangian-Eulerian) hydrodynamics programs usually split a timestep into two parts. The first part is a Lagrangian step, which calculates the incremental motion of the material. The second part is referred to as the Eulerian step, the advection step, or the remap step, and it accounts for the transport of material between cells. In most finite difference and finite element formulations, all the solution variables except the velocities are cell-centered while the velocities are edge- or vertex-centered. As a result, the advection algorithm for the momentum is, by necessity, different than the algorithm used for the other variables. This paper reviews three momentum advection methods and proposes a new one. One method, pioneered in YAQUI, creates a new staggered mesh, while the other two, used in SALE and SHALE, are cell-centered. The new method is cell-centered and its relationship to the other methods is discussed. Both pure advection and strong shock calculations are presented to substantiate the mathematical analysis. From the standpoint of numerical accuracy, both the staggered mesh and the cell-centered algorithms can give good results, while the computational costs are highly dependent on the overall architecture of a code.

  6. Vaporization of irradiated droplets

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.

    1986-11-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.

  7. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Kenamond, Mack; Bement, Matthew; Shashkov, Mikhail

    2014-07-01

    We present a new discretization for 2D arbitrary Lagrangian-Eulerian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, total energy conserving and symmetry preserving. In the first part of the paper, we describe the discretization of the basic Lagrangian hydrodynamics equations in axisymmetric 2D rz geometry on general polygonal meshes. It exactly preserves planar, cylindrical and spherical symmetry of the flow on meshes aligned with the flow. In particular, spherical symmetry is preserved on polar equiangular meshes. The discretization conserves total energy exactly up to machine round-off on any mesh. It has a consistent definition of kinetic energy in the zone that is exact for a velocity field with constant magnitude. The method for discretization of the Lagrangian equations is based on ideas presented in [2,3,7], where the authors use a special procedure to distribute zonal mass to corners of the zone (subzonal masses). The momentum equation is discretized in its “Cartesian” form with a special definition of “planar” masses (area-weighted). The principal contributions of this part of the paper are as follows: a definition of “planar” subzonal mass for nodes on the z axis (r=0) that does not require a special procedure for movement of these nodes; proof of conservation of the total energy; formulated for general polygonal meshes. We present numerical examples that demonstrate the robustness of the new method for Lagrangian equations on a variety of grids and test problems including polygonal meshes. In particular, we demonstrate the importance of conservation of total energy for correctly modeling shock waves. In the second part of the paper we describe the remapping stage of the arbitrary Lagrangian-Eulerian algorithm. The general idea is based on the following papers [25-28], where it was described for Cartesian coordinates. We describe a distribution-based algorithm for the definition of remapped subzonal densities and a local constrained-optimization-based approach for each zone to find the subzonal mass fluxes. In this paper we give a systematic and complete description of the algorithm for the axisymmetric case and provide justification for our approach. The ALE algorithm conserves total energy on arbitrary meshes and preserves symmetry when remapping from one equiangular polar mesh to another. The principal contributions of this part of the paper are the extension of this algorithm to general polygonal meshes and 2D rz geometry with requirement of symmetry preservation on special meshes. We present numerical examples that demonstrate the robustness of the new ALE method on a variety of grids and test problems including polygonal meshes and some realistic experiments. We confirm the importance of conservation of total energy for correctly modeling shock waves.

  8. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  9. Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials

    NASA Astrophysics Data System (ADS)

    Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi

    2015-02-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.

  10. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Xu, Kun; Shyy, Wei

    2016-07-01

    This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.

  11. Edge remap for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Love, Edward; Robinson, Allen C.

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approachmore » is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.« less

  12. Improved ALE mesh velocities for complex flows

    DOE PAGES

    Bakosi, Jozsef; Waltz, Jacob I.; Morgan, Nathaniel Ray

    2017-05-31

    A key choice in the development of arbitrary Lagrangian-Eulerian solution algorithms is how to move the computational mesh. The most common approaches are smoothing and relaxation techniques, or to compute a mesh velocity field that produces smooth mesh displacements. We present a method in which the mesh velocity is specified by the irrotational component of the fluid velocity as computed from a Helmholtz decomposition, and excess compression of mesh cells is treated through a noniterative, local spring-force model. This approach allows distinct and separate control over rotational and translational modes. In conclusion, the utility of the new mesh motion algorithmmore » is demonstrated on a number of 3D test problems, including problems that involve both shocks and significant amounts of vorticity.« less

  13. Finite Element Modeling of the Deformation of a Thin Magnetoelastic Film Compared to a Membrane Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, M; White, D; Steigmann, D

    2009-04-08

    Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the membrane limit. The comparison of these twomore » methods is used to test/validate the finite element method.« less

  14. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  15. Discontinuous Galerkin method for coupled problems of compressible flow and elastic structures

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Hadrava, M.; Horáček, J.

    2013-10-01

    This paper is concerned with the numerical simulation of the interaction of 2D compressible viscous flow and an elastic structure. We consider the model of dynamical linear elasticity. Each individual problem is discretized in space by the discontinuous Galerkin method (DGM). For the time discretization we can use either the BDF (backward difference formula) method or also the DGM. The time dependence of the domain occupied by the fluid is given by the deformation of the elastic structure adjacent to the flow domain. It is treated with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method. The fluid-structure interaction, given by transient conditions, is realized by an iterative process. The developed method is applied to the simulation of the biomechanical problem containing the onset of the voice production.

  16. A robust and efficient polyhedron subdivision and intersection algorithm for three-dimensional MMALE remapping

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Zhang, Xiong; Jia, Zupeng

    2017-06-01

    The Multi-Material Arbitrary Lagrangian Eulerian (MMALE) method is an effective way to simulate the multi-material flow with severe surface deformation. Comparing with the traditional Arbitrary Lagrangian Eulerian (ALE) method, the MMALE method allows for multiple materials in a single cell which overcomes the difficulties in grid refinement process. In recent decades, many researches have been conducted for the Lagrangian, rezoning and surface reconstruction phases, but less attention has been paid to the multi-material remapping phase especially for the three-dimensional problems due to two complex geometric problems: the polyhedron subdivision and the polyhedron intersection. In this paper, we propose a ;Clipping and Projecting; algorithm for polyhedron intersection whose basic idea comes from the commonly used method by Grandy (1999) [29] and Jia et al. (2013) [34]. Our new algorithm solves the geometric problem by an incremental modification of the topology based on segment-plane intersections. A comparison with Jia et al. (2013) [34] shows our new method improves the efficiency by 55% to 65% when calculating polyhedron intersections. Moreover, the instability caused by the geometric degeneracy can be thoroughly avoided because the geometry integrity is preserved in the new algorithm. We also focus on the polyhedron subdivision process and describe an algorithm which could automatically and precisely tackle the various situations including convex, non-convex and multiple subdivisions. Numerical studies indicate that by using our polyhedron subdivision and intersection algorithm, the volume conversation of the remapping phase can be exactly preserved in the MMALE simulation.

  17. A Numerical Investigation of Two-Different Drosophila Forward Flight Modes

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi; Erzincanli, Belkis

    2016-11-01

    The parallel large-scale unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian (ALE) formulation has been applied in order to investigate the near wake structure of Drosophila in forward flight. DISTENE MeshGems-Hexa algorithm based on the octree method is used to generate the all hexahedral mesh for the wing-body combination. The mesh deformation algorithm is based on the indirect radial basis function (RBF) method at each time level while avoiding remeshing in order to enhance numerical robustness. The large-scale numerical simulations are carried out for a flapping Drosophila in forward flight. In the first case, the wing tip-path plane is tilted forward to generate forward force. In the second case, paddling wing motion is used to generate the forward fore. The λ2-criterion proposed by Jeong and Hussain (1995) is used for investigating the time variation of the Eulerian coherent structures in the near wake. The present simulations reveal highly detailed near wake topology for a hovering Drosophila. This is very useful in terms of understanding physics in biological flights which can provide a very useful tool for designing bio-inspired MAVs.

  18. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  19. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.

  20. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less

  1. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  2. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    NASA Astrophysics Data System (ADS)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  3. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    DOE PAGES

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; ...

    2016-04-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as wellmore » as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.« less

  4. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    NASA Astrophysics Data System (ADS)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  5. An Extended Lagrangian Method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1995-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  6. Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo

    2017-06-01

    We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.

  7. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  8. Physiologic Simulation of the Fontan Surgery with Variable Wall Properties and Respiration

    NASA Astrophysics Data System (ADS)

    Long, Christopher; Bazilevs, Yuri; Feinstein, Jeffrey; Marsden, Alison

    2010-11-01

    Children born with single ventricle heart defects typically undergo a surgical procedure known as a total cavopulmonary connection (TCPC). The goal of this work is to perform hemodynamic simulations accounting for motion of the arterial walls in the TCPC. We perform fluid structure interactions (FSI) simulations using an Arbitrary Lagrangian Eulerian (ALE) finite element framework into a patient-specific model of the TCPC. The patient's post-op anatomy is reconstructed from MRI data. Respiration rate, heart rate, and venous pressures are obtained from catheterization data, and flowrates are obtained from phase contrast MRI data and are used together with a respiratory model. Lumped parameter (RCR) boundary conditions are used at the outlets. This study is the first to introduce variable elastic properties for the different areas of the TCPC, including a Gore-Tex conduit. Quantities such as wall shear stresses and pressures at critical junctions are extracted from the simulation and are compared with pressure tracings from clinical data as well as with rigid wall simulations.

  9. Plastic deformation treated as material flow through adjustable crystal lattice

    NASA Astrophysics Data System (ADS)

    Minakowski, P.; Hron, J.; Kratochvíl, J.; Kružík, M.; Málek, J.

    2014-08-01

    Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.

  10. Parallel implementation of a Lagrangian-based model on an adaptive mesh in C++: Application to sea-ice

    NASA Astrophysics Data System (ADS)

    Samaké, Abdoulaye; Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar

    2017-12-01

    We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the Elasto-Brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.

  11. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  12. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    PubMed

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    NASA Astrophysics Data System (ADS)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  14. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    PubMed

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  15. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as amore » volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.« less

  16. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  17. Modeling of Complex Coupled Fluid-Structure Interaction Systems in Arbitrary Water Depth

    DTIC Science & Technology

    2008-01-01

    model in a particle finite element method ( PFEM ) based framework for the ALE-RANS solver and submitted a journal paper recently [1]. In the paper, we...developing a fluid-flexible structure interaction model without free surface using ALE-RANS and k-ε turbulence closure model implemented by PFEM . In...the ALE_RANS and k-ε turbulence closure model based on the particle finite element Method ( PFEM ) and obtained some satisfying results [1-2]. The

  18. Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for turbulent fluid-particle flows

    DOE PAGES

    Patel, Ravi G.; Desjardins, Olivier; Kong, Bo; ...

    2017-09-01

    Here, we present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posingmore » fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statistics remains a challenge for all methods.« less

  19. Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for turbulent fluid-particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ravi G.; Desjardins, Olivier; Kong, Bo

    Here, we present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posingmore » fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statistics remains a challenge for all methods.« less

  20. Examination of ductile spall failure through direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Becker, Richard

    2017-06-01

    Direct numerical simulation is used to examine the growth and coalescence of a random population of voids leading to spall failure. Void nucleating particles are explicitly represented in the initial geometry, and the arbitrary Lagrange-Eulerian finite element code tracks the void evolution to create the spall surface. The flow fields capture strain localization associated with void interaction at low porosities and ligament necking at final coalescence. Simulations are run to assess the influence of material strain hardening and strain rate sensitivity on void growth and coalescence. These analyses also provide the evolution of longitudinal stress and the energy dissipated, and they reveal a length scale associated with the spall. Additional calculations are performed to examine the influence of loading pulse shape on spall behavior for triangular shaped pressure loading. A dependence of spall scab thickness on pulse shape is determined. These results show localization delayed until porosities reach a few percent and they demonstrate a consistent stress versus porosity relation. The simulations also provide a direct correlation between the spall stress history and the free surface velocity, which can aid in understanding stress corrections applied to experimental data.

  1. High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model

    NASA Astrophysics Data System (ADS)

    Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.

    2018-02-01

    The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.

  2. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  3. SIERRA Multimechanics Module: Aria User Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  4. SPLASH program for three dimensional fluid dynamics with free surface boundaries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.

    1996-05-01

    This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  6. Recent advances in high-order WENO finite volume methods for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael

    2013-10-01

    We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.

  7. Numerical Investigations on Aerodynamic Forces of Deformable Foils in Hovering Motions

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Yin, Zhen; Su, Xiaohui; Zhang, Jiantao; Cao, Yuanwei

    2017-09-01

    The aerodynamic effects of wing deformation for hover flight are numerically investigated by a two-dimensional finite-volume (FV) Arbitrary Langrangian Eulerian (ALE) Navier-Stokes solver. Two deformation models are employed to study these effects in this paper, which are a full deformation model and a partial deformation one. Attentions are paid to the generation and development of leading edge vortex (LEV) and trailing edge vortex (TEV) which may illustrate the differences of lift force generation mechanisms from those of rigid wings. Moreover, lift coefficient Cl, drag coefficient Cd, and figure of merit, as well as energy consumption in hovering motion for different deformation foil models, are also studied. The results show that the deformed amplitude, 0.1*chord, among the cases simulated is an optimized camber amplitude for full deformation. The results obtained from the partial deformation foil model show that both Cl and Cd decrease with the increase of camber amplitude. It is found that the effect of deformation in the partial deformation model does not enhance lift force due to unfavorable camber. But TEV is significantly changed by the local AOA due to the deformation of the foil. Introduction.

  8. Effect of Schmidt number on mass transfer across a sheared gas-liquid interface in a wind-driven turbulence.

    PubMed

    Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru

    2016-11-14

    The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, k L , and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, k L for the wind-driven wavy gas-liquid interface is generally proportional to Sc -0.5 , and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.

  9. Effect of Schmidt number on mass transfer across a sheared gas-liquid interface in a wind-driven turbulence

    PubMed Central

    Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru

    2016-01-01

    The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc−0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking. PMID:27841325

  10. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation

    DOE PAGES

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2017-01-27

    A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fractionmore » or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.« less

  11. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree.

    PubMed

    Huo, Yunlong; Choy, Jenny Susana; Svendsen, Mark; Sinha, Anjan Kumar; Kassab, Ghassan S

    2009-03-26

    The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier-Stokes and Continuity equations, where the convective term in the Navier-Stokes equation was changed in the arbitrary Lagrangian-Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress-WSS, WSS spatial gradient-WSSG, oscillatory shear index-OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.

  12. Modeling of SSME fuel preburner ASI

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.

  13. Simulation and experimental studies in needle-tissue interactions.

    PubMed

    Konh, Bardia; Honarvar, Mohammad; Darvish, Kurosh; Hutapea, Parsaoran

    2017-08-01

    This work aims to introduce a new needle insertion simulation to predict the deflection of a bevel-tip needle inside soft tissue. The development of such a model, which predicts the steering behavior of the needle during needle-tissue interactions, could improve the performance of many percutaneous needle-based procedures such as brachytherapy and thermal ablation, by means of the virtual path planning and training systems of the needle toward the target and thus reducing possible incidents of complications in clinical practices. The Arbitrary-Lagrangian-Eulerian (ALE) formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. Since both large deformation and fracture of the continuum need to be considered in this model, applying ALE method for fluid analysis was considered a suitable approach. A 150 mm long needle was used to bend within the tissue due to the interacting forces on its asymmetric bevel tip. Three experimental cases of needle steering in a soft phantom were performed to validate the simulation. An error measurement of less than 10 % was found between the predicted deflection by the simulations and the one observed in experiments, validating our approach with reasonable accuracy. The effect of the needle diameter and its bevel tip angle on the final shape of the needle was investigated using this model. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended, as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies.

  14. An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids

    NASA Astrophysics Data System (ADS)

    Re, B.; Dobrzynski, C.; Guardone, A.

    2017-07-01

    A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.

  15. Propagation of Reactions in Thermally-damaged PBX-9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J W; Glascoe, E A; Kercher, J R

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosivemore » and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.« less

  16. Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows

    NASA Astrophysics Data System (ADS)

    Kong, Bo; Patel, Ravi G.; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2017-11-01

    In this work, we study the performance of three simulation techniques for fluid-particle flows: (1) a volume-filtered Euler-Lagrange approach (EL), (2) a quadrature-based moment method using the anisotropic Gaussian closure (AG), and (3) a traditional two-fluid model. By simulating two problems: particles in frozen homogeneous isotropic turbulence (HIT), and cluster-induced turbulence (CIT), the convergence of the methods under grid refinement is found to depend on the simulation method and the specific problem, with CIT simulations facing fewer difficulties than HIT. Although EL converges under refinement for both HIT and CIT, its statistical results exhibit dependence on the techniques used to extract statistics for the particle phase. For HIT, converging both EE methods (TFM and AG) poses challenges, while for CIT, AG and EL produce similar results. Overall, all three methods face challenges when trying to extract converged, parameter-independent statistics due to the presence of shocks in the particle phase. National Science Foundation and National Energy Technology Laboratory.

  17. Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent

    2016-10-01

    In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.

  18. Modeling of Complex Coupled Fluid-Structure Interaction Systems in Arbitrary Water Depth

    DTIC Science & Technology

    2009-01-01

    basin. For the particle finite- element method ( PFEM ) near-field fluid model we completed: (4) the development of a fully-coupled fluid/flexible...method ( PFEM ) based framework for the ALE-RANS solver [1]. We presented the theory of ALE-RANS with a k- turbulence closure model and several numerical...implemented by PFEM (Task (4)). In this work a universal wall function (UWF) is introduced and implemented to more accurately predict the boundary

  19. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  20. Patient-Specific Modeling of Intraventricular Hemodynamics

    NASA Astrophysics Data System (ADS)

    Vedula, Vijay; Marsden, Alison

    2017-11-01

    Heart disease is the one of the leading causes of death in the world. Apart from malfunctions in electrophysiology and myocardial mechanics, abnormal hemodynamics is a major factor attributed to heart disease across all ages. Computer simulations offer an efficient means to accurately reproduce in vivo flow conditions and also make predictions of post-operative outcomes and disease progression. We present an experimentally validated computational framework for performing patient-specific modeling of intraventricular hemodynamics. Our modeling framework employs the SimVascular open source software to build an anatomic model and employs robust image registration methods to extract ventricular motion from the image data. We then employ a stabilized finite element solver to simulate blood flow in the ventricles, solving the Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) coordinates by prescribing the wall motion extracted during registration. We model the fluid-structure interaction effects of the cardiac valves using an immersed boundary method and discuss the potential application of this methodology in single ventricle physiology and trans-catheter aortic valve replacement (TAVR). This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and partly through NIH NHLBI R01 Grant 5R01HL129727-02.

  1. A Combined Experimental and Numerical Modeling Study of the Deformation and Rupture of Axisymmetric Liquid Bridges under Coaxial Stretching.

    PubMed

    Zhuang, Jinda; Ju, Y Sungtaek

    2015-09-22

    The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.

  2. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less

  3. Higher-Order Advection-Based Remap of Magnetic Fields in an Arbitrary Lagrangian-Eulerian Code

    NASA Astrophysics Data System (ADS)

    Cornille, Brian; White, Dan

    2017-10-01

    We will present methods formulated for the Eulerian advection stage of an arbitrary Lagrangian-Eulerian code for the new addition of magnetohydrodynamic (MHD) effects. The various physical fields are advanced in time using a Lagrangian formulation of the system. When this Lagrangian motion produces substantial distortion of the mesh, it can be difficult or impossible to progress the simulation forward. This is overcome by relaxation of the mesh while the physical fields are frozen. The code has already successfully been extended to include evolution of magnetic field diffusion during the Lagrangian motion stage. This magnetic field is discretized using an H(div) compatible finite element basis. The advantage of this basis is that the divergence-free constraint of magnetic fields is maintained exactly during the Lagrangian motion evolution. Our goal is to preserve this property during Eulerian advection as well. We will demonstrate this property and the importance of MHD effects in several numerical experiments. In pulsed-power experiments magnetic fields may be imposed or spontaneously generated. When these magnetic fields are present, the evolution of the experiment may differ from a comparable configuration without magnetic fields. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by DOE CSGF under Grant Number DE-FG02-97ER25308.

  4. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  5. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  6. Numerical modeling anti-personnel blast mines coupled to a deformable leg structure

    NASA Astrophysics Data System (ADS)

    Cronin, Duane; Worswick, Mike; Williams, Kevin; Bourget, Daniel; Pageau, Gilles

    2001-06-01

    The development of improved landmine protective footwear requires an understanding of the physics and damage mechanisms associated with a close proximity blast event. Numerical models have been developed to model surrogate mines buried in soil using the Arbitrary Lagrangian Eulerian (ALE) technique to model the explosive and surrounding air, while the soil is modeled as a deformable Lagrangian solid. The advantage of the ALE model is the ability to model large deformations, such as the expanding gases of a high explosive. This model has been validated using the available experimental data [1]. The effect of varying depth of burial and soil conditions has been investigated with these numerical models and compares favorably to data in the literature. The surrogate landmine model has been coupled to a numerical model of a Simplified Lower Leg (SLL), which is designed to mimic the response and failure mechanisms of a human leg. The SLL consists of a bone and tissue simulant arranged as concentric cylinders. A new strain-rate dependant hyperelastic material model for the tissue simulant, ballistic gelatin, has been developed to model the tissue simulant response. The polymeric bone simulant material has been characterized and implemented as a strain-rate dependent material in the numerical model. The numerical model results agree with the measured response of the SLL during experimental blast tests [2]. The numerical model results are used to explain the experimental data. These models predict that, for a surface or sub-surface buried anti-personnel mine, the coupling between the mine and SLL is an important effect. In addition, the soil properties have a significant effect on the load transmitted to the leg. [1] Bergeron, D., Walker, R. and Coffey, C., 1998, “Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand”, Report number SR 668, Defence Research Establishment Suffield, Canada. [2] Bourget, D., Williams, K., Pageau, G., and Cronin, D., “AP Mine Blast Effects on Surrogate Lower Leg”, Military Aspects of Ballistics and Shock, MABS 16, 2000.

  7. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    PubMed

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  8. Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA

    NASA Astrophysics Data System (ADS)

    Pope, David

    Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.

  9. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    NASA Astrophysics Data System (ADS)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  10. Fluid-structure interactions of photo-responsive polymer cantilevers

    NASA Astrophysics Data System (ADS)

    Bin, Jonghoon; Oates, William S.; Yousuff Hussaini, M.

    2013-02-01

    A new class of photomechanical liquid crystal networks (LCNs) has emerged, which generate large bending deformation and fast response times that scale with the resonance of the polymer films. Here, a numerical study is presented that describes the photomechanical structural dynamic behavior of an LCN in a fluid medium; however, the methodology is also applicable to fluid-structure interactions of a broader range of adaptive structures. Here, we simulate the oscillation of photomechanical cantilevers excited by light while simultaneously modeling the effect of the surrounding fluid at different ambient pressures. The photoactuated LCN is modeled as an elastic thin cantilever plate, and gradients in photostrain from the external light are computed from the assumptions of light absorption and photoisomerization through the film thickness. Numerical approximations of the equations governing the plate are based on cubic B-spline shape functions and a second order implicit Newmark central scheme for time integration. For the fluid, three dimensional unsteady incompressible Navier-Stokes equations are solved using the arbitrary Lagrangian-Eulerian (ALE) method, which employs a structured body-fitted curvilinear coordinate system where the solid-fluid interface is a mesh line of the system, and the complicated interface boundary conditions are accommodated in a conventional finite-volume formulation. Numerical examples are given which provide new insight into material behavior in a fluid medium as a function of ambient pressure.

  11. A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows

    NASA Astrophysics Data System (ADS)

    Bernard-Champmartin, Aude; De Vuyst, Florian

    2014-10-01

    In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers.

  12. Pitching effect on transonic wing stall of a blended flying wing with low aspect ratio

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zhao, Zhongliang; Wu, Junqiang; Fan, Zhaolin; Zhang, Yi

    2018-05-01

    Numerical simulation of the pitching effect on transonic wing stall of a blended flying wing with low aspect ratio was performed using improved delayed detached eddy simulation (IDDES). To capture the discontinuity caused by shock wave, a second-order upwind scheme with Roe’s flux-difference splitting is introduced into the inviscid flux. The artificial dissipation is also turned off in the region where the upwind scheme is applied. To reveal the pitching effect, the implicit approximate-factorization method with sub-iterations and second-order temporal accuracy is employed to avoid the time integration of the unsteady Navier-Stokes equations solved by finite volume method at Arbitrary Lagrange-Euler (ALE) form. The leading edge vortex (LEV) development and LEV circulation of pitch-up wings at a free-stream Mach number M = 0.9 and a Reynolds number Re = 9.6 × 106 is studied. The Q-criterion is used to capture the LEV structure from shear layer. The result shows that a shock wave/vortex interaction is responsible for the vortex breakdown which eventually causes the wing stall. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Pitching motion has great influence on shock wave and shock wave/vortex interactions, which can significantly affect the vortex breakdown behavior and wing stall onset of low aspect ratio blended flying wing.

  13. A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric

    2018-03-01

    The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.

  14. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason

    2008-12-01

    The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.

  15. Effect of Cohesion Uncertainty of Granular Materials on the Kinematics of Scaled Models of Fold-and-Thrust Belts

    NASA Astrophysics Data System (ADS)

    Nilfouroushan, F.; Pysklywec, R.; Cruden, S.

    2009-05-01

    Cohesionless or very low cohesion granular materials are widely used in analogue/physical models to simulate brittle rocks in the upper crust. Selection of materials with appropriate cohesion values in such models is important for the simulation of the dynamics of brittle rock deformation in nature. Uncertainties in the magnitude of cohesion (due to measurement errors, extrapolations at low normal stresses, or model setup) in laboratory experiments can possibly result in misinterpretation of the styles and mechanisms of deformation in natural fold-and thrust belts. We ran a series of 2-D numerical models to investigate systematically the effect of cohesion uncertainties on the evolution of models of fold-and-thrust belts. The analyses employ SOPALE, a geodynamic code based on the arbitrary Lagrangian-Eulerian (ALE) finite element method. Similar to analogue models, the material properties of sand and transparent silicone (PDMS) are used to simulate brittle and viscous behaviors of upper crustal rocks. The suite of scaled brittle and brittle-viscous numerical experiments have the same initial geometry but the cohesion value of the brittle layers is increased systematically from 0 to 100 Pa. The stress and strain distribution in different sets of models with different cohesion values are compared and analyzed. The kinematics and geometry of thrust wedges including the location and number of foreland- and hinterland- verging thrust faults, pop-up structures, tapers and topography are also explored and their sensitivity to cohesion value is discussed.

  16. A fictitious domain approach for the simulation of dense suspensions

    NASA Astrophysics Data System (ADS)

    Gallier, Stany; Lemaire, Elisabeth; Lobry, Laurent; Peters, François

    2014-01-01

    Low Reynolds number concentrated suspensions do exhibit an intricate physics which can be partly unraveled by the use of numerical simulation. To this end, a Lagrange multiplier-free fictitious domain approach is described in this work. Unlike some methods recently proposed, the present approach is fully Eulerian and therefore does not need any transfer between the Eulerian background grid and some Lagrangian nodes attached to particles. Lubrication forces between particles play an important role in the suspension rheology and have been properly accounted for in the model. A robust and effective lubrication scheme is outlined which consists in transposing the classical approach used in Stokesian Dynamics to our present direct numerical simulation. This lubrication model has also been adapted to account for solid boundaries such as walls. Contact forces between particles are modeled using a classical Discrete Element Method (DEM), a widely used method in granular matter physics. Comprehensive validations are presented on various one-particle, two-particle or three-particle configurations in a linear shear flow as well as some O(103) and O(104) particle simulations.

  17. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  18. Subduction Initiation under Unfavorable Conditions and New Fault Formation

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gurnis, M.; May, D.

    2017-12-01

    How subduction initiates with unfavorable dipping lithospheric heterogeneities is an important and rarely studied topic. We build a geodynamic model starting with a vertical weak zone for the Puysegur incipient subduction zone (PISZ). A true free surface is tracked in pTatin3D, based on the Arbitrary Lagrangian Eulerian (ALE) finite element method, and is used to follow the dynamic mantle-surface interaction and topographic evolution. A simplified surface process, based on linear topography diffusion, is implemented. Density and free water content for different phase assemblages are gained by referring to precalculated 4D (temperature, pressure, rock type and total water content) phase maps using Perplex. Darcy's law is used to migrate free water, and a linear water weakening is applied to the mantle material. A new visco-elastic formulation called Elastic Viscous Stress Splitting (EVSS) method is also included. Our predictions fit the morphology of the Puysegur Trench and Ridge and the deformation history on the overriding plate. We show a new thrust fault forms and evolves into a smooth subduction interface, and the preexisting weak zone becomes a vertical fault inboard of the thrust fault during subduction initiation, which explains the two-fault system at PISZ. Our model suggests that the PISZ may not yet be self-sustaining. We propose that the Snares Trough is caused by plate coupling differences between shallower and deeper parts, the tectonic sliver between two faults experiences strong rotation, and low density materials accumulate beneath the Snares trough. Extended models show that with favorable dipping heterogeneities, no new fault forms, and subduction initiates with smaller resisting forces.

  19. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).

  20. Application of an Arbitrary Lagrangian Eulerian Method to Describe High Velocity Gas-Particle Flow Behavior

    DTIC Science & Technology

    2011-09-01

    applied in this work was based on some of the standard definitions of soil constitutive properties as found in, e.g., Chen and Baladi [20], and...Livermore, CA. [20] Chen, W. F., and Baladi , G. Y., 1985. Soil Plasticity: Theory and Implementation. Elsevier Science, New York. [21] Zimmerman, H.D

  1. Detonation Propagation through Nitromethane Embedded Metal Foam

    NASA Astrophysics Data System (ADS)

    Lieberthal, Brandon; Maines, Warren R.; Stewart, D. Scott

    2015-11-01

    There is considerable interest in developing a better understanding of dynamic behaviors of multicomponent systems. We report results of Eulerian hydrodynamic simulations of shock waves propagating through metal foam at approximately 20% relative density and various porosities using a reactive flow model in the ALE3D software package. We investigate the applied pressure and energy of the shock wave and its effects on the fluid and the inert material interface. By varying pore sizes, as well as metal impedance, we predict the overall effects of heterogeneous material systems at the mesoscale. In addition, we observe a radially expanding blast front in these heterogeneous models and apply the theory of Detonation Shock Dynamics to the convergence behavior of the lead shock.

  2. Analysis of complex elastic structures by a Rayleigh-Ritz component modes method using Lagrange multipliers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Klein, L. R.

    1974-01-01

    The free vibrations of elastic structures of arbitrary complexity were analyzed in terms of their component modes. The method was based upon the use of the normal unconstrained modes of the components in a Rayleigh-Ritz analysis. The continuity conditions were enforced by means of Lagrange Multipliers. Examples of the structures considered are: (1) beams with nonuniform properties; (2) airplane structures with high or low aspect ratio lifting surface components; (3) the oblique wing airplane; and (4) plate structures. The method was also applied to the analysis of modal damping of linear elastic structures. Convergence of the method versus the number of modes per component and/or the number of components is discussed and compared to more conventional approaches, ad-hoc methods, and experimental results.

  3. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.

    PubMed

    Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  4. Joining of polymer-metal lightweight structures using self-piercing riveting (SPR) technique: Numerical approach and simulation results

    NASA Astrophysics Data System (ADS)

    Amro, Elias; Kouadri-Henni, Afia

    2018-05-01

    Restrictions in pollutant emissions dictated at the European Commission level in the past few years have urged mass production car manufacturers to engage rapidly several strategies in order to reduce significantly the energy consumption of their vehicles. One of the most relevant taken action is light-weighting of body in white (BIW) structures, concretely visible with the increased introduction of polymer-based composite materials reinforced by carbon/glass fibers. However, the design and manufacturing of such "hybrid" structures is limiting the use of conventional assembly techniques like resistance spot welding (RSW) which are not transferable as they are for polymer-metal joining. This research aims at developing a joining technique that would eventually enable the assembly of a sheet molding compound (SMC) polyester thermoset-made component on a structure composed of several high strength steel grades. The state of the art of polymer-metal joining techniques highlighted the few ones potentially able to respond to the industrial challenge, which are: structural bonding, self-piercing riveting (SPR), direct laser joining and friction spot welding (FSpW). In this study, the promising SPR technique is investigated. Modelling of SPR process in the case of polymer-metal joining was performed through the building of a 2D axisymmetric FE model using the commercial code Abaqus CAE 6.10-1. Details of the numerical approach are presented with a particular attention to the composite sheet for which Mori-Tanaka's homogenization method is used in order to estimate overall mechanical properties. Large deformations induced by the riveting process are enabled with the use of a mixed finite element formulation ALE (arbitrary Lagrangian-Eulerian). FE model predictions are compared with experimental data followed by a discussion.

  5. Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse

    NASA Astrophysics Data System (ADS)

    Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier

    2017-03-01

    This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.

  6. Towards a Computational Framework for Modeling the Impact of Aortic Coarctations Upon Left Ventricular Load

    PubMed Central

    Karabelas, Elias; Gsell, Matthias A. F.; Augustin, Christoph M.; Marx, Laura; Neic, Aurel; Prassl, Anton J.; Goubergrits, Leonid; Kuehne, Titus; Plank, Gernot

    2018-01-01

    Computational fluid dynamics (CFD) models of blood flow in the left ventricle (LV) and aorta are important tools for analyzing the mechanistic links between myocardial deformation and flow patterns. Typically, the use of image-based kinematic CFD models prevails in applications such as predicting the acute response to interventions which alter LV afterload conditions. However, such models are limited in their ability to analyze any impacts upon LV load or key biomarkers known to be implicated in driving remodeling processes as LV function is not accounted for in a mechanistic sense. This study addresses these limitations by reporting on progress made toward a novel electro-mechano-fluidic (EMF) model that represents the entire physics of LV electromechanics (EM) based on first principles. A biophysically detailed finite element (FE) model of LV EM was coupled with a FE-based CFD solver for moving domains using an arbitrary Eulerian-Lagrangian (ALE) formulation. Two clinical cases of patients suffering from aortic coarctations (CoA) were built and parameterized based on clinical data under pre-treatment conditions. For one patient case simulations under post-treatment conditions after geometric repair of CoA by a virtual stenting procedure were compared against pre-treatment results. Numerical stability of the approach was demonstrated by analyzing mesh quality and solver performance under the significantly large deformations of the LV blood pool. Further, computational tractability and compatibility with clinical time scales were investigated by performing strong scaling benchmarks up to 1536 compute cores. The overall cost of the entire workflow for building, fitting and executing EMF simulations was comparable to those reported for image-based kinematic models, suggesting that EMF models show potential of evolving into a viable clinical research tool. PMID:29892227

  7. Dynamics of motion of a clot through an arterial bifurcation: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Abolfazli, Ehsan; Fatouraee, Nasser; Vahidi, Bahman

    2014-10-01

    Although arterial embolism is important as a major cause of brain infarction, little information is available about the hemodynamic factors which govern the path emboli tend to follow. A method which predicts the trajectory of emboli in carotid arteries would be of a great value in understanding ischemic attack mechanisms and eventually devising hemodynamically optimal techniques for prevention of strokes. In this paper, computational models are presented to investigate the motion of a blood clot in a human carotid artery bifurcation. The governing equations for blood flow are the Navier-Stokes formulations. To achieve large structural movements, the arbitrary Lagrangian-Eulerian formulation (ALE) with an adaptive mesh method was employed for the fluid domain. The problem was solved by simultaneous solution of the fluid and the structure equations. In this paper, the phenomenon was simulated under laminar and Newtonian flow conditions. The measured stress-strain curve obtained from ultrasound elasticity imaging of the thrombus was set to a Sussman-Bathe material model representing embolus material properties. Shear stress magnitudes in the inner wall of the internal carotid artery (ICA) were measured. High magnitudes of wall shear stress (WSS) occurred in the areas in which the embolus and arterial are in contact with each other. Stress distribution in the embolus was also calculated and areas prone to rapture were identified. Effects of embolus size and embolus density on its motion velocity were investigated and it was observed that an increase in either embolus size or density led to a reduction in movement velocity of the embolus. Embolus trajectory and shear stress from a simulation of embolus movement in a three-dimensional model with patient-specific carotid artery bifurcation geometry are also presented.

  8. Three-dimensional flows in a hyperelastic vessel under external pressure.

    PubMed

    Zhang, Sen; Luo, Xiaoyu; Cai, Zongxi

    2018-05-09

    We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid-structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian-Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.

  9. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model

    PubMed Central

    Spühler, Jeannette H.; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework. PMID:29713288

  10. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Cai, J.; Benson, D. J.; Nesterenko, V. F.

    2007-12-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and changes the overall strength of the sample depending on the size of W particles. To investigate relatively large deformations, multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased sample strength with fine metallic particles is due to the dynamic formation of force chains. This phenomenon occurs for samples with a higher porosity of the PTFE matrix compared to samples with larger particle size of W and a higher density PTFE matrix.

  11. Unsteady combustion of solid propellants

    NASA Astrophysics Data System (ADS)

    Chung, T. J.; Kim, P. K.

    The oscillatory motions of all field variables (pressure, temperature, velocity, density, and fuel fractions) in the flame zone of solid propellant rocket motors are calculated using the finite element method. The Arrhenius law with a single step forward chemical reaction is used. Effects of radiative heat transfer, impressed arbitrary acoustic wave incidence, and idealized mean flow velocities are also investigated. Boundary conditions are derived at the solid-gas interfaces and at the flame edges which are implemented via Lagrange multipliers. Perturbation expansions of all governing conservation equations up to and including the second order are carried out so that nonlinear oscillations may be accommodated. All excited frequencies are calculated by means of eigenvalue analyses, and the combustion response functions corresponding to these frequencies are determined. It is shown that the use of isoparametric finite elements, Gaussian quadrature integration, and the Lagrange multiplier boundary matrix scheme offers a convenient approach to two-dimensional calculations.

  12. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  13. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-01-14

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  14. Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange's identity and wedge product

    NASA Astrophysics Data System (ADS)

    Bhaskara, Vineeth S.; Panigrahi, Prasanta K.

    2017-05-01

    Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022, 1997), provides an important measure of entanglement for a general pair of qubits that is faithful: strictly positive for entangled states and vanishing for all separable states. Such a measure captures the entire content of entanglement, providing necessary and sufficient conditions for separability. We present an extension of concurrence to multiparticle pure states in arbitrary dimensions by a new framework using the Lagrange's identity and wedge product representation of separability conditions, which coincides with the "I-concurrence" of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed by extending Wootters's spin-flip operator to a so-called universal inverter superoperator. Our framework exposes an inherent geometry of entanglement and may be useful for the further extensions to mixed and continuous variable states.

  15. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    NASA Astrophysics Data System (ADS)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  16. The piecewise-linear predictor-corrector code - A Lagrangian-remap method for astrophysical flows

    NASA Technical Reports Server (NTRS)

    Lufkin, Eric A.; Hawley, John F.

    1993-01-01

    We describe a time-explicit finite-difference algorithm for solving the nonlinear fluid equations. The method is similar to existing Eulerian schemes in its use of operator-splitting and artificial viscosity, except that we solve the Lagrangian equations of motion with a predictor-corrector and then remap onto a fixed Eulerian grid. The remap is formulated to eliminate errors associated with coordinate singularities, with a general prescription for remaps of arbitrary order. We perform a comprehensive series of tests on standard problems. Self-convergence tests show that the code has a second-order rate of convergence in smooth, two-dimensional flow, with pressure forces, gravity, and curvilinear geometry included. While not as accurate on idealized problems as high-order Riemann-solving schemes, the predictor-corrector Lagrangian-remap code has great flexibility for application to a variety of astrophysical problems.

  17. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali

    2007-06-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.

  18. Enhancements to the Tonge-Ramesh Ceramic Failure Model for Use in Eulerian Simulations

    DTIC Science & Technology

    2016-09-14

    ability to project an arbitrary trial stress (σtr) onto the quasi -static yield surface (providing the value for σqs). Once the projection onto the quasi ...Model Evaluation Methods 4.1 Geometry from Prior Experiments There are experimental data from 2 research groups on penetration of confined boron carbide...by high-density, long-rod projectiles.21,22 Based on these prior ex- periments, the following 3 experimental geometries were identified to test the

  19. Numerical Simulation of Interaction of Human Vocal Folds and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Horáček, J.; Sváček, P.

    Our goal is to simulate airflow in human vocal folds and their flow-induced vibrations. We consider two-dimensional viscous incompressible flow in a time-dependent domain. The fluid flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation. The flow problem is coupled with the elastic behaviour of the solid bodies. The developed solution of the coupled problem based on the finite element method is demonstrated by numerical experiments.

  20. An analysis of general chain systems

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Huston, R. L.

    1972-01-01

    A general analysis of dynamic systems consisting of connected rigid bodies is presented. The number of bodies and their manner of connection is arbitrary so long as no closed loops are formed. The analysis represents a dynamic finite element method, which is computer-oriented and designed so that nonworking, interval constraint forces are automatically eliminated. The method is based upon Lagrange's form of d'Alembert's principle. Shifter matrix transformations are used with the geometrical aspects of the analysis. The method is illustrated with a space manipulator.

  1. The Operational Use of an Automated High Frequency Radio System Incorporating Automatic Link Establishment and Single-Tone Serial Modem Technology for U.S. Navy Ship-Shore Communications

    DTIC Science & Technology

    1993-10-01

    between the link chronologically in the following sections. quality analysis ( LQA ) score measured by ALE and single- tone serial modem performance. A...receiving ends in turn and (propagation permitting), pass traffic and terminate the are used to calculate a combined link quality analysis ( LQA ...score. The LQA score is displayed to the operator NCCOSC RDTE DIV installation team accomplished the as a number on an arbitrary scale of 0 to 120, with a

  2. Simulation of the Reflected Blast Wave froma C-4 Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Kuhl, A L; Tringe, J W

    2011-08-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 rangesmore » (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.« less

  3. Simulation of the reflected blast wave from a C-4 charge

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  4. Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch-Aguilar, T; Najjar, F; Szymanski, E

    2011-03-24

    A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target responsemore » description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.« less

  5. Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations

    DOE PAGES

    Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra

    2018-05-29

    Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less

  6. Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra

    Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less

  7. geomIO: A tool for geodynamicists to turn 2D cross-sections into 3D geometries

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Bauville, Arthur

    2016-04-01

    In numerical deformation models, material properties are usually defined on elements (e.g., in body-fitted finite elements), or on a set of Lagrangian markers (Eulerian, ALE or mesh-free methods). In any case, geometrical constraints are needed to assign different material properties to the model domain. Whereas simple geometries such as spheres, layers or cuboids can easily be programmed, it quickly gets complex and time-consuming to create more complicated geometries for numerical model setups, especially in three dimensions. geomIO (geometry I/O, http://geomio.bitbucket.org/) is a MATLAB-based library that has two main functionalities. First, it can be used to create 3D volumes based on series of 2D vector drawings similar to a CAD program; and second, it uses these 3D volumes to assign material properties to the numerical model domain. The drawings can conveniently be created using the open-source vector graphics software Inkscape. Adobe Illustrator is also partially supported. The drawings represent a series of cross-sections in the 3D model domain, for example, cross-sectional interpretations of seismic tomography. geomIO is then used to read the drawings and to create 3D volumes by interpolating between the cross-sections. In the second part, the volumes are used to assign material phases to markers inside the volumes. Multiple volumes can be created at the same time and, depending on the order of assignment, unions or intersections can be built to assign additional material phases. geomIO also offers the possibility to create 3D temperature structures for geodynamic models based on depth dependent parameterisations, for example the half space cooling model. In particular, this can be applied to geometries of subducting slabs of arbitrary shape. Yet, geomIO is held very general, and can be used for a variety of applications. We present examples of setup generation from pictures of micro-scale tectonics and lithospheric scale setups of 3D present-day model geometries.

  8. Kilometer-Scale Transient Atmospheres for Kinetic Payload Deposition on Icy Bodies

    NASA Astrophysics Data System (ADS)

    Koch, James

    Entry, descent, and landing technologies for space exploration missions to atmospheric bodies traditionally exploit the body's ambient atmosphere as a medium through which a spacecraft or probe can interact to transfer momentum and energy for a soft landing. For bodies with no appreciable atmosphere, a significant engineering challenge exists to overcome the lack of passive methods to decelerate a spacecraft or probe. Proposed is a novel means for the creation of a transient atmosphere for airless icy bodies through the use of a two stage payload-penetrator probe. The first stage is a hyper-velocity penetrator that impacts the icy body. The second stage is an aero-braking-capable probe directed to pass through the ejecta plume from the hyper-velocity impact. Both experimental and computational studies show that a controlled high-energy impact can direct and transfer energy and momentum to a probe via a collimated ejecta plume. In an effort to provide clarity to this unexplored class of missions, a modeling-based engineering approach is taken to provide a first-order estimation of some of the involved physical phenomena. Three sub-studies are presented: an examination and characterization of ice plumes, modeling plume-probe interaction, and the extension of plume modeling as the basis for conceptual mission design. The modeling efforts are centered about two modeling formulations: smoothed particle hydrodynamics (SPH) and the arbitrary Largrangian-Eulerian (ALE) set of techniques. A database of fully-developed hypervelocity impacts and their associated plumes is created and used as inputs to a 1-D mathematical model for the interaction of a continuum-based plume and probe. A parametric study based on the hyper-velocity impact and staging of the probe-penetrator system is presented and discussed. Shown is that a tuned penetrator-probe mission has the potential to increase spacecraft payload mass fraction over conventional soft landing schemes.

  9. Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson.

    PubMed

    Miller, Michael I; Trouvé, Alain; Younes, Laurent

    2015-01-01

    The Computational Anatomy project is the morphome-scale study of shape and form, which we model as an orbit under diffeomorphic group action. Metric comparison calculates the geodesic length of the diffeomorphic flow connecting one form to another. Geodesic connection provides a positioning system for coordinatizing the forms and positioning their associated functional information. This article reviews progress since the Euler-Lagrange characterization of the geodesics a decade ago. Geodesic positioning is posed as a series of problems in Hamiltonian control, which emphasize the key reduction from the Eulerian momentum with dimension of the flow of the group, to the parametric coordinates appropriate to the dimension of the submanifolds being positioned. The Hamiltonian viewpoint provides important extensions of the core setting to new, object-informed positioning systems. Several submanifold mapping problems are discussed as they apply to metamorphosis, multiple shape spaces, and longitudinal time series studies of growth and atrophy via shape splines.

  10. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse

    2018-03-01

    It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demonstration of a scalable and practical framework remains elusive. Motivated by recent progress in particle-based methods when applied to convection dominated flows, this work presents a fully Lagrangian method for solving the inviscid shallow water equations on a rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at the poles, the governing equations are solved in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor detection and parallelization. The method is applied to a suite of canonical test cases, and conservation, accuracy, and parallel performance are assessed.

  11. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.; Feng, Heng

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  12. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE PAGES

    Kong, Bo; Fox, Rodney O.; Feng, Heng; ...

    2017-02-16

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  13. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  14. Hydrodynamic interactions for complex-shaped nanocarriers in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Yaohong; Eckmann, David; Radhakrishnan, Ravi; Ayyaswamy, Portonovo

    2014-11-01

    Nanocarrier motion in a blood vessel involves hydrodynamic and Brownian interactions, which collectively dictate the efficacy in targeted drug delivery. The shape of nanocarriers plays a crucial role in drug delivery. In order to quantify the flow and association properties of elliptical nanoparticles, we have developed an arbitrary Lagrangian-Eulerian framework with capabilities to simulate the hydrodynamic motion of nanoparticles of arbitrary shapes. We introduce the quaternions for rotational motion, and two collision models, namely, (a) an impulse-based model for wall-particle collision, and (b) the short-range repulsive Gay-Berne potential for particle-particle collision. We also study the red blood cell and nanocarrier (such as ellipsoid) interactions. We compare our results with those obtained for a hard sphere model for both RBCs and nanocarriers. Supported by NIH through grant U01-EB016027.

  15. Influence of a thin compressible insoluble liquid film on the eddy currents generated by interacting surface waves

    NASA Astrophysics Data System (ADS)

    Parfenyev, Vladimir M.; Vergeles, Sergey S.

    2018-06-01

    Recently the generation of eddy currents by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established eddy currents produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The currents become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of eddy currents is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.

  16. Unambiguous formalism for higher order Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris

    2009-11-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  17. Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas for arbitrary magnetic fields

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Del-Castillo-Negrete, Diego; Hauck, Cory

    2012-10-01

    Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy between parallel (to the magnetic field) and perpendicular directions (χ/χ˜10^10 in fusion plasmas). Recently, a Lagrangian Green's function approach, developed for the purely parallel transport case,footnotetextD. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011)^,footnotetextD. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, 19, 056112 (2012) has been extended to the anisotropic transport case in the tokamak-ordering limit with constant density.footnotetextL. Chac'on, D. del-Castillo-Negrete, C. Hauck, JCP, submitted (2012) An operator-split algorithm is proposed that allows one to treat Eulerian and Lagrangian components separately. The approach is shown to feature bounded numerical errors for arbitrary χ/χ ratios, which renders it asymptotic-preserving. In this poster, we will present the generalization of the Lagrangian approach to arbitrary magnetic fields. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry.

  18. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  19. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Saumil S.; Fischer, Paul F.; Min, Misun

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  20. The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems

    NASA Astrophysics Data System (ADS)

    Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.

    2016-04-01

    A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.

  1. Solution of mixed convection heat transfer from isothermal in-line fins

    NASA Technical Reports Server (NTRS)

    Khalilollahi, Amir

    1993-01-01

    Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.

  2. Quantum canonical ensemble: A projection operator approach

    NASA Astrophysics Data System (ADS)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  3. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    PubMed

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  4. Sandia Higher Order Elements (SHOE) v 0.5 alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-09-24

    SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likelymore » exist.« less

  5. Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding.

    PubMed

    Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A

    2016-08-12

    With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.

  6. Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding

    PubMed Central

    Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.

    2016-01-01

    With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications. PMID:27515908

  7. Modeling of Particle Engulfment during the Growth of Crystalline Silicon for Solar Cells

    NASA Astrophysics Data System (ADS)

    Tao, Yutao

    A major challenge for the growth of multi-crystalline silicon is the formation of carbide and nitride precipitates in the melt that are engulfed by the solidification front to form inclusions. These lower cell efficiency and can lead to wafer breakage and sawing defects. Minimizing the number of these engulfed particles will promote lower cost and higher quality silicon and will advance progress in commercial solar cell production. To better understand the physical mechanisms responsible for such inclusions during crystal growth, we have developed finite-element, moving-boundary analyses to assess particle dynamics during engulfment via solidification fronts. Two-dimensional, steady-state and dynamic models are developed using the Galerkin finite element method and elliptic mesh generation techniques in an arbitrary Eulerian-Lagrangian (ALE) implementation. This numerical approach allows for an accurate representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We reinterpret the significance of premelting via the definition of an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. Parametric studies are then performed to uncover the dependence of critical growth velocity upon some important physical properties. We also explore the complicated transient behaviors due to oscillating crystal growth conditions as well as the nonlinear nature related with temperature gradients and solute effects in the system. When compared with results for the SiC-Si system measured during ParSiWal experiments conducted by our collaborators, our model predicts a more realistic scaling of critical velocity with particle size than that predicted by prior theories. However, the engulfment growth velocity observed in the subsequent experiment onboard the TEXUS sounding rocket mission turned out to be unexpectedly higher. To explain this model discrepancy, a macroscopic model is developed in order to account for the natural convection in the terrestrial experiments. We demonstrate that the convective flows are able to keep most small particles suspended in the melt, so that the observed critical velocities and their variance are enhanced in the experiments conducted on earth. According to simulation results, some solutions, which are applicable in photovoltaic industry, to the inclusion problem are also discussed and studied.

  8. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  9. Hydrodynamic modeling of laser interaction with micro-structured targets

    DOE PAGES

    Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...

    2016-08-03

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  10. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  11. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1995-01-01

    We explore the practicability of optimal shape design for flows modeled by the Euler equations. We define a functional whose minimum represents the optimality condition. The gradient of the functional with respect to the geometry is calculated with the Lagrange multipliers, which are determined by solving a co-state equation. The optimization problem is then examined by comparing the performance of several gradient-based optimization algorithms. In this formulation, the flow field can be computed to an arbitrary order of accuracy. Finally, some results for internal flows with embedded shocks are presented, including a case for which the solution to the inverse problem does not belong to the design space.

  12. Extension of the Time-Spectral Approach to Overset Solvers for Arbitrary Motion

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas H.

    2012-01-01

    Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turbomachinery, and flapping wing configurations. Standard practice involves solving the unsteady flow equations forward in time until the initial transient exits the domain and a statistically stationary flow is achieved. It is often required to simulate through several periods to remove the initial transient making unsteady design optimization prohibitively expensive for most realistic problems. An effort to reduce the computational cost of these calculations led to the development of the Harmonic Balance method [1, 2] which capitalizes on the periodic nature of the solution. The approach exploits the fact that forced temporally periodic flow, while varying in the time domain, is invariant in the frequency domain. Expanding the temporal variation at each spatial node into a Fourier series transforms the unsteady governing equations into a steady set of equations in integer harmonics that can be tackled with the acceleration techniques afforded to steady-state flow solvers. Other similar approaches, such as the Nonlinear Frequency Domain [3,4,5], Reduced Frequency [6] and Time-Spectral [7, 8, 9] methods, were developed shortly thereafter. Additionally, adjoint-based optimization techniques can be applied [10, 11] as well as frequency-adaptive methods [12, 13, 14] to provide even more flexibility to the method. The Fourier temporal basis functions imply spectral convergence as the number of harmonic modes, and correspondingly number of time samples, N, is increased. Some elect to solve the equations in the frequency domain directly, while others choose to transform the equations back into the time domain to simplify the process of adding this capability to existing solvers, but each harnesses the underlying steady solution in the frequency domain. These temporal projection methods will herein be collectively referred to as Time-Spectral methods. Time-Spectral methods have demonstrated marked success in reducing the computational costs associated with simulating periodic forced flows, but have yet to be fully applied to overset or Cartesian solvers for arbitrary motion with dynamic hole-cutting. Overset and Cartesian grid methodologies are versatile techniques capable of handling complex geometry configurations in practical engineering applications, and the combination of the Time-Spectral approach with this general capability potentially provides an enabling new design and analysis tool. In an arbitrary moving-body scenario for these approaches, a Lagrangian body moves through a fixed Eulerian mesh and mesh points in the Eulerian mesh interior to the solid body are removed (cut or blanked), leaving a hole in the Eulerian mesh. During the dynamic motion some gridpoints in the domain are blanked and do not have a complete set of time-samples preventing a direct implementation of the Time-Spectral method. Murman[6] demonstrated the Time-Spectral approach for a Cartesian solver with a rigid domain motion, wherein the hole cutting remains constant. Similarly, Custer et al. [15, 16] used the NASA overset OVERFLOW solver and limited the amount of relative motion to ensure static hole-cutting and interpolation. Recently, Mavriplis and Mundis[17] demonstrated a qualitative method for applying the Time-Spectral approach to an unstructured overset solver for arbitrary motion. The goal of the current work is to develop a robust and general method for handling arbitrary motion with the Time-Spectral approach within an overset or Cartesian mesh method, while still approaching the spectral convergence rate of the original Time-Spectral approach. The viscous OVERFLOW solver will be augmented with the new Time-Spectral algorithm and the capability of the method for benchmark problems in rotorcraft and turbomachinery will be demonstrated. This abstract begins with a brief synopsis of the Time-Spectral approach for overset grids and provides details of e current approach to allow for arbitrary motion. Model problem results in one and two dimensions are included to demonstrate the viability of the method and the convergence properties. Section IV briefly outlines the implementation into the OVERFLOW solver, and the abstract closes with a description of the benchmark test cases which will be included in the final paper.

  13. f( R, L m ) gravity

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2010-11-01

    We generalize the f( R) type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the matter Lagrangian L m . We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the energy-momentum tensor. The equations of motion for test particles can also be derived from a variational principle in the particular case in which the Lagrangian density of the matter is an arbitrary function of the energy density of the matter only. Generally, the motion is non-geodesic, and it takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equation of motion is also considered, and a procedure for obtaining the energy-momentum tensor of the matter is presented. The gravitational field equations and the equations of motion for a particular model in which the action of the gravitational field has an exponential dependence on the standard general relativistic Hilbert-Einstein Lagrange density are also derived.

  14. A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.

    1991-01-01

    The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.

  15. Direct numerical simulation of a combusting droplet with convection

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Bienvenido; Novo, Vicente

    We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditionsmore » when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.« less

  17. Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.

    PubMed

    Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng

    2011-10-01

    This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

  18. Overview of atomic layer etching in the semiconductor industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article providesmore » defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrarymore » Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  20. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.

    PubMed

    Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G

    2013-08-01

    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.

  1. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan

    2008-03-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  2. Open Group Transformations Within the Sp(2)-Formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Previously we have shown that open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of the nilpotent BFV-BRST charge operator. Here we show that they may also be quantized within an Sp(2)-frame in which there are two odd anticommuting operators called Sp(2)-charges. Previous results for finite open group transformations are generalized to the Sp(2)-formalism. We show that in order to define open group transformations on the whole ghost extended space we need Sp(2)-charges in the nonminimal sector which contains dynamical Lagrange multipliers. We give an Sp(2)-version of the quantum master equation with extended Sp(2)-charges and a master charge of a more involved form, which is proposed to represent the integrability conditions of defining operators of connection operators and which therefore should encode the generalized quantum Maurer-Cartan equations for arbitrary open groups. General solutions of this master equation are given in explicit form. A further extended Sp(2)-formalism is proposed in which the group parameters are quadrupled to a supersymmetric set and from which all results may be derived.

  3. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  4. 16QAM Blind Equalization via Maximum Entropy Density Approximation Technique and Nonlinear Lagrange Multipliers

    PubMed Central

    Mauda, R.; Pinchas, M.

    2014-01-01

    Recently a new blind equalization method was proposed for the 16QAM constellation input inspired by the maximum entropy density approximation technique with improved equalization performance compared to the maximum entropy approach, Godard's algorithm, and others. In addition, an approximated expression for the minimum mean square error (MSE) was obtained. The idea was to find those Lagrange multipliers that bring the approximated MSE to minimum. Since the derivation of the obtained MSE with respect to the Lagrange multipliers leads to a nonlinear equation for the Lagrange multipliers, the part in the MSE expression that caused the nonlinearity in the equation for the Lagrange multipliers was ignored. Thus, the obtained Lagrange multipliers were not those Lagrange multipliers that bring the approximated MSE to minimum. In this paper, we derive a new set of Lagrange multipliers based on the nonlinear expression for the Lagrange multipliers obtained from minimizing the approximated MSE with respect to the Lagrange multipliers. Simulation results indicate that for the high signal to noise ratio (SNR) case, a faster convergence rate is obtained for a channel causing a high initial intersymbol interference (ISI) while the same equalization performance is obtained for an easy channel (initial ISI low). PMID:24723813

  5. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness and the residual stresses throughout the various FSW zones of the two alloys. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results. Keywords: Friction Stir Welding; AA5083; AA2139; Johnson-Cook Strength Model; Finite Element Analysis; Hardness Prediction.

  6. Modelling the oscillations of the thermocline in a lake by means of a fully consistent and conservative 3D finite-element model with a vertically adaptive mesh

    NASA Astrophysics Data System (ADS)

    Delandmeter, Philippe; Lambrechts, Jonathan; Vallaeys, Valentin; Naithani, Jaya; Remacle, Jean-François; Legat, Vincent; Deleersnijder, Eric

    2017-04-01

    Vertical discretisation is crucial in the modelling of lake thermocline oscillations. For finite element methods, a simple way to increase the resolution close to the oscillating thermocline is to use vertical adaptive coordinates. With an Arbitrary Lagrangian-Eulerian (ALE) formulation, the mesh can be adapted to increase the resolution in regions with strong shear or stratification. In such an application, consistency and conservativity must be strictly enforced. SLIM 3D, a discontinuous-Galerkin finite element model for shallow-water flows (www.climate.be/slim, e.g. Kärnä et al., 2013, Delandmeter et al., 2015), was designed to be strictly consistent and conservative in its discrete formulation. In this context, special care must be paid to the coupling of the external and internal modes of the model and the moving mesh algorithm. In this framework, the mesh can be adapted arbitrarily in the vertical direction. Two moving mesh algorithms were implemented: the first one computes an a-priori optimal mesh; the second one diffuses vertically the mesh (Burchard et al., 2004, Hofmeister et al., 2010). The criteria used to define the optimal mesh and the diffusion function are related to a suitable measure of shear and stratification. We will present in detail the design of the model and how the consistency and conservativity is obtained. Then we will apply it to both idealised benchmarks and the wind-forced thermocline oscillations in Lake Tanganyika (Naithani et al. 2002). References Tuomas Kärnä, Vincent Legat and Eric Deleersnijder. A baroclinic discontinuous Galerkin finite element model for coastal flows, Ocean Modelling, 61:1-20, 2013. Philippe Delandmeter, Stephen E Lewis, Jonathan Lambrechts, Eric Deleersnijder, Vincent Legat and Eric Wolanski. The transport and fate of riverine fine sediment exported to a semi-open system. Estuarine, Coastal and Shelf Science, 167:336-346, 2015. Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids in one-dimensional numerical ocean models. Ocean Modelling, 6:51-81, 2004. Richard Hofmeister, Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids for 3d numerical ocean models. Ocean Modelling, 33:70-86, 2010. Jaya Naithani, Eric Deleersnijder and Pierre-Denis Plisnier. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters, 29(23), doi:10.1029/2002GL015843, 2002.

  7. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.

    PubMed

    Nejad, A Abbas; Talebi, Z; Cheraghali, D; Shahbani-Zahiri, A; Norouzi, M

    2018-02-01

    In this study, the interaction of pulsatile blood flow with the viscoelastic walls of the axisymmetric artery is numerically investigated for different severities of stenosis. The geometry of artery is modeled by an axisymmetric cylindrical tube with a symmetric stenosis in a two-dimensional case. The effects of stenosis severity on the axial velocity profile, pressure distribution, streamlines, wall shear stress, and wall radial displacement for the viscoelastic artery are also compared to the elastics artery. Furthermore, the effects of atherosclerosis and polycythemia diseases on the hemodynamics and the mechanical behavior of arterial walls are investigated. The pulsatile flow of non-Newtonian blood is simulated inside the viscoelastic artery using the COMSOL Multiphysics software (version 5) and by employing the fluid-structure interaction (FSI) method and the arbitrary Lagrangian-Eulerian (ALE) method. Moreover, finite element method (FEM) is used to solve the governing equations on the unstructured grids. For modeling the non-Newtonian blood fluid and the viscoelastic arterial wall, the modified Casson model, and generalized Maxwell model are used, respectively. According to the results, with stenosis severity increasing from 25% to 75% at the time of maximum volumetric flow rate, the maximum value of axial velocity and its gradient increase 7.9 and 19.6 times, and the maximum wall shear stress of viscoelastic wall increases 24.2 times in the constriction zone. With the progression of the atherosclerosis disease (fivefold growth of arterial elastic modulus), the wall radial displacement of viscoelastic arterial walls decreases nearly 40%. In this study, axial velocity profile, pressure distribution, streamlines, wall radial displacement, and wall shear stress were examined for different percentages of stenosis (25%, 50%, and 75%). The atherosclerosis disease was investigated by the fivefold growth of viscoelastic arterial elastic modulus and polycythemia disease was examined by the 21-fold increase in the yield stress of the blood fluid. Furthermore, the comparison of results between the elastic and viscoelastic arterial walls shows that the wall radial displacement for viscoelastic artery is lower than that for the elastic artery as much as 21.7% for the severe stenosis of 75%. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    NASA Astrophysics Data System (ADS)

    Joshi, Vaibhav; Jaiman, Rajeev K.

    2018-05-01

    We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.

  9. Non-material finite element modelling of large vibrations of axially moving strings and beams

    NASA Astrophysics Data System (ADS)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  10. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  11. Predicting synergy in atomic layer etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarik, Keren J.; Tan, Samantha; Yang, Wenbing

    2017-03-27

    Atomic layer etching (ALE) is a multistep process used today in manufacturing for removing ultrathin layers of material. In this article, the authors report on ALE of Si, Ge, C, W, GaN, and SiO 2 using a directional (anisotropic) plasma-enhanced approach. The authors analyze these systems by defining an “ALE synergy” parameter which quantifies the degree to which a process approaches the ideal ALE regime. This parameter is inspired by the ion-neutral synergy concept introduced in the 1979 paper by Coburn and Winters. ALE synergy is related to the energetics of underlying surface interactions and is understood in terms ofmore » energy criteria for the energy barriers involved in the reactions. Synergistic behavior is observed for all of the systems studied, with each exhibiting behavior unique to the reactant–material combination. By systematically studying atomic layer etching of a group of materials, the authors show that ALE synergy scales with the surface binding energy of the bulk material. This insight explains why some materials are more or less amenable to the directional ALE approach. Furthermore, they conclude that ALE is both simpler to understand than conventional plasma etch processing and is applicable to metals, semiconductors, and dielectrics.« less

  12. An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.

  13. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeratunga, S K

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can bemore » easily shared between these two code frameworks and concludes with a set of recommendations for its development.« less

  14. A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias

    2018-04-01

    A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.

  15. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  16. Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.

    2000-01-01

    The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.

  17. Childhood adverse life events, disordered eating, and body mass index in US Military service members.

    PubMed

    Bakalar, Jennifer L; Barmine, Marissa; Druskin, Lindsay; Olsen, Cara H; Quinlan, Jeffrey; Sbrocco, Tracy; Tanofsky-Kraff, Marian

    2018-03-02

    US service members appear to be at high-risk for disordered eating. Further, the military is experiencing unprecedented prevalence of overweight and obesity. US service members also report a high prevalence of childhood adverse life event (ALE) exposure. Despite consistent links between early adversity with eating disorders and obesity, there is a dearth of research examining the association between ALE exposure and disordered eating and weight in military personnel. An online survey study was conducted in active duty personnel to examine childhood ALE history using the Life Stressor Checklist - Revised, disordered eating using the Eating Disorder Examination - Questionnaire total score, and self-reported body mass index (BMI, kg/m 2 ). Among 179 respondents, multiple indices of childhood ALE were positively associated with disordered eating. Traumatic childhood ALE and subjective impact of childhood ALE were associated with higher BMI and these associations were mediated by disordered eating. Findings support evaluating childhood ALE exposure among service members with disordered eating and weight concerns. Moreover, findings support the need for prospective research to elucidate these relationships. © 2018 Wiley Periodicals, Inc.

  18. Comparison of ALE and SPH Methods for Simulating Mine Blast Effects on Structures

    DTIC Science & Technology

    2010-12-01

    Comparison of ALE and SPH methods for simulating mine blast effects on struc- tures Geneviève Toussaint Amal Bouamoul DRDC Valcartier Defence R&D...Canada – Valcartier Technical Report DRDC Valcartier TR 2010-326 December 2010 Comparison of ALE and SPH methods for simulating mine blast...Valcartier TR 2010-326 iii Executive summary Comparison of ALE and SPH methods for simulating mine blast effects on structures

  19. Feedback stabilization of an oscillating vertical cylinder by POD Reduced-Order Model

    NASA Astrophysics Data System (ADS)

    Tissot, Gilles; Cordier, Laurent; Noack, Bernd R.

    2015-01-01

    The objective is to demonstrate the use of reduced-order models (ROM) based on proper orthogonal decomposition (POD) to stabilize the flow over a vertically oscillating circular cylinder in the laminar regime (Reynolds number equal to 60). The 2D Navier-Stokes equations are first solved with a finite element method, in which the moving cylinder is introduced via an ALE method. Since in fluid-structure interaction, the POD algorithm cannot be applied directly, we implemented the fictitious domain method of Glowinski et al. [1] where the solid domain is treated as a fluid undergoing an additional constraint. The POD-ROM is classically obtained by projecting the Navier-Stokes equations onto the first POD modes. At this level, the cylinder displacement is enforced in the POD-ROM through the introduction of Lagrange multipliers. For determining the optimal vertical velocity of the cylinder, a linear quadratic regulator framework is employed. After linearization of the POD-ROM around the steady flow state, the optimal linear feedback gain is obtained as solution of a generalized algebraic Riccati equation. Finally, when the optimal feedback control is applied, it is shown that the flow converges rapidly to the steady state. In addition, a vanishing control is obtained proving the efficiency of the control approach.

  20. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis

    2015-09-01

    Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  1. Aqueous extracts from Uncaria tomentosa (Willd. ex Schult.) DC. reduce bronchial hyperresponsiveness and inflammation in a murine model of asthma.

    PubMed

    Azevedo, Bruna Cestari; Morel, Lucas Junqueira Freitas; Carmona, Fábio; Cunha, Thiago Mattar; Contini, Silvia Helena Taleb; Delprete, Piero Giuseppe; Ramalho, Fernando Silva; Crevelin, Eduardo; Bertoni, Bianca Waléria; França, Suzelei Castro; Borges, Marcos Carvalho; Pereira, Ana Maria Soares

    2018-05-23

    Uncaria tomentosa (Willd. Ex Schult) DC is used by indigenous tribes in the Amazonian region of Central and South America to treat inflammation, allergies and asthma. The therapeutic properties of U. tomentosa have been attributed to the presence of tetracyclic and pentacyclic oxindole alkaloids and to phenolic acids. To characterize aqueous bark extracts (ABE) and aqueous leaf extracts (ALE) of U. tomentosa and to compare their anti-inflammatory effects. Constituents of the extracts were identified by ultra performance liquid chromatography-mass spectrometry. Anti-inflammatory activities were assessed in vitro by exposing lipopolysaccharide-stimulated macrophage cells (RAW264.7-Luc) to ABE, ALE and standard mitraphylline. In vivo assays were performed using a murine model of ovalbumin (OVA)-induced asthma. OVA-sensitized animals were treated with ABE or ALE while controls received dexamethasone or saline solution. Bronchial hyperresponsiveness, production of Th1 and Th2 cytokines, total and differential counts of inflammatory cells in the bronchoalveolar lavage (BAL) and lung tissue were determined. Mitraphylline, isomitraphylline, chlorogenic acid and quinic acid were detected in both extracts, while isorhyncophylline and rutin were detected only in ALE. ABE, ALE and mitraphylline inhibited the transcription of nuclear factor kappa-B in cell cultures, ALE and mitraphylline reduced the production of interleukin (IL)-6, and mitraphylline reduced production of tumor necrosis factor-alpha. Treatment with ABE and ALE at 50 and 200 mg kg -1 , respectively, reduced respiratory elastance and tissue damping and elastance. ABE and ALE reduced the number of eosinophils in BAL, while ALE at 200 mg kg -1 reduced the levels of IL-4 and IL-5 in the lung homogenate. Peribronchial inflammation was significantly reduced by treatment with ABE and ALE at 50 and 100 mg kg -1 respectively. The results clarify for the first time the anti-inflammatory activity of U. tomentosa in a murine model of asthma. Although ABE and ALE exhibited distinct chemical compositions, both extracts inhibited the production of pro-inflammatory cytokines in vitro. In vivo assays revealed that ABE was more effective in treating asthmatic inflammation while ALE was more successful in controlling respiratory mechanics. Both extracts may have promising applications in the phytotherapy of allergic asthma. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Insensitive Munitions Modeling Improvement Efforts

    DTIC Science & Technology

    2010-10-01

    LLNL) ALE3D . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to...codes most commonly used by munition designers are CTH and the SIERRA suite of codes produced by Sandia National Labs (SNL) and ALE3D produced by... ALE3D , a LLNL developed code, is also used by various DoD participants. It was however, designed differently than either CTH or Sierra. ALE3D is a

  3. Analyse et caracterisation d'interactions fluide-structure instationnaires en grands deplacements

    NASA Astrophysics Data System (ADS)

    Cori, Jean-Francois

    Flapping wings for flying and oscillating fins for swimming stand out as the most complex yet efficient propulsion methods found in nature. Understanding the phenomena involved is a great challenge generating significant interests, especially in the growing field of Micro Air Vehicles. The thrust and lift are induced by oscillating foils thanks to a complex phenomenon of unsteady fluid-structure interaction (FSI). The aim of the dissertation is to develop an efficient CFD framework for simulating the FSI process involved in the propulsion or the power extraction of an oscillating flexible airfoil in a viscous incompressible flow. The numerical method relies on direct implicit monolithic formulation using high-order implicit time integrators. We use an Arbitrary Lagrangian Eulerian (ALE) formulation of the equations designed to satisfy the Geometric Conservation Law (GCL) and to guarantee that the high order temporal accuracy of the time integrators observed on fixed meshes is preserved on ALE deforming meshes. Hyperelastic structural Saint-Venant Kirchhoff model, viscous incompressible Navier-Stokes equations for the flow, Newton's law for the point mass and equilibrium equations at the interface form one large monolithic system. The fully implicit FSI approach uses coincidents nodes on the fluid-structure interface, so that loads, velocities and displacements are evaluated at the same location and at the same time. The problem is solved in an implicit manner using a Newton-Raphson pseudo-solid finite element approach. High-order implicit Runge-Kutta time integrators are implemented (up to 5th order) to improve the accuracy and reduce the computational cost. In this context of stiff interaction problems, the highly stable fully implicit one-step approach is an original alternative to traditional multistep or explicit one-step finite element approaches. The methodology has been verified with three different test-cases. Thorough time-step refinement studies for a rigid oscillating airfoil on deforming meshes, for flow induced vibrations of a flexible strip and for a self-propulsed flapping airfoil indicate that the stability of the proposed approach is always observed even with large time steps, spurious oscillations on the structure are avoided without any damping and the high order accuracy of the IRK schemes is maintained. We have applied our powerful FSI framework on three interesting applications, with a detailed dimensional analysis to obtain their characteristic parameters. Firstly, we have studied the vibrational characteristics of a well-documented fluid-structure interaction case : a flexible strip fixed behind a rigid square cylinder. Our results compare favorably with previous works. The accuracy of the IRK time integrators (even for the pressure field of incompressible flow), their unconditional stability and their non-dissipative nature produced results revealing new, never previously reported, higher frequency structural forces weakly coupled with the fluid. Secondly, we have explored the propulsive and power extraction characteristics of rigid and flexible flapping airfoils. For the power extraction, we found an excellent agreement with literature results. A parametric study indicates the optimal motion parameters to get high propulsive efficiencies. An optimal flexibility seems to improve power extraction efficiency. Finally, a survey on flapping propulsion has given initial results for a self-propulsed airfoil and has opened a new way of studying propulsive efficiency. (Abstract shortened by UMI.)

  4. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  5. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.

  6. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    NASA Astrophysics Data System (ADS)

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  7. Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.

    PubMed

    Vidgren, Virve; Ruohonen, Laura; Londesborough, John

    2005-12-01

    Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other alpha-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity alpha-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.

  8. Anti-inflammatory evaluation and characterization of leaf extract of Ananas comosus.

    PubMed

    Kargutkar, Samira; Brijesh, S

    2018-04-01

    Ananas comosus (L.) Merr (Pineapple) is a tropical plant with an edible fruit. In the present study, the potential anti-inflammatory activity of A. comosus leaf extract (ALE) was studied. ALE prepared using soxhlet apparatus was subjected to preliminary qualitative phytochemical analysis and quantitative estimations of flavonoids and tannins. The components present in ALE were identified using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Inhibitory effects of ALE on protein denaturation, and proteinase activity were assessed. Its effect on secretion of pro-inflammatory cytokines and inflammatory mediators by lipopolysaccharide-stimulated macrophages was also analyzed. Further, its anti-inflammatory activity in carrageenan-induced inflammatory rat model was examined. The preliminary qualitative phytochemical analysis revealed presence of flavonoids, phenols, tannins, carbohydrates, glycosides, and proteins in the extract. Total flavonoids and total tannins were 0.17 ± 0.006 mg equivalent of quercetin/g of ALE and 4.04 ± 0.56 mg equivalent of gallic acid/g of ALE. LC-MS analysis identified the presence of 4-hydroxy pelargonic acid, 3,4,5-trimethoxycinnamic and 4-methoxycinnamic acid, whereas GC-MS analysis identified the presence of campesterol and ethyl isoallocholate that have been previously reported for anti-inflammatory activity. ALE showed significant inhibition of protein denaturation and proteinase activity and also controlled secretion of tumour necrosis factor-α, interleukin-1β and prostaglandins, as well as the generation of reactive oxygen species by activated macrophages. ALE also significantly decreased carrageenan-induced acute paw edema. The study, therefore, identified the components present in ALE that may be responsible for its anti-inflammatory activity and thus demonstrated its potential use against acute inflammatory diseases.

  9. The nuclear hormone receptor E75A regulates vitellogenin gene (Al-Vg) expression in the mirid bug Apolygus lucorum.

    PubMed

    Tan, Y-A; Zhao, X-D; Sun, Y; Hao, D-J; Zhao, J; Jiang, Y-P; Bai, L-X; Xiao, L-B

    2018-04-01

    Apolygus lucorum is the predominant pest of Bacillus thuringiensis (Bt) cotton in China. 20-hydroxyecdysone (20E) plays a key role in the reproduction of this insect. To better understand the mechanism underlying 20E-regulated reproduction, the nuclear hormone receptor E75 isoform-A of Ap. lucorum (Al-E75A) was cloned and its expression analysed. A 2241-bp sequence of Al-E75A cDNA encoded an open reading frame of a polypeptide with a predicted molecular mass of 69.04 kDa. Al-E75A mRNA was detected in female adult stages of Ap. lucorum with peak expression in 7-day-old animals. Al-E75A was also expressed in several tissues, particularly in the fat body and ovary. A 3.2 kb Al-E75A mRNA was detected in all tissues by Northern blot. The fecundity and longevity were significantly decreased in female adults treated with Al-E75A small interfering RNA. The rates of egg incubation rates were considerably lower in the RNA interference-treated animals compared to the untreated controls. In order to investigate the molecular mechanism underlying the effects described above, vitellogenin (Al-Vg) was selected for further investigation. The expression pattern of Al-Vg was similar to that of Al-E75A and was up-regulated by 20E. After knockdown of Al-E75A, the expression profile of Al-Vg and the protein levels were down-regulated. These findings suggest that Al-E75A plays a crucial role in the regulation of Al-Vg expression in Ap. lucorum. © 2017 The Royal Entomological Society.

  10. Method of and apparatus for modeling interactions

    DOEpatents

    Budge, Kent G.

    2004-01-13

    A method and apparatus for modeling interactions can accurately model tribological and other properties and accommodate topological disruptions. Two portions of a problem space are represented, a first with a Lagrangian mesh and a second with an ALE mesh. The ALE and Lagrangian meshes are constructed so that each node on the surface of the Lagrangian mesh is in a known correspondence with adjacent nodes in the ALE mesh. The interaction can be predicted for a time interval. Material flow within the ALE mesh can accurately model complex interactions such as bifurcation. After prediction, nodes in the ALE mesh in correspondence with nodes on the surface of the Lagrangian mesh can be mapped so that they are once again adjacent to their corresponding Lagrangian mesh nodes. The ALE mesh can then be smoothed to reduce mesh distortion that might reduce the accuracy or efficiency of subsequent prediction steps. The process, from prediction through mapping and smoothing, can be repeated until a terminal condition is reached.

  11. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model.

    PubMed

    Chakraborty, Tridib; Bhuniya, Dipak; Chatterjee, Mary; Rahaman, Mosiur; Singha, Dipak; Chatterjee, Baidya Nath; Datta, Subrata; Rana, Ajay; Samanta, Kartick; Srivastawa, Sunil; Maitra, Sankar K; Chatterjee, Malay

    2007-12-28

    To investigate the chemopreventive efficacy of the Indian medicinal plant Acanthus ilicifolius L Acanthaceae in a transplantable Ehrlich ascites carcinoma (EAC)-bearing murine model. Male Swiss albino mice were divided into four groups: Group A was the untreated normal control; Group B was the EAC control mice group that received serial, intraperitoneal (ip) inoculations of rapidly proliferating 2 x 10(5) viable EAC cells in 0.2 mL of sterile phosphate buffered saline; Group C was the plant extract-treated group that received the aqueous leaf extract (ALE) of the plant at a dose of 2.5 mg/kg body weight by single ip injections, once daily for 10, 20 and 30 consecutive days following tumour inoculation (ALE control); and Group D was the EAC + ALE-treatment group. The chemopreventive potential of the ALE was evaluated in a murine model by studying various biological parameters and genotoxic markers, such as tumour cell count, mean survival of the animals, haematological indices, hepatocellular histology, immunohistochemical expression of liver metallothionein (MT) protein, sister-chromatid exchanges (SCEs), and DNA alterations. Treatment of the EAC-bearing mice with the ALE significantly (P < 0.001) reduced viable tumour cell count by 68.34% (228.7 x 10(6) +/- 0.53) when compared to EAC control mice (72.4 x 10(6) +/- 0.49), and restored body and organ weights almost to the normal values. ALE administration also increased (P < 0.001) mean survival of the hosts from 35 +/- 3.46 d in EAC control mice to 83 +/- 2.69 d in EAC + ALE-treated mice. Haematological indices also showed marked improvement with administration of ALE in EAC-bearing animals. There was a significant increase in RBC count (P < 0.001), hemoglobin percent (P < 0.001), and haematocrit value (P < 0.001) from 4.3 +/- 0.12, 6.4 +/- 0.93, and 17.63 +/- 0.72 respectively in EAC control mice to 7.1 +/- 0.13, 12.1 +/- 0.77, and 30.23 +/- 0.57 respectively in EAC + ALE-treated group, along with concurrent decrement (P < 0.001) in WBC count from 18.8 +/- 0.54 in EAC control to 8.4 +/- 0.71 in EAC + ALE. Furthermore, treatment with ALE substantially improved hepatocellular architecture and no noticeable neoplastic lesions or foci of cellular alteration were observed. Daily administration of the ALE was found to limit liver MT expression, an important marker of cell proliferation with concomitant reduction in MT immunoreactivity (62.25 +/- 2.58 vs 86.24 +/- 5.69, P < 0.01). ALE was also potentially effective in reducing (P < 0.001) the frequency of SCEs from 14.94 +/- 2.14 in EAC control to 5.12 +/- 1.16 in EAC + ALE-treated group. Finally, in comparison to the EAC control, ALE was able to suppress in vivo DNA damage by abating the generations of 'tailed' DNA by 53.59% (98.65 +/- 2.31 vs 45.06 +/- 1.14, P < 0.001), and DNA single-strand breaks (SSBs) by 38.53% (3.14 +/- 0.31 vs 1.93 +/- 0.23, P < 0.01) in EAC-bearing murine liver. Our data indicate that, ALE is beneficial in restoring haematological and hepatic histological profiles and in lengthening the survival of the animals against the proliferation of ascites tumour in vivo. Finally, the chemopreventive efficacy of the ALE is manifested in limiting MT expression and in preventing DNA alterations in murine liver. The promising results of this study suggest further investigation into the chemopreventive mechanisms of the medicinal plant A. ilicifolius in vivo and in vitro.

  12. Active Learning in Engineering Education: A (Re)Introduction

    ERIC Educational Resources Information Center

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less

  14. Numerical calculation of ion runaway distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Embréus, O.; Stahl, A.; Hirvijoki, E.

    2015-05-15

    Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments; however, limitations of previous analytic work have prevented definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fieldsmore » required for ion acceleration are determined for various plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal Alfvén eigenmodes during tokamak disruptions is considered.« less

  15. ALES: An Innovative Argument-Learning Environment

    ERIC Educational Resources Information Center

    Abbas, Safia; Sawamura, Hajime

    2010-01-01

    This paper presents the development of an Argument-Learning System (ALES). The idea is based on the AIF (argumentation interchange format) ontology using "Walton theory". ALES uses different mining techniques to manage a highly structured arguments repository. This repository was designed, developed and implemented by the authors. The aim is to…

  16. Application of the ALE and MBE Methods to the Growth of Layered Hg sub x Cd sub 1-x Te Films.

    DTIC Science & Technology

    1986-09-26

    films / We have studied the applicability of the Atomic Layer Epitaxy (ALE, vee Ref. -1pand Molecular Beam Epitaxy (MBE) ito growth of Hg2 Cdi- ,Te...thin- films throughout the composition range 0 x $ 0.8. The progress of the Contract has been reported periodically in five interim reports. This final...I separate sources) yielded films with high x values. On the grounds of these observations we do not find ALE suitable for growth of HgCdTe. 2) ALE

  17. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  18. Effect of low-magnitude whole-body vibration combined with alendronate in ovariectomized rats: a random controlled osteoporosis prevention study.

    PubMed

    Chen, Guo-Xian; Zheng, Shuai; Qin, Shuai; Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45-55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture.

  19. Effect of Low-Magnitude Whole-Body Vibration Combined with Alendronate in Ovariectomized Rats: A Random Controlled Osteoporosis Prevention Study

    PubMed Central

    Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Background Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. Methods A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45–55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Results Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Conclusions Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture. PMID:24796785

  20. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  1. Traumatic brain injury and adverse life events: Group differences in young adults injured as children.

    PubMed

    Taylor, Olivia; Barrett, Robert D; McLellan, Tracey; McKinlay, Audrey

    2015-01-01

    To investigate whether individuals with a history of traumatic brain injury (TBI) experience a greater number of adverse life events (ALE) compared to controls, to identify significant predictors of experiencing ALE and whether the severity of childhood TBI negatively influences adult life outcomes. A total of 167 individuals, injured prior to age 18, 5 or more years post-injury and 18 or more years of age, were recruited in the Canterbury region of New Zealand, with 124 having sustained childhood TBI (62 mild, 62 moderate/severe) and 43 orthopaedic injury controls. Participants were asked about ALE they had experienced and other adult life outcomes. Individuals with a history of TBI experienced more ALE compared to controls. The number of ALE experienced by an individual was associated with more visits to the doctor, lower education level and lower satisfaction with material standard of living. Childhood TBI is associated with an increased number of ALE and adult negative life outcomes. Understanding factors that contribute to negative outcomes following childhood TBI will provide an avenue for rehabilitation and support to reduce any problems in adulthood.

  2. Tuberculose péritonéale pseudo tumorale mimant un cancer ovarien: un diagnostic différentiel important à considérer

    PubMed Central

    Moukit, Mounir; Fadel, Fatimazahra Ait El; Kouach, Jaouad; Babahabib, Abdellah; Dehayni, Mohammed; Rahali, Driss Moussaoui

    2016-01-01

    La tuberculose est une maladie infectieuse curable qui peut simuler dans sa localisation péritonéale un cancer ovarien avancé conduisant ainsi à une chirurgie étendue et inutile souvent chez des femmes en âge de reproduction. Nous rapportons un nouveau cas de tuberculose péritonéale pseudo tumorale chez une patiente âgée de 43 ans chez qui le diagnostic d’un cancer ovarien avec carcinose péritonéale avait été suspecté. La laparotomie exploratrice avec examen histologique extemporané ont permis de confirmer le diagnostic de tuberculose péritonéale. La patiente a bien répondu au traitement antituberculeux selon le protocole 2ERHZ/4RH. PMID:28292155

  3. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Differences in effectiveness of the active living every day program for older adults with arthritis.

    PubMed

    Sperber, Nina R; Allen, Kelli D; Devellis, Brenda M; Devellis, Robert F; Lewis, Megan A; Callahan, Leigh F

    2013-10-01

    The authors explored whether demographic and psychosocial variables predicted differences in physical activity for participants with arthritis in a trial of Active Living Every Day (ALED). Participants (N = 280) from 17 community sites were randomized into ALED or usual care. The authors assessed participant demographic characteristics, self-efficacy, outcome expectations, pain, fatigue, and depressive symptoms at baseline and physical activity frequency at 20-wk follow-up. They conducted linear regression with interaction terms (Baseline Characteristic × Randomization Group). Being female (p ≤ .05), less depressed (p ≤ .05), or younger (p ≤ .10) was associated with more frequent posttest physical activity for ALED participants than for those with usual care. Higher education was associated with more physical activity for both ALED and usual-care groups. ALED was particularly effective for female, younger, and less depressed participants. Further research should determine whether modifications could produce better outcomes in other subgroups.

  5. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  6. Numerical models for fluid-grains interactions: opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony

    2017-06-01

    In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.

  7. Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, John K.

    1991-01-01

    Direct numerical simulation is used to study dispersion in decaying isotropic turbulence and homogeneous shear flow. Both Lagrangian and Eulerian data are presented allowing direct comparison, but at fairly low Reynolds number. The quantities presented include properties of the dispersion tensor, isoprobability contours of particle displacement, Lagrangian and Eulerian velocity autocorrelations and time scale ratios, and the eddy diffusivity tensor. The Lagrangian time microscale is found to be consistently larger than the Eulerian microscale, presumably due to the advection of the small scales by the large scales in the Eulerian reference frame.

  8. Do you see what I see? Optical morphology and visual capability of ‘disco’ clams (Ctenoides ales)

    PubMed Central

    Dubielzig, Richard R.; Schobert, Charles S.; Teixeira, Leandro B.; Li, Jingchun

    2017-01-01

    ABSTRACT The ‘disco’ clam Ctenoides ales (Finlay, 1927) is a marine bivalve that has a unique, vivid flashing display that is a result of light scattering by silica nanospheres and rapid mantle movement. The eyes of C. ales were examined to determine their visual capabilities and whether the clams can see the flashing of conspecifics. Similar to the congener C. scaber, C. ales exhibits an off-response (shadow reflex) and an on-response (light reflex). In field observations, a shadow caused a significant increase in flash rate from a mean of 3.9 Hz to 4.7 Hz (P=0.0016). In laboratory trials, a looming stimulus, which increased light intensity, caused a significant increase in flash rate from a median of 1.8 Hz to 2.2 Hz (P=0.0001). Morphological analysis of the eyes of C. ales revealed coarsely-packed photoreceptors lacking sophisticated structure, resulting in visual resolution that is likely too low to detect the flashing of conspecifics. As the eyes of C. ales are incapable of perceiving conspecific flashing, it is likely that their vision is instead used to detect predators. PMID:28396488

  9. Variation in the Gender Gap in Inactive and Active Life Expectancy by the Definition of Inactivity Among Older Adults.

    PubMed

    Malhotra, Rahul; Chan, Angelique; Ajay, Shweta; Ma, Stefan; Saito, Yasuhiko

    2016-10-01

    To assess variation in gender gap (female-male) in inactive life expectancy (IALE) and active life expectancy (ALE) by definition of inactivity. Inactivity, among older Singaporeans, was defined as follows: Scenario 1-health-related difficulty in activities of daily living (ADLs); Scenario 2-health-related difficulty in ADLs/instrumental ADLs (IADLs); Scenario 3-health-related difficulty in ADLs/IADLs or non-health-related non-performance of IADLs. Multistate life tables computed IALE and ALE at age 60, testing three hypotheses: In all scenarios, life expectancy, absolute and relative IALE, and absolute ALE are higher for females (Hypothesis 1 [H1]); gender gap in absolute and relative IALE expands, and in absolute ALE, it contracts in Scenario 2 versus 1 (Hypothesis 2 [H2]); gender gap in absolute and relative IALE decreases, and in absolute ALE, it increases in Scenario 3 versus 2 (Hypothesis 3 [H3]). H1 was supported in Scenarios 1 and 3 but not Scenario 2. Both H2 and H3 were supported. Definition of inactivity influences gender gap in IALE and ALE. © The Author(s) 2016.

  10. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  11. The Role of Multiphysics Simulation in Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.

  12. A new method for solving the quantum hydrodynamic equations of motion: application to two-dimensional reactive scattering.

    PubMed

    Pauler, Denise K; Kendrick, Brian K

    2004-01-08

    The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics

  13. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    PubMed

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. On hydrostatic flows in isentropic coordinates

    NASA Astrophysics Data System (ADS)

    Bokhove, Onno

    2000-01-01

    The hydrostatic primitive equations of motion which have been used in large-scale weather prediction and climate modelling over the last few decades are analysed with variational methods in an isentropic Eulerian framework. The use of material isentropic coordinates for the Eulerian hydrostatic equations is known to have distinct conceptual advantages since fluid motion is, under inviscid and statically stable circumstances, confined to take place on quasi-horizontal isentropic surfaces. First, an Eulerian isentropic Hamilton's principle, expressed in terms of fluid parcel variables, is therefore derived by transformation of a Lagrangian Hamilton's principle to an Eulerian one. This Eulerian principle explicitly describes the boundary dynamics of the time-dependent domain in terms of advection of boundary isentropes sB; these are the values the isentropes have at their intersection with the (lower) boundary. A partial Legendre transform for only the interior variables yields an Eulerian ‘action’ principle. Secondly, Noether's theorem is used to derive energy and potential vorticity conservation from the Eulerian Hamilton's principle. Thirdly, these conservation laws are used to derive a wave-activity invariant which is second-order in terms of small-amplitude disturbances relative to a resting or moving basic state. Linear stability criteria are derived but only for resting basic states. In mid-latitudes a time- scale separation between gravity and vortical modes occurs. Finally, this time-scale separation suggests that conservative geostrophic and ageostrophic approximations can be made to the Eulerian action principle for hydrostatic flows. Approximations to Eulerian variational principles may be more advantageous than approximations to Lagrangian ones because non-dimensionalization and scaling tend to be based on Eulerian estimates of the characteristic scales involved. These approximations to the stratified hydrostatic formulation extend previous approximations to the shallow- water equations. An explicit variational derivation is given of an isentropic version of Hoskins & Bretherton's model for atmospheric fronts.

  15. The Case for Including Eulerian Kinematics in Undergraduate Dynamics.

    ERIC Educational Resources Information Center

    Uram, Earl M.

    A Eulerian framework is proposed as an alternative to the Lagrangian framework usually used in undergraduate dynamics courses. An attempt to introduce Eulerian kinematics into a dynamics course is discussed. (LMH)

  16. Simulating Small-Scale Experiments of In-Tunnel Airblast Using STUN and ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuscamman, Stephanie; Glenn, Lewis; Schebler, Gregory

    2011-09-12

    This report details continuing validation efforts for the Sphere and Tunnel (STUN) and ALE3D codes. STUN has been validated previously for blast propagation through tunnels using several sets of experimental data with varying charge sizes and tunnel configurations, including the MARVEL nuclear driven shock tube experiment (Glenn, 2001). The DHS-funded STUNTool version is compared to experimental data and the LLNL ALE3D hydrocode. In this particular study, we compare the performance of the STUN and ALE3D codes in modeling an in-tunnel airblast to experimental results obtained by Lunderman and Ohrt in a series of small-scale high explosive experiments (1997).

  17. Investigation of the in vivo antioxidative activity of Cynara scolymus (artichoke) leaf extract in the streptozotocin-induced diabetic rat.

    PubMed

    Magielse, Joanna; Verlaet, Annelies; Breynaert, Annelies; Keenoy, Begoña Manuel Y; Apers, Sandra; Pieters, Luc; Hermans, Nina

    2014-01-01

    The in vivo antioxidant activity of a quantified leaf extract of Cynara scolymus (artichoke) was studied. The aqueous artichoke leaf extract (ALE), containing 1.5% caffeoylquinic acid with chlorogenic acid being most abundant (0.30%), and luteolin-7-O-glucoside as major flavonoid (0.15%), was investigated by evaluating the effect on different oxidative stress biomarkers, after 3 wk oral supplementation in the streptozotocin-induced diabetic rat model. Apart from two test groups (0.2 g ALE/kg BW/day and 1 g ALE/kg BW/day, where BW is body weight), a healthy control group, untreated oxidative stress group, and vitamin E treated group (positive control) were included. A 0.2 g/kg BW/day of ALE decreased oxidative stress: malondialdehyde and 8-hydroxydeoxyguanosine levels significantly diminished, whereas erythrocyte glutathione levels significantly increased. A 1.0 g/kg BW/day ALE did not show higher antioxidant activity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discrete-element simulation of sea-ice mechanics: Contact mechanics and granular jamming

    NASA Astrophysics Data System (ADS)

    Damsgaard, A.; Adcroft, A.; Sergienko, O. V.; Stern, A. A.

    2017-12-01

    Lagrangian models of sea-ice dynamics offer several advantages to Eulerian continuum methods. Spatial discretization on the ice-floe scale is natural for Lagrangian models, which additionally offer the convenience of being able to handle arbitrary sea-ice concentrations. This is likely to improve model performance in ice-marginal zones with strong advection. Furthermore, phase transitions in granular rheology around the jamming limit, such as observed when sea ice moves through geometric confinements, includes sharp thresholds in effective viscosity which are typically ignored in Eulerian models. Granular jamming is a stochastic process dependent on having the right grains in the right place at the right time, and the jamming likelihood over time can be described by a probabilistic model. Difficult to parameterize in continuum formulations, jamming occurs naturally in dense granular systems simulated in a Lagrangian framework, and is a very relevant process controlling sea-ice transport through narrow straits. We construct a flexible discrete-element framework for simulating Lagrangian sea-ice dynamics at the ice-floe scale, forced by ocean and atmosphere velocity fields. Using this framework, we demonstrate that frictionless contact models based on compressive stiffness alone are unlikely to jam, and describe two different approaches based on friction and tensile strength which both result in increased bulk shear strength of the granular assemblage. The frictionless but cohesive contact model, with certain tensile strength values, can display jamming behavior which on the large scale is very similar to a more complex and realistic model with contact friction and ice-floe rotation.

  19. Chemical Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  20. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    PubMed

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  1. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized fashion and can design experiments to generate greater fitness in an accelerated time frame, thereby pushing the limits of what adaptive laboratory evolution can achieve. Copyright © 2017 American Society for Microbiology.

  2. Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1998-01-01

    Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.

  3. What Did We Think Could Be Learned About Earth From Lagrange Point Observations?

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren

    2011-01-01

    The scientific excitement surrounding the NASA Lagrange point mission Triana, now called DSCOVR, tended to be forgotten in the brouhaha over other aspects of the mission. Yet a small band of scientists in 1998 got very excited about the possibilities offered by the Lagrange-point perspective on our planet. As one of the original co-investigators on the Triana mission, I witnessed that scientific excitement firsthand. I will bring to life the early period, circa 1998 to 2000, and share the reasons that we thought the Lagrange-point perspective on Earth would be scientifically revolutionary.

  4. Matching visual and nonvisual signals: evidence for a mechanism to discount optic flow during locomotion

    NASA Astrophysics Data System (ADS)

    Thurrell, Adrian; Pelah, Adar

    2005-03-01

    We report on recent experiments to investigate the Arthrovisual Locomotor Effect (ALE), a mechanism based on non-visual signals postulated to discount or remove the self-generated visual motion signals during locomotion. It is shown that perceptual matches made by standing subjects to a constant motion optic flow stimulus that is viewed while walking on a treadmill are linearly reduced by walking speed, a measure of the reported ALE. The degree of reduction in perceived speed depends on the similarity of the motor activity to natural locomotion, thus for the four activities tested, ALE strength is ranked as follows: Walking > Cycling > Hand Pedalling > Finger Tapping = 0. Other variations and important controls for the ALE are described.

  5. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  6. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method.

    PubMed

    He, Yunfan; Lin, Maohui; Wang, Xuecen; Guan, Jingyan; Dong, Ziqing; Feng, Lu; Xing, Malcolm; Feng, Chuanbo; Li, Xiaojian

    2018-05-26

    Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared to those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared to those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  7. Improved Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex Difference

    PubMed Central

    Yao, Wei; Evan Lay, Yu-An; Kot, Alexander; Liu, Ruiwu; Zhang, Hongliang; Chen, Haiyan; Lam, Kit; Lane, Nancy E.

    2017-01-01

    Mesenchymal stem cell (MSC) transplantation has been tested in animal and clinical fracture studies. We have developed a bone-seeking compound, LLP2A-Alendronate (LLP2A-Ale) that augments MSC homing to bone. The purpose of this study was to determine whether treatment with LLP2A-Ale or a combination of LLP2A-Ale and MSCs would accelerate bone healing in a mouse closed fracture model and if the effects are sex dependent. A right mid-femur fracture was induced in two-month-old osterix-mCherry (Osx-mCherry) male and female reporter mice. The mice were subsequently treated with placebo, LLP2A-Ale (500 µg/kg, IV), MSCs derived from wild-type female Osx-mCherry adipose tissue (ADSC, 3 × 105, IV) or ADSC + LLP2A-Ale. In phosphate buffered saline-treated mice, females had higher systemic and surface-based bone formation than males. However, male mice formed a larger callus and had higher volumetric bone mineral density and bone strength than females. LLP2A-Ale treatment increased exogenous MSC homing to the fracture gaps, enhanced incorporation of these cells into callus formation, and stimulated endochondral bone formation. Additionally, higher engraftment of exogenous MSCs in fracture gaps seemed to contribute to overall fracture healing and improved bone strength. These effects were sex-independent. There was a sex-difference in the rate of fracture healing. ADSC and LLP2A-Ale combination treatment was superior to on callus formation, which was independent of sex. Increased mobilization of exogenous MSCs to fracture sites accelerated endochondral bone formation and enhanced bone tissue regeneration. PMID:27334693

  8. Diffraction-limited Mid-infrared Integral Field Spectroscopy of Io's Volcanic Activity with ALES on the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Skrutskie, Michael F.; de Kleer, Katherine R.; Stone, Jordan; Conrad, Al; Davies, Ashley; de Pater, Imke; Leisenring, Jarron; Hinz, Philip; Skemer, Andrew; Veillet, Christian; Woodward, Charles E.; Ertel, Steve; Spalding, Eckhart

    2017-10-01

    The Arizona Lenslet for Exoplanet Spectroscopy (ALES) is an enhancement to the Large Binocular Telescope's mid-infrared imager, LMIRcam, that permits low-resolution (R~20) spectroscopy between 2.8 and 4.2 μm of every diffraction-limited resolution element in a 2.5"x2.5" field-of-view on a 2048x2048 HAWAII-2RG 5.2 μm-cutoff array. The 1" disk of Io, dotted with powerful self-luminous volcanic eruptions, provides an ideal target for ALES, where the single 8.4-meter aperture diffraction-limited scale for Io at opposition ranges from 240 kilometers (80 milliarcseconds) at 2.8 μm to 360 kilometers (120 milliarcseconds) at 4.2 μm. ALES provides the capability to assess the color temperature of each volcanic thermal emission site as well as map broadband absorbers such as SO2 frost. A monitoring campaign in the Spring 2017 semester provided two global snapshots of Io's volcanic activity with ALES as well as characterization of a new brightening episode at Loki Patera over four epochs between January and May 2017.

  9. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems.

    PubMed

    Rosen, Joseph; Kelner, Roy

    2014-11-17

    The Lagrange invariant is a well-known law for optical imaging systems formulated in the frame of ray optics. In this study, we reformulate this law in terms of wave optics and relate it to the resolution limits of various imaging systems. Furthermore, this modified Lagrange invariant is generalized for imaging along the z axis, resulting with the axial Lagrange invariant which can be used to analyze the axial resolution of various imaging systems. To demonstrate the effectiveness of the theory, analysis of the lateral and the axial imaging resolutions is provided for Fresnel incoherent correlation holography (FINCH) systems.

  10. Morning sickness

    MedlinePlus

    ... Bland foods, such as gelatin, frozen desserts, broth, ginger ale, and saltine crackers, also soothe the stomach. ... your stomach does not get too full. Seltzer, ginger ale, or other sparkling waters may help control ...

  11. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  12. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  13. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  14. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  15. Eulerian formulation of the interacting particle representation model of homogeneous turbulence

    DOE PAGES

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2016-10-21

    The Interacting Particle Representation Model (IPRM) of homogeneous turbulence incorporates information about the morphology of turbulent structures within the con nes of a one-point model. In the original formulation [Kassinos & Reynolds, Center for Turbulence Research: Annual Research Briefs, 31{51, (1996)], the IPRM was developed in a Lagrangian setting by evolving second moments of velocity conditional on a given gradient vector. In the present work, the IPRM is re-formulated in an Eulerian framework and evolution equations are developed for the marginal PDFs. Eulerian methods avoid the issues associated with statistical estimators used by Lagrangian approaches, such as slow convergence. Amore » specific emphasis of this work is to use the IPRM to examine the long time evolution of homogeneous turbulence. We first describe the derivation of the marginal PDF in spherical coordinates, which reduces the number of independent variables and the cost associated with Eulerian simulations of PDF models. Next, a numerical method based on radial basis functions over a spherical domain is adapted to the IPRM. Finally, results obtained with the new Eulerian solution method are thoroughly analyzed. The sensitivity of the Eulerian simulations to parameters of the numerical scheme, such as the size of the time step and the shape parameter of the radial basis functions, is examined. A comparison between Eulerian and Lagrangian simulations is performed to discern the capabilities of each of the methods. Finally, a linear stability analysis based on the eigenvalues of the discrete differential operators is carried out for both the new Eulerian solution method and the original Lagrangian approach.« less

  16. `Skinny Milky Way please', says Sagittarius

    NASA Astrophysics Data System (ADS)

    Gibbons, S. L. J.; Belokurov, V.; Evans, N. W.

    2014-12-01

    Motivated by recent observations of the Sagittarius stream, we devise a rapid algorithm to generate faithful representations of the centroids of stellar tidal streams formed in a disruption of a progenitor of an arbitrary mass in an arbitrary potential. Our method works by releasing swarms of test particles at the Lagrange points around the satellite and subsequently evolving them in a combined potential of the host and the progenitor. We stress that the action of the progenitor's gravity is crucial to making streams that look almost indistinguishable from the N-body realizations, as indeed ours do. The method is tested on mock stream data in three different Milky Way potentials with increasing complexity, and is shown to deliver unbiased inference on the Galactic mass distribution out to large radii. When applied to the observations of the Sagittarius stream, our model gives a natural explanation of the stream's apocentric distances and the differential orbital precession. We, therefore, provide a new independent measurement of the Galactic mass distribution beyond 50 kpc. The Sagittarius stream model favours a light Milky Way with the mass 4.1 ± 0.4 × 1011 M⊙ at 100 kpc, which can be extrapolated to 5.6 ± 1.2 × 1011 M⊙ at 200 kpc. Such a low mass for the Milky Way Galaxy is in good agreement with estimates from the kinematics of halo stars and from the satellite galaxies (once Leo I is removed from the sample). It entirely removes the `Too Big To Fail Problem'.

  17. Active Learning in Engineering Education: a (re)introduction

    NASA Astrophysics Data System (ADS)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network 'Active Learning in Engineering Education' (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners construct their knowledge based on meaningful activities and knowledge. In 2014, the steering committee of the ALE network reinforced the need to discuss the meaning of Active Learning and that was the base for this proposal for a special issue. More than 40 submissions were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can be increasingly found in indexed journals.

  18. Apocynum venetum Attenuates Acetaminophen-Induced Liver Injury in Mice.

    PubMed

    Xie, Wenyan; Chen, Chen; Jiang, Zhihui; Wang, Jian; Melzig, Matthias F; Zhang, Xiaoying

    2015-01-01

    Apocynum venetum L. (A. venetum) has long been used in oriental folk medicine for the treatment of some liver diseases; however, the underlying mechanisms remain to be fully elucidated. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. In this study, we investigated the potential protective effect of A. venetum leaf extract (ALE) against APAP-induced hepatotoxicity. Mice were intragastrically administered with ALE once daily for 3 consecutive days prior to receiving a single intraperitoneal injection of APAP. The APAP group showed severe liver injury characterized by the noticeable fluctuations in the following parameters: serum aminotransferases; hepatic malondialdehyde (MDA), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione (GSH). These liver damages induced by APAP were significantly attenuated by ALE pretreatments. A collective analysis of histopathological examination, DNA laddering and western blot for caspase-3 and cytochrome c indicated that the ALE is also capable of preventing APAP-induced hepatocyte death. Hyperoside, isoquercitrin and their derivatives have been identified as the major components of ALE using HPLC-MS/MS. Taken together, the A. venetum possesses hepatoprotective effects partially due to its anti-oxidant action.

  19. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  20. Edgeworth streaming model for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael; Haugg, Thomas

    2015-09-01

    We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.

  1. Integración automatizada de las ecuaciones de Lagrange en el movimiento orbital.

    NASA Astrophysics Data System (ADS)

    Abad, A.; San Juan, J. F.

    The new techniques of algebraic manipulation, especially the Poisson Series Processor, permit the analytical integration of the more and more complex problems of celestial mechanics. The authors are developing a new Poisson Series Processor, PSPC, and they use it to solve the Lagrange equation of the orbital motion. They integrate the Lagrange equation by using the stroboscopic method, and apply it to the main problem of the artificial satellite theory.

  2. Evaluation of Coastal Sea Level from Jason-2 Altimetry Offshore Hong Kong

    NASA Astrophysics Data System (ADS)

    Birol, F.; Xu, X. Y., , Dr; Cazenave, A. A.

    2017-12-01

    In the recent years, several coastal altimetry products of Jason-2 mission have been distributed by different agencies, the most advance ones of which are XTRACK, PISTACH and ALES. Each product represents extraordinary endeavors on some aspects of retracking or advanced geophysical corrections, and each has its advantage. The motivation of this presentation is to evaluate these products in order to refine the sea level measurements at the coast. Three retrackers: MLE4, MLE3 and ALES are focused on. Within 20km coastward, neither GDR nor ALES readily provides sea level anomaly (SLA) measurements, so we recomputed the 20Hz GDR and ALES SLA from the raw data, adopting auxiliary information (such as waveform classification and wet tropospheric delay) from PISTACH. The region of interest is track #153 of the Jason-2 satellite (offshore Hong Kong, China), and the altimetry products are processed over seven years (2008-2015, cycles 1-252). The coastline offshore Hong Kong is rather complicated and we feel that it can be a good indicator of the performance of coastal altimetry under undesirable coast conditions. We computed the bias and noise level of ALES, MLE3 and MLE4 SLA over open ocean and in the coastal zone (within 10km or 5km coast-ward). The results showed that, after outlier-editing, ALES performs better than MLE4 and MLE3 both in terms of noise level and uncertainty in sea level trend estimation. We validated the coastal altimetry-based SLA by comparing with data from the Hong Kong tide gauge (located 10km across-track). An interesting , but still preliminary, result is that the computed sea level trend within 5 km from the coast is significantly larger than the trend estimated at larger distances from the coast. Keywords: Jason-2, Hong Kong coast, ALES, MLE3, MLE4

  3. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  4. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH

    NASA Astrophysics Data System (ADS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-08-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  5. Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.

    PubMed

    Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P

    2016-09-09

    The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.

  6. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  7. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  8. Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder

    DOE PAGES

    Morgan, B. E.; Greenough, J. A.

    2015-04-08

    Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the timemore » at which L becomes resolved on the computational mesh. As a result, it is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.« less

  9. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  10. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation.

    PubMed

    Eickhoff, Simon B; Nichols, Thomas E; Laird, Angela R; Hoffstaedter, Felix; Amunts, Katrin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Claudia R

    2016-08-15

    Given the increasing number of neuroimaging publications, the automated knowledge extraction on brain-behavior associations by quantitative meta-analyses has become a highly important and rapidly growing field of research. Among several methods to perform coordinate-based neuroimaging meta-analyses, Activation Likelihood Estimation (ALE) has been widely adopted. In this paper, we addressed two pressing questions related to ALE meta-analysis: i) Which thresholding method is most appropriate to perform statistical inference? ii) Which sample size, i.e., number of experiments, is needed to perform robust meta-analyses? We provided quantitative answers to these questions by simulating more than 120,000 meta-analysis datasets using empirical parameters (i.e., number of subjects, number of reported foci, distribution of activation foci) derived from the BrainMap database. This allowed to characterize the behavior of ALE analyses, to derive first power estimates for neuroimaging meta-analyses, and to thus formulate recommendations for future ALE studies. We could show as a first consequence that cluster-level family-wise error (FWE) correction represents the most appropriate method for statistical inference, while voxel-level FWE correction is valid but more conservative. In contrast, uncorrected inference and false-discovery rate correction should be avoided. As a second consequence, researchers should aim to include at least 20 experiments into an ALE meta-analysis to achieve sufficient power for moderate effects. We would like to note, though, that these calculations and recommendations are specific to ALE and may not be extrapolated to other approaches for (neuroimaging) meta-analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Behavior, Sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation

    PubMed Central

    Eickhoff, Simon B.; Nichols, Thomas E.; Laird, Angela R.; Hoffstaedter, Felix; Amunts, Katrin; Fox, Peter T.

    2016-01-01

    Given the increasing number of neuroimaging publications, the automated knowledge extraction on brain-behavior associations by quantitative meta-analyses has become a highly important and rapidly growing field of research. Among several methods to perform coordinate-based neuroimaging meta-analyses, Activation Likelihood Estimation (ALE) has been widely adopted. In this paper, we addressed two pressing questions related to ALE meta-analysis: i) Which thresholding method is most appropriate to perform statistical inference? ii) Which sample size, i.e., number of experiments, is needed to perform robust meta-analyses? We provided quantitative answers to these questions by simulating more than 120,000 meta-analysis datasets using empirical parameters (i.e., number of subjects, number of reported foci, distribution of activation foci) derived from the BrainMap database. This allowed to characterize the behavior of ALE analyses, to derive first power estimates for neuroimaging meta-analyses, and to thus formulate recommendations for future ALE studies. We could show as a first consequence that cluster-level family-wise error (FWE) correction represents the most appropriate method for statistical inference, while voxel-level FWE correction is valid but more conservative. In contrast, uncorrected inference and false-discovery rate correction should be avoided. As a second consequence, researchers should aim to include at least 20 experiments into an ALE meta-analysis to achieve sufficient power for moderate effects. We would like to note, though, that these calculations and recommendations are specific to ALE and may not be extrapolated to other approaches for (neuroimaging) meta-analysis. PMID:27179606

  12. North American CO2 fluxes for 2007-2015 from NOAA's CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North American CO2 fluxes from CT-L. Furthermore, our derived CO2 flux anomalies over North America corresponding to the 2012 North American drought and the 2015 El Niño are larger than derived by the CarbonTracker. They also indicate different responses of ecosystems to those anomalous climatic events.

  13. 1. EXTERIOR VIEW OF 209 WARE STREET LOOKING SOUTH. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF 209 WARE STREET LOOKING SOUTH. THIS STRUCTURE WAS ONE OF APPROXIMATELY SEVENTEEN DUPLEXES BUILT AS THE ORIGINAL WORKER HOUSING FOR THE LaGRANGE COTTON MILLS, LATER KNOWN AS CALUMET MILL. LaGRANGE MILLS (1888-89) WAS THE FIRST COTTON MILL IN LaGRANGE. NOTE THE GABLE-ON-HIP ROOF FORM AND TWO IDENTICAL STRUCTURES VISIBLE TO THE LEFT. - 209 Ware Street (House), 209 Ware Street, La Grange, Troup County, GA

  14. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  15. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  16. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds

    DTIC Science & Technology

    2010-09-30

    simulating violent free - surface flows , and show the importance of wave breaking in energy transport...using Eulerian simulation . 3 IMPACT/APPLICATION This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that...several Eulerian and Lagrangian methods for free - surface turbulence and wave simulation . The WIND–SNOW is used to simulate 1 Report

  17. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    DTIC Science & Technology

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  18. Investigating flavour characteristics of British ale yeasts: techniques, resources and opportunities for innovation

    PubMed Central

    Parker, Neva; James, Steve; Dicks, Jo; Bond, Chris; Nueno-Palop, Carmen; White, Chris; Roberts, Ian N

    2015-01-01

    Five British ale yeast strains were subjected to flavour profiling under brewery fermentation conditions in which all other brewing parameters were kept constant. Significant variation was observed in the timing and quantity of flavour-related chemicals produced. Genetic tests showed no evidence of hybrid origins in any of the strains, including one strain previously reported as a possible hybrid of Saccharomyces cerevisiae and S. bayanus. Variation maintained in historical S. cerevisiae ale yeast collections is highlighted as a potential source of novelty in innovative strain improvement for bioflavour production. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25361168

  19. Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, G. M.

    2002-01-01

    We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.

  20. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors.

    PubMed

    Negre-Salvayre, A; Coatrieux, C; Ingueneau, C; Salvayre, R

    2008-01-01

    Reactive carbonyl compounds (RCCs) formed during lipid peroxidation and sugar glycoxidation, namely Advanced lipid peroxidation end products (ALEs) and Advanced Glycation end products (AGEs), accumulate with ageing and oxidative stress-related diseases, such as atherosclerosis, diabetes or neurodegenerative diseases. RCCs induce the 'carbonyl stress' characterized by the formation of adducts and cross-links on proteins, which progressively leads to impaired protein function and damages in all tissues, and pathological consequences including cell dysfunction, inflammatory response and apoptosis. The prevention of carbonyl stress involves the use of free radical scavengers and antioxidants that prevent the generation of lipid peroxidation products, but are inefficient on pre-formed RCCs. Conversely, carbonyl scavengers prevent carbonyl stress by inhibiting the formation of protein cross-links. While a large variety of AGE inhibitors has been developed, only few carbonyl scavengers have been tested on ALE-mediated effects. This review summarizes the signalling properties of ALEs and ALE-precursors, their role in the pathogenesis of oxidative stress-associated diseases, and the different agents efficient in neutralizing ALEs effects in vitro and in vivo. The generation of drugs sharing both antioxidant and carbonyl scavenger properties represents a new therapeutic challenge in the treatment of carbonyl stress-associated diseases.

  1. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats.

    PubMed

    El-Boshy, Mohamed; Ashshi, Ahmad; Gaith, Mazen; Qusty, Naeem; Bokhary, Thalat; AlTaweel, Nagwa; Abdelhady, Mohamed

    2017-05-01

    Our objective was to explore the protective effect of artichoke leaf extract (ALE) against cadmium (Cd) toxicity-induced oxidative organ damage in rats. Male albino Wistar rats were divided into four equal groups of eight animals each. The first group was assigned as a control. Groups 2-4 were orally administered with ALE (300 mg/kg bw), Cd (CdCl 2 , 100 mg/L drinking water), and ALE plus Cd, respectively, daily for 4 weeks. After treatment with Cd, the liver and kidney malondialdehyde (MDA) increased significantly compared with the control rats. The sera interleukin (IL)-1β, tumor necrosis factor (TNF-α), and IL-10, liver transaminase, urea, creatinine, and peripheral neutrophil count were significantly increased in Cd-exposed rats compared to the control group. The reduced glutathione (GSH), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) decreased in the liver and kidney in Cd-exposed group. In combination treatment, Cd and ALE significantly improved immune response, an antioxidant system, and hepatorenal function with a significant decline in MDA. In conclusion, ALE ameliorates the immunosuppressive and hepatorenal oxidative injury stimulated by Cd in rats. These results suggest that artichoke has shown promising effects against adverse effects of Cd toxicity.

  2. Inhibitory Effect and Mechanism of Arctium lappa Extract on NLRP3 Inflammasome Activation.

    PubMed

    Kim, Young-Kyu; Koppula, Sushruta; Shim, Do-Wan; In, Eun-Jung; Kwak, Su-Bin; Kim, Myong-Ki; Yu, Sang-Hyeun; Lee, Kwang-Ho; Kang, Tae-Bong

    2018-01-01

    Arctium lappa (A. lappa) , Compositae, is considered a potential source of nutrition and is used as a traditional medicine in East Asian countries for centuries. Although several studies have shown its biological activities as an anti-inflammatory agent, there have been no reports on A. lappa with regard to regulatory role in inflammasome activation. The purpose of this study was to investigate the inhibitory effects of A. lappa extract (ALE) on NLRP3 inflammasome activation and explore the underlying mechanisms. We found that ALE inhibited IL-1 β secretion from NLRP3 inflammasome activated bone marrow derived macrophages but not that secreted by NLRC4 and AIM2 inflammasomes activation. Mechanistic studies revealed that ALE suppressed the ATPase activity of purified NLRP3 and reduced mitochondrial reactive oxygen species (mROS) generated during NLRP3 activation. Therefore, the inhibitory effect of ALE on NLRP3 inflammasome might be attributed to its ability to inhibit the NLRP3 ATPase function and attenuated the mROS during inflammasome activation. In addition, ALE significantly reduced the LPS-induced increase of plasma IL-1 β in mouse peritonitis model. These results provide evidence of novel anti-inflammatory mechanisms of A. lappa , which might be used for therapeutic applications in the treatment of NLRP3 inflammasome-associated inflammatory disorders.

  3. Inhibitory Effect and Mechanism of Arctium lappa Extract on NLRP3 Inflammasome Activation

    PubMed Central

    Kim, Young-Kyu; Koppula, Sushruta; Shim, Do-Wan; In, Eun-Jung; Kwak, Su-Bin; Yu, Sang-Hyeun

    2018-01-01

    Arctium lappa (A. lappa), Compositae, is considered a potential source of nutrition and is used as a traditional medicine in East Asian countries for centuries. Although several studies have shown its biological activities as an anti-inflammatory agent, there have been no reports on A. lappa with regard to regulatory role in inflammasome activation. The purpose of this study was to investigate the inhibitory effects of A. lappa extract (ALE) on NLRP3 inflammasome activation and explore the underlying mechanisms. We found that ALE inhibited IL-1β secretion from NLRP3 inflammasome activated bone marrow derived macrophages but not that secreted by NLRC4 and AIM2 inflammasomes activation. Mechanistic studies revealed that ALE suppressed the ATPase activity of purified NLRP3 and reduced mitochondrial reactive oxygen species (mROS) generated during NLRP3 activation. Therefore, the inhibitory effect of ALE on NLRP3 inflammasome might be attributed to its ability to inhibit the NLRP3 ATPase function and attenuated the mROS during inflammasome activation. In addition, ALE significantly reduced the LPS-induced increase of plasma IL-1β in mouse peritonitis model. These results provide evidence of novel anti-inflammatory mechanisms of A. lappa, which might be used for therapeutic applications in the treatment of NLRP3 inflammasome-associated inflammatory disorders. PMID:29576797

  4. 1. STREETSCAPE VIEW OF 208 VINE STREET (FIRST HOUSE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. STREETSCAPE VIEW OF 208 VINE STREET (FIRST HOUSE ON RIGHT) LOOKING WEST. THIS STRUCTURE WAS ONE OF APPROXIMATELY SEVENTEEN DUPLEXES BUILT AS THE ORIGINAL WORKER HOUSING FOR THE LaGRANGE COTTON MILLS, LATER KNOWN AS CALUMET MILL. LaGRANGE MILLS (1888-89) WAS THE FIRST COTTON MILL IN LaGRANGE. NOTE THE GABLE-ON-HIP ROOF FORM AND IDENTICAL STRUCTURES FACING EACH OTHER ALONG BOTH SIDES OF THE NARROW STREET. - 208 Vine Street (House), 208 Vine Street, La Grange, Troup County, GA

  5. Ice Accretion Modeling using an Eulerian Approach for Droplet Impingement

    NASA Technical Reports Server (NTRS)

    Kim, Joe Woong; Garza, Dennis P.; Sankar, Lakshmi N.; Kreeger, Richard E.

    2012-01-01

    A three-dimensional Eulerian analysis has been developed for modeling droplet impingement on lifting bodes. The Eulerian model solves the conservation equations of mass and momentum to obtain the droplet flow field properties on the same mesh used in CFD simulations. For complex configurations such as a full rotorcraft, the Eulerian approach is more efficient because the Lagrangian approach would require a significant amount of seeding for accurate estimates of collection efficiency. Simulations are done for various benchmark cases such as NACA0012 airfoil, MS317 airfoil and oscillating SC2110 airfoil to illustrate its use. The present results are compared with results from the Lagrangian approach used in an industry standard analysis called LEWICE.

  6. Managing Radiation Therapy Side Effects: What to Do When You Have Loose Stools (Diarrhea)

    MedlinePlus

    ... Drink lots of clear liquids, such as water, ginger ale, and clear soup. n Most people who ... beef Drinks (clear liquids) • Clear soda, such as ginger ale • Cranberry or grape juice • Oral rehydration solution ...

  7. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung Shingyu, E-mail: masyleung@ust.h; Qian Jianliang, E-mail: qian@math.msu.ed

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying themore » FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.« less

  8. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Leung, Shingyu; Qian, Jianliang

    2010-11-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schrödinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in [12]. In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  9. The neuronal correlates of intranasal trigeminal function – An ALE meta-analysis of human functional brain imaging data

    PubMed Central

    Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N.

    2009-01-01

    Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO2), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices – a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO2 stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing. PMID:19913573

  10. Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity.

    PubMed

    Holle, Ann Van; Machado, Manuela D; Soares, Eduardo V

    2012-02-01

    Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.

  11. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.

    PubMed

    Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich

    2004-09-01

    Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.

  12. A Pilot Study for Applying an Extravehicular Activity Exercise Prebreathe Protocol to the International Space Station

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Johnson, Anyika N.; Lee, Stuart M. C.; Gernhardt, Michael; Schneider, Suzanne M.; Foster, Philip P.

    2000-01-01

    Decompression sickness (DCS) is a serious risk to astronauts performing extravehicular activity (EVA). To reduce this risk, the addition of ten minutes of moderate exercise (75% VO2pk) during prebreathe has been shown to decrease the total prebreathe time from 4 to 2 hours and to decrease the incidence of DCS. The overall purpose of this pilot study was to develop an exercise protocol using flight hardware and an in-flight physical fitness cycle test to perform prebreathe exercise before an EVA. Eleven subjects volunteered to participate in this study. The first objective of this study was to compare the steady-state heart rate (HR) and oxygen consumption (VO2) from a submaximal arm and leg exercise (ALE) session with those predicted from a maximal ALE test. The second objective was to compare the steady-state HR and V02 from a submaximal elastic tube and leg exercise (TLE) session with those predicted from the maximal ALE test. The third objective involved a comparison of the maximal ALE test with a maximal leg-only (LE) test to conform to the in- flight fitness assessment test. The 75% VO2pk target HR from the LE test was significantly less than the target HR from the ALE test. Prescribing exercise using data from the maximal ALE test resulted in the measured submaximal values being higher than predicted VO2 and HR. The results of this pilot study suggest that elastic tubing is valid during EVA prebreathe as a method of arm exercise with the flight leg ergometer and it is recommended that prebreathe countermeasure exercise protocol incorporate this method.

  13. Épidémiologie descriptive de la carcinose péritonéale d’origine digestive à l’Hôpital Universitaire Ibn Rochd de Casablanca (2008-2010)

    PubMed Central

    Benlahfid, Mohammed; Erguibi, Driss; Elhattabi, Khalid; Bensardi, Fatimazahra; Khaiz, Driss; Lafriekh, Rachid; Rebroub, Dounia; Fadil, Abdelaziz; Aboussaouira, Touria

    2017-01-01

    Introduction La carcinose péritonéale est une diffusion inéluctablement terminale chez les patients atteints de cancers abdominaux. C'est le signe d'une maladie avancée ou d'une ré-évolution le plus souvent associée à un pronostic sombre. Environ deux tiers de l'ensemble des carcinoses péritonéales sont d'origine digestive et un tiers d'origine non digestive. Méthodes Il s'agit d'une étude rétrospective descriptive menée entre janvier 2008 et décembre 2010, dans le but de dresser le profil épidémiologique et les facteurs de risques de la carcinose péritonéale d'origine digestive au Centre Hospitalier Universitaire de Casablanca. Résultats Quarante-sept cas de carcinose péritonéale d'origine digestive ont été recensées (22 femmes, 25 hommes) ce qui représente une prévalence de 6.19% et un nombre moyen de 15.6 cas par an. L'âge était le facteur de risque essentiel dans notre série avec un âge moyen de 55.55 ans ±12.32. Les antécédents familiaux présentaient aussi un facteur de risque à prendre en considération. Conclusion A travers notre étude, nous avons conclus que les principaux facteurs de risque de la carcinose péritonéale d'origine digestive au Centre Hospitalier Universitaire Ibn Rochd Casablanca, sont l'âge et les antécédents familiaux. PMID:28979636

  14. Modeling and Numerical Challenges in Eulerian-Lagrangian Computations of Shock-driven Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Diggs, Angela; Balachandar, Sivaramakrishnan

    2015-06-01

    The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.

  15. Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2018-01-01

    The theoretical foundation of acoustic radiation pressure in plane wave beams is reexamined. It is shown from finite deformation theory and the Boltzmann-Ehrenfest Adiabatic Principle that the Brillouin stress tensor (BST) is the radiation stress in Lagrangian coordinates (not Eulerian coordinates) and that the terms in the BST are not the momentum flux density and mean excess Eulerian stress but are simply contributions to the variation in the wave oscillation period resulting from changes in path length and true wave velocity, respectively, from virtual variations in the strain. It is shown that the radiation stress in Eulerian coordinates is the mean Cauchy stress (not the momentum flux density, as commonly assumed) and that Langevin's second relation does not yield an assessment of the mean Eulerian pressure, since the enthalpy used in the traditional derivations is a function of the thermodynamic tensions - not the Eulerian pressure. It is shown that the transformation between Lagrangian and Eulerian quantities cannot be obtained from the commonly-used expansion of one of the quantities in terms of the particle displacement, since the expansion provides only the difference between the value of the quantity at two different points in Cartesian space separated by the displacement. The proper transformation is obtained only by employing the transformation coefficients of finite deformation theory, which are defined in terms of the displacement gradients. Finite deformation theory leads to the result that for laterally unconfined, plane waves the Lagrangian and Eulerian radiation pressures are equal with the value (1/4)(2K) along the direction of wave propagation, where (K) is the mean kinetic energy density, and zero in directions normal to the propagation direction. This is contrary to the Langevin result that the Lagrangian radiation pressure in the propagation direction is equal to (2K) and the BST result that the Eulerian radiation pressure in that direction is the momentum flux density.

  16. 47 CFR 87.149 - Special requirements for automatic link establishment (ALE).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for automatic link establishment (ALE). 87.149 Section 87.149 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Technical Requirements § 87.149 Special requirements...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  18. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.

    PubMed

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-09-29

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  19. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    PubMed Central

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-01-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  20. Phenotypic regional fMRI activation patterns during memory encoding in MCI and AD

    PubMed Central

    Browndyke, Jeffrey N.; Giovanello, Kelly; Petrella, Jeffrey; Hayden, Kathleen; Chiba-Falek, Ornit; Tucker, Karen A.; Burke, James R.; Welsh-Bohmer, Kathleen A.

    2014-01-01

    Background Reliable blood-oxygen-level-dependent (BOLD) fMRI phenotypic biomarkers of Alzheimer's disease (AD) or mild cognitive impairment (MCI) are likely to emerge only from a systematic, quantitative, and aggregate examination of the functional neuroimaging research literature. Methods A series of random-effects, activation likelihood estimation (ALE) meta-analyses were conducted on studies of episodic memory encoding operations in AD and MCI samples relative to normal controls. ALE analyses were based upon a thorough literature search for all task-based functional neuroimaging studies in AD and MCI published up to January 2010. Analyses covered 16 fMRI studies, which yielded 144 distinct foci for ALE meta-analysis. Results ALE results indicated several regional task-based BOLD consistencies in MCI and AD patients relative to normal controls across the aggregate BOLD functional neuroimaging research literature. Patients with AD and those at significant risk (MCI) showed statistically significant consistent activation differences during episodic memory encoding in the medial temporal lobe (MTL), specifically parahippocampal gyrus, as well superior frontal gyrus, precuneus, and cuneus, relative to normal controls. Conclusions ALE consistencies broadly support the presence of frontal compensatory activity, MTL activity alteration, and posterior midline “default mode” hyperactivation during episodic memory encoding attempts in the diseased or prospective pre-disease condition. Taken together these robust commonalities may form the foundation for a task-based fMRI phenotype of memory encoding in AD. PMID:22841497

  1. Topology of two-dimensional turbulent flows of dust and gas

    NASA Astrophysics Data System (ADS)

    Mitra, Dhrubaditya; Perlekar, Prasad

    2018-04-01

    We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, St<1 . We solve for the particles using both a Lagrangian and an Eulerian approach (with a shock-capturing scheme). In the latter, the particles are described by a dust-density field and a dust-velocity field. We find the following: the dust-density field in our Eulerian simulations has the same correlation dimension d2 as obtained from the clustering of particles in the Lagrangian simulations for St<1 ; the cumulative probability distribution function of the dust density coarse grained over a scale r , in the inertial range, has a left tail with a power-law falloff indicating the presence of voids; the energy spectrum of the dust velocity has a power-law range with an exponent that is the same as the gas-velocity spectrum except at very high Fourier modes; the compressibility of the dust-velocity field is proportional to St2. We quantify the topological properties of the dust velocity and the gas velocity through their gradient matrices, called A and B , respectively. Our DNS confirms that the statistics of topological properties of B are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust density. We use this correspondence to study the statistics of topological properties of A in the Lagrangian frame from our Eulerian simulations by calculating density-weighted probability distribution functions. We further find that in the Lagrangian frame, the mean value of the trace of A is negative and its magnitude increases with St approximately as exp(-C /St) with a constant C ≈0.1 . The statistical distribution of different topological structures that appear in the dust flow is different in Eulerian and Lagrangian (density-weighted Eulerian) cases, particularly for St close to unity. In both of these cases, for small St the topological structures have close to zero divergence and are either vortical (elliptic) or strain dominated (hyperbolic, saddle). As St increases, the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the Lagrangian (density-weighted Eulerian) case has less outward spirals and more converging saddles. Inward spirals are the least probable topological structures in both cases.

  2. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    NASA Astrophysics Data System (ADS)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  3. Scale-Limited Lagrange Stability and Finite-Time Synchronization for Memristive Recurrent Neural Networks on Time Scales.

    PubMed

    Xiao, Qiang; Zeng, Zhigang

    2017-10-01

    The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.

  4. Analytical Dynamics and Nonrigid Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.

  5. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids

    PubMed Central

    Eisenberg, Bob; Hyon, YunKyong; Liu, Chun

    2010-01-01

    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton’s least action and Rayleigh’s dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an “extra layer” of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler–Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new component is added to the energy or dissipation, the Euler–Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler–Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson–Nernst–Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary “binding” in the channel, and the eventual accumulation of salts in “unstirred layers” near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions. PMID:20849161

  6. Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2013-01-01

    This paper presents the very large eddy simulations (VLES) of a Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar DWFDF method, in which DWFDF is defined as the density weighted time filtered fine grained probability density function. The flow field is calculated by using the time filtered compressible Navier-Stokes equations (TFNS) with nonlinear subscale turbulence models, and when the Eulerian scalar DWFDF method is invoked, the energy and species mass fractions are calculated by solving the equation of DWFDF. A nonlinear subscale model for closing the convection term of the Eulerian scalar DWFDF equation is used and will be briefly described in this paper. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar DWFDF method in both improving the simulation quality and maintaining economic computing cost are observed.

  7. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1991-01-01

    An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.

  8. Getting to L1 the Hard Way: Triana's Launch Options

    NASA Technical Reports Server (NTRS)

    Houghton, Martin B.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Over the past four years, NASA's Goddard Space Flight Center has built and tested the Triana observatory, which will be the first Earth observing science satellite to take advantage of the unique perspective offered by a Lissajous orbit about the first Earth-Sun Lagrange Point (L1). Triana was originally meant to fly on the U.S. Space Transportation System (a.k.a. the Space Shuttle but complications with the shuttle manifest have forced Triana into a 'wait and see' attitude. The observatory is currently being stored at NASA's Goddard Space Flight Center, where it waits for an appropriate launch opportunity to surface. To that end, several possible alternatives have been considered, including variations on the nominal shuttle deployment scenario, a high inclination Delta-type launch from Vandenberg Air Force Base, a Tsyklon class vehicle launched from Baikonur, Kazakhstan, and a ride on a French Ariane vehicle out of French Guiana into a somewhat arbitrary geostationary transfer orbit (GTO). This paper chronicles and outlines the pros and cons of how each of these opportunities could be used to send Triana on its way to L1.

  9. Getting to L1 the Hard Way: Triana's Launch Options

    NASA Technical Reports Server (NTRS)

    Houghton, Martin B.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Over the past four years, NASA's Goddard Space Flight Center has built and tested the Triana observatory, which will be the first Earth observing science satellite to take advantage of the unique perspective offered by a Lissajous orbit about the first Earth-Sun Lagrange Point (L1). Triana was originally meant to fly on the U.S. Space Transportation System (a.k.a. the Space Shuttle), but complications with the shuttle manifest have forced Triana into a "wait and see" attitude. The observatory is currently being stored at NASA's Goddard Space Flight Center, where it waits for an appropriate launch opportunity to materialize. To that end, several possible alternatives have been considered, including variations on the nominal shuttle deployment scenario, a high inclination Delta-type launch from Vandenberg Air Force Base, a Tsyklon class vehicle launched from Baikonur, Kazakhstan, and a ride on a French Ariane vehicle out of French Guiana into a somewhat arbitrary geostationary transfer orbit (GTO). This paper chronicles and outlines the pros and cons of how each of these opportunities could be used to send Triana on its way to L1.

  10. Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis

    PubMed Central

    Ng, Adeline S.L.; Kramer, Joel; Centurion, Alejandro; Dalmau, Josep; Huang, Eric; Cotter, Jennifer A.; Geschwind, Michael D.

    2016-01-01

    Autoantibodies associated with autoimmune limbic encephalitis (ALE) have been well-characterized, with intracellular neuronal antibodies being less responsive to immunotherapy than antibodies to cell surface antigens. Adenylate kinase 5 (AK5) is a nucleoside monophosphate kinase vital for neuronal-specific metabolism and is located intracellularly in the cytosol and expressed exclusively in the brain. Antibodies to AK5 had been previously identified but were not known to be associated with human disease prior to the report of two patients with AK5-related ALE (Tuzun et al., 2007). We present the complete clinical picture for one of these patients and the first reported neuropathology for AK5 ALE. PMID:26439959

  11. Euler-Lagrangian computation for estuarine hydrodynamics

    USGS Publications Warehouse

    Cheng, Ralph T.

    1983-01-01

    The transport of conservative and suspended matter in fluid flows is a phenomenon of Lagrangian nature because the process is usually convection dominant. Nearly all numerical investigations of such problems use an Eulerian formulation for the convenience that the computational grids are fixed in space and because the vast majority of field data are collected in an Eulerian reference frame. Several examples are given in this paper to illustrate a modeling approach which combines the advantages of both the Eulerian and Lagrangian computational techniques.

  12. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  13. Centrifuge Rotor Models: A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Ramakrishnan, Jayant; Nguyen, Louis H.

    2006-01-01

    A viewgraph presentation on centrifuge rotor models with a comparison using Euler-Lagrange and bond graph methods is shown. The topics include: 1) Objectives; 2) MOdeling Approach Comparisons; 3) Model Structures; and 4) Application.

  14. On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.; Olver, P. J.

    2018-04-01

    A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \

  15. Dirac structures in vakonomic mechanics

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Yoshimura, Hiroaki

    2015-08-01

    In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕T∗ Q) ×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ ⊕T∗ Q) ×V∗ in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T∗ Q ×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

  16. The Augmented Lagrange Multipliers Method for Matrix Completion from Corrupted Samplings with Application to Mixed Gaussian-Impulse Noise Removal

    PubMed Central

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu

    2014-01-01

    This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformatics, which mainly involves the problem of matrix completion and robust principal component analysis, namely recovering a low-rank matrix from an incomplete but accurate sampling subset of its entries and from an observed data matrix with an unknown fraction of its entries being arbitrarily corrupted, respectively. Inspired by these ideas, we consider the problem of recovering a low-rank matrix from an incomplete sampling subset of its entries with an unknown fraction of the samplings contaminated by arbitrary errors, which is defined as the problem of matrix completion from corrupted samplings and modeled as a convex optimization problem that minimizes a combination of the nuclear norm and the -norm in this paper. Meanwhile, we put forward a novel and effective algorithm called augmented Lagrange multipliers to exactly solve the problem. For mixed Gaussian-impulse noise removal, we regard it as the problem of matrix completion from corrupted samplings, and restore the noisy image following an impulse-detecting procedure. Compared with some existing methods for mixed noise removal, the recovery quality performance of our method is dominant if images possess low-rank features such as geometrically regular textures and similar structured contents; especially when the density of impulse noise is relatively high and the variance of Gaussian noise is small, our method can outperform the traditional methods significantly not only in the simultaneous removal of Gaussian noise and impulse noise, and the restoration ability for a low-rank image matrix, but also in the preservation of textures and details in the image. PMID:25248103

  17. An Efficient Algorithm for Perturbed Orbit Integration Combining Analytical Continuation and Modified Chebyshev Picard Iteration

    NASA Astrophysics Data System (ADS)

    Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.

    2014-09-01

    Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the MCPI significantly and will likely be useful for other applications where efficiently computed approximate orbit solutions are needed.

  18. The Neural Bases of Difficult Speech Comprehension and Speech Production: Two Activation Likelihood Estimation (ALE) Meta-Analyses

    ERIC Educational Resources Information Center

    Adank, Patti

    2012-01-01

    The role of speech production mechanisms in difficult speech comprehension is the subject of on-going debate in speech science. Two Activation Likelihood Estimation (ALE) analyses were conducted on neuroimaging studies investigating difficult speech comprehension or speech production. Meta-analysis 1 included 10 studies contrasting comprehension…

  19. Don't Panic! Closed String Tachyons in ALE Spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, Eva M

    2001-08-20

    We consider closed string tachyons localized at the fixed points of noncompact nonsupersymmetric orbifolds. We argue that tachyon condensation drives these orbifolds to flat space or supersymmetric ALE spaces. The decay proceeds via an expanding shell of dilaton gradients and curvature which interpolates between two regions of distinct angular geometry. The string coupling remains weak throughout. For small tachyon VEVs, evidence comes from quiver theories on D-branes probes, in which deformations by twisted couplings smoothly connect non-supersymmetric orbifolds to supersymmetric orbifolds of reduced order. For large tachyon VEVs, evidence comes from worldsheet RG flow and spacetime gravity. For C{sup 2}/Z{submore » n}, we exhibit infinite sequences of transitions producing SUSY ALE spaces via twisted closed string condensation from non-supersymmetric ALE spaces. In a T-dual description this provides a mechanism for creating NS5-branes via closed string tachyon condensation similar to the creation of D-branes via open string tachyon condensation. We also apply our results to recent duality conjectures involving fluxbranes and the type 0 string.« less

  20. Active life expectancy from annual follow-up data with missing responses.

    PubMed

    Izmirlian, G; Brock, D; Ferrucci, L; Phillips, C

    2000-03-01

    Active life expectancy (ALE) at a given age is defined as the expected remaining years free of disability. In this study, three categories of health status are defined according to the ability to perform activities of daily living independently. Several studies have used increment-decrement life tables to estimate ALE, without error analysis, from only a baseline and one follow-up interview. The present work conducts an individual-level covariate analysis using a three-state Markov chain model for multiple follow-up data. Using a logistic link, the model estimates single-year transition probabilities among states of health, accounting for missing interviews. This approach has the advantages of smoothing subsequent estimates and increased power by using all follow-ups. We compute ALE and total life expectancy from these estimated single-year transition probabilities. Variance estimates are computed using the delta method. Data from the Iowa Established Population for the Epidemiologic Study of the Elderly are used to test the effects of smoking on ALE on all 5-year age groups past 65 years, controlling for sex and education.

  1. Nephroprotective potential of artichoke leaves extract against gentamicin in rats: Antioxidant mechanisms.

    PubMed

    Khattab, Hala Ah; Wazzan, Maha Am; Al-Ahdab, Maha A

    2016-09-01

    Nephrotoxicity represents a major health problem. This study aims to determine nephroprotective of artichoke leaves extract (ALE) against gentamicin (GM) injection in male rats. Rats (n=30) were divided into; negative control, nephrotoxic (GM) injected intraperitoneally (i.p.) with GM (100 mg/kg b.wt/d for 10 days), and groups administered orally with ALE (200, 400 or 600 mg/kg b.wt/d) and injected with GM. The results revealed that, GM injection induced marked nephrotoxicity as evidenced by significant increase in kidney functions, albumin and potassium (K+), with significant decrease in serum levels of total protein and sodium (Na + ) as compared with negative control group. There was significant increase in malondialdehyde (MDA) level in GM group compared with negative control group. Renal examined tissues showed severe changes manifested by atrophy of glomerular tuft, necrosis of epithelial lining renal tubules with apoptosis of tubular epithelium and renal hemorrhage. Simultaneous administration of ALE during GM therapy protected kidney tissues as evidenced by normalization of kidney biochemical parameters and minimized the histopathological changes. Therefore, ALE has nephroprotective and antioxidant effects, thus could be beneficial for kidney patients.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu; Li, Chen

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C{sub 4}F{sub 8} ALE based on steady-state Ar plasma in conjunction with periodic, precise C{sub 4}F{sub 8} injection and synchronized plasma-based low energy Ar{sup +} ion bombardment has been established for SiO{sub 2} [Metzler et al., J. Vac. Sci. Technol. A 32, 020603 (2014)]. In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF{sub 3} as a precursor is examined and comparedmore » to C{sub 4}F{sub 8}. CHF{sub 3} is shown to enable selective SiO{sub 2}/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and x-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. Plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  3. Fluorocarbon assisted atomic layer etching of SiO 2 and Si using cyclic Ar/C 4F 8 and Ar/CHF 3 plasma

    DOE PAGES

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...

    2015-11-11

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  4. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo.

    PubMed

    Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Lim, Chiyeon; Kim, Jung-Hoon; Kim, Hyungwoo; Cho, Su-In

    2016-01-01

    The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues.

  5. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo

    PubMed Central

    Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Cho, Su-In

    2016-01-01

    The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues. PMID:27647952

  6. Efficient Exploration of the Space of Reconciled Gene Trees

    PubMed Central

    Szöllősi, Gergely J.; Rosikiewicz, Wojciech; Boussau, Bastien; Tannier, Eric; Daubin, Vincent

    2013-01-01

    Gene trees record the combination of gene-level events, such as duplication, transfer and loss (DTL), and species-level events, such as speciation and extinction. Gene tree–species tree reconciliation methods model these processes by drawing gene trees into the species tree using a series of gene and species-level events. The reconstruction of gene trees based on sequence alone almost always involves choosing between statistically equivalent or weakly distinguishable relationships that could be much better resolved based on a putative species tree. To exploit this potential for accurate reconstruction of gene trees, the space of reconciled gene trees must be explored according to a joint model of sequence evolution and gene tree–species tree reconciliation. Here we present amalgamated likelihood estimation (ALE), a probabilistic approach to exhaustively explore all reconciled gene trees that can be amalgamated as a combination of clades observed in a sample of gene trees. We implement the ALE approach in the context of a reconciliation model (Szöllősi et al. 2013), which allows for the DTL of genes. We use ALE to efficiently approximate the sum of the joint likelihood over amalgamations and to find the reconciled gene tree that maximizes the joint likelihood among all such trees. We demonstrate using simulations that gene trees reconstructed using the joint likelihood are substantially more accurate than those reconstructed using sequence alone. Using realistic gene tree topologies, branch lengths, and alignment sizes, we demonstrate that ALE produces more accurate gene trees even if the model of sequence evolution is greatly simplified. Finally, examining 1099 gene families from 36 cyanobacterial genomes we find that joint likelihood-based inference results in a striking reduction in apparent phylogenetic discord, with respectively. 24%, 59%, and 46% reductions in the mean numbers of duplications, transfers, and losses per gene family. The open source implementation of ALE is available from https://github.com/ssolo/ALE.git. [amalgamation; gene tree reconciliation; gene tree reconstruction; lateral gene transfer; phylogeny.] PMID:23925510

  7. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals

    PubMed Central

    de OLIVEIRA, Danila; HASSUMI, Jaqueline Suemi; GOMES-FERREIRA, Pedro Henrique da Silva; POLO, Tárik Ocon Braga; FERREIRA, Gabriel Ramalho; FAVERANI, Leonardo Perez; OKAMOTO, Roberta

    2017-01-01

    Abstract Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis. Objective The aim of this study was to evaluate the bone repair process at the bone/implant interface of osteoporotic rats treated with sodium alendronate through the analysis of microtomography, real time polymerase chain reactions and immunohistochemistry (RUNX2 protein, bone sialoprotein (BSP), alkaline phosphatase, osteopontin and osteocalcin). Material and Methods A total of 42 rats were used and divided in to the following experimental groups: CTL: control group (rats submitted to fictitious surgery and fed with a balanced diet), OST: osteoporosis group (rats submitted to a bilateral ovariectomy and fed with a low calcium diet) and ALE: alendronate group (rats submitted to a bilateral ovariectomy, fed with a low calcium diet and treated with sodium alendronate). A surface treated implant was installed in both tibial metaphyses of each rat. Euthanasia of the animals was conducted at 14 (immunhostochemistry) and 42 days (immunohistochemistry, micro CT and PCR). Data were subjected to statistical analysis with a 5% significance level. Results Bone volume (BV) and total pore volume were higher for ALE group (P<0.05). Molecular data for RUNX2 and BSP proteins were significantly expressed in the ALE group (P<0.05), in comparison with the other groups. ALP expression was higher in the CTL group (P<0.05). The immunostaining for RUNX2 and osteopontin was positive in the osteoblastic lineage cells of neoformed bone for the CTL and ALE groups in both periods (14 and 42 days). Alkaline phosphatase presented a lower staining area in the OST group compared to the CTL in both periods and the ALE at 42 days. Conclusion There was a decrease of osteocalcin precipitation at 42 days for the ALE and OST groups. Therefore, treatment with short-term sodium alendronate improved bone repair around the implants installed in the tibia of osteoporotic rats. PMID:28198975

  8. In Situ Infrared Spectroscopic Studies of Molecular Layer Deposition and Atomic Layer Etching Processes

    NASA Astrophysics Data System (ADS)

    DuMont, Jaime Willadean

    In this thesis, in situ Fourier transform infrared (FTIR) spectroscopy was used to study: i) the growth and pyrolysis of molecular layer deposition (MLD) films. ii) the surface chemistry of atomic layer etching (ALE) processes. Atomic layer processes such as molecular layer deposition (MLD) and atomic layer etching (ALE) are techniques that can add or remove material with atomic level precision using sequential, self-limiting surface reactions. Deposition and removal processes at the atomic scale are powerful tools for many industrial and research applications such as energy storage and semiconductor nanofabrication. The first section of this thesis describes the chemistry of reactions leading to the MLD of aluminum and tin alkoxide polymer films known as "alucone" and "tincone", respectively. The subsequent pyrolysis of these films to produce metal oxide/carbon composites was also investigated. In situ FTIR spectroscopy was conducted to monitor surface species during MLD film growth and to monitor the films background infrared absorbance versus pyrolysis temperature. Ex situ techniques such as transmission electron microscopy (TEM), four-point probe and X-ray diffraction (XRD) were utilized to study the properties of the films post-pyrolysis. TEM confirmed that the pyrolyzed films maintained conformality during post-processing. Four-point probe monitored film resistivity versus pyrolysis temperature and XRD determined the film crystallinity. The second section of this thesis focuses on the surface chemistry of Al2O3 and SiO2 ALE processes, respectively. Thermal ALE processes have been recently developed which utilize sequential fluorination and ligand exchange reactions. An intimate knowledge of the surface chemistry is important in understanding the ALE process. In this section, the competition between the Al2O3 etching and AlF 3 growth that occur during sequential HF (fluorinating agent) and TMA (ligand exchange) exposures is investigated using in situ FTIR spectroscopy. Also included in this section is the first demonstration of thermal ALE for SiO2. In situ FTIR spectroscopy was conducted to monitor the loss of bulk Si-O vibrational modes corresponding to the removal of SiO2. FTIR was also used to monitor surface species during each ALE half cycle and to verify self-limiting behavior. X-ray reflectivity experiments were conducted to establish etch rates on thermal oxide silicon wafers.

  9. 78 FR 43821 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ............ +902 Unincorporated Areas of LaGrange County. Big Long Lake Entire shoreline......... +957 Unincorporated Areas of LaGrange County. Big Turkey Lake Entire shoreline within +932 Unincorporated Areas of... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu

    Angstrom-level plasma etching precision is required for semiconductor manufacturing of sub-10 nm critical dimension features. Atomic layer etching (ALE), achieved by a series of self-limited cycles, can precisely control etching depths by limiting the amount of chemical reactant available at the surface. Recently, SiO{sub 2} ALE has been achieved by deposition of a thin (several Angstroms) reactive fluorocarbon (FC) layer on the material surface using controlled FC precursor flow and subsequent low energy Ar{sup +} ion bombardment in a cyclic fashion. Low energy ion bombardment is used to remove the FC layer along with a limited amount of SiO{sub 2} frommore » the surface. In the present article, the authors describe controlled etching of Si{sub 3}N{sub 4} and SiO{sub 2} layers of one to several Angstroms using this cyclic ALE approach. Si{sub 3}N{sub 4} etching and etching selectivity of SiO{sub 2} over Si{sub 3}N{sub 4} were studied and evaluated with regard to the dependence on maximum ion energy, etching step length (ESL), FC surface coverage, and precursor selection. Surface chemistries of Si{sub 3}N{sub 4} were investigated by x-ray photoelectron spectroscopy (XPS) after vacuum transfer at each stage of the ALE process. Since Si{sub 3}N{sub 4} has a lower physical sputtering energy threshold than SiO{sub 2}, Si{sub 3}N{sub 4} physical sputtering can take place after removal of chemical etchant at the end of each cycle for relatively high ion energies. Si{sub 3}N{sub 4} to SiO{sub 2} ALE etching selectivity was observed for these FC depleted conditions. By optimization of the ALE process parameters, e.g., low ion energies, short ESLs, and/or high FC film deposition per cycle, highly selective SiO{sub 2} to Si{sub 3}N{sub 4} etching can be achieved for FC accumulation conditions, where FC can be selectively accumulated on Si{sub 3}N{sub 4} surfaces. This highly selective etching is explained by a lower carbon consumption of Si{sub 3}N{sub 4} as compared to SiO{sub 2}. The comparison of C{sub 4}F{sub 8} and CHF{sub 3} only showed a difference in etching selectivity for FC depleted conditions. For FC accumulation conditions, precursor chemistry has a weak impact on etching selectivity. Surface chemistry analysis shows that surface fluorination and FC reduction take place during a single ALE cycle for FC depleted conditions. A fluorine rich carbon layer was observed on the Si{sub 3}N{sub 4} surface after ALE processes for which FC accumulation takes place. The angle resolved-XPS thickness calculations confirmed the results of the ellipsometry measurements in all cases.« less

  11. Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations

    NASA Astrophysics Data System (ADS)

    Akiki, Georges; Francois, Marianne; Zhang, Duan

    2017-11-01

    Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.

  12. Evaluation of particle-based flow characteristics using novel Eulerian indices

    NASA Astrophysics Data System (ADS)

    Cho, Youngmoon; Kang, Seongwon

    2017-11-01

    The main objective of this study is to evaluate flow characteristics in complex particle-laden flows efficiently using novel Eulerian indices. For flows with a large number of particles, a Lagrangian approach leads to accurate yet inefficient prediction in many engineering problems. We propose a technique based on Eulerian transport equation and ensemble-averaged particle properties, which enables efficient evaluation of various particle-based flow characteristics such as the residence time, accumulated travel distance, mean radial force, etc. As a verification study, we compare the developed Eulerian indices with those using Lagrangian approaches for laminar flows with and without a swirling motion and density ratio. The results show satisfactory agreement between two approaches. The accumulated travel distance is modified to analyze flow motions inside IC engines and, when applied to flow bench cases, it can predict swirling and tumbling motions successfully. For flows inside a cyclone separator, the mean radial force is applied to predict the separation of particles and is shown to have a high correlation to the separation efficiency for various working conditions. In conclusion, the proposed Eulerian indices are shown to be useful tools to analyze complex particle-based flow characteristics. Corresponding author.

  13. A Finite Element Method for Simulation of Compressible Cavitating Flows

    NASA Astrophysics Data System (ADS)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  14. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.

    PubMed

    Ai, Ye; Joo, Sang W; Jiang, Yingtao; Xuan, Xiangchun; Qian, Shizhi

    2009-07-01

    Transient electrophoretic motion of a charged particle through a converging-diverging microchannel is studied by solving the coupled system of the Navier-Stokes equations for fluid flow and the Laplace equation for electrical field with an arbitrary Lagrangian-Eulerian finite-element method. A spatially non-uniform electric field is induced in the converging-diverging section, which gives rise to a direct current dielectrophoretic (DEP) force in addition to the electrostatic force acting on the charged particle. As a sequence, the symmetry of the particle velocity and trajectory with respect to the throat is broken. We demonstrate that the predicted particle trajectory shifts due to DEP show quantitative agreements with the existing experimental data. Although converging-diverging microchannels can be used for super fast electrophoresis due to the enhancement of the local electric field, it is shown that large particles may be blocked due to the induced DEP force, which thus must be taken into account in the study of electrophoresis in microfluidic devices where non-uniform electric fields are present.

  15. Using Underwater Explosion and Cylinder Expansion Tests to Calibrate Afterburn Models for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Wedberg, Rasmus

    2017-06-01

    The study explores the combined use of underwater performance tests and cylinder expansion tests in order to parameterize detonation models for aluminized explosives which exhibit afterburning. The approach is suggested to be used in conjunction with thermochemical computation. A formulation containing RDX and aluminum powder is considered and several charges with varying masses are submerged and detonated. Pressure gauges are employed at horizontal distances scaling with the charge diameter, and the specific shock wave energy is shown to increase with charge mass. This is attributed to the combustion of aluminum particles after the Chapman-Jouguet plane. Cylinder expansion tests are carried out using Photon Doppler Velocimetry to register the wall expansion velocity. The tests are modeled using a multi-material arbitrary Lagrangian-Eulerian approach with the Guirguis-Miller model describing detonation with afterburning. The equation of state and afterburn rate law parameters are adjusted such that the model reproduces the results from the cylinder expansion and underwater tests. The approach seems promising, and might be valuable for aluminized explosive formulations intended to be used in a variety of confinement conditions. Swedish Armed Forces.

  16. Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses.

    PubMed

    Nestola, M G C; Faggiano, E; Vergara, C; Lancellotti, R M; Ippolito, S; Antona, C; Filippi, S; Quarteroni, A; Scrofani, R

    2017-02-01

    We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid-structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian-Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.

  17. Coupling fluid-structure interaction with phase-field fracture

    NASA Astrophysics Data System (ADS)

    Wick, Thomas

    2016-12-01

    In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.

  18. A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD

    NASA Astrophysics Data System (ADS)

    Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.

  19. A study on the immunological basis of the dissociation between type I-hypersensitivity skin reactions to Blomia tropicalis antigens and serum anti-B. tropicalis IgE antibodies

    PubMed Central

    2011-01-01

    Background Two conditions are used as markers of atopy: the presence of circulating anti-allergen IgE antibodies and the presence of positive skin prick test (SPT) reactions to allergenic extracts. The correlation between these conditions is not absolute. This study aimed at investigating immunological parameters that may mediate this lack of correlation. Individuals whose sera contained anti-B. tropicalis extract IgE antibodies (α-BtE IgE) were divided into two groups, according to the presence or absence of skin reactivity to B. tropicalis extract (BtE). The following parameters were investigated: total IgE levels; α-BtE IgE levels; an arbitrary α-BtE IgE/total IgE ratio; the proportion of carbohydrate-reactive α-BtE IgE; the proportion of α-BtE IgE that reacted with Ascaris lumbricoides extract (AlE); the production of IL-10 by BtE- and AlE-stimulated peripheral blood cells (PBMC). Results Total IgE levels were similar in the two groups, but α-BtE IgE was significantly higher in the SPT-positive group (SPT+). A large overlap of α-BtE IgE levels was found in individuals of both groups, indicating that these levels alone cannot account for the differences in SPT outcome. Individuals of the two groups did not differ, statistically, in the proportion of α-BtE IgE that reacted with carbohydrate and in the production of IL-10 by BtE- and AlE-stimulated PBMC. Both groups had part of α-BtE IgE activity absorbed out by AlE, indicating the existence of cross-reactive IgE antibodies. However, the α-BtE IgE from the SPT-negative individuals (SPT-) was more absorbed with AlE than the α-BtE IgE from the SPT+ individuals. This finding may be ascribed to avidity differences of the α-BtE IgE that is present in the two groups of individuals, and could occur if at least part of the α-BtE IgE from the SPT- individuals were elicited by A. lumbricoides infection. Conclusion The present results suggest that a low ratio of specific IgE to total IgE levels (in a minority of individuals), and differences in α-BtE IgE avidities (which would have high affinities for A. lumbricoides antigens in SPT- than in SPT+ individuals) may play a role in the down-modulation of type-I hypersensitivity reaction against aeroallergens described in helminth-infected individuals. PMID:21631925

  20. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Jaishree, J.; Haworth, D. C.

    2012-06-01

    Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method, while MEPDF is the most computationally efficient of the three methods. These and other findings are discussed in detail.

  1. Adjoint of the global Eulerian-Lagrangian coupled atmospheric transport model (A-GELCA v1.0): development and validation

    NASA Astrophysics Data System (ADS)

    Belikov, Dmitry A.; Maksyutov, Shamil; Yaremchuk, Alexey; Ganshin, Alexander; Kaminski, Thomas; Blessing, Simon; Sasakawa, Motoki; Gomez-Pelaez, Angel J.; Starchenko, Alexander

    2016-02-01

    We present the development of the Adjoint of the Global Eulerian-Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com, with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e-14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated into a variational inversion system designed to optimize surface fluxes of greenhouse gases.

  2. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  3. A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño; Stoesser, Thorsten; Lai, Chris C. K.; Socolofsky, Scott A.

    2016-01-01

    An approach for Eulerian-Lagrangian large-eddy simulation of bubble plume dynamics is presented and its performance evaluated. The main numerical novelties consist in defining the gas-liquid coupling based on the bubble size to mesh resolution ratio (Dp/Δx) and the interpolation between Eulerian and Lagrangian frameworks through the use of delta functions. The model's performance is thoroughly validated for a bubble plume in a cubic tank in initially quiescent water using experimental data obtained from high-resolution ADV and PIV measurements. The predicted time-averaged velocities and second-order statistics show good agreement with the measurements, including the reproduction of the anisotropic nature of the plume's turbulence. Further, the predicted Eulerian and Lagrangian velocity fields, second-order turbulence statistics and interfacial gas-liquid forces are quantified and discussed as well as the visualization of the time-averaged primary and secondary flow structure in the tank.

  4. Mass and tracer transport within oceanic Lagrangian coherent vortices as diagnosed in a global mesoscale eddying climate model

    NASA Astrophysics Data System (ADS)

    Tarshish, Nathaniel; Abernathey, Ryan; Dufour, Carolina; Frenger, Ivy; Griffies, Stephen

    2017-04-01

    Transient ocean mesoscale fluctuations play a central role in the global climate system, transporting climate relevant tracers such as heat and carbon. In satellite observations and numerical simulations, mesoscale vortices feature prominently as collectively rotating regions that remain visibly coherent. Prior studies on transport from ocean vortices typically rely on Eulerian identification methods, in which vortices are identified by selecting closed contours of Eulerian fields (e.g. sea surface height, or the Okubo-Weiss parameter) that satisfy geometric criteria and anomaly thresholds. In contrast, recent studies employ Lagrangian analysis of virtual particle trajectories initialized within the selected Eulerian contours, revealing significant discrepancies between the advection of the contour's material interior and the evolution of the Eulerian field contour. This work investigates the global mass and tracer transport associated with materially coherent surface ocean vortices. Further, it addresses differences between Eulerian and Lagrangian analyses for the detection of vortices. To do so, we use GFDL's CM2.6 coupled climate model with 5-10km horizontal grid spacing. We identify coherent vortices in CM2.6 by implementing the Rotationally Coherent Lagrangian Vortex (RCLV) framework, which recently emerged from dynamical systems theory. This approach involves the numerical advection of millions of Lagrangian particles and guarantees material coherence by construction. We compute the statistics, spatial distribution, and lifetimes of coherent vortices in addition to calculating the associated mass and tracer transports. We offer compelling evidence that Eulerian vortex methods are poorly suited to answer questions of mass and tracer transport.

  5. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  6. Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques

    NASA Astrophysics Data System (ADS)

    Long, Matthew H.; Berg, Peter; Falter, James L.

    2015-05-01

    The net ecosystem metabolism of the seagrass Thalassia testudinum was studied across a nutrient and productivity gradient in Florida Bay, Florida, using the Eulerian control volume, eddy covariance, and biomass addition techniques. In situ oxygen fluxes were determined by a triangular Eulerian control volume with sides 250 m long and by eddy covariance instrumentation at its center. The biomass addition technique evaluated the aboveground seagrass productivity through the net biomass added. The spatial and temporal resolutions, accuracies, and applicability of each method were compared. The eddy covariance technique better resolved the short-term flux rates and the productivity gradient across the bay, which was consistent with the long-term measurements from the biomass addition technique. The net primary production rates from the biomass addition technique, which were expected to show greater autotrophy due to the exclusion of sediment metabolism and belowground production, were 71, 53, and 30 mmol carbon m-2 d-1 at 3 sites across the bay. The net ecosystem metabolism was 35, 25, and 11 mmol oxygen m-2 d-1 from the eddy covariance technique and 10, -103, and 14 mmol oxygen m-2 d-1 from the Eulerian control volume across the same sites, respectively. The low-flow conditions in the shallow bays allowed for periodic stratification and long residence times within the Eulerian control volume that likely reduced its precision. Overall, the eddy covariance technique had the highest temporal resolution while producing accurate long-term flux rates that surpassed the capabilities of the biomass addition and Eulerian control volume techniques in these shallow coastal bays.

  7. Lagrange formula for differential operators on a tree-graph and the resolvents of well-posed restrictions of operator

    NASA Astrophysics Data System (ADS)

    Koshkarbayev, Nurbol; Kanguzhin, Baltabek

    2017-09-01

    In this paper we study the question on the full description of well-posed restrictions of given maximal differential operator on a tree-graph. Lagrange formula for differential operator on a tree with Kirchhoff conditions at its internal vertices is presented.

  8. The Lagrange Points

    ERIC Educational Resources Information Center

    Lovell, M.S.

    2007-01-01

    This paper presents a derivation of all five Lagrange points by methods accessible to sixth-form students, and provides a further opportunity to match Newtonian gravity with centripetal force. The predictive powers of good scientific theories are also discussed with regard to the philosophy of science. Methods for calculating the positions of the…

  9. Inequality in Participation in Adult Learning and Education (ALE): Effects of Micro- and Macro-Level Factors through a Comparative Study

    ERIC Educational Resources Information Center

    Lee, Jeongwoo

    2017-01-01

    The objectives of this dissertation include describing and analyzing the patterns of inequality in ALE participation at both the micro and macro levels. Special attention is paid to social origins of individual adults and their association with two groups of macro-level factors, social inequality (income, education, and skill inequality) and…

  10. Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinds, N R; Rogers, L E

    The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on themore » landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.« less

  11. Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2012-01-01

    High-fidelity models of plume-regolith interaction are difficult to develop because of the widely disparate flow conditions that exist in this process. The gas in the core of a rocket plume can often be modeled as a time-dependent, high-temperature, turbulent, reacting continuum flow. However, due to the vacuum conditions on the lunar surface, the mean molecular path in the outer parts of the plume is too long for the continuum assumption to remain valid. Molecular methods are better suited to model this region of the flow. Finally, granular and multiphase flow models must be employed to describe the dust and debris that are displaced from the surface, as well as how a crater is formed in the regolith. At present, standard commercial CFD (computational fluid dynamics) software is not capable of coupling each of these flow regimes to provide an accurate representation of this flow process, necessitating the development of custom software. This software solves the fluid-flow-governing equations in an Eulerian framework, coupled with the particle transport equations that are solved in a Lagrangian framework. It uses a fourth-order explicit Runge-Kutta scheme for temporal integration, an eighth-order central finite differencing scheme for spatial discretization. The non-linear terms in the governing equations are recast in cubic skew symmetric form to reduce aliasing error. The second derivative viscous terms are computed using eighth-order narrow stencils that provide better diffusion for the highest resolved wave numbers. A fourth-order Lagrange interpolation procedure is used to obtain gas-phase variable values at the particle locations.

  12. Application of cyclic fluorocarbon/argon discharges to device patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik, E-mail: dmetzler@umd.edu; Uppireddi, Kishore; Bruce, Robert L.

    2016-01-15

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less

  13. Application of cyclic fluorocarbon/argon discharges to device patterning

    DOE PAGES

    Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...

    2015-11-13

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less

  14. Incorporation of the NAG-FRAG Model for Ductile and Brittle Fracture into Help, a 2D Multimaterial Eulerian Program

    DTIC Science & Technology

    1978-09-01

    Models HELP Ductile Material HEMP Brittle Material PUFF Iron Aluminum Eulerian Codea Tap«.r«»H Flyor Pl^«-» rmp«^» tO. ABITRACT (Conllmjm M r«v... HEMP ) code with those obtained by the Eulerian (HELP) code 5.3 Relative void volume of damage regions at three times after impact in the 1145...plate calculation 5.5 Relative void volume of material in the 1145 aluminum target at 1.46 us after impact as computed by the Lagrangian ( HEMP

  15. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A.; Chen, C. P.

    1990-01-01

    Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.

  16. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  17. Bounded state variables and the calculus of variations

    NASA Technical Reports Server (NTRS)

    Hanafy, L. M.

    1972-01-01

    An optimal control problem with bounded state variables is transformed into a Lagrange problem by means of differentiable mappings which take some Euclidean space onto the control and state regions. Whereas all such mappings lead to a Lagrange problem, it is shown that only those which are defined as acceptable pairs of transformations are suitable in the sense that solutions to the transformed Lagrange problem will lead to solutions to the original bounded state problem and vice versa. In particular, an acceptable pair of transformations is exhibited for the case when the control and state regions are right parallelepipeds. Finally, a description of the necessary conditions for the bounded state problem which were obtained by this method is given.

  18. Technique to eliminate computational instability in multibody simulations employing the Lagrange multiplier

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1992-01-01

    A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

  19. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling.

    PubMed

    Kamensky, David; Evans, John A; Hsu, Ming-Chen; Bazilevs, Yuri

    2017-11-01

    This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.

  20. Cryptanalysis of the Sodark Family of Cipher Algorithms

    DTIC Science & Technology

    2017-09-01

    software project for building three-bit LUT circuit representations of S- boxes is available as a GitHub repository [40]. It contains several improvements...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The...second- and third-generation automatic link establishment (ALE) systems for high frequency radios. Radios utilizing ALE technology are in use by a

  1. Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.; Kwon, K. H.

    2001-07-01

    Given a continuous real-valued function f which vanishes outside a fixed finite interval, we establish necessary conditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of exponential decay on the real line or at the endpoints of (-1,1).

  2. Visualizing and Understanding the Components of Lagrange and Newton Interpolation

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2016-01-01

    This article takes a close look at Lagrange and Newton interpolation by graphically examining the component functions of each of these formulas. Although interpolation methods are often considered simply to be computational procedures, we demonstrate how the components of the polynomial terms in these formulas provide insight into where these…

  3. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.

    PubMed

    Dang, Chuangyin; Xu, Lei

    2002-02-01

    A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.

  4. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.

    PubMed

    Dang, C; Xu, L

    2001-03-01

    In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.

  5. A robust two-node, 13 moment quadrature method of moments for dilute particle flows including wall bouncing

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Garmory, Andrew; Page, Gary J.

    2017-02-01

    For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.

  6. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium.

    PubMed

    LaCroix, Ryan A; Sandberg, Troy E; O'Brien, Edward J; Utrilla, Jose; Ebrahim, Ali; Guzman, Gabriela I; Szubin, Richard; Palsson, Bernhard O; Feist, Adam M

    2015-01-01

    Adaptive laboratory evolution (ALE) has emerged as an effective tool for scientific discovery and addressing biotechnological needs. Much of ALE's utility is derived from reproducibly obtained fitness increases. Identifying causal genetic changes and their combinatorial effects is challenging and time-consuming. Understanding how these genetic changes enable increased fitness can be difficult. A series of approaches that address these challenges was developed and demonstrated using Escherichia coli K-12 MG1655 on glucose minimal media at 37°C. By keeping E. coli in constant substrate excess and exponential growth, fitness increases up to 1.6-fold were obtained compared to the wild type. These increases are comparable to previously reported maximum growth rates in similar conditions but were obtained over a shorter time frame. Across the eight replicate ALE experiments performed, causal mutations were identified using three approaches: identifying mutations in the same gene/region across replicate experiments, sequencing strains before and after computationally determined fitness jumps, and allelic replacement coupled with targeted ALE of reconstructed strains. Three genetic regions were most often mutated: the global transcription gene rpoB, an 82-bp deletion between the metabolic pyrE gene and rph, and an IS element between the DNA structural gene hns and tdk. Model-derived classification of gene expression revealed a number of processes important for increased growth that were missed using a gene classification system alone. The methods described here represent a powerful combination of technologies to increase the speed and efficiency of ALE studies. The identified mutations can be examined as genetic parts for increasing growth rate in a desired strain and for understanding rapid growth phenotypes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose Minimal Medium

    PubMed Central

    LaCroix, Ryan A.; Sandberg, Troy E.; O'Brien, Edward J.; Utrilla, Jose; Ebrahim, Ali; Guzman, Gabriela I.; Szubin, Richard; Palsson, Bernhard O.

    2014-01-01

    Adaptive laboratory evolution (ALE) has emerged as an effective tool for scientific discovery and addressing biotechnological needs. Much of ALE's utility is derived from reproducibly obtained fitness increases. Identifying causal genetic changes and their combinatorial effects is challenging and time-consuming. Understanding how these genetic changes enable increased fitness can be difficult. A series of approaches that address these challenges was developed and demonstrated using Escherichia coli K-12 MG1655 on glucose minimal media at 37°C. By keeping E. coli in constant substrate excess and exponential growth, fitness increases up to 1.6-fold were obtained compared to the wild type. These increases are comparable to previously reported maximum growth rates in similar conditions but were obtained over a shorter time frame. Across the eight replicate ALE experiments performed, causal mutations were identified using three approaches: identifying mutations in the same gene/region across replicate experiments, sequencing strains before and after computationally determined fitness jumps, and allelic replacement coupled with targeted ALE of reconstructed strains. Three genetic regions were most often mutated: the global transcription gene rpoB, an 82-bp deletion between the metabolic pyrE gene and rph, and an IS element between the DNA structural gene hns and tdk. Model-derived classification of gene expression revealed a number of processes important for increased growth that were missed using a gene classification system alone. The methods described here represent a powerful combination of technologies to increase the speed and efficiency of ALE studies. The identified mutations can be examined as genetic parts for increasing growth rate in a desired strain and for understanding rapid growth phenotypes. PMID:25304508

  8. Impact of a grout curtain on groundwater regime in karst: the example of the Ðale reservoir (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, Ognjen; Roje-Bonacci, Tanja

    2010-05-01

    Construction of grout curtains in karst terrains is primarily connected with dams and reservoirs. Their role is to increase watertightness and prevent progressive erosion. In this presentation hourly continuous measurement of groundwater level in two deep piezometers near the Đale reservoir is analysed. The Đale reservoir in the Cetina River began operation in 1989. The total length of the grout curtain is 3.9 km. It spreads 120 m bellow the Đale dam. First analysed piezometer A is drilled in the interior part of the system, between the reservoir and the grout curtain, while the second one B is located in its external part. Distance between them is 200 m. In natural conditions, prior the grout curtain construction, groundwater level fluctuation in both of them was similar (practically the same). Construction of the grout curtain extremely changed groundwater behaviour in each of them. During the six month of continuous monitoring, differences between groundwater levels in them range between +19.86 m (groundwater in B is lower than in A) and -12.77 m (groundwater in A is lower than in B). During the 77% of analysed period the groundwater level in interior piezometer A is higher than the groundwater level in external piezometer B. In other 23% of analysed period the groundwater level in outside piezometer B is higher than in inside A. The construction of the grout curtain caused unnaturally high hydrostatic gradients, which can accelerate the dissolutional expansion of karst fractures. As a result, unbearable leakage of the reservoir Đale can occur over its lifetime. Careful analyses of groundwater level behaviour discover some other very important characteristics of karst underground morphology.

  9. A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation.

    PubMed

    Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang

    2015-07-01

    In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). © 2015 Wiley Periodicals, Inc.

  10. Examination of Eulerian and Lagrangian Coordinate Systems.

    ERIC Educational Resources Information Center

    Remillard, Wilfred J.

    1978-01-01

    Studies the relationship between Eulerian and Lagrangian coordinate systems with the help of computer plots of variables such as density and particle displacement. Gives examples which illustrate the differences in the shape of a traveling wave as seen by observers in the two systems. (Author/GA)

  11. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  12. The Trapping Index: How to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins.

    PubMed

    Cucco, Andrea; Umgiesser, Georg

    2015-09-15

    In this work, we investigated if the Eulerian and the Lagrangian approaches for the computation of the Transport Time Scales (TTS) of semi-enclosed water bodies can be used univocally to define the spatial variability of basin flushing features. The Eulerian and Lagrangian TTS were computed for both simplified test cases and a realistic domain: the Venice Lagoon. The results confirmed the two approaches cannot be adopted univocally and that the spatial variability of the water renewal capacity can be investigated only through the computation of both the TTS. A specific analysis, based on the computation of a so-called Trapping Index, was then suggested to integrate the information provided by the two different approaches. The obtained results proved the Trapping Index to be useful to avoid any misleading interpretation due to the evaluation of the basin renewal features just from an Eulerian only or from a Lagrangian only perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  14. A coupled PFEM-Eulerian approach for the solution of porous FSI problems

    NASA Astrophysics Data System (ADS)

    Larese, A.; Rossi, R.; Oñate, E.; Idelsohn, S. R.

    2012-12-01

    This paper aims to present a coupled solution strategy for the problem of seepage through a rockfill dam taking into account the free-surface flow within the solid as well as in its vicinity. A combination of a Lagrangian model for the structural behavior and an Eulerian approach for the fluid is used. The particle finite element method is adopted for the evaluation of the structural response, whereas an Eulerian fixed-mesh approach is employed for the fluid. The free surface is tracked by the use of a level set technique. The numerical results are validated with experiments on scale models rockfill dams.

  15. Multiphase Fluid Dynamics for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Sim, J.

    2011-09-01

    Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.

  16. Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows

    NASA Technical Reports Server (NTRS)

    He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.

  17. Detecting social-cognitive deficits after traumatic brain injury: An ALE meta-analysis of fMRI studies.

    PubMed

    Xiao, Hui; Jacobsen, Andre; Chen, Ziqian; Wang, Yang

    2017-01-01

    Traumatic brain injury (TBI) can result in significant social dysfunction, which is represented by impairment to social-cognitive abilities (i.e. social cognition, social attention/executive function and communication). This study is aimed to explore brain networks mediating the social dysfunction after TBI and its underlying mechanisms. We performed a quantitative meta-analysis using the activation likelihood estimation (ALE) approach on functional magnetic resonance imaging (fMRI) studies of social-cognitive abilities following TBI. Sixteen studies fulfilled the inclusion criteria resulting in a total of 190 patients with TBI and 206 controls enrolled in the ALE meta-analysis. The temporoparietal junction (TPJ) and the medial prefrontal cortex (mPFC) were the specific regions that social cognition predominantly engaged. The cingulate gyrus, frontal gyrus and inferior parietal lobule were the main regions related to social attention/executive functions. Communication dysfunction, especially related to language deficits, was found to show greater activation of the temporal gyrus and fusiform gyrus in TBI. The current ALE meta-analytic findings provide evidence that patients have significant social-cognitive disabilities following TBI. The relatively limited pool of literature and the varied fMRI results from published studies indicate that social-cognitive abilities following TBI is an area that would greatly benefit from further investigation.

  18. Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    PubMed Central

    Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano

    2015-01-01

    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002

  19. A Person Fit Test for IRT Models for Polytomous Items

    ERIC Educational Resources Information Center

    Glas, C. A. W.; Dagohoy, Anna Villa T.

    2007-01-01

    A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability parameters. It is shown that the Lagrange multiplier…

  20. Lagrange multiplier for perishable inventory model considering warehouse capacity planning

    NASA Astrophysics Data System (ADS)

    Amran, Tiena Gustina; Fatima, Zenny

    2017-06-01

    This paper presented Lagrange Muktiplier approach for solving perishable raw material inventory planning considering warehouse capacity. A food company faced an issue of managing perishable raw materials and marinades which have limited shelf life. Another constraint to be considered was the capacity of the warehouse. Therefore, an inventory model considering shelf life and raw material warehouse capacity are needed in order to minimize the company's inventory cost. The inventory model implemented in this study was the adapted economic order quantity (EOQ) model which is optimized using Lagrange multiplier. The model and solution approach were applied to solve a case industry in a food manufacturer. The result showed that the total inventory cost decreased 2.42% after applying the proposed approach.

  1. Hamilton's principle and normal mode coupling in an aspherical planet with a fluid core

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Crawford, Ophelia; Valentine, Andrew P.; Trampert, Jeannot

    2018-04-01

    We apply Hamilton's principle to obtain the exact equations of motion for an elastic planet that is rotating, self-gravitating, and comprises both fluid and solid regions. This variational problem is complicated by the occurrence of tangential slip at fluid-solid boundaries, but we show how this can be accommodated both directly and using the method of Lagrange multipliers. A novelty of our approach is that the planet's motion is described relative to an arbitrary reference configuration, with this generality offering advantages for numerical calculations. In particular, aspherical topography on the free surface or internal boundaries of the planet's equilibrium configuration can be converted exactly into effective volumetric heterogeneities within a geometrically spherical reference body by applying a suitable particle relabelling transformation. The theory is then specialised to consider the linearised motion of a planet about a steadily rotating equilibrium configuration, with these results having applications to normal mode coupling calculations used within studies of long period seismology, tidal deformation, and related fields. In particular, we explain how our new theory will, for the first time, allow aspherical boundary topography to be incorporated exactly within such coupling calculations.

  2. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  3. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  4. Flutter of wings involving a locally distributed flexible control surface

    NASA Astrophysics Data System (ADS)

    Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.

    2015-11-01

    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.

  5. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE PAGES

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  6. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  7. PREFACE SPECIAL ISSUE ON MODEL EVALUATION: EVALUATION OF URBAN AND REGIONAL EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    The "Preface to the Special Edition on Model Evaluation: Evaluation of Urban and Regional Eulerian Air Quality Models" is a brief introduction to the papers included in a special issue of Atmospheric Environment. The Preface provides a background for the papers, which have thei...

  8. 77 FR 60022 - Supplemental Identification Information for One (1) Individual Designated Pursuant to Executive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... 1. JIM'ALE, Ahmed Nur Ali (a.k.a. JIMALE, Ahmad Ali; a.k.a. JIM'ALE, Ahmad Nur Ali; a.k.a. JIMALE, Ahmed Ali; a.k.a. JIMALE, Shaykh Ahmed Nur; a.k.a. JIMALE, Sheikh Ahmed; a.k.a. JUMALE, Ahmed Ali; a.k.a. JUMALE, Ahmed Nur; a.k.a. JUMALI, Ahmed Ali), P.O. Box 3312, Dubai, United Arab Emirates; Mogadishu...

  9. Slip Continuity in Explicit Crystal Plasticity Simulations Using Nonlocal Continuum and Semi-discrete Approaches

    DTIC Science & Technology

    2013-01-01

    Based Micropolar Single Crystal Plasticity: Comparison of Multi - and Single Criterion Theories. J. Mech. Phys. Solids 2011, 59, 398–422. ALE3D ...element boundaries in a multi -step constitutive evaluation (Becker, 2011). The results showed the desired effects of smoothing the deformation field...Implementation The model was implemented in the large-scale parallel, explicit finite element code ALE3D (2012). The crystal plasticity

  10. Performance evaluation of a mobile satellite system modem using an ALE method

    NASA Technical Reports Server (NTRS)

    Ohsawa, Tomoki; Iwasaki, Motoya

    1990-01-01

    Experimental performance of a newly designed demodulation concept is presented. This concept applies an Adaptive Line Enhancer (ALE) to a carrier recovery circuit, which makes pull-in time significantly shorter in noisy and large carrier offset conditions. This new demodulation concept was actually developed as an INMARSAT standard-C modem, and was evaluated. On a performance evaluation, 50 symbol pull-in time is confirmed under 4 dB Eb/No condition.

  11. Targeted delivery of mesenchymal stem cells to the bone.

    PubMed

    Yao, Wei; Lane, Nancy E

    2015-01-01

    Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Performance evaluation of heart sound cancellation in FPGA hardware implementation for electronic stethoscope.

    PubMed

    Chao, Chun-Tang; Maneetien, Nopadon; Wang, Chi-Jo; Chiou, Juing-Shian

    2014-01-01

    This paper presents the design and evaluation of the hardware circuit for electronic stethoscopes with heart sound cancellation capabilities using field programmable gate arrays (FPGAs). The adaptive line enhancer (ALE) was adopted as the filtering methodology to reduce heart sound attributes from the breath sounds obtained via the electronic stethoscope pickup. FPGAs were utilized to implement the ALE functions in hardware to achieve near real-time breath sound processing. We believe that such an implementation is unprecedented and crucial toward a truly useful, standalone medical device in outpatient clinic settings. The implementation evaluation with one Altera cyclone II-EP2C70F89 shows that the proposed ALE used 45% resources of the chip. Experiments with the proposed prototype were made using DE2-70 emulation board with recorded body signals obtained from online medical archives. Clear suppressions were observed in our experiments from both the frequency domain and time domain perspectives.

  13. Simulating Afterburn with LLNL Hydrocodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effortmore » is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.« less

  14. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  15. Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics.

    PubMed

    Shekhawat, Lalita Kanwar; Sarkar, Jayati; Gupta, Rachit; Hadpe, Sandeep; Rathore, Anurag S

    2018-02-10

    Centrifugation continues to be one of the most commonly used unit operations for achieving efficient harvest of the product from the mammalian cell culture broth during production of therapeutic monoclonal antibodies (mAbs). Since the mammalian cells are known to be shear sensitive, optimal performance of the centrifuge requires a balance between productivity and shear. In this study, Computational Fluid Dynamics (CFD) has been successfully used as a tool to facilitate efficient optimization. Multiphase Eulerian-Eulerian model coupled with Gidaspow drag model along with Eulerian-Eulerian k-ε mixture turbulence model have been used to quantify the complex hydrodynamics of the centrifuge and thus evaluate the turbulent stresses generated by the centrifugal forces. An empirical model has been developed by statistical analysis of experimentally observed cell lysis data as a function of turbulent stresses. An operating window that offers the optimal balance between high productivity, high separation efficiency, and low cell damage has been identified by use of CFD modeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo; Milford, S. Nevil

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system. The values of the dependent variable off the grid are calculated by interpolation. When a linear interpolation is used, the method is a slight improvement over the upwind difference method. At this level of approximation both the ELM and the upwind difference method suffer from large numerical dispersion. However, if second-order Lagrangian polynomials are used in the interpolation, the ELM is proven to be free of artificial numerical dispersion for the convection-dispersion equation. The concept of the ELM is extended for treatment of anisotropic dispersion in natural coordinates. In this approach the anisotropic properties of dispersion can be conveniently related to the properties of the flow field. Several numerical examples are given to further substantiate the results of the present analysis.

  17. A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.

    PubMed

    Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu

    2017-10-01

    The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.

  18. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnakemore » Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.« less

  19. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  20. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    NASA Astrophysics Data System (ADS)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  1. A regional modelling study of the high ozone episode of June 2001 in southern Ontario

    NASA Astrophysics Data System (ADS)

    Brulfert, G.; Galvez, O.; Yang, F.; Sloan, J. J.

    High ozone levels were observed in southern Ontario in the summer of 2001, particularly in June, when the observed maximum was 137 ppb at Long Point. Development of effective ozone abatement strategies to prevent such episodes requires acknowledge of the chemistry in the appropriate source regions. Comprehensive high-resolution Eulerian chemical transport models, when used with accurate emissions data and meteorology, can elucidate the atmospheric chemical and physical processes responsible for episodes like these. In this work, the MM5 /SMOKE/CMAQ regional air quality modelling system was used to investigate the chemistry involved in ozone formation during the episode in question and also more generally in the target domain. Some of the important simulations were further developed using Taylor diagrams to explore the ozone background and understand the sensitivity of ozone to NOX and VOC concentrations. Results from an arbitrary reduction of road traffic are discussed, based on NOX and VOC species in the traffic emission inventory. The ozone production rate was extracted from the model and mapped for June 2001 to assist in the identification of the source regions contributing to the ozone episode.

  2. Numerical Simulation of the Self-Oscillations of the Vocal Folds and of the Resulting Acoustic Phenomena in the Vocal Tract

    NASA Astrophysics Data System (ADS)

    Švancara, P.; Horáček, J.; Švec, J. G.

    The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.

  3. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE PAGES

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...

    2016-04-27

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  4. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  5. Perturbation theory and numerical modelling of weakly and moderately nonlinear incompressible Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Velikovich, A. L.; Abarzhi, S. I.

    2014-10-01

    A study of incompressible two-dimensional Richtmyer-Meshkov instability by means of high-order Eulerian perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer's impulsive formula for the bubble and spike growth rates have been calculated analytically for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been derived. In our simulations we have solved 2D unsteady Navier-Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by, coupled to the level set based interface solver LIT,. The impact of small amounts of viscosity and surface tension on the RMI flow dynamics is studied numerically. Simulation results are compared to the theory to demonstrate successful code verification and highlight the influence of the theory's ideal inviscid flow assumption. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been favorably compared to simulation results, which converge to the theoretical predictions as the Reynolds and Weber numbers are increased. Work supported by the US DOE/NNSA.

  6. A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sheldon, Jason P.; Miller, Scott T.; Pitt, Jonathan S.

    2016-12-01

    This work presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid-structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian-Eulerian Navier-Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modeling is coupling together their disparate mathematics on the fluid-solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.

  7. A hybridizable discontinuous Galerkin method for modeling fluid–structure interaction

    DOE PAGES

    Sheldon, Jason P.; Miller, Scott T.; Pitt, Jonathan S.

    2016-08-31

    This study presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid–structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian–Eulerian Navier–Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modelingmore » is coupling together their disparate mathematics on the fluid–solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.« less

  8. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  9. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  10. Numerical simulation of separated flows. Ph.D. Thesis - Stanford Univ., Calif.

    NASA Technical Reports Server (NTRS)

    Spalart, P. R.; Leonard, A.; Baganoff, D.

    1983-01-01

    A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced.

  11. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.

  12. Comparison of the LLNL ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Burnham, A K

    2006-04-05

    Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less

  13. Nootropic activity of tuber extract of Pueraria tuberosa (Roxb).

    PubMed

    Rao, N Venkata; Pujar, Basavaraj; Nimbal, S K; Shantakumar, S M; Satyanarayana, S

    2008-08-01

    Nootropic effect of alcoholic (ALE; 50, 75, 100 mg/kg) and aqueous (AQE; 100, 200, 400 mg/kg) extracts of P. tuberosa was evaluated by using Elevated Plus Maze (EPM), scopolamine-induced amnesia (SIA), diazepam-induced amnesia (DIA), clonidine-induced (NA-mediated) hypothermia (CIH), lithium-induced (5-HT mediated) head twitches (LIH) and haloperidol-induced (DA- mediated) catalepsy (HIC) models. Piracetam was used as the standard drug. A significant increase in inflexion ratio (IR) was recorded in EPM, SIA and DIA models. A significant reversal effect was observed on rectal temperature in CIH model, reduction of head twitches in LIH models. However no significant reduction in catalepsy scores in HIC models were observed with test extracts and standard piracetam. The results indicate that nootropic activity observed with ALE and AQE of tuber extracts of P. tuberosa could be through improved learning and memory either by augmenting the noradrenaline (NA) transmission or by interfering with 5-hydroxytryptamine (5-HT) release. Further, the extracts neither facilitated nor blocked release of the dopamine (DA). Thus ALE and AQE elicited significant nootropic effect in mice and rats by interacting with cholinergic, GABAnergic, adrenergic and serotonergic systems. Phytoconstituents like flavonoids have been reported for their nootropic effect and these are present in both ALE and AQE extracts of tubers of P. tuberosa (Roxb) and these active principles may be responsible for nootropic activity.

  14. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.

    PubMed

    Voziyan, Paul A; Metz, Thomas O; Baynes, John W; Hudson, Billy G

    2002-02-01

    Reactive carbonyl compounds are formed during autoxidation of carbohydrates and peroxidation of lipids. These compounds are intermediates in the formation of advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) in tissue proteins during aging and in chronic disease. We studied the reaction of carbonyl compounds glyoxal (GO) and glycolaldehyde (GLA) with pyridoxamine (PM), a potent post-Amadori inhibitor of AGE formation in vitro and of development of renal and retinal pathology in diabetic animals. PM reacted rapidly with GO and GLA in neutral, aqueous buffer, forming a Schiff base intermediate that cyclized to a hemiaminal adduct by intramolecular reaction with the phenolic hydroxyl group of PM. This bicyclic intermediate dimerized to form a five-ring compound with a central piperazine ring, which was characterized by electrospray ionization-liquid chromatography/mass spectrometry, NMR, and x-ray crystallography. PM also inhibited the modification of lysine residues and loss of enzymatic activity of RNase in the presence of GO and GLA and inhibited formation of the AGE/ALE N(epsilon)-(carboxymethyl)lysine during reaction of GO and GLA with bovine serum albumin. Our data suggest that the AGE/ALE inhibitory activity and the therapeutic effects of PM observed in diabetic animal models depend, at least in part, on its ability to trap reactive carbonyl intermediates in AGE/ALE formation, thereby inhibiting the chemical modification of tissue proteins.

  15. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC

    PubMed Central

    Ben Salem, Maryem; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective. Artichoke (Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β-carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties. PMID:28539965

  16. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC.

    PubMed

    Ben Salem, Maryem; Affes, Hanen; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective . Artichoke ( Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods . Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results . It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β -carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion . ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties.

  17. Microbial diversity and metabolite composition of Belgian red-brown acidic ales.

    PubMed

    Snauwaert, Isabel; Roels, Sanne P; Van Nieuwerburg, Filip; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2016-03-16

    Belgian red-brown acidic ales are sour and alcoholic fermented beers, which are produced by mixed-culture fermentation and blending. The brews are aged in oak barrels for about two years, after which mature beer is blended with young, non-aged beer to obtain the end-products. The present study evaluated the microbial community diversity of Belgian red-brown acidic ales at the end of the maturation phase of three subsequent brews of three different breweries. The microbial diversity was compared with the metabolite composition of the brews at the end of the maturation phase. Therefore, mature brew samples were subjected to 454 pyrosequencing of the 16S rRNA gene (bacteria) and the internal transcribed spacer region (yeasts) and a broad range of metabolites was quantified. The most important microbial species present in the Belgian red-brown acidic ales investigated were Pediococcus damnosus, Dekkera bruxellensis, and Acetobacter pasteurianus. In addition, this culture-independent analysis revealed operational taxonomic units that were assigned to an unclassified fungal community member, Candida, and Lactobacillus. The main metabolites present in the brew samples were L-lactic acid, D-lactic acid, and ethanol, whereas acetic acid was produced in lower quantities. The most prevailing aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, which might be of impact on the aroma of the end-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Shrub-Steppe Seasons A Natural History of the Mid-Columbia Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LE Rogers

    1995-08-01

    This book collects and updates a series of articles about the natural history of the Mid-Columbia region. The articles first appeared as a monthly column titled ''Natural History'' in the Tri-City Herald, beginning in May 1991. My approach has been to condense the best of what is known about the ecology of the region to a manageable length with little in the way of technical language and terms. Admittedly, there is a bias toward those topics and species on which I have either been personally involved or observed as part of the ecology research programs conducted on the Fitzner/Eberhardt Aridmore » Lands Ecology (ALE) Reserve. The ALE Reserve is situated on the northeast-facing flank of the Rattlesnake Hills. Rattlesnake Mountain with a crest of over 3,600 feet is visible throughout much of the Mid-Columbia. Shrub-steppe grasslands once covered a large part of the western United States but most have been converted to other uses. The ALE site is the only remaining sizeable acreage (120 square miles) that is in near pristine condition and provides the only clear indication as to what the early trappers, traders, pioneers, and tribal members may have encountered in their day-to-day activities. In this respect, ALE provides a visible touchstone linking the past with the present for all of us.« less

  19. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  20. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  1. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations.

    PubMed

    Sandberg, Troy E; Pedersen, Margit; LaCroix, Ryan A; Ebrahim, Ali; Bonde, Mads; Herrgard, Markus J; Palsson, Bernhard O; Sommer, Morten; Feist, Adam M

    2014-10-01

    Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental conditions allowed selection based on exponential-phase growth rate, yielding strains that uniformly converged toward a similar phenotype along distinct genetic paths. Adapted strains possessed as few as 6 and as many as 55 mutations, and of the 144 genes that mutated in total, 14 arose independently across two or more strains. This mutational recurrence pointed to the key genetic targets underlying the evolved fitness increase. Genome engineering was used to introduce the novel ALE-acquired alleles in random combinations into the ancestral strain, and competition between these engineered strains reaffirmed the impact of the key mutations on the growth rate at 42 °C. Interestingly, most of the identified key gene targets differed significantly from those found in similar temperature adaptation studies, highlighting the sensitivity of genetic evolution to experimental conditions and ancestral genotype. Additionally, transcriptomic analysis of the ancestral and evolved strains revealed a general trend for restoration of the global expression state back toward preheat stressed levels. This restorative effect was previously documented following evolution to metabolic perturbations, and thus may represent a general feature of ALE experiments. The widespread evolved expression shifts were enabled by a comparatively scant number of regulatory mutations, providing a net fitness benefit but causing suboptimal expression levels for certain genes, such as those governing flagellar formation, which then became targets for additional ameliorating mutations. Overall, the results of this study provide insight into the adaptation process and yield lessons important for the future implementation of ALE as a tool for scientific research and engineering. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions.

    PubMed

    Panjabi, Manohar; Henderson, Gweneth; Abjornson, Celeste; Yue, James

    2007-05-20

    An in vitro human cadaveric biomechanical study. To evaluate intervertebral rotation changes due to lumbar ProDisc-L compared with simulated fusion, using follower load and multidirectional testing. Artificial discs, as opposed to the fusions, are thought to decrease the long-term accelerated degeneration at adjacent levels. A biomechanical assessment can be helpful, as the long-term clinical evaluation is impractical. Six fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension, bilateral lateral bending, and bilateral torsion using the Hybrid test method. First, intact specimen total range of rotation (T12-S1) was determined. Second, using pure moments again, this range of rotation was achieved in each of the 5 constructs: A) ProDisc-L at L5-S1; B) fusion at L5-S1; C) ProDisc-L at L4-L5 and fusion at L5-S1; D) ProDisc-L at L4-L5 and L5-S1; and E) 2-level fusion at L4-L5 to L5-S1. Significant changes in the intervertebral rotations due to each construct were determined at the operated and nonoperated levels using repeated measures single factor ANOVA and Bonferroni statistical tests (P < 0.05). Adjacent-level effects (ALEs) were defined as the percentage changes in intervertebral rotations at the nonoperated levels due to the constructs. One- and 2-level ProDisc-L constructs showed only small ALE in any of the 3 rotations. In contrast, 1- and 2-level fusions showed increased ALE in all 3 directions (average, 7.8% and 35.3%, respectively, for 1 and 2 levels). In the disc plus fusion combination (construct C), the ALEs were similar to the 1-level fusion alone. In general, ProDisc-L preserved physiologic motions at all spinal levels, while the fusion simulations resulted in significant ALE.

  3. Littoral transport in the surf zone elucidated by an Eulerian sediment tracer.

    USGS Publications Warehouse

    Duane, D.B.; James, W.R.

    1980-01-01

    An Eulerian, or time integration, sand tracer experiment was designed and carried out in the surf zone near Pt. Mugu, California on April 19, 1972. Data indicate that conditions of stationarity and finite boundaries required for proper application of Eulerian tracer theory exist for short time periods in the surf zone. Grain counts suggest time required for tracer sand to attain equilibrium concentration is on the order of 30-60 minutes. Grain counts also indicate transport (discharge) was strongly dependent upon grain size, with the maximum rate occurring in the size 2.5-2.75 phi, decreasing to both finer and coarser sizes. The measured instantaneous transport was at the annual rate of 2.4 x 106 m3/yr.- Authors

  4. Asymptotic shape of the region visited by an Eulerian walker.

    PubMed

    Kapri, Rajeev; Dhar, Deepak

    2009-11-01

    We study an Eulerian walker on a square lattice, starting from an initial randomly oriented background using Monte Carlo simulations. We present evidence that, for a large number of steps N , the asymptotic shape of the set of sites visited by the walker is a perfect circle. The radius of the circle increases as N1/3, for large N , and the width of the boundary region grows as Nalpha/3, with alpha=0.40+/-0.06 . If we introduce stochasticity in the evolution rules, the mean-square displacement of the walker, approximately approximately N2nu, shows a crossover from the Eulerian (nu=1/3) to a simple random-walk (nu=1/2) behavior.

  5. Space Instrument Optimization by Implementing of Generic Three Bodies Circular Restricted Problem

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2011-01-01

    In this study, the main discussion emphasizes on the spacecraft operation with a concentration on stationary points in space. To achieve these objectives, the circular restricted problem was solved for selected approaches. The equations of motion of three body restricted problem was demonstrated to apply in cases other than Lagrange's (1736-1813 A.D.) achievements, by means of the purposed CN (Cyrus Nejat) theorem along with appropriate comments. In addition to five Lagrange, two other points, CN1 and CN2 were found to be in unstable equilibrium points in a very large distance respect to Lagrange points, but stable at infinity. A very interesting simulation of Milky Way Galaxy and Andromeda Galaxy were created to find the Lagrange points, CN points (Cyrus Nejat Points), and CN lines (Cyrus Nejat Lines). The equations of motion were rearranged such a way that the transfer trajectory would be conical, by means of decoupling concept. The main objective was to make a halo orbit transfer about CN lines. The author purposes therefore that all of the corresponding sizing design that they must be developed by optimization techniques would be considered in future approaches. The optimization techniques are sufficient procedures to search for the most ideal response of a system.

  6. Eulerian and Lagrangian approaches to multidimensional condensation and collection

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Yu; Brandenburg, A.; Haugen, N. E. L.; Svensson, G.

    2017-06-01

    Turbulence is argued to play a crucial role in cloud droplet growth. The combined problem of turbulence and cloud droplet growth is numerically challenging. Here an Eulerian scheme based on the Smoluchowski equation is compared with two Lagrangian superparticle (or superdroplet) schemes in the presence of condensation and collection. The growth processes are studied either separately or in combination using either two-dimensional turbulence, a steady flow or just gravitational acceleration without gas flow. Good agreement between the different schemes for the time evolution of the size spectra is observed in the presence of gravity or turbulence. The Lagrangian superparticle schemes are found to be superior over the Eulerian one in terms of computational performance. However, it is shown that the use of interpolation schemes such as the cloud-in-cell algorithm is detrimental in connection with superparticle or superdroplet approaches. Furthermore, the use of symmetric over asymmetric collection schemes is shown to reduce the amount of scatter in the results. For the Eulerian scheme, gravitational collection is rather sensitive to the mass bin resolution, but not so in the case with turbulence.Plain Language SummaryThe bottleneck problem of cloud droplet growth is one of the most challenging problems in cloud physics. Cloud droplet growth is neither dominated by condensation nor gravitational collision in the size range of 15 μm ˜ 40 μm [1]. Turbulence-generated collection has been thought to be the mechanism to bridge the size gap, i.e., the bottleneck problem. This study compares the Lagrangian and Eulerian schemes in detail to tackle with the turbulence-generated collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910028486&hterms=nitrous+oxide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnitrous%2Boxide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910028486&hterms=nitrous+oxide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnitrous%2Boxide"><span>Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prinn, R.; Cunnold, D.; Alyea, F.; Rasmussen, R.; Simmonds, P.</p> <p>1990-01-01</p> <p>Long-term measurements of nitrous oxide (N2O) obtained during the Atmospheric Lifetime Experiment (ALE) and the Global Atmospheric Gases Experiment (GAGE) for a period from 1978 to 1988 are presented and interpreted. It is observed that the average concentration in the Northern Hemisphere is 0.75 +/- 0.16 ppbv higher than in the Southern Hemisphere and that the global average linear trend in N2O lies in the range from 0.25 to 0.31 percent/year. The measured trends and latitudinal distributions are shown to be consistent with the hypothesis that stratospheric photodissociation is the major atmospheric sink for N2O, while the cause of the N2O trend is suggested to be a combination of a growing tropical source and a growing Northern mid-latitude source. A 10-year average global N2O emission rate of (20.5 +/- 2.4) x 10 to the 12th g N2O/year is deduced from the ALE/GAGE data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..SHK.V1004N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..SHK.V1004N"><span>Toward Improved Fidelity of Thermal Explosion Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nichols, Albert; Becker, Richard; Burnham, Alan; Howard, W. Michael; Knap, Jarek; Wemhoff, Aaron</p> <p>2009-06-01</p> <p>We present results of an improved thermal/chemical/mechanical model of HMX based explosives like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The improvements were concentrated in four areas. First, we added porosity to the chemical material model framework in ALE3D used to model HMX explosive formulations to handle the roughly 2% porosity in solid explosives. Second, we improved the HMX reaction network, which included the addition of a reactive phase change model base on work by Henson et.al. Third, we added early decomposition gas species to the CHEETAH material database to improve equations of state for gaseous intermediates and products. Finally, we improved the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cookoff. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10589E..09S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10589E..09S"><span>New frontiers of atomic layer etching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherpa, Sonam D.; Ranjan, Alok</p> <p>2018-03-01</p> <p>Interest in atomic layer etching (ALE) has surged recently because it offers several advantages over continuous or quasicontinuous plasma etching. These benefits include (1) independent control of ion energy, ion flux, and radical flux, (2) flux-independent etch rate that mitigates the iso-dense loading effects, and (3) ability to control the etch rate with atomic or nanoscale precision. In addition to these benefits, we demonstrate an area-selective etching for maskless lithography as a new frontier of ALE. In this paper, area-selective etching refers to the confinement of etching into the specific areas of the substrate. The concept of area-selective etching originated during our studies on quasi-ALE of silicon nitride which consists of sequential exposure of silicon nitride to hydrogen and fluorinated plasma. The findings of our studies reported in this paper suggest that it may be possible to confine the etching into specific areas of silicon nitride without using any mask by replacing conventional hydrogen plasma with a localized source of hydrogen ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3982477','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3982477"><span>Performance Evaluation of Heart Sound Cancellation in FPGA Hardware Implementation for Electronic Stethoscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chao, Chun-Tang</p> <p>2014-01-01</p> <p>This paper presents the design and evaluation of the hardware circuit for electronic stethoscopes with heart sound cancellation capabilities using field programmable gate arrays (FPGAs). The adaptive line enhancer (ALE) was adopted as the filtering methodology to reduce heart sound attributes from the breath sounds obtained via the electronic stethoscope pickup. FPGAs were utilized to implement the ALE functions in hardware to achieve near real-time breath sound processing. We believe that such an implementation is unprecedented and crucial toward a truly useful, standalone medical device in outpatient clinic settings. The implementation evaluation with one Altera cyclone II–EP2C70F89 shows that the proposed ALE used 45% resources of the chip. Experiments with the proposed prototype were made using DE2-70 emulation board with recorded body signals obtained from online medical archives. Clear suppressions were observed in our experiments from both the frequency domain and time domain perspectives. PMID:24790573</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA588350','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA588350"><span>Nonlinear Eulerian Thermoelasticity for Anisotropic Crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-08-01</p> <p>the applied pressure. However, some crystalline materials such as ceramics and hard minerals may retain significant shear strength at finite strain...which elastic properties have been measured. Benefits of using Eulerian strain measures for nonlinear elasticity of isotropic materials were extolled by...highly symmetric anharmonic properties . Deviations may be expected for highly anisotropic materials , as shown in Section 4. This work is focused</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CompM..46..147S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CompM..46..147S"><span>Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugiyama, Kazuyasu; , Satoshi, II; Takeuchi, Shintaro; Takagi, Shu; Matsumoto, Yoichiro</p> <p>2010-03-01</p> <p>For a given initial configuration of a multi-component geometry represented by voxel-based data on a fixed Cartesian mesh, a full Eulerian finite difference method facilitates solution of dynamic interaction problems between Newtonian fluid and hyperelastic material. The solid volume fraction, and the left Cauchy-Green deformation tensor are temporally updated on the Eulerian frame, respectively, to distinguish the fluid and solid phases, and to describe the solid deformation. The simulation method is applied to two- and three-dimensional motions of two biconcave neo-Hookean particles in a Poiseuille flow. Similar to the numerical study on the red blood cell motion in a circular pipe (Gong et al. in J Biomech Eng 131:074504, 2009), in which Skalak’s constitutive laws of the membrane are considered, the deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles. The present Eulerian approach is demonstrated that it has the potential to be easily extended to larger system problems involving a large number of particles of complicated geometries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29060488','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29060488"><span>Serial fusion of Eulerian and Lagrangian approaches for accurate heart-rate estimation using face videos.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gupta, Puneet; Bhowmick, Brojeshwar; Pal, Arpan</p> <p>2017-07-01</p> <p>Camera-equipped devices are ubiquitous and proliferating in the day-to-day life. Accurate heart rate (HR) estimation from the face videos acquired from the low cost cameras in a non-contact manner, can be used in many real-world scenarios and hence, require rigorous exploration. This paper has presented an accurate and near real-time HR estimation system using these face videos. It is based on the phenomenon that the color and motion variations in the face video are closely related to the heart beat. The variations also contain the noise due to facial expressions, respiration, eye blinking and environmental factors which are handled by the proposed system. Neither Eulerian nor Lagrangian temporal signals can provide accurate HR in all the cases. The cases where Eulerian temporal signals perform spuriously are determined using a novel poorness measure and then both the Eulerian and Lagrangian temporal signals are employed for better HR estimation. Such a fusion is referred as serial fusion. Experimental results reveal that the error introduced in the proposed algorithm is 1.8±3.6 which is significantly lower than the existing well known systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1360930-modeling-shockwaves-impact-phenomena-eulerian-peridynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1360930-modeling-shockwaves-impact-phenomena-eulerian-peridynamics"><span>Modeling shockwaves and impact phenomena with Eulerian peridynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Silling, Stewart A.; Parks, Michael L.; Kamm, James R.; ...</p> <p>2017-05-09</p> <p>Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the material model refers to an undeformed reference configuration. Here, an Eulerian form of material modeling is developed, in which bond forces depend only on the positions of material points in the deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic model and is derivable from a suitable expression for the free energy of a material. We show that the resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid response in which very large deformationsmore » make the Lagrangian form unsuitable. The Eulerian capability is demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single material model, allowing strength and fracture under tensile or shear loading to be modeled consistently with high compressive stresses. Furthermore, we demonstrate this capability in numerical simulation of bird strike against an aircraft, in which both tensile fracture and high pressure response are important.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1360930','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1360930"><span>Modeling shockwaves and impact phenomena with Eulerian peridynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Silling, Stewart A.; Parks, Michael L.; Kamm, James R.</p> <p></p> <p>Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the material model refers to an undeformed reference configuration. Here, an Eulerian form of material modeling is developed, in which bond forces depend only on the positions of material points in the deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic model and is derivable from a suitable expression for the free energy of a material. We show that the resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid response in which very large deformationsmore » make the Lagrangian form unsuitable. The Eulerian capability is demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single material model, allowing strength and fracture under tensile or shear loading to be modeled consistently with high compressive stresses. Furthermore, we demonstrate this capability in numerical simulation of bird strike against an aircraft, in which both tensile fracture and high pressure response are important.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.476...79X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.476...79X"><span>Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Wenbin; Rivalta, Eleonora; Li, Xing</p> <p>2017-10-01</p> <p>Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9987064','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9987064"><span>Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miyata, T; van Ypersele de Strihou, C; Kurokawa, K; Baynes, J W</p> <p>1999-02-01</p> <p>Advanced glycation end products (AGEs), formed during Maillard or browning reactions by nonenzymatic glycation and oxidation (glycoxidation) of proteins, have been implicated in the pathogenesis of several diseases, including diabetes and uremia. AGEs, such as pentosidine and carboxymethyllysine, are markedly elevated in both plasma proteins and skin collagen of uremic patients, irrespective of the presence of diabetes. The increased chemical modification of proteins is not limited to AGEs, because increased levels of advanced lipoxidation end products (ALEs), such as malondialdehydelysine, are also detected in plasma proteins in uremia. The accumulation of AGEs and ALEs in uremic plasma proteins is not correlated with increased blood glucose or triglycerides, nor is it determined by a decreased removal of chemically modified proteins by glomerular filtration. It more likely results from increased plasma concentrations of small, reactive carbonyl precursors of AGEs and ALEs, such as glyoxal, methylglyoxal, 3-deoxyglucosone, dehydroascorbate, and malondialdehyde. Thus, uremia may be described as a state of carbonyl overload or "carbonyl stress" resulting from either increased oxidation of carbohydrates and lipids (oxidative stress) or inadequate detoxification or inactivation of reactive carbonyl compounds derived from both carbohydrates and lipids by oxidative and nonoxidative chemistry. Carbonyl stress in uremia may contribute to the long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and accelerated atherosclerosis. The increased levels of AGEs and ALEs in uremic blood and tissue proteins suggest a broad derangement in the nonenzymatic biochemistry of both carbohydrates and lipids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ANSNN...9a5005V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ANSNN...9a5005V"><span>Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vennila, Krishnan; Chitra, Loganathan; Balagurunathan, Rama; Palvannan, Thayumanavan</p> <p>2018-03-01</p> <p>Selenium and silver nanoparticles (NPs) were synthesized using Spermacoce hispida aqueous leaf extract (Sh-ALE). The optimum condition required for the synthesis of Sh-SeNPs was found to be 30 mM selenious acid solution to Sh-ALE at the ratio of 4:46, pH 9, incubated at 40 °C for 10 min. On the other hand, for Sh-AgNPs the optimum condition was found to be 1 mM AgNO3 to the Sh-ALE solution at the ratio of 4:46, pH 8, incubated at 40 °C for 10 min. SEM analysis revealed that both the Sh-AgNPs and Sh-SeNPs are predominantly rod-shaped. Sh-SeNPs and Sh-AgNPs were found to possess concentration-dependent antioxidant activity. However, Sh-SeNPs showed potent anti-inflammatory property, antibacterial property and anticancer activity against human cervical cancer cell in comparison to Sh-AgNPs. Phytochemical analysis, FTIR and GC-MS analysis showed that various flavonoids, saponins and phenolic compounds present in Sh-ALE catalysed the formation of NPs. Also, GC-MS analysis revealed that Sh-SeNPs are capped by synaptogenin B and derivatives of apigenin, quinoline and quinazoline. The advantage of attachment of such phytoconstituents on Sh-SeNPs for its potent biological activity in comparison to Sh-AgNPs is evident in in vitro conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28139159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28139159"><span>Light-Induced Retinopathy: Young Age Protects more than Ocular Pigmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Polosa, Anna; Bessaklia, Hyba; Lachapelle, Pierre</p> <p>2017-06-01</p> <p>The purpose of this study was to compare the efficacy that ocular melanin confers in protecting the retina of juvenile and adult rats exposed to a bright luminous environment. Juvenile (JLE) and adult (ALE) Long-Evans pigmented rats were thus exposed to a bright cyclic light (10,000lux; white light) from postnatal day 14-28 or for 6 consecutive days, respectively. Flash electroretinograms (ERG) and retinal histology were performed at different predetermined ages, post-light exposure. Despite a significant reduction in ERG responses immediately following light exposure, with time, retinal function fully recovered in JLE compared to a 54% recovery for the ALE. In ALE, we noted a region of the supero-temporal quadrant that was highly vulnerable to light damage. This region was also devoid of melanin granules prior to the light exposure. This melanin-free zone increased in size in the days that followed the end of exposure, a process that was accompanied by the gradual degeneration of the thus uncovered photoreceptors. In contrast, melanin and photoreceptor losses were minimal in JLE. Our results suggest that the light-induced photoreceptor degeneration in ALE would be secondary to the initial destruction of the RPE and ensuing loss of melanin protection. In contrast, the melanin granules of JLE appear to be significantly more resistant to light damage, a characteristic that would explain the higher resistance of JLE photoreceptors to light damage. Our results would thus suggest that the efficacy of ocular melanin protection against light damage declines with age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA604581','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA604581"><span>Development and Evaluation of a Hydrostatic Dynamical Core Using the Spectral Element/Discontinuous Galerkin Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-04-01</p> <p>The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...and DG horizontal discretization employs high-order nodal basis functions 29 associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...Inside 235 each element we build ( 1)N + Gauss-Lobatto- Legendre (GLL) quadrature points, where N 236 indicate the polynomial order of the basis</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJC....91..285V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJC....91..285V"><span>PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.</p> <p>2018-02-01</p> <p>This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOM...tmp..219L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOM...tmp..219L"><span>Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu</p> <p>2018-05-01</p> <p>A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23181147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23181147"><span>Adopting an Evidence-Based Lifestyle Physical Activity Program: Dissemination Study Design and Methods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dunn, Andrea L; Buller, David B; Dearing, James W; Cutter, Gary; Guerra, Michele; Wilcox, Sara; Bettinghaus, Erwin P</p> <p>2012-06-01</p> <p>BACKGROUND: There is a scarcity of research studies that have examined academic-commercial partnerships to disseminate evidence-based physical activity programs. Understanding this approach to dissemination is essential because academic-commercial partnerships are increasingly common. Private companies have used dissemination channels and strategies to a degree that academicians have not, and declining resources require academicians to explore these partnerships. PURPOSE: This paper describes a retrospective case-control study design including the methods, demographics, organizational decision-making, implementation rates, and marketing strategy for Active Living Every Day (ALED), an evidence-based lifestyle physical activity program that has been commercially available since 2001. Evidence-based public health promotion programs rely on organizations and targeted sectors to disseminate these programs although relatively little is known about organizational-level and sector-level influences that lead to their adoption and implementation. METHODS: Cases (n=154) were eligible if they had signed an ALED license agreement with Human Kinetics (HK), publisher of the program's textbooks and facilitator manuals, between 2001 and 2008. Two types of controls were matched (2:2:1) and stratified by sector and region. Active controls (Control 1; n=319) were organizations that contacted HK to consider adopting ALED. Passive controls (Control 2; n=328) were organizations that received unsolicited marketing materials and did not initiate contact with HK. We used Diffusion of Innovations Theory (DIT) constructs as the basis for developing the survey of cases and controls. RESULTS: Using the multi-method strategy recommended by Dillman, a total of n=801 cases and controls were surveyed. Most organizations were from the fitness sector followed by medical, nongovernmental, governmental, educational, worksite and other sectors with significantly higher response rates from government, educational and medical sectors compared with fitness and other sectors, (p=0.02). More cases reported being involved in the decision to adopt ALED (p<0.0001). Data indicate that a low percentage of controls had ever heard of ALED despite repeated marketing and offering other types of physical activity programs and services. Finally, slightly over half of the adopters reported they had actually implemented the ALED program. CONCLUSION: Dissemination research requires new perspectives and designs to produce valid insights about the results of dissemination efforts. This study design, survey methods and theoretically-based questions can serve as a useful model for other evidence-based public health interventions that are marketed by commercial publishers to better understand key issues related to adoption and implementation of evidence-based programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930062646&hterms=Lagrangian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DLagrangian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930062646&hterms=Lagrangian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DLagrangian"><span>Extension of rezoned Eulerian-Lagrangian method to astrophysical plasma applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Song, M. T.; Wu, S. T.; Dryer, Murray</p> <p>1993-01-01</p> <p>The rezoned Eulerian-Lagrangian procedure developed by Brackbill and Pracht (1973), which is limited to simple configurations of the magnetic fields, is modified in order to make it applicable to astrophysical plasma. For this purpose, two specific methods are introduced, which make it possible to determine the initial field topology for which no analytical expressions are available. Numerical examples illustrating these methods are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CNSNS..11..606J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CNSNS..11..606J"><span>Model-based control strategies for systems with constraints of the program type</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jarzębowska, Elżbieta</p> <p>2006-08-01</p> <p>The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/978908','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/978908"><span>Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kuo, I W; Bastea, S; Fried, L E</p> <p>2010-03-10</p> <p>We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JHEP...03..013D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JHEP...03..013D"><span>Instantons on ALE spaces and orbifold partitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dijkgraaf, Robbert; Sułkowski, Piotr</p> <p>2008-03-01</p> <p>We consider Script N = 4 theories on ALE spaces of Ak-1 type. As is well known, their partition functions coincide with Ak-1 affine characters. We show that these partition functions are equal to the generating functions of some peculiar classes of partitions which we introduce under the name 'orbifold partitions'. These orbifold partitions turn out to be related to the generalized Frobenius partitions introduced by G. E. Andrews some years ago. We relate the orbifold partitions to the blended partitions and interpret explicitly in terms of a free fermion system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27832105','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27832105"><span>A Novel Multi-Receiver Signcryption Scheme with Complete Anonymity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pang, Liaojun; Yan, Xuxia; Zhao, Huiyang; Hu, Yufei; Li, Huixian</p> <p>2016-01-01</p> <p>Anonymity, which is more and more important to multi-receiver schemes, has been taken into consideration by many researchers recently. To protect the receiver anonymity, in 2010, the first multi-receiver scheme based on the Lagrange interpolating polynomial was proposed. To ensure the sender's anonymity, the concept of the ring signature was proposed in 2005, but afterwards, this scheme was proven to has some weakness and at the same time, a completely anonymous multi-receiver signcryption scheme is proposed. In this completely anonymous scheme, the sender anonymity is achieved by improving the ring signature, and the receiver anonymity is achieved by also using the Lagrange interpolating polynomial. Unfortunately, the Lagrange interpolation method was proven a failure to protect the anonymity of receivers, because each authorized receiver could judge whether anyone else is authorized or not. Therefore, the completely anonymous multi-receiver signcryption mentioned above can only protect the sender anonymity. In this paper, we propose a new completely anonymous multi-receiver signcryption scheme with a new polynomial technology used to replace the Lagrange interpolating polynomial, which can mix the identity information of receivers to save it as a ciphertext element and prevent the authorized receivers from verifying others. With the receiver anonymity, the proposed scheme also owns the anonymity of the sender at the same time. Meanwhile, the decryption fairness and public verification are also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31C2183S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31C2183S"><span>Insights into the physico-chemical evolution of pyrogenic organic carbon emissions from biomass burning using coupled Lagrangian-Eulerian simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suciu, L. G.; Griffin, R. J.; Masiello, C. A.</p> <p>2017-12-01</p> <p>Wildfires and prescribed burning are important sources of particulate and gaseous pyrogenic organic carbon (PyOC) emissions to the atmosphere. These emissions impact atmospheric chemistry, air quality and climate, but the spatial and temporal variabilities of these impacts are poorly understood, primarily because small and fresh fire plumes are not well predicted by three-dimensional Eulerian chemical transport models due to their coarser grid size. Generally, this results in underestimation of downwind deposition of PyOC, hydroxyl radical reactivity, secondary organic aerosol formation and ozone (O3) production. However, such models are very good for simulation of multiple atmospheric processes that could affect the lifetimes of PyOC emissions over large spatiotemporal scales. Finer resolution models, such as Lagrangian reactive plumes models (or plume-in-grid), could be used to trace fresh emissions at the sub-grid level of the Eulerian model. Moreover, Lagrangian plume models need background chemistry predicted by the Eulerian models to accurately simulate the interactions of the plume material with the background air during plume aging. Therefore, by coupling the two models, the physico-chemical evolution of the biomass burning plumes can be tracked from local to regional scales. In this study, we focus on the physico-chemical changes of PyOC emissions from sub-grid to grid levels using an existing chemical mechanism. We hypothesize that finer scale Lagrangian-Eulerian simulations of several prescribed burns in the U.S. will allow more accurate downwind predictions (validated by airborne observations from smoke plumes) of PyOC emissions (i.e., submicron particulate matter, organic aerosols, refractory black carbon) as well as O3 and other trace gases. Simulation results could be used to optimize the implementation of additional PyOC speciation in the existing chemical mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5878855','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5878855"><span>La fibrose rétropéritonéale: à propos de 12 cas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Majdoub, Aziz El; Khallouk, Abdelhak; Farih, Moulay Hassan</p> <p>2017-01-01</p> <p>La fibrose rétropéritonéale (FRP) est une maladie rare. Elle se caractérise par la transformation progressive du tissu adipeux rétopéritonéal en une masse fibreuse qui enserre l'aorte, la veine cave inférieure et les voies urinaires responsable d'une altération progressive de la fonction rénale. Le mode habituel de présentation de cette maladie comporte l'association de douleurs lombaires, d'une insuffisance rénale, et d'un syndrome inflammatoire biologique. Nous rapportons 12 cas de fibrose rétropéritonéale dont nous précisons les particularités cliniques, radiologiques et thérapeutiques. Il s'agit d'une étude rétrospective portant sur douze cas de fibrose rétropéritonéale colligés au service d'urologie au CHU Hassan II de Fès durant une période de 9 ans (2005-2013). Il s'agissait de dix hommes et deux femmes. La symptomatologie clinique était très variable, dominée par la douleur lombaire qui était présente chez tous les malades et une hydrocèle chez un patient. Les explorations biologiques avaient montré une insuffisance rénale chez tous les malades et un syndrome inflammatoire chez dix patients. Le diagnostic de la maladie était suspecté dans tous les cas sur les données de l'échographie qui a montré une obstruction de la voie excrétrice supérieure sans obstacle visible chez tous les malades, et confirmé par la TDM abdominale sans injection du produit de contraste qui objectivait une lésion tissulaire rétropéritonéale engainant les vaisseaux et les voies urinaires. Dans notre série, la fibrose rétropéritonéale était idiopathique dans neuf cas. Elle était péri anévrysmale chez deux malades, et post radiothérapie chez un malade. Tous nos patients avaient bénéficié d'un drainage urinaire par sonde urétérale double J. Sept malades avaient reçu une corticothérapie. Une amélioration clinique et biologique, avec disparition de la douleur et amélioration de l'état général, a été observée chez 6 patients. A travers cette étude nous avons confirmé la rareté de la fibrose rétropéritonéale, la difficulté de son diagnostic, la fréquence de la douleur, du syndrome inflammatoire et de l'insuffisance rénale. La TDM abdominale sans injection du produit de contraste confirme le diagnostic. Le drainage urinaire est indispensable dans la plupart des cas et le suivi régulier des malades est nécessaire. PMID:29610632</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8588R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8588R"><span>Forced folding in a salty basin: Gada'-Ale in the Afar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rafflin, Victoria; Hetherington, Rachel; Hagos, Miruts; van Wyk de Vries, Benjamin</p> <p>2017-04-01</p> <p>The Gada'-Ale Volcano in the Danakil Depression of Ethiopia is a curious shield-like, or flat dome-like volcanic centre in the Afar Rift. It has several fissure eruptions seen on its mid and lower flanks. It has an even more curious ring structure on its western side that has been interpreted as a salt diapir. The complex lies the central part of the basin where there are 1-2 km thick salt deposits. The area was active in 1990's (Amelung et al 2000) with no eruptive activity, but a possible intrusion. There was also an intrusion north of Gada'-Ale at Dallol in 2005 (Nobile et al 2012). Using Google Earth imagery, we have mapped the volcano, and note that: a) the main edifice has a thin skin of lava lying light coloured rock; b) that these thin deposits are sliding down the flank of volcano, and thrusting at the base. In doing so, they are breaking into detached plates. The light colour of the deposits, and the ability of the rock to slide on them suggest that are salt; Fractures on and around the volcano form curved patterns, around raised areas with several km diameter. These could be surface expressions of shallow sills. Putting the observations together with the known geology of adjacent centres like Dallol and Alu, we suggest that Gada'-Ale is a forced fold, created over a sill that has either bulged into a laccolith, or risen as a saucer-shaped sill. The upraised salt has caused the thin veneer of volcanics to slide off. That there are eruptive fissures on Gada'-Ale, and possible sill intrusions around the base suggests that the centre lies over a complex of sills that have gradually intruded and bulged the structure to its present level. Eruptions have contribute only a small amount to the whole topography of the edifice. We hope to visit the volcano in March and will being hot-off-the press details back to the EGU!</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJMPS..4260159F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJMPS..4260159F"><span>a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Xiaofeng; Wang, Jiangfeng</p> <p>2016-06-01</p> <p>The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ZaMP...68..116W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ZaMP...68..116W"><span>The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Changhua</p> <p>2017-10-01</p> <p>This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3325904','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3325904"><span>Retinal compensatory changes after light damage in albino mice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta</p> <p>2012-01-01</p> <p>Purpose To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. Methods BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Results Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. Conclusions In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function. PMID:22509098</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........63W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........63W"><span>On the coupled evolution of oceanic internal waves and quasi-geostrophic flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Gregory LeClaire</p> <p></p> <p>Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA119471','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA119471"><span>The Relation Among the Likelihood Ratio-, Wald-, and Lagrange Multiplier Tests and Their Applicability to Small Samples,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-04-01</p> <p>S. (1979), "Conflict Among Criteria for Testing Hypothesis: Extension and Comments," Econometrica, 47, 203-207 Breusch , T. S. and Pagan , A. R. (1980...Savin, N. E. (1977), "Conflict Among Criteria for Testing Hypothesis in the Multivariate Linear Regression Model," Econometrica, 45, 1263-1278 Breusch , T...VNCLASSIFIED RAND//-6756NL U l~ I- THE RELATION AMONG THE LIKELIHOOD RATIO-, WALD-, AND LAGRANGE MULTIPLIER TESTS AND THEIR APPLICABILITY TO SMALL SAMPLES</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..APR.E1073M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..APR.E1073M"><span>Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magana, Omar; Laird, Robert</p> <p>2012-03-01</p> <p>A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5092066','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5092066"><span>Extraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Felz, Simon; Al-Zuhairy, Salah; Aarstad, Olav Andreas; van Loosdrecht, Mark C.M.; Lin, Yue Mei</p> <p>2016-01-01</p> <p>To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca2+). From the six extraction methods used, only the Na2CO3 extraction could solubilize the hydrogel matrix of AGS. The alginate-like extracellular polymers (ALE) recovered with this method formed ionic gel beads with Ca2+. The Ca2+-ALE beads were stable in EDTA, formamide with NaOH and formaldehyde with NaOH, indicating that ALE are one part of the structural polymers in EPS. It is recommended to use an extraction method that combines physical and chemical treatment to solubilize AGS and extract structural EPS. PMID:27768085</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4462515','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4462515"><span>History of the pharmacies in the town of Aleşd, Bihor county</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>PAŞCA, MANUELA BIANCA; GÎTEA, DANIELA; MOISA, CORINA</p> <p>2013-01-01</p> <p>In 1848 pharmacist Horváth Mihály established the first pharmacy in Aleşd, called Speranţa (Remény). Following the brief history of this pharmacy we will notice that in 1874 the pharmacy comes into the possession of Kocsiss József. In 1906 the personal rights of the pharmacy are transcribed to Kocsiss Béla, and since 1938 the his son, Kocsiss Dezső, pharmacist, became the new owner. In 1949 the pharmacy was nationalized and became the property of the Pharmaceutical Office Oradea, the pharmacy got the name Farmacia nr. 22 of Aleşd, and continued its activity throughout the whole communist period. Starting with the year 1991 it entered into private system as Angefarm, as the property of Mermeze Gheorghe, pharmacist, and from 2003 until now works under the name Vitalogy 3, as the property of Ghitea Sorin. A second pharmacy, Sfântul Anton was founded in 1937 by pharmacist Herceg Dobreanu Atena, which however had no continuity during the communist period. PMID:26527963</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994Icar..110..196W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994Icar..110..196W"><span>Assessment of antipodal-impact terrains on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, David A.; Greeley, Ronald</p> <p>1994-08-01</p> <p>The regions anitpodal to Mars' three largest impact basins, Hellas, Isidis, and Argyre, were assessed for evidence of impact-induced disrupted terrains. Photogeology and computer modeling using the Simplified Arbitrary Lagrangian Eulerian (SALE) finite element code suggest that such terrains could have been found by the Hellas impact. Maximum antipodal pressures are 1100 MPa for Hellas, 520 MPa for Isidis, and 150 MPa for Argyre. The results suggest that if antipodal fracturing were associated with later volcanism, then Alba Patera may be related to the Hellas event, as proposed by Peterson (1978). Alba Patera is a unique volcano in the solar system, being a shield volcano which emitted large volume lava flows. This volcanism could be the result of the focusing of seismic energy which created a fractured region that served as a volcanic conduit for the future release of large volumes of magma. No disrupted terrain features are observed antipodal to the Isidis or Argyre basins, although some of the old fractures in Noctis Labyrinthus could have originated in response to the Isidis impact, and later have been reactivated by the Tharsis tectonics assumed to have produced Noctis. If the lower calculated antipodal pressures for Argyre were capable of producing disrupted terrains, then the terrains have been covered subsequently by volcanic or aeolian material, or modified beyond recognition.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046551&hterms=fracturing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfracturing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046551&hterms=fracturing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfracturing"><span>Assessment of antipodal-impact terrains on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, David A.; Greeley, Ronald</p> <p>1994-01-01</p> <p>The regions anitpodal to Mars' three largest impact basins, Hellas, Isidis, and Argyre, were assessed for evidence of impact-induced disrupted terrains. Photogeology and computer modeling using the Simplified Arbitrary Lagrangian Eulerian (SALE) finite element code suggest that such terrains could have been found by the Hellas impact. Maximum antipodal pressures are 1100 MPa for Hellas, 520 MPa for Isidis, and 150 MPa for Argyre. The results suggest that if antipodal fracturing were associated with later volcanism, then Alba Patera may be related to the Hellas event, as proposed by Peterson (1978). Alba Patera is a unique volcano in the solar system, being a shield volcano which emitted large volume lava flows. This volcanism could be the result of the focusing of seismic energy which created a fractured region that served as a volcanic conduit for the future release of large volumes of magma. No disrupted terrain features are observed antipodal to the Isidis or Argyre basins, although some of the old fractures in Noctis Labyrinthus could have originated in response to the Isidis impact, and later have been reactivated by the Tharsis tectonics assumed to have produced Noctis. If the lower calculated antipodal pressures for Argyre were capable of producing disrupted terrains, then the terrains have been covered subsequently by volcanic or aeolian material, or modified beyond recognition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22253461-complex-quantum-hamilton-jacobi-equation-bohmian-trajectories-application-photodissociation-dynamics-nocl','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22253461-complex-quantum-hamilton-jacobi-equation-bohmian-trajectories-application-photodissociation-dynamics-nocl"><span>Complex quantum Hamilton-Jacobi equation with Bohmian trajectories: Application to the photodissociation dynamics of NOCl</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw</p> <p>2014-03-14</p> <p>The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneouslymore » integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDD16010L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDD16010L"><span>Fluid-structure interaction analysis on the effect of vessel wall hypertrophy and stiffness on the blood flow in carotid artery bifurcation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul</p> <p>2012-11-01</p> <p>The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890015192','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890015192"><span>Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stremel, Paul M.</p> <p>1989-01-01</p> <p>Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22047333-tess-relativistic-hydrodynamics-code-moving-voronoi-mesh','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22047333-tess-relativistic-hydrodynamics-code-moving-voronoi-mesh"><span>TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu</p> <p>2011-12-01</p> <p>We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011025','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011025"><span>An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nemeth, Michael P.</p> <p>2013-01-01</p> <p>An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1499...46V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1499...46V"><span>Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc</p> <p>2012-11-01</p> <p>This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OPhy...15..115W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OPhy...15..115W"><span>Holonomicity analysis of electromechanical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wcislik, Miroslaw; Suchenia, Karol</p> <p>2017-12-01</p> <p>Electromechanical systems are described using state variables that contain electrical and mechanical components. The equations of motion, both electrical and mechanical, describe the relationships between these components. These equations are obtained using Lagrange functions. On the basis of the function and Lagrange - d'Alembert equation the methodology of obtaining equations for electromechanical systems was presented, together with a discussion of the nonholonomicity of these systems. The electromechanical system in the form of a single-phase reluctance motor was used to verify the presented method. Mechanical system was built as a system, which can oscillate as the element of physical pendulum. On the base of the pendulum oscillation, parameters of the electromechanical system were defined. The identification of the motor electric parameters as a function of the rotation angle was carried out. In this paper the characteristics and motion equations parameters of the motor are presented. The parameters of the motion equations obtained from the experiment and from the second order Lagrange equations are compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhLA..381.3621L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhLA..381.3621L"><span>Size effects in non-linear heat conduction with flux-limited behaviors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shu-Nan; Cao, Bing-Yang</p> <p>2017-11-01</p> <p>Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.L2012Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.L2012Z"><span>Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zwick, David; Hackl, Jason; Balachandar, S.</p> <p>2017-11-01</p> <p>Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750023590','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750023590"><span>An investigation of turbulent transport in the extreme lower atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koper, C. A., Jr.; Sadeh, W. Z.</p> <p>1975-01-01</p> <p>A model in which the Lagrangian autocorrelation is expressed by a domain integral over a set of usual Eulerian autocorrelations acquired concurrently at all points within a turbulence box is proposed along with a method for ascertaining the statistical stationarity of turbulent velocity by creating an equivalent ensemble to investigate the flow in the extreme lower atmosphere. Simultaneous measurements of turbulent velocity on a turbulence line along the wake axis were carried out utilizing a longitudinal array of five hot-wire anemometers remotely operated. The stationarity test revealed that the turbulent velocity is approximated as a realization of a weakly self-stationary random process. Based on the Lagrangian autocorrelation it is found that: (1) large diffusion time predominated; (2) ratios of Lagrangian to Eulerian time and spatial scales were smaller than unity; and, (3) short and long diffusion time scales and diffusion spatial scales were constrained within their Eulerian counterparts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950063861&hterms=sing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950063861&hterms=sing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsing"><span>An extended Lagrangian method for subsonic flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liou, Meng-Sing; Loh, Ching Y.</p> <p>1992-01-01</p> <p>It is well known that fluid motion can be specified by either the Eulerian of Lagrangian description. Most of Computational Fluid Dynamics (CFD) developments over the last three decades have been based on the Eulerian description and considerable progress has been made. In particular, the upwind methods, inspired and guided by the work of Gudonov, have met with many successes in dealing with complex flows, especially where discontinuities exist. However, this shock capturing property has proven to be accurate only when the discontinuity is aligned with one of the grid lines since most upwind methods are strictly formulated in 1-D framework and only formally extended to multi-dimensions. Consequently, the attractive property of crisp resolution of these discontinuities is lost and research on genuine multi-dimensional approach has just been undertaken by several leading researchers. Nevertheless they are still based on the Eulerian description.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22393117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22393117"><span>Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Umeyama, Motohiko</p> <p>2012-04-13</p> <p>This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ34007F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ34007F"><span>Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs</p> <p>2017-11-01</p> <p>A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3188120','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3188120"><span>Etiologie Rare de Sinusites Nosocomiales en Milieu de Reanimation - A Propos d'une Observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Messadi, A.A.; Oueslati, S.; Thabet, L.; Bousselmi, K.; Menif, E.</p> <p>2006-01-01</p> <p>Summary Les sinusites nosocomiales ne sont pas rares en réanimation. Elles surviennent en général dans les suites d'une intubation nasotrachéale voire même orotrachéale. Le tubage gastrique peut être à lui seul à l'origine d'une sinusite nosocomiale. Nous rapportons le cas d'une patiente hospitalisée qui a été victime de brûlures étendues chez qui la sonde nasogastrique a été à l'origine d'une pansinusite dont l'issue a été fatale. PMID:21991055</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22866363','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22866363"><span>Assessment of phosphate binding by sevelamer carbonate powder for oral suspension mixed in foods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanus, Martin; Zhorov, Eugene; Brommage, Deborah; Plone, Melissa; Holmes-Farley, Stephen Randall</p> <p>2012-01-01</p> <p>This study investigated mixing sevelamer carbonate powder with foods and beverages other than water. Food samples, including applesauce, oatmeal, chicken, protein powder, scrambled eggs, ginger ale, and diet ginger ale, were subjected to an in vitro assay, and the difference in the amount of phosphate bound between samples pre-exposed to foods and samples where the drug was exposed to foods concurrently was determined Under these assay conditions, pre-exposure to sevelamer carbonate powder had no effect on the ability to bind phosphate. Clinical testing is needed to further evaluate this finding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL38006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL38006B"><span>Effect of Material Property Variations at Near Critical Thermodynamic Conditions on Pipe Flow Heat Transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barney, Rebecca; Nourgaliev, Robert; Delplanque, Jean-Pierre; McCallen, Rose</p> <p>2017-11-01</p> <p>Heat transfer is quantified and contrasted for the Poiseuille flow of a fluid at both subcritical and supercritical thermodynamic conditions in a circular pipe subject to a uniform wall heat flux. The conditions considered are relevant to Supercritical Water Reactor (SCWR) applications. In the supercritical thermodynamic regime, a fluid can exhibit large density variations of density, thermal conductivity, and viscosity, which will affect flow and heat transfer characteristics significantly. An advanced equation of state for supercritical water was implemented in a 2D and 3D Arbitrary Lagrangian-Eurlerian multi-physics simulation tool called ALE3D developed at Lawrence Livermore National Laboratory. A newly developed, robust, high-order in space and time, fully implicit reconstructed discontinuous Galerkin (rDG) method is used to enable the numerical simulation of convective heat transfer with supercritical water. Results demonstrate the capability of this approach to accurately capture the non-linear behavior and enhanced heat transfer with supercritical water. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-736004. Work is supported by the Integrated University Program Graduate Fellowship. Opinions, findings, conclusions or recommendations expressed are of the authors and do not necessarily reflect the views of DOE office of NE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419712','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419712"><span>Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van Roekel, Luke</p> <p></p> <p>We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21218493','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21218493"><span>Characterization of Brazilian lager and brown ale beers based on color, phenolic compounds, and antioxidant activity using chemometrics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Granato, Daniel; Branco, Gabriel Favalli; Faria, José de Assis Fonseca; Cruz, Adriano Gomes</p> <p>2011-02-01</p> <p>Epidemiological studies have shown that beer has positive effects on inhibiting atherosclerosis, decreasing the content of serum low-density lipoprotein cholesterol and triglycerides, by acting as in vivo free radical scavenger. In this research, the antioxidant activity of commercial Brazilian beers (n = 29) was determined by the oxygen radical absorbance capacity (ORAC) and 1,1-diphenyl-2-picrylhydrazyl (DPPH(·) ) assays and results were analyzed by chemometrics. The brown ale samples (n = 11) presented higher (P < 0.05) flavonoids (124.01 mg L(-1) ), total phenolics (362.22 mg L(-1) ), non-flavonoid phenolics (238.21 mg L(-1) ), lightness (69.48), redness (35.75), yellowness (55.71), color intensity (66.86), hue angle (59.14), color saturation (0.9620), DPPH(·) values (30.96% inhibition), and ORAC values (3, 659.36 µmol Trolox equivalents L(-1) ), compared to lager samples (n = 18). Brown ale beers presented higher antioxidant properties (P < 0.05) measured by ORAC (1.93 times higher) and DPPH (1.65 times higher) compared to lager beer. ORAC values correlated well with the content of flavonoids (r = 0.47; P = 0.01), total phenolic compounds (r = 0.44; P < 0.01) and DPPH (r = 0.67; P < 0.01). DPPH values also correlated well to the content of flavonoids (r = 0.69; P < 0.01), total phenolic compounds (r = 0.60; P < 0.01), and non-flavonoid compounds (r = 0.46; P = 0.01). The results suggest that brown ale beers, and less significantly lager beers, could be sources of bioactive compounds with suitable free radical scavenging properties. 2010 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18424099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18424099"><span>Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bundy, Rafe; Walker, Ann F; Middleton, Richard W; Wallis, Carol; Simpson, Hugh C R</p> <p>2008-09-01</p> <p>Cardiovascular diseases are the chief causes of death in the UK, and are associated with high circulating levels of total cholesterol in the plasma. Artichoke leaf extracts (ALEs) have been reported to reduce plasma lipids levels, including total cholesterol, although high quality data is lacking. The objective of this trial was to assess the effect of ALE on plasma lipid levels and general well-being in otherwise healthy adults with mild to moderate hypercholesterolemia. 131 adults were screened for total plasma cholesterol in the range 6.0-8.0 mmol/l, with 75 suitable volunteers randomised onto the trial. Volunteers consumed 1280 mg of a standardised ALE, or matched placebo, daily for 12 weeks. Plasma total cholesterol decreased in the treatment group by an average of 4.2% (from 7.16 (SD 0.62) mmol/l to 6.86 (SD 0.68) mmol/l) and increased in the control group by an average of 1.9% (6.90 (SD 0.49) mmol/l to 7.03 (0.61) mmol/l), the difference between groups being statistically significant (p=0.025). No significant differences between groups were observed for LDL cholesterol, HDL cholesterol or triglyceride levels. General well-being improved significantly in both the treatment (11%) and control groups (9%) with no significant differences between groups. In conclusion, ALE consumption resulted in a modest but favourable statistically significant difference in total cholesterol after 12 weeks. In comparison with a previous trial, it is suggested that the apparent positive health status of the study population may have contributed to the modesty of the observed response.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>