Science.gov

Sample records for arbitrary turbulence spectrum

  1. Lyapunov spectrum in turbulent combustion

    NASA Astrophysics Data System (ADS)

    Hassanaly, Malik; Raman, Venkat

    2016-11-01

    Transient flame evolution is an important flow problem for many practical applications (for example high-altitude relight, ignition in internal combustion engines, unstart in scramjets). Current approaches to combustion modeling utilize assumptions that are valid mainly for statistically stationary processes. In order to understand the transient problem, a dynamic systems approach is followed here. The propagation of a flame in a turbulent channel flow is used as a canonical turbulent combustion system and is analyzed with the Lyapunov theory. In particular, the Lyapunov spectrum for this flow is computed using multiple coordinated simulations. For a range of flow conditions, dimensionality of the state-space is determined. It is shown that the internal structure of the flame plays a critical role in determining the response of the system to perturbations in the flow.

  2. Sparse spectrum model for a turbulent phase.

    PubMed

    Charnotskii, Mikhail

    2013-03-01

    Monte Carlo (MC) simulation of phase front perturbations by atmospheric turbulence finds numerous applications for design and modeling of the adaptive optics systems, laser beam propagation simulations, and evaluating the performance of the various optical systems operating in the open air environment. Accurate generation of two-dimensional random fields of turbulent phase is complicated by the enormous diversity of scales that can reach five orders of magnitude in each coordinate. In addition there is a need for generation of the long "ribbons" of turbulent phase that are used to represent the time evolution of the wave front. This makes it unfeasible to use the standard discrete Fourier transform-based technique as a basis for the MC simulation algorithm. We propose a new model for turbulent phase: the sparse spectrum (SS) random field. The principal assumption of the SS model is that each realization of the random field has a discrete random spectral support. Statistics of the random amplitudes and wave vectors of the SS model are arranged to provide the required spectral and correlation properties of the random field. The SS-based MC model offers substantial reduction of computer costs for simulation of the wide-band random fields and processes, and is capable of generating long aperiodic phase "ribbons." We report the results of model trials that determine the number of sparse components, and the range of wavenumbers that is necessary to accurately reproduce the random field with a power-law spectrum.

  3. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  4. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  5. Energy spectrum of buoyancy-driven turbulence.

    PubMed

    Kumar, Abhishek; Chatterjee, Anando G; Verma, Mahendra K

    2014-08-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Π(u), we demonstrate that, for stably stratified flows, the kinetic energy spectrum E(u)(k)∼k(-11/5), the potential energy spectrum E(θ)(k)∼k(-7/5), and Π(u)(k)∼k(-4/5) are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence E(u)(k) follows Kolmogorov's spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Π(u)(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Π(u)(k) and E(u)(k)∼k(-5/3) for a narrow band of wave numbers.

  6. Spectrum and energy transfer in steady Burgers turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    The spectrum, energy transfer, and spectral interactions in steady Burgers turbulence are studied using numerically generated data. The velocity field is initially random and the turbulence is maintained steady by forcing the amplitude of a band of low wavenumbers to be invariant in time, while permitting the phase to change as dictated by the equation. The spectrum, as expected, is very different from that of Navier-Stokes turbulence. It is demonstrated that the far range of the spectrum scales as predicted by Burgers. Despite the difference in their spectra, in matters of the spectral energy transfer and triadic interactions Burgers turbulence is similar to Navier-Stokes turbulence.

  7. Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    Calculation methods for turbulent duct flows are generalized for ducts with arbitrary cross-sections. The irregular physical geometry is transformed into a regular one in computational space, and the flow equations are solved with a finite-volume numerical procedure. The turbulent stresses are calculated with an algebraic stress model derived by simplifying model transport equations for the individual Reynolds stresses. Two variants of such a model are considered. These procedures enable the prediction of both the turbulence-driven secondary flow and the anisotropy of the Reynolds stresses, in contrast to some of the earlier calculation methods. Model predictions are compared to experimental data for developed flow in triangular duct, trapezoidal duct and a rod-bundle geometry. The correct trends are predicted, and the quantitative agreement is mostly fair. The simpler variant of the algebraic stress model procured better agreement with the measured data.

  8. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed

    Wallstrom, T C

    1995-11-21

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion.

  9. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed Central

    Wallstrom, T C

    1995-01-01

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion. Images Fig. 2 PMID:11607590

  10. RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-20

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of {sigma}{sub r} = -0.19 and mean Alfven ratio of r{sub A} = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  11. Heat Transfer in the Turbulent Incompressible Boundary Layer. 3; Arbitrary Wall Temperature and Heat Flux

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C.; Kays, W. M.; Kline, S. J.

    1958-01-01

    Superposition techniques are used to calculate the rate of heat transfer from a flat plate to a turbulent incompressible boundary layer for several cases of variable surface temperature. The predictions of a number of these calculations are compared with experimental heat- transfer rates, and good agreement is obtained. A simple computing procedure for determining the heat-transfer rates from surfaces with arbitrary wall-temperature distributions is presented and illustrated by two examples. The inverse problem of determining the temperature distribution from an arbitrarily prescribed heat flux is also treated, both experimentally and analytically.

  12. Statistic of a Gaussian beam from an arbitrary rough target in the single passage atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xiang, NingJing; Wu, ZhenSen; Wang, MingJun

    2014-10-01

    The extended Huygens-Fresnel principle and Goodman model was utilized for target surface to derive the mutual coherence function (MCF) of a Gaussian beam reflected from an arbitrary rough target in atmospheric turbulence. According to the MCF, expressions of the mean irradiance and average speckle size at the receiver were obtained. The analysis indicated that the mean intensity is closely related to the ratio of root mean square (rms) height to the lateral correlation length. In addition, the speckle size at the receiver is associated with turbulence strength, propagation distance and roughness of the target. The results can be reduced to the result of a Gaussian beam illuminating rough target and scattering from a target in free space.

  13. Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Mahadevan, L.

    2016-11-01

    The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.

  14. Lagrangian Frequency Spectrum as a Diagnostic for Magnetohydrodynamic Turbulence Dynamics

    SciTech Connect

    Busse, Angela; Mueller, Wolf-Christian; Gogoberidze, Grigol

    2010-12-03

    For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations {tau}{sub ac} and the associated cascade time scale {tau}{sub cas}. Thus, the Lagrangian energy spectrum can serve to identify weak ({tau}{sub ac}<<{tau}{sub cas}) and strong ({tau}{sub ac{approx}{tau}cas}) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.

  15. Strain-Induced Landau Levels in Arbitrary Dimensions with an Exact Spectrum

    NASA Astrophysics Data System (ADS)

    Rachel, Stephan; Göthel, Ilja; Arovas, Daniel P.; Vojta, Matthias

    2016-12-01

    Certain nonuniform strain applied to graphene flakes has been shown to induce pseudo-Landau levels in the single-particle spectrum, which can be rationalized in terms of a pseudomagnetic field for electrons near the Dirac points. However, this Landau level structure is, in general, approximate and restricted to low energies. Here, we introduce a family of strained bipartite tight-binding models in arbitrary spatial dimension d and analytically prove that their entire spectrum consists of perfectly degenerate pseudo-Landau levels. This construction generalizes the case of triaxial strain on graphene's honeycomb lattice to arbitrary d ; in d =3 , our model corresponds to tetraxial strain on the diamond lattice. We discuss general aspects of pseudo-Landau levels in arbitrary d .

  16. Strain-Induced Landau Levels in Arbitrary Dimensions with an Exact Spectrum.

    PubMed

    Rachel, Stephan; Göthel, Ilja; Arovas, Daniel P; Vojta, Matthias

    2016-12-23

    Certain nonuniform strain applied to graphene flakes has been shown to induce pseudo-Landau levels in the single-particle spectrum, which can be rationalized in terms of a pseudomagnetic field for electrons near the Dirac points. However, this Landau level structure is, in general, approximate and restricted to low energies. Here, we introduce a family of strained bipartite tight-binding models in arbitrary spatial dimension d and analytically prove that their entire spectrum consists of perfectly degenerate pseudo-Landau levels. This construction generalizes the case of triaxial strain on graphene's honeycomb lattice to arbitrary d; in d=3, our model corresponds to tetraxial strain on the diamond lattice. We discuss general aspects of pseudo-Landau levels in arbitrary d.

  17. Visibility moments and power spectrum of turbulence velocity

    NASA Astrophysics Data System (ADS)

    Dutta, Prasun

    2016-02-01

    Here we introduce moments of visibility function and discuss how those can be used to estimate the power spectrum of the turbulent velocity of external spiral galaxies. We perform numerical simulation to confirm the credibility of this method and found that for galaxies with lower inclination angles it works fine. The estimator outlined here is unbiased and has the potential to recover the turbulent velocity spectrum completely from radio interferometric observations.

  18. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  19. Instability of the Rayleigh-Jeans spectrum in weak wave turbulence theory.

    PubMed

    Escobedo, Miguel; Valle, Manuel A

    2009-06-01

    We study the four-wave kinetic equation of weak turbulence linearized around the Rayleigh-Jeans spectrum when the collision integral is associated with short-range interactions between nonrelativistic bosonic quasiparticles. The technique used for the analysis of the stability is based on the properties of the Mellin transform of the kernel in the integral equation. We find that any perturbation of the Rayleigh-Jeans distribution evolves toward low-momentum scales in such a form that when t-->infinity, all the particles occupy a sphere of radius arbitrary small.

  20. On the spectrum of turbulent magnetic fields. [on solar surface

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Rosner, R.

    1981-01-01

    Theoretical power spectra of magnetic fields subject to turbulent fluid motions in the kinematic regime are presented, and previous theories are reviewed, with reference to magnetic fields on the sun. Magnetic field diffusion in turbulence with persistent eddies is predicted to be described by an effective negative magnetic diffusivity. It is found that observations cannot be explained on the basis of turbulent kinematic theories unless the turbulent motions are three-dimensional, and the effective diffusivities are larger than the molecular diffusivities. Lower bounds on the turbulent viscosity are derived, suggesting that dynamical processes controlling the magnetic field spectrum occur at least 15,000 km below the surface. The results, which remain consistent with the assumption that effective diffusivity is uniform, suggest that surface magnetic field observations can be used as a diagnostic for subsurface flows.

  1. Spectrum analysis of rectangular pulse in the atmospheric turbulence propagation

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Ni, Xiaolong; Jiang, Huilin; Wang, Junran; Liu, Zhi

    2016-11-01

    Atmospheric turbulence has a great influence on the performance of the atmospheric laser communication system reducing the signal to noise ratio (SNR) and increasing the bit error rate (BER). However, there is rarely study on the effect of atmospheric turbulence on the power spectrum of the rectangular pulse. In this paper, a spectral analyzing method is used to analyze the influence of atmospheric turbulence on the signal. An experiment of laser beam propagation characteristic is carried out on a 6km horizontal atmospheric link, the wavelength is 808 nm. The signal is 100MHz rectangular pulse. The waveform of the rectangular pulse is collected by the oscilloscope, and the power spectral density of the signal is calculated and analyzed by the method of periodogram. Experimental results show that the response and noise characteristics of the laser and photoelectric detector have a great influence on the signal power spectrum distribution which can increase the noise component in the 10^6 Hz frequency range. After the atmospheric turbulence propagation, the signal power decreases in the whole frequency range. However, as the existence of atmospheric turbulence, the signal power increases in the atmospheric turbulence characteristic frequency (tens to hundreds of Hz). The noise power increases in the high frequency range (10^7 10^8 Hz).

  2. Quantum Turbulence: Vortex Bundle Collapse and Kolmogorov Spectrum

    NASA Astrophysics Data System (ADS)

    Nemirovskii, Sergey K.

    2016-12-01

    The statement of problem is motivated by the idea of modeling the classical turbulence with a set of chaotic quantized vortex filaments in superfluids. Among various arguments supporting the idea of quasi-classic behavior of quantum turbulence, the strongest, probably, is the k dependence of the spectra of energy, E(k)∝ k^{-5/3} obtained in numerical simulations and experiments. At the same time, the mechanism of classical vs. quantum turbulence is not clarified and the source of the k^{-5/3} dependence is unclear. In this work, we concentrated on the nonuniform vortex bundles. This choice is related to the actively discussed question concerning a role of collapses in the vortex dynamics in formation of turbulent spectra. We demonstrate that the nonuniform vortex bundles, which appear in result of nonlinear vortex dynamics, generates an energy spectrum which is close to the Kolmogorov dependence ∝ k^{-5/3}.

  3. Collapsing vortex filaments and the spectrum of quantum turbulence

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Nemirovskii, S. K.

    2017-01-01

    The method of correlation functions and the method of quantum vortex configurations are used to calculate the energy spectrum of a three-dimensional velocity field that is induced by collapsing (immediately before reconnection) vortex filaments. The formulation of this problem is motivated by the idea of modeling classical turbulence by a set of chaotic quantized vortex filaments. Among the various arguments that support the idea of quasi-classical behavior for quantum turbulence, the most persuasive is probably the resulting Kolmogorov energy spectrum resembling E ( k ) ∝ k - 5 / 3 that was obtained in a number of numerical studies. Another goal is associated with an important and intensely studied theme that relates to the role of hydrodynamic collapse in the formation of turbulence spectra. Calculations have demonstrated that vortex filaments create a velocity field at the moment of contact, which has a singularity. This configuration of vortex filaments generates the spectrum E(k), which bears the resemblance to the Kolmogorov law. A possible cause for this observation is discussed, as well as the likely reasons behind any deviations. The obtained results are discussed from the perspective of both classical and quantum turbulence.

  4. Coherent Doppler lidar signal spectrum with wind turbulence.

    PubMed

    Frehlich, R; Cornman, L

    1999-12-20

    The average signal spectrum (periodogram) for coherent Doppler lidar is calculated for a turbulent wind field. Simple approximations are compared with the exact calculation. The effects of random errors in the zero velocity reference, the effects of averaging spectral estimates by use of multiple lidar pulses, and the effects of the range dependence of the lidar signal power over the range gate are included. For high spatial resolution measurements the lidar signal power is concentrated around one spectral estimate (spectral bin), and correct interpretation of the contribution from turbulence is difficult because of the effects of spectral leakage. For range gates that are larger than the lidar pulse volume, the signal power is contained in many spectral bins and the effects of turbulence can be determined accurately for constant signal power over the range gate and for the far-field range dependence of the signal power.

  5. Sparse spectrum model for the turbulent phase simulations

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2013-05-01

    Monte-Carlo simulation of phase front perturbations by atmospheric turbulence finds numerous applications for design and modeling of the adaptive optics systems, laser beams propagation simulations, and evaluating the performance of the various optical systems operating in the open air environment. Accurate generation of two-dimensional random fields of turbulent phase is complicated by the enormous diversity of scales that can reach five orders in magnitude in each coordinate. In addition there is a need for generation of the long "ribbons" of turbulent phase that are used to represent the time evolution of the wave front. This makes it unfeasible to use the standard discrete Fourier transform-based technique as a basis for the Monte-Carlo simulation algorithm. We propose a novel concept for turbulent phase - the Sparse Spectrum (SS) random field. The principle assumption of the SS model is that each realization of the random field has a discrete random spectral support. Statistics of the random amplitudes and wave vectors of the SS model are arranged to provide the required spectral and correlation properties of the random field. The SS-based Monte-Carlo model offers substantial reduction of computer costs for simulation of the wide-band random fields and processes, and is capable of generating long aperiodic phase "ribbons". We report the results of model trials that determine the number of sparse components, and the range of wavenumbers that is necessary to accurately reproduce the random field with a power-law spectrum.

  6. A Computer Program for Calculating Three-Dimensional Compressible Laminar and Turbulent Boundary Layers on Arbitrary Wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Ramsey, J. A.

    1977-01-01

    A computer program for calculating three dimensional compressible laminar and turbulent boundary layers on arbitrary wings is described and presented. The computer program consists of three separate programs, namely, a geometry program to represent the wing analytically, a velocity program to compute the external velocity components from a given experimental pressure distribution and a finite difference boundary layer method to solve the governing equations for compressible flows. To illustrate the usage of the computer program, three different test cases are presented and the preparation of the input data as well as the computed output data is discussed in some detail.

  7. Inertial range spectrum of field-aligned whistler turbulence

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin Kumar; Singh, Shobhana

    2017-03-01

    An analytical model to study the whistler turbulence spectrum and inertial range spectral scalings related with the electric and magnetic field spectra in a weakly non-collisional magnetized plasma is developed. In the present model, the dispersion relation of whistler wave propagating along the background magnetic field is exploited to derive the inertial range scaling laws corresponding to the electric field and magnetic field fluctuations. The model is based on the concept of Iroshnikov–Kraichnan inertial range magnetohydrodynamic turbulence. The present phenomenological turbulence scaling model suggests the energy spectra associated with the whistler wave electric field fluctuations and magnetic field fluctuations pursue ‑1 and ‑3 power-laws, respectively. Moreover, the results obtained by the present analytical model reasonably able to explain and compare the observational energy spectra in the wave number domain. The observational and analytical results support the whistler dominated turbulence with the similar spectral index ‑1 of the electric field spectra, whereas, the magnetic field spectral indices in the wave number domain are found -13/3 and ‑3 for the observational and analytical approach, respectively.

  8. Energy spectrum transfer equations of solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Tu, C.-Y.

    1995-01-01

    The recent studies of transfer equations for solar wind magnetohydrodynamic (MHD) turbulence are reviewed with emphasis on the comparison with the statistical observational results. Helios and Voyager missions provide an opportunity to study the the radial evolution of the power spectrum. the cross-helicity the Alfven ratio and the minimum variance direction. Spectrum transfer equations are considered as a tool to explore the nature of this radial evolution of the fluctuations. The transfer equations are derived from incompressible MHD equations. Generally one needs to make assumptions about the nature of the fluctuations and the nature of the turbulent non-linear interactions to obtain numerical results which can be compared with the observations. Some special model results for several simple cases SUCH as for structures or strong mixing. for Alfven waves with weak turbulent interactions. and for a superposition of structures and Alfven waves. are discussed. The difference between the various approaches to derive and handle the transfer equations are also addressed. Finally some theoretical description of the compressible fluctuations are also briefly reviewed.

  9. Energy spectrum transfer equations of solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Tu, C.-Y.

    1995-01-01

    The recent studies of transfer equations for solar wind magnetohydrodynamic (MHD) turbulence are reviewed with emphasis on the comparison with the statistical observational results. Helios and Voyager missions provide an opportunity to study the the radial evolution of the power spectrum. the cross-helicity the Alfven ratio and the minimum variance direction. Spectrum transfer equations are considered as a tool to explore the nature of this radial evolution of the fluctuations. The transfer equations are derived from incompressible MHD equations. Generally one needs to make assumptions about the nature of the fluctuations and the nature of the turbulent non-linear interactions to obtain numerical results which can be compared with the observations. Some special model results for several simple cases SUCH as for structures or strong mixing. for Alfven waves with weak turbulent interactions. and for a superposition of structures and Alfven waves. are discussed. The difference between the various approaches to derive and handle the transfer equations are also addressed. Finally some theoretical description of the compressible fluctuations are also briefly reviewed.

  10. Energy spectrum of thermal counterflow turbulence in superfluid helium-4

    NASA Astrophysics Data System (ADS)

    Gao, J.; Varga, E.; Guo, W.; Vinen, W. F.

    2017-09-01

    Recent preliminary experiments [A. Marakov et al., Phys. Rev. B 91, 094503 (2015)., 10.1103/PhysRevB.91.094503] using triplet-state He2 excimer molecules as tracers of the motion of the normal fluid have shown that, in thermal counterflow turbulence in superfluid 4He, small-scale turbulence in the superfluid component is accompanied, above a critical heat flux, by partially coupled large-scale turbulence in both fluids, with an energy spectrum proportional to k-m, where m is greater than the Kolmogorov value of 5/3. Here we report the results of a more detailed study of this spectrum over a range of temperatures and heat fluxes using the same experimental technique. We show that the exponent m varies systematically with heat flux but is always greater than 5/3. We interpret this as arising from the steady counterflow, which causes large-scale eddies in the two fluids to be pulled in opposite directions, giving rise to dissipation by mutual friction at all wave numbers, mutual friction tending also to oppose the effect of the counterflow. Comparison of the experimental results with a simple theory suggests that this process may be more complicated than we might have hoped, but experiments covering a wider range of heat fluxes, which are technically very difficult, will probably be required before we can arrive at a convincing theory.

  11. Investigation of Turbulence Behaviour in the Stable Boundary Layer Using Arbitrary-Order Hilbert Spectra

    NASA Astrophysics Data System (ADS)

    Wei, W.; Zhang, H. S.; Schmitt, F. G.; Huang, Y. X.; Cai, X. H.; Song, Y.; Huang, X.; Zhang, H.

    2017-01-01

    The CASES-99 experimental data are used to analyze turbulence behaviour under a range of stable conditions using an adaptive method based on Hilbert spectral analysis. The characteristic scales of intrinsic mode functions vary between different stratifications. The second-order Hilbert marginal spectra display clear separation between fine-scale turbulence and large-scale motions. After removing the large-scale motions, the statistical characteristics of the reconstructed signals confirm the distinction of different stratifications in the fine-scale range. The correlation coefficient analyses reveal that the Hilbert spectral analysis method separates turbulence from large-scale motions in the stable boundary layer.

  12. Energy spectrum transfer equations of solar wind turbulence

    SciTech Connect

    Tu, C.-Y.; Marsch, E.

    1996-07-20

    Recent studies of transfer equations for solar wind MHD turbulence are reviewed. Emphasis is placed on the comparison of theoretical with observational results. The Helios, Voyager and Ulysses missions provide opportunities to study the radial evolution of the power spectra, cross-helicity, Alfven ratio and minimum variance direction. Spectrum tranfer equations are a tool to explore theoretically the radial evolution of the fluctuations. The transfer equations are derived from the incompressible MHD equations. Generally, one needs to make assumptions about the nature of the fluctuations and their turbulent interactions, in order to derive models from which numerical results that can be compared with the observations are obtained. Results for special simple models, which involve only structures and assume strong mixing, or consider Alfven waves with weak turbulent interactions, or a superposition of outward Alfven waves with convected structures, are briefly discussed. The differences between various approaches for deriving and approximating the general transfer equations are elucidated. The references in this short review are not complete. An exhaustive list of papers can be found in the recent review of Tu and Marsch [1995a]. A related discussion may be also found in a detailed review by Goldstein et al. [1995a].

  13. Scaling of pressure spectrum in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Patwardhan, Saurabh S.; Ramesh, O. N.

    2014-04-01

    Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Reθ = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress than when scaled with the local turbulent kinetic energy

  14. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  15. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  16. Oscillator strength spectrum of hydrogen in strong magnetic and electric fields with arbitrary mutual orientation

    SciTech Connect

    Guan Xiaoxu

    2006-08-15

    We present oscillator strength spectra of the hydrogen Balmer {alpha} series in crossed strong magnetic and electric fields. Field strength regimes of interest ({gamma}{<=}0.02 a.u. and F{<=}1x10{sup 8} V/m) are the characteristic strengths observed on the surface of white dwarf stars. Based on the pseudospectral discretization technique, two independent methods have been developed to achieve reliable oscillator strengths in crossed fields. The effect of relative orientation between the magnetic and electric fields is clarified. Compared to the parallel configuration, we have observed that for the field strength regimes of interest, the perpendicular component of electric fields only results in a weaker coupling between the states belonging to the different subspaces of magnetic quantum numbers. This observation explains why the spectrum of oscillator strengths in crossed electric and magnetic fields with arbitrary mutual orientation shows similar behavior compared to that in parallel fields. However, a careful analysis shows that the two stronger transition lines at 5546 and 5620 A ring previously attributed to the Balmer {alpha} series are now identified to belong to the Balmer {beta} series. An effective scheme has also been suggested to calculate the bound-free opacities of hydrogen atoms in crossed fields.

  17. Inertial Alfvén wave localization and turbulent spectrum

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Kumari, Anju; Yadav, Nitin

    2014-09-01

    The localization of pump inertial Alfvén wave (IAW) in low β plasmas (β ≪ me/ mi) has been investigated by developing a model based on weak IAW and finite amplitude background density fluctuations. When IAW is perturbed by these fluctuations which are in the form of magnetosonic and ion acoustic waves, its phase velocity gets modified and IAW breaks up into localized structures of very high intensity. Numerical simulation has been carried out to analyze the localized structures and magnetic fluctuation spectrum of pump IAW. We have also developed a simplified model to understand the physical insight into evolution pattern of IAW. Results obtained from simulation reveal that turbulent spectrum up to k⊥λe ≈ 1 follows Kolmogorov power law. Furthermore, at shorter wavelengths, dispersion starts and spectrum steepens with power law index ˜ - 3.8. Energy transport to smaller length scales through this mechanism may be accountable for the observed parallel electron heating in low β plasmas. Results obtained from the numerical simulation are consistent with the observations of various spacecraft like FAST and Hawkeye.

  18. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    PubMed

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  19. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    SciTech Connect

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  20. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  1. Power spectrum computation for an arbitrary phase noise using Middleton's convolution series: implementation guideline and experimental illustration.

    PubMed

    Brochard, Pierre; Sudmeyer, Thomas; Schilt, Stephane

    2017-08-31

    In this work, we revisit the convolution series initially introduced by Middleton several decades ago to determine the power spectrum (or spectral lineshape) of a periodic signal from its phase noise power spectral density. This topic is of wide interest as it has an important impact in many scientific areas that involve lasers and oscillators. We introduce a simple guideline that enables a fairly straightforward computation of the power spectrum corresponding to an arbitrary phase noise. We show the benefit of this approach on a computational point of view, and apply it to various types of experimental signals with different phase noise levels, showing a very good agreement with the experimental spectra. This approach also provides a qualitative and intuitive understanding of the power spectrum corresponding to different regimes of phase noise.

  2. Sensitivity of neutrinos to the supernova turbulence power spectrum: Point source statistics

    SciTech Connect

    Kneller, James P.; Kabadi, Neel V.

    2015-07-16

    The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must run through a significant amount of turbulence before exiting the star. Turbulence can modify the flavor evolution of the neutrinos imprinting itself upon the signal detected here at Earth. The turbulence effect upon individual neutrinos, and the correlation between pairs of neutrinos, might exhibit sensitivity to the power spectrum of the turbulence, and recent analysis of the turbulence in a two-dimensional hydrodynamical simulation of a core-collapse supernova indicates the power spectrum may not be the Kolmogorov 5 /3 inverse power law as has been previously assumed. In this paper we study the effect of non-Kolmogorov turbulence power spectra upon neutrinos from a point source as a function of neutrino energy and turbulence amplitude at a fixed postbounce epoch. We find the two effects of turbulence upon the neutrinos—the distorted phase effect and the stimulated transitions—both possess strong and weak limits in which dependence upon the power spectrum is absent or evident, respectively. Furthermore, since neutrinos of a given energy will exhibit these two effects at different epochs of the supernova each with evolving strength, we find there is sensitivity to the power spectrum present in the neutrino burst signal from a Galactic supernova.

  3. Sensitivity of neutrinos to the supernova turbulence power spectrum: Point source statistics

    DOE PAGES

    Kneller, James P.; Kabadi, Neel V.

    2015-07-16

    The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must run through a significant amount of turbulence before exiting the star. Turbulence can modify the flavor evolution of the neutrinos imprinting itself upon the signal detected here at Earth. The turbulence effect upon individual neutrinos, and the correlation between pairs of neutrinos, might exhibit sensitivity to the power spectrum of the turbulence, and recent analysis of the turbulence in a two-dimensional hydrodynamical simulation of a core-collapse supernova indicates the power spectrum may not be the Kolmogorov 5 /3 inverse power law as has been previously assumed. Inmore » this paper we study the effect of non-Kolmogorov turbulence power spectra upon neutrinos from a point source as a function of neutrino energy and turbulence amplitude at a fixed postbounce epoch. We find the two effects of turbulence upon the neutrinos—the distorted phase effect and the stimulated transitions—both possess strong and weak limits in which dependence upon the power spectrum is absent or evident, respectively. Furthermore, since neutrinos of a given energy will exhibit these two effects at different epochs of the supernova each with evolving strength, we find there is sensitivity to the power spectrum present in the neutrino burst signal from a Galactic supernova.« less

  4. Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Gaelzer, R.; Pavan, J.

    2014-01-15

    A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

  5. The spectrum of a turbulent passive scalar in the viscous-convective range

    NASA Astrophysics Data System (ADS)

    Qian, J.

    1990-08-01

    The closed equations of isotropic turbulence, obtained by the method of nonequilibrium statistical mechanics and a perturbation-variation approach (Qian 1983, 1985, 1988), are applied to the study of the spectrum dynamics of a turbulent passive scalar in the viscous-convective range. Batchelor's 1/k spectrum is further confirmed. Moreover, the effective average value of the least principal rate of strain gamma in Batchelor's spectrum function is theoretically evaluated, and the results are in agreement with experimental data reported by Grant et al. (1968) and Williams and Paulson (1977).

  6. THE TURBULENCE VELOCITY POWER SPECTRUM OF NEUTRAL HYDROGEN IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Chepurnov, A.; Lazarian, A.; Stanimirovic, S.; Burkhart, B.

    2015-09-01

    We present the results of the Velocity Coordinate Spectrum (VCS) technique to calculate the velocity power spectrum of turbulence in the Small Magellanic Cloud (SMC) in 21 cm emission. We present an updated version of the VCS technique that takes into account regular motions, which is an important factor in our SMC VCS analysis. We have obtained a velocity spectral index of −3.85, a cold phase sonic Mach number of 5.6, and an injection scale of 2.3 kpc. The spectral index is steeper than the Kolmogorov index, which is expected for shock-dominated turbulence. The injection scale of 2.3 kpc suggests that HI supershells or tidal interactions with the Large Magellanic Cloud are the dominant drivers of turbulence in this dwarf galaxy. This implies that turbulence may be driven by multiple mechanisms in galaxies and that galaxy–galaxy interactions may play an important role in addition to supernova feedback.

  7. Global variability of the wavenumber spectrum of oceanic mesoscale turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Fu, L.

    2010-12-01

    The wavenumber spectra of sea surface height from the Jason-1 satellite observations have revealed complex spatial variability and significant departure from the predictions of existing theories over many parts of the world oceans. Near the edge of the core regions of high eddy energy, agreement is observed with the prediction of the surface quasi-geostrophic (SQG) turbulence theory which has fundamental differences from that of the traditional quasi-geostrophic (QG) turbulence theory. In the core regions of high eddy energy, the spectra are consistent with frontogenesis that is not fully accounted for by the SQG theory. However, the observations in the vast ocean interior of low eddy energy exhibit substantial differences from the predictions of existing theories of oceanic mesoscale turbulence. The observations presented in this work serve as a test bed for new theories and ocean general circulation models.

  8. Spectrum analysis of turbulence in the canine ascending aorta measured with a hot-film anemometer.

    PubMed

    Yamaguchi, T; Kikkawa, S; Tanishita, K; Sugawara, M

    1988-01-01

    We measured turbulence velocity in the canine ascending aorta using a hot-film anemometer. Blood flow velocity was measured at various points across the ascending aorta approximately 1.5-2 times the diameter downstream from the aortic valve. The turbulence spectrum was calculated and its characteristics were examined in connection with the mean Reynolds number and/or measuring positions. In the higher wave number range the values of the turbulence spectra were higher at larger mean Reynolds number. In the higher wave number range, the values of the turbulence spectra were higher at points closer to the centerline of the aorta, when the mean Reynolds number was relatively large. The patterns of the turbulence spectra at various points outside the boundary layer on the aortic wall were similar.

  9. Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity

    SciTech Connect

    Alvarez-Estrada, R. F.; Pastor, I.; Guasp, J.; Castejon, F.

    2012-06-15

    The classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.

  10. Calculation of three-dimensional compressible laminar and turbulent boundary layers. Calculation of three-dimensional compressible boundary layers on arbitrary wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Ramsey, J.; Moser, A.

    1975-01-01

    A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows.

  11. TURBULENCE SPECTRA FROM DOPPLER-BROADENED SPECTRAL LINES: TESTS OF THE VELOCITY CHANNEL ANALYSIS AND VELOCITY COORDINATE SPECTRUM TECHNIQUES

    SciTech Connect

    Chepurnov, A.; Lazarian, A.

    2009-03-10

    Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide numerical testing of the two most promising techniques, velocity channel analysis and velocity coordinate spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low-resolution testing misleading. We demonstrate numerically that, when dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.

  12. Upstream turbulence and the particle spectrum at CME-driven Shocks

    SciTech Connect

    Li Gang; Hu, Q.; Zank, G.P.

    2005-08-01

    Particle spectra at a CME-driven shock often exhibit a power law to certain energies, then roll over exponentially beyond. However, there are cases where a spectrum evolves to another power law above a certain energy (e.g. the Oct. 29th, 2003 event). Here we introduce an effective 'loss term' into the particle transport equation and study the consequent particle spectra behavior at a CME-driven shock. The loss term represents the effect of particle leaking out from a finite shock and is related to the turbulence power at and near the shock. We show that the shape of particle spectra are tightly related to the form of upstream turbulence. Under certain circumstances, broken power-law spectrum can be obtained. The physical meaning of the 'loss term' and its relationship to the upstream turbulence is discussed.

  13. Hierarchical Bayesian analysis of the velocity power spectrum in supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Konstandin, L.; Shetty, R.; Girichidis, P.; Klessen, R. S.

    2015-01-01

    Turbulence is a dominant feature operating in gaseous flows across nearly all scales in astrophysical environments. Accordingly, accurately estimating the statistical properties of such flows is necessary for developing a comprehensive understanding of turbulence. We develop and employ a hierarchical Bayesian fitting method to estimate the parameters describing the scaling relationships of the velocity power spectra of supersonic turbulence. We demonstrate the accuracy and other advantages of this technique compared with ordinary linear regression methods. Using synthetic power spectra, we show that the Bayesian method provides accurate parameter and error estimates. Commonly used normal linear regression methods can provide estimates that fail to recover the underlying slopes, up to 70 per cent of the instances, even when considering the 2σ uncertainties. Additionally, we apply the Bayesian methods to analyse the statistical properties of compressible turbulence in three-dimensional numerical simulations. We model driven, isothermal, turbulence with root-mean-square Mach numbers in the highly supersonic regime {M}≈ 15. We study the influence of purely solenoidal (divergence-free) and purely compressive (curl-free) forcing on the scaling exponent of the power spectrum. In simulations with solenoidal forcing and 10243 resolution, our results indicate that there is no extended inertial range with a constant scaling exponent. The bottleneck effect results in a curved power spectrum at all wave numbers and is more pronounced in the transversal modes compared with the longitudinal modes. Therefore, this effect is stronger in stationary turbulent flows driven by solenoidal forcing compared to the compressive one. The longitudinal spectrum driven with compressive forcing is the only spectrum with constant scaling exponent ζ = -1.94 ± 0.01, corresponding to slightly shallower slopes than the Burger prediction.

  14. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  15. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  16. A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Optical Turbulence

    NASA Astrophysics Data System (ADS)

    Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.

    2010-01-01

    The Measurement Astrophysics group at UNM designed and built a novel microthermal device for characterizing atmospheric optical turbulence at astronomical observatories. This instrument is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors. The device makes differential temperature measurements which are directly related to the index of refraction structure constant, Cn2, which quantifies the strength of optical turbulence. The device is designed to work in two modes. In horizontal mode temperature differentials are measured between adjacent sensors. Measurements are combined to recover the differences over all pairwise sensor baselines. These measurements result in a spatial spectrum of turbulence. Measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. In vertical mode the device operates with pairs of microthermal sensors distributed vertically, each pair being separated horizontally by approximately one meter. Sensor pairs are suspended at multiple heights above the ground allowing measurement of atmospheric turbulence power as a function of altitude. This device was used to monitor optical turbulence during a site testing campaign at the future LSST site on Cerro Pachón. We present preliminary results from operation in both vertical and horizontal modes from October 2008 to December 2009. The microthermal array remains in operation on Cerro Pachón, and continues to produce valuable atmospheric measurements. Our results support the conclusion that Cerro Pachón is an excellent observatory site. The vertical turbulence profile decreases monotonically with height as expected, and the surface layer does not contribute a significant amount to the overall seeing measured at the site. This work was supported by Air Force Grant No. FA9451-04-2-0355. Instrumentation and travel support was provided in part by

  17. Height dependence of the observed spectrum of radar backscatter from HF-induced ionospheric Langmuir turbulence

    SciTech Connect

    Fejer, J.A. ); Sulzer, M.P. ); Djuth, F.T. )

    1991-09-01

    Observations of the spectrum of 430-MHz radar backscatter from HF-induced Langmuir turbulence with height discrimination are described. During very stable ionospheric conditions under which the height of the below-threshold backscatter spectrum had changed by less than 300 m during a 7-min period, a 20-s-long temporary increase in the HF power from 3 MW ERP to 38 MW equivalent radiated HF power resulted in subsequent strong above-threshold spectra extending to heights up to 1200 m greater than the height of the below-threshold spectrum for more than a minute. The generation of irregularities in the plasma density during the 20 s of enhanced HF power is suggested as a possible cause of this persistence of strong above-threshold spectra at greater heights. The initial temporal evolution of the backscatter spectrum from Langmuir turbulence after the start of HF transmissions was observed for different heights. The observational results are compared with the predictions of existing theories of Langmuir turbulence.

  18. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence

    NASA Astrophysics Data System (ADS)

    Gaspari, M.

    2015-07-01

    The hot plasma filling galaxy clusters emits copious X-ray radiation. The classic unheated and unperturbed cooling flow model predicts dramatic cooling rates and an isobaric X-ray spectrum with constant differential luminosity distribution. The observed cores of clusters (and groups) show instead a strong deficit of soft X-ray emission: dLx/dT ∝ (T/Thot)α = 2 ± 1. Using 3D hydrodynamic simulations, we show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow injection: condensing clouds boost the AGN outflows, which quench cooling as they thermalize through the core. The resultant average distribution slope is α ≃ 2, oscillating within the observed 1 < α < 3. In the absence of thermal instability, the X-ray spectrum remains isothermal (α ≳ 8), while unopposed cooling drives a too shallow slope, α < 1. AGN outflows deposit their energy inside-out, releasing more heat in the inner cooler phase; radially distributed heating alone induces a declining spectrum, 1 < α < 2. Turbulence further steepens the spectrum and increases the scatter: the turbulent Mach number in the hot phase is subsonic, while it becomes transonic in the cooler phase, making perturbations to depart from the isobaric mode. Such increase in dln P/dln T leads to α ≈ 3. Self-regulated AGN outflow feedback can address the soft X-ray problem through the interplay of heating and turbulence.

  19. Height dependence of the observed spectrum of radar backscatter from HF-induced ionospheric Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Fejer, J. A.; Sulzer, M. P.; Djuth, F. T.

    1991-09-01

    Results are presented of observations of the spectrum of the 430-MHz radar backscatter from HF-induced Langmuir turbulence with height discrimination. During very stable ionospheric conditions under which the height of the below-threshold backscatter spectrum changed by less than 300 m during a 7-min period, a 20-s-long temporary increase in the HF power from 3 MW ERP to 38-MW-equivalent-radiated HF power is found to result in subsequent strong above-threshold spectra extending to heights up to 1200 m greater than the height of the below-threshold spectrum for more than a minute. The generation of irregularities in the plasma density during the 20 s of enhanced HF power is suggested as a possible cause of this persistence of strong above-threshold spectra at greater heights. The initial temporal evolution of the backscatter spectrum from Langmuir turbulence after the start of HF transmissions is observed for different heights. The observational results are compared with the predictions of existing theories of Langmuir turbulence.

  20. Turbulence spectrum observed by a fast-rotating wind-turbine blade

    SciTech Connect

    Connell, J.R.

    1980-06-01

    The spectrum of turbulence encountered by a point on a fast-rotating wind turbine blade is shown to be possibly quite different from that measured by a stationary anemometer. The physically reasonable expectations are supported quantitatively by experiments using Pacific Northwest Laboratory's vertical-plane anemometer array. The measurements indicate that the blade encounters energy densities in two regions of the turbulence spectrum much different than those seen by stationary anemometers. For typical turbine types and wind conditions, the spectral energy redistribution phenomenon may be significant only for turbine blade diameters larger than 10 m. The spectral shift should also affect gust statistics for rotting blades; the duration of gusts that are smaller than the diameter of the disk of blade rotation will decrease. Correspondingly, the rise rate will increase by a factor of about ten.

  1. Higher harmonics in the output spectrum of a generator with turbulent electron beam

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S.

    2017-08-01

    Formation of electron bunches in turbulent electron beams is numerically simulated and experimentally studied. A prototype of a laboratory generator is proposed, and control parameters (in particular, electron spread with respect to longitudinal velocities and additional deceleration of electron beam by electrostatic field of collector) that affect the characteristics of electron bunches and provide an increase in the number and amplitude of higher harmonics in the output spectrum are determined.

  2. The dissipation-range spectrum and the velocity-derivative skewness in turbulent flows

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Reynolds, W. C.

    1991-01-01

    A dynamical equation for the energy dissipation rate is used together with a model spectrum to predict the velocity derivative skewness at a high Reynolds number. The objective is to determine the best choice of the exponent, m, so that the resulting model spectrum can be used to estimate statistical properties of the fine scales of turbulence. Skewness data suggest that m = 2 is the best model for laboratory-scale flows and m = 1 is a poor model for a broad range of Reynolds numbers.

  3. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    SciTech Connect

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  4. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    NASA Technical Reports Server (NTRS)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  5. Turbulence in the solar wind: what controls the slope of the energy spectrum?

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland

    2016-04-01

    The spectrum of solar wind fluctuations is well described by a power law with an average spectral index -5/3 for periods between a few hours and a few minutes. However, the spectral index varies with stream speed and with the correlation of velocity and magnetic field fluctuations (Alfvénicity): the spectrum is softer in fast and Alfvénic streams. Roughly, this variation can be understood in term of the turbulent age of fluctuations at a given scale: the faster is the wind or the stronger is the correlation than the younger is the turbulence. Since the coronal spectrum is supposed to be rather flat (at least in the fast solar wind), smaller spectral indices correspond to less evolved spectra. According to this interpretation, one would expect spectral slope to change with distance as the turbulence ages, while observations report fairly stable spectral slopes. In order to quantify the effect of wind speed and Alfvénicity on the spectral slope, we ran a series of numerical simulations of MHD turbulence in the framework of the Expanding Box Model (EBM). In EBM we can vary the expansion rate and the initial correlation of fluctuations so as to investigate the existence of a threshold value for each parameter or for a combination of the two that could explain the observed variation and stability of the spectral index. We present preliminary results that indicate that the expansion rate does control the spectral index of energy when the Alfvénicity is high.

  6. A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.

    2009-01-01

    The Measurement Astrophysics group at UNM designed and built a novel microthermal device for the purpose of characterizing atmospheric turbulence at astronomical observatories. This instrument is based on the Wheatstone bridge and uses fine wire tungsten filaments as resistance temperature detectors. The device is designed to work in two data taking modes: with a horizontal array of microthermal sensors, or with a vertical array of sensors. In horizontal mode differential measurements are made between adjacent sensors, then these measurements are combined to recover the differences between all non-adjacent sensor pairs. The result of these measurements is microthermal data over many independent baselines which comprise a spatial spectrum of turbulence. The measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. Measurements in horizontal mode are made with 14 sensors over baselines of up to 30 meters. In addition probes can be repositioned to provide additional baselines. In vertical mode the device operates as microthermals traditionally have in the past: differential measurements are made between a pair of resistance temperature detectors. Sensor pairs are suspended at different heights above the ground allowing measurement of atmospheric turbulence as a function of altitude. Measurements in vertical mode are made with 14 sensor pairs which can be elevated up to 30 meters above ground. Data were taken with the device in a variety of test configurations, and the device is being used in a site testing campaign at Cerro Pachon. We will present the design, prototyping, and testing of this instrument as well as preliminary results from our campaign on Cerro Pachon.

  7. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  8. SPECTRUM AND ANISOTROPY OF TURBULENCE FROM MULTI-FREQUENCY MEASUREMENT OF SYNCHROTRON POLARIZATION

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2016-02-20

    We consider turbulent synchrotron-emitting media that also exhibit Faraday rotation and provide a statistical description of synchrotron polarization fluctuations. In particular, we consider these fluctuations as a function of the spatial separation of the direction of the measurements and as a function of wavelength for the same line of sight. On the basis of our general analytical approach, we introduce several measures that can be used to obtain the spectral slopes and correlation scales of both the underlying magnetic turbulence responsible for emission and the spectrum of the Faraday rotation fluctuations. We show the synergetic nature of these measures and discuss how the study can be performed using sparsely sampled interferometric data. We also discuss how additional characteristics of turbulence can be obtained, including the turbulence anisotropy and the three-dimensional direction of the mean magnetic field. In addition, we consider the cases when the synchrotron emission and Faraday rotation regions are spatially separated. Appealing to our earlier study, we explain that our new results are applicable to a wide range of spectral indexes of relativistic electrons responsible for synchrotron emission. We expect wide application of our techniques, both with existing synchrotron data sets and with big forthcoming data sets from LOFAR and SKA.

  9. Multimode stretched spiral vortex and nonequilibrium energy spectrum in homogeneous shear flow turbulence

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi; Ozawa, Tetsuya

    2011-03-01

    The stretched spiral vortex [T. S. Lundgren, "Strained spiral vortex model for turbulent structures," Phys. Fluids 25, 2193 (1982)] is identified in turbulence in homogeneous shear flow and the spectral properties of this flow are studied using direct-numerical simulation data. The effects of mean shear on the genesis, growth, and annihilation processes of the spiral vortex are elucidated, and the role of the spiral vortex in the generation of turbulence is shown. As in homogeneous isotropic turbulence [K. Horiuti and T. Fujisawa, "The multi mode stretched spiral vortex in homogeneous isotropic turbulence," J. Fluid Mech. 595, 341 (2008)], multimodes of the spiral vortex are extracted. Two symmetric modes of configurations with regard to the vorticity alignment along the vortex tube in the core region and dual vortex sheets spiraling around the tube are often educed. One of the two symmetric modes is created by a conventional rolling-up of a single spanwise shear layer. Another one is created by the convergence of the recirculating flow or streamwise roll [F. Waleffe, "Homotopy of exact coherent structures in plane shear flows," Phys. Fluids 15, 1517 (2003)] caused by the upward and downward motions associated with the streaks. The vortex tube is formed by axial straining and lowering of pressure in the recirculating region. The spanwise shear layers are entrained by the tube and they form spiral turns. The latter symmetric mode tends to be transformed into the former mode with lapse of time due to the action of the pressure Hessian term. The power law in the inertial subrange energy spectrum is studied. The base steady spectrum fits the equilibrium Kolmogorov -5/3 spectrum, to which a nonequilibrium component induced by the fluctuation of the dissipation rate ɛ is added. This component is extracted using the conditional sampling on ɛ, and it is shown that it fits the -7/3 power in accordance with the statistical theory. The correlation between these spectra and

  10. Universality of spectrum of passive scalar variance at very high Schmidt number in isotropic steady turbulence

    NASA Astrophysics Data System (ADS)

    Gotoh, Toshiyuki

    2012-11-01

    Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.

  11. Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum and intermittency.

    PubMed

    Majda, Andrew J; Gershgorin, Boris

    2013-01-13

    This paper motivates, develops and reviews elementary models for turbulent tracers with a background mean gradient which, despite their simplicity, have complex statistical features mimicking crucial aspects of laboratory experiments and atmospheric observations. These statistical features include exact formulas for tracer eddy diffusivity which is non-local in space and time, exact formulas and simple numerics for the tracer variance spectrum in a statistical steady state, and the transition to intermittent scalar probability density functions with fat exponential tails as certain variances of the advecting mean velocity are increased while satisfying important physical constraints. The recent use of such simple models with complex statistics as unambiguous test models for central contemporary issues in both climate change science and the real-time filtering of turbulent tracers from sparse noisy observations is highlighted throughout the paper.

  12. On the cross-helicity dependence of the energy spectrum in magnetohydrodynamic turbulence

    SciTech Connect

    Podesta, J. J.

    2011-01-15

    Phenomenological theories of strong incompressible magnetohydrodynamic (MHD) turbulence derived by Goldreich and Sridhar (GS) in 1995 and by Boldyrev in 2006 are only applicable to turbulence with vanishing cross-helicity. In this study, these two theories are generalized to treat turbulence with nonvanishing cross-helicity in such a way that the relation (w{sup +}/w{sup -}){sup 2}=({epsilon}{sup +}/{epsilon}{sup -}){sup 2} observed in numerical simulations is satisfied. The average energy (second order structure function) in the generalized GS theory is E(r{sub perpendicular})={phi}{sub 1}({sigma}{sub c})({epsilon}r{sub perpendicular}){sup 2/3} and that in the generalized Boldyrev theory is E(r{sub perpendicular})={phi}{sub 2}({sigma}{sub c})(v{sub A{epsilon}}r{sub perpendicular}){sup 1/2}, where the function {phi}({sigma}{sub c}) describes the dependence on the normalized cross-helicity {sigma}{sub c}. The form of the function {phi}({sigma}{sub c}) is derived through a renormalization of the variable {sigma}{sub c} that yields a one parameter family of solutions. The theory derived by Lithwick, Goldreich, and Sridhar (LGS) in 2007 is a special case of the generalized GS theory derived here; however, other generalizations of the GS theory are obtained that have a different cross-helicity dependence than the LGS theory. This new class of solutions and similar generalizations of Boldyrev's theory are investigated to see how the energy cascade rate {epsilon} changes as a function of {sigma}{sub c} when the energy at a given scale is held fixed. The generalization of Boldyrev's theory derived here is applicable to homogeneous MHD turbulence in the solar wind, for example, and can be used to obtain the turbulent dissipation rate {epsilon} from measurements of the energy spectrum and the normalized cross-helicity.

  13. Universality of solar-wind turbulent spectrum from MHD to electron scales.

    PubMed

    Alexandrova, O; Saur, J; Lacombe, C; Mangeney, A; Mitchell, J; Schwartz, S J; Robert, P

    2009-10-16

    To investigate the universality of magnetic turbulence in space plasmas, we analyze seven time periods in the free solar wind under different plasma conditions. Three instruments on Cluster spacecraft operating in different frequency ranges give us the possibility to resolve spectra up to 300 Hz. We show that the spectra form a quasiuniversal spectrum following the Kolmogorov's law approximately k(-5/3) at MHD scales, a approximately k(-2.8) power law at ion scales, and an exponential approximately exp[-sqrt[k(rho)e

  14. Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, S. V.; Grebenev, V. N.

    2017-01-01

    The last stage of evolution toward the stationary Kolmogorov spectrum of hydrodynamic turbulence is studied using the Leith model [1]. This evolution is shown to manifest itself as a reflection wave in the wavenumber space propagating from the largest toward the smallest wavenumbers, and is described by a self-similar solution of a new (third) kind. This stage follows the previously studied stage of an initial explosive propagation of the spectral front from the smallest to the largest wavenumbers reaching arbitrarily large wavenumbers in a finite time, and which was described by a self-similar solution of the second kind [2-4]. Nonstationary solutions corresponding to ‘warm cascades’ characterised by a thermalised spectrum at large wavenumbers are also obtained.

  15. Nonlinear propagation of whistler wave and turbulent spectrum in reconnection region of magnetopause

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Pathak, Neha; Yadav, Nitin; Sharma, Prachi

    2017-09-01

    Whistler waves have ample of observations in the magnetosphere near the dayside magnetopause. Also, the role of whistler waves is well established in the context of magnetic reconnection as well as turbulence generation. In the present work, we examine the combined effect of guide field and nonlinearity in the development of turbulence in magnetic reconnection sites. We have derived the dynamical equation of 3D whistler wave propagating through Harris sheet assuming that background number density and background field are perturbed. The nonlinear dynamical equation is then solved numerically using pseudo-spectral method and finite difference method. Simulation results represent the nonlinear evolution of X-O field line in the presence of nonlinearity, which causes the generation of turbulence. We have also investigated the formation of current sheet/coherent structures as a result of the proposed mechanism. These localized structures have transverse scale size of the order of electron inertial length. When the system reaches quasi steady state, we have evaluated power spectrum in magnetopause and it shows two different scaling having k-3 /2 for k λe<1 and k-3 for k λe>1 .The obtained results are consistent with the THEMIS observations. Energy distribution at smaller scales leads to the formation of thermal tail of energetic particles. The energy of these electrons is also calculated and comes out to be in the order of 100 keV.

  16. The Energy Spectrum of Energetic Particles Downstream of Turbulent Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Giacalone, Joe; Neugebauer, Marcia

    2008-01-01

    Using simple analytic considerations, numerical simulations, and data analysis, we discuss the physics of charged-particle acceleration by turbulent, rippled, collisionless shocks. The standard theory of diffusive shock acceleration predicts that the energetic-particle energy spectrum, in the region of shocked plasma, is a function of the plasma density jump. But because of the interaction of the shock with plasma turbulence, the jump in plasma density varies in time and from place to place on the shock front. Here we show that for reasonable parameters, the shape of the energetic-particle energy spectra downstream of any given shock is nearly independent of location along the shock front, even though the density jump varies. This is because energetic particles are mobile and sample many turbulent fluctuations during their acceleration. This result holds for shocks having smaller scale ripples than the large-scale radius of curvature (Dc) of the shock. Thus, it applies to the interpretation of spacecraft observations of traveling interplanetary shocks provided the spacecraft separation is less than Dc. This result is confirmed with simple analytic considerations and numerical simulations that solve the combined magnetohydrodynamic equations for a plasma and energetic test particles using the well-known Parker transport equation. This conclusion is further supported by our analysis of ACE and Geotail observations of a few interplanetary shocks.

  17. Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmas

    SciTech Connect

    Lu, Z. X.; Tynan, G.; Wang, W. X.; Ethier, S.; Diamond, P. H.; Gao, C.; Rice, J.

    2015-05-15

    Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (s{sup ^}) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s{sup ^}. Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s{sup ^} discharges and that the value of s{sup ^}{sub crit} is consistent with the experimental results s{sup ^}{sub crit}{sup exp}≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s{sup ^} and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s{sup ^}.

  18. Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmas

    SciTech Connect

    Lu, Z. X.; Wang, W. X.; Diamond, P. H.; Tynan, G.; Ethier, S.; Gao, C.; Rice, J.

    2015-05-04

    We report that intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. Here we focus on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (sˆ) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak sˆ . Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak sˆ discharges and that the value of sˆ crit is consistent with the experimental results sˆ expcrit [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. In conclusion, the consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive sˆ .

  19. Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmasa)

    NASA Astrophysics Data System (ADS)

    Lu, Z. X.; Wang, W. X.; Diamond, P. H.; Tynan, G.; Ethier, S.; Gao, C.; Rice, J.

    2015-05-01

    Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear ( s ̂ ) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s ̂ . Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s ̂ discharges and that the value of s ̂ c r i t is consistent with the experimental results ŝ c r i t e x p ≈ 0.2 ˜ 0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s ̂ and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s ̂ .

  20. Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence.

    PubMed

    Sen, Amrik; Mininni, Pablo D; Rosenberg, Duane; Pouquet, Annick

    2012-09-01

    Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two-dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale Lf, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the inverse cascade range at a small but fixed Rossby number, Rof≈0.05. Several numerical simulations with helical and nonhelical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with reasonably large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a ∼k⊥-5/3 scaling, and the other that corresponds to a steeper ∼k⊥-3 spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to the 2D modes. The spectrum that emerges depends on the anisotropy of the forcing function, the former solution prevailing for forcings in which more energy is injected into the 2D modes while the latter prevails for isotropic forcing. In the case of anisotropic forcing, whence the energy goes from the 2D to the 3D modes at low wave numbers, large-scale shear is created, resulting in a time scale τsh, associated with shear, thereby producing a ∼k-1 spectrum for the total energy with the horizontal energy of the 2D modes still following a ∼k⊥-5/3 scaling.

  1. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Perry L.; Meneveau, Charles

    2015-08-01

    One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixing properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ1 : λ2 : λ3 is shown to be about 4:1:-5, compared to about 8:3:-11 when using only the strain-rate tensor for calculating fluid volume deformations. The results

  2. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence

    SciTech Connect

    Johnson, Perry L. Meneveau, Charles

    2015-08-15

    One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixing properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ{sub 1} : λ{sub 2} : λ{sub 3} is shown to be about 4:1:−5, compared to about 8:3:−11 when using only the strain-rate tensor for calculating fluid volume

  3. Localization of Dispersive Alfvén Wave in Solar wind plasmas and Turbulent Spectrum

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Sharma, R. P.

    2016-07-01

    Solar wind turbulence at large inertial scales is well known for decades and believed to consist of Alfvén cascade. The inertial range of Solar wind turbulence can be described by a magnetohydrodynamic model. But at small scales the MHD description is not valid. At scales of the order of proton inertial length, Alfvén cascade excites kinetic Alfvén wave or fast wave or whistler wave that carries wave energy to smaller scales. On the other hand, parallel propagating right(R) and left(L) circularly polarized Alfvén/ ion cyclotron wave in the framework of Hall MHD are also thought to be essential ingredients of the solar wind turbulence. Recently, He et.al[1] have used the magnetic field data from the STEREO spacecraft to calculate the magnetic helicities in the solar wind turbulence and reported the possible existence of Alfvén -cyclotron waves and their coexistence with the right handed polarized fluctuations. In the present article we intend to study the right circularly polarized dispersive Alfvén wave (DAW) and their role in the solar wind turbulence. The inclusion of the Hall term causes the dispersion of the AW which, in the present study, is considered on account of the finite frequency (frequency comparable to ion gyro frequency) of the pump wave. Filamentation instability has been reported to occur for the case of circularly polarized dispersive Alfvén wave (DAW) propagating parallel to ambient magnetic field. In the present study, the instability arises on account of the transverse density perturbations of the acoustic wave that may couple nonlinearly with the Alfvén wave and the driven ponderomotive force sequentially leads to growth of density perturbations. Numerical simulation involves finite difference method for the time domain and pseudo spectral method for the spatial domain. The power spectrum is investigated which shows a steepening for scales larger than the proton inertial length. These findings have been reported by Alexandrova et al

  4. Energy spectrum in high-resolution direct numerical simulations of turbulence

    NASA Astrophysics Data System (ADS)

    Ishihara, Takashi; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya; Kaneda, Yukio

    2016-12-01

    A study is made about the energy spectrum E (k ) of turbulence on the basis of high-resolution direct numerical simulations (DNSs) of forced incompressible turbulence in a periodic box using a Fourier spectral method with the number of grid points and the Taylor scale Reynolds number Rλ up to 12 2883 and approximately 2300, respectively. The DNS data show that there is a wave-number range (approximately 5 ×10-3 2 /3k-5 /3] =c (kL ) m , where <ɛ > is the mean energy dissipation rate per unit mass; L is the integral length scale; and m ≈-0.12 . The coefficient c is independent of k , but has a Rλ dependence, such as c =C Rλζ , where C ≈0.9 and ζ ≈0.14 .

  5. Temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave propagating through non-Kolmogorov turbulence.

    PubMed

    Tan, Liying; Zhai, Chao; Yu, Siyuan; Ma, Jing; Lu, Gaoyuan

    2015-05-04

    In the past decades, both the increasing experimental evidence and some results of theoretical investigation on non-Kolmogorov turbulence have been reported. This has prompted the study of optical propagation in non-Kolmogorov atmospheric turbulence. In this paper, based on the thin phase screen model and a non-Kolmogorov power spectrum which owns a generalized power law instead of standard Kolmogorov power law value 11/3 and a generalized amplitude factor instead of constant value 0.033, the temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave is derived in the weak fluctuation regime for a horizontal path. The analytic expressions are obtained and then used to analyze the influence of spectral power law variations on the temporal power spectrum of irradiance fluctuations.

  6. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  7. Comparison of techniques to measure the low wavenumber wall pressure spectrum of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Martini, K. F.; Leehey, P.; Moeller, M.

    1984-08-01

    The agreement between low wavenumber measurements of the turbulent wall pressure spectrum by various investigators has not been too good. Different techniques have been used in different facilities and have yielded data in different nondimensional frequency and wavenumber ranges. The current measurement program has utilized the wavenumber filtering techniques used by three primary investigators, the Martin plate, the Jameson plate and the Farabee and Geib 6-element microphone array in the same facility. Also a 12-element collinear and stagger array and a lateral array were used. The agreement between the different techniques in the M.I.T. facility is generally good. In addition, the difference of results between facilities has been reduced by displaying the data in a non-dimensional form that does not include the effect of boundary layer thickness. However, there was still a significant scatter in the data for each technique. Scatter is believed to be due to variation of each filter's wavenumber response away from the main acceptance lobe where the filter is responding to the acoustic and convective contamination and also the variation of the contamination with flow speed.

  8. Scaling of the wall-pressure spectrum from turbulent boundary-layer flows over rough surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Natasha; Forest, Jonathan; Rast, Joshua

    2015-11-01

    Seafaring applications require predictions of noise and drag from rough surfaces at high Reynolds numbers. Glegg and Devenport (2009) have shown that roughness noise is directly proportional to the wall pressure spectrum. As a means to develop an empirical model of the surface pressure spectra from rough surfaces, experiments were conducted in a fully-developed turbulent boundary layer flow at the Anechoic Flow Facility located at the Naval Surface Warfare Center, Carderock Division in West Bethesda MD. A variety of inhomogeneous roughness types were tested where the momentum thickness Reynolds number ranged from 4000 to 40000 while the flow based non-dimensional equivalent sand grain roughness height, ks+, ranged from 24 to 1500. Mean and fluctuating velocities, as well as fluctuating surface pressure and radiated far-field results were collected and analyzed. The surface pressure spectra are collapsed with inner and outer flow variables in an attempt to obtain an empirical model that can be used to scale the spectra for higher Reynolds number applications. Glegg, S., and Devenport, W., 2009. ``The far-field sound from rough-wall boundary layers.'' Proceedings of the Royal Society, Vol 465, pp 1717 - 1734.

  9. Weak turbulant theory estimation for non-linear energy, wave action and momentum fluxes in wind wave spectrum

    NASA Astrophysics Data System (ADS)

    Lavrenov, I.

    2003-04-01

    Direct numerical simulations of the Hasselmann kinetic equation for gravity waves in water surface confirms basic predictions of the weak-turbulent theory. Three different stages can be defined in the wave spectrum evolution.. At the first stage the spectrum unstable growth is observed within the range of the external force input. High frequency spectrum development is observed at the second stage of spectrum evolution. The frequency spectrum is becoming larger within high frequency range and a spectral growth is penetrated to a larger frequency range. After that the spectrum remains almost constant at high frequency range. In both isotropic and non-isotropic cases the spectra are found out to be close to the Zakharov-Filonenko spectrum pow(w,-4) not only in the universal range, but in the range of wave energy input. Formation of this asymptotic spectrum happens explosively. The third stage of spectrum evolution is revealed for a larger time period. It is characterized by a slow spectrum evolution into a low frequency range. The spectrum value becomes larger penetrating to a smaller frequency range with decreasing speed in accordance with experimental data. In low frequency range a power spectrum is revealed for both isotropic and non-isotropic cases with the spectra close to the Zakharov-Zaslavskii spectrum pow(w,-11/3). Main energy flux is directed to the high frequency range. Its value makes up 77 per cent of total value of wave energy input coming from external source. Main wave action flux is directed to low frequency range. Its relative value is equal to 75 per cents of total wave action flux input. 25 per cents of wave action is directed to high frequency range. Almost all wave momentum (up to 98 per cents) is directed to high frequency range. The investigations are supported by the Grants: RFBR 01-05-64846, and INTAS-(99)-666, INTAS - (01)-234, INTAS-(01)-2156.

  10. SENSITIVITY OF COSMIC-RAY PROTON SPECTRA TO THE LOW-WAVENUMBER BEHAVIOR OF THE 2D TURBULENCE POWER SPECTRUM

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2015-12-01

    In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.

  11. Density fluctuation spectrum of solar wind turbulence between ion and electron scales.

    PubMed

    Chen, C H K; Salem, C S; Bonnell, J W; Mozer, F S; Bale, S D

    2012-07-20

    We present a measurement of the spectral index of density fluctuations between ion and electron scales in solar wind turbulence using the EFI instrument on the ARTEMIS spacecraft. The mean spectral index at 1 AU was found to be -2.75±0.06, steeper than predictions for pure whistler or kinetic Alfvén wave turbulence but consistent with previous magnetic field measurements. The steep spectra are also consistent with expectations of increased intermittency or damping of some of the turbulent energy over this range of scales. Neither the spectral index nor the flattening of the density spectra before ion scales were found to depend on the proximity to the pressure anisotropy instability thresholds, suggesting that they are features inherent to the turbulent cascade.

  12. Localization of finite frequency inertial Alfvén wave and turbulent spectrum in low beta plasmas

    NASA Astrophysics Data System (ADS)

    Rinawa, M. L.; Sharma, R. P.; Modi, K. V.

    2015-05-01

    In the present paper, we have investigated nonlinear interaction of inertial Alfvén wave with ion acoustic wave, for low β-plasma ( β≪ m e / m i ) where β is the thermal to magnetic pressure ratio. We have developed the dynamical equation of inertial Alfvén wave by considering the finite frequency as well as finite ion temperature correction. The dynamical equation of ion acoustic wave, propagating at an angle with respect to the background magnetic field, in the presence of ponderomotive nonlinearity due to inertial Alfvén wave is also derived. Numerical simulation has been carried out to study the effect of nonlinear coupling between these waves which results in the formation of localized structures and turbulent spectrum, applicable to auroral region. The result reveals that the localized structures become complex and intense in nature (quasi-steady state). Further, we have studied the turbulent spectrum which follows spectral index (˜ k -4.46) at smaller scales. Relevance of the obtained results has been shown with the observations reported by various spacecrafts like Hawkeye and HEOS-2 (Highly Eccentric Orbiting Satellite-2).

  13. Turbulent cosmic ray reacceleration and the curved radio spectrum of the radio relic in the Sausage Cluster

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Akamatsu, Hiroki; Kimura, Shigeo S.

    2016-06-01

    It has often been thought that the northern radio relic in the galaxy cluster CIZA J2242.8+5301 (the "Sausage" Cluster) is associated with cosmic ray (CR) electrons that are accelerated at a shock through the diffusive shock acceleration (DSA) mechanism. However, recent radio observations have shown that the radio spectrum is curved, which is inconsistent with the prediction of a simple DSA model. Moreover, the CR electron spectrum before being affected by radiative cooling seems to be too hard for DSA. In this study, we show that these facts are natural consequences if the electrons are reaccelerated in turbulence downstream of the shock. In this model, DSA is not the main mechanism for generating high-energy electrons. We find that the mean free path of the electrons should be much shorter than the Coulomb mean free path for efficient reacceleration. The scale of the turbulent eddies must be smaller than the width of the relic. We also predict hard X-ray spectra of inverse Compton scattering of photons.

  14. Two-time correlation of heat release rate and spectrum of combustion noise from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-09-01

    The spectral characteristics of combustion noise are dictated by the temporal correlation of the overall change of heat release rate fluctuations which has not received sufficient attention in prior studies. In this work, the two-time correlation of the volumetric heat release rate fluctuations within the flame brush and its role in modeling combustion noise spectrum are investigated by analyzing direct numerical simulation (DNS) data of turbulent premixed V-flames. This two-time correlation can be well represented by Gaussian-type functions and it captures the slow global variation of the fluctuating heat release rate and hence the low-frequency noise sources of unsteady combustion. The resulting correlation model is applied to predict the far-field noise spectrum from test open flames, and different reference time scales are used to scale this correlation from the DNS data to the test flames. The comparison between predictions and measurements indicates that the correlation models of all reference time scales are capable of reproducing the essential spectral shape including the low- and high-frequency dependencies. Reasonable agreement in the peak frequency, peak sound pressure level, and the Strouhal number scaling of peak frequency is also achieved for two turbulent time scales. A promising convective time scale shows great potential for characterizing the spectral features, yet its predictive capabilities are to be further verified through a longer DNS signal of a bounded flame configuration.

  15. Frequency-wavenumber spectrum of the free surface of shallow turbulent flows over a rough boundary

    NASA Astrophysics Data System (ADS)

    Dolcetti, G.; Horoshenkov, K. V.; Krynkin, A.; Tait, S. J.

    2016-10-01

    Data on the frequency-wavenumber spectra and dispersion relation of the dynamic water surface in an open channel flow are very scarce. In this work, new data on the frequency-wavenumber spectra were obtained in a rectangular laboratory flume with a rough bottom boundary, over a range of subcritical Froude numbers. These data were used to study the dispersion relation of the surface waves in such shallow turbulent water flows. The results show a complex pattern of surface waves, with a range of scales and velocities. When the mean surface velocity is faster than the minimum phase velocity of gravity-capillary waves, the wave pattern is dominated by stationary waves that interact with the static rough bed. There is a coherent three-dimensional pattern of radially propagating waves with the wavelength approximately equal to the wavelength of the stationary waves. Alongside these waves, there are freely propagating gravity-capillary waves that propagate mainly parallel to the mean flow, both upstream and downstream. In the flow conditions where the mean surface velocity is slower than the minimum phase velocity of gravity-capillary waves, patterns of non-dispersive waves are observed. It is suggested that these waves are forced by turbulence. The results demonstrate that the free surface carries information about the underlying turbulent flow. The knowledge obtained in this study paves the way for the development of novel airborne methods of non-invasive flow monitoring.

  16. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  17. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  18. Supernova-Driven Interstellar Medium Simulations: Turbulent Pressure Distribution and Kinetic Energy Spectrum

    NASA Astrophysics Data System (ADS)

    Joung, M. K. R.; Mac Low, M.-M.

    2005-12-01

    We construct three-dimensional models of stratified interstellar medium stirred by discrete supernova explosions, including vertical gravitational field and parameterized heating and cooling, with sufficient spatial resolution to follow detailed gas dynamics using a grid-based adaptive mesh refinement code, Flash. The models reproduce observed characteristics of the Galaxy such as the galactic fountain and cold dense clouds in the galactic disk. We find: (1) Kinetic energy is distributed over a broad range of lengths, but 90% of the total kinetic energy is contained in wavelengths shortward of 150 pc; (2) Turbulent velocity dispersion is inversely proportional to the square root of the local density, making the turbulent pressure nearly constant; (3) The global gas structure depends sensitively on the assumed background diffuse heating rate. We discuss how these high-resolution models can be used as a subgrid model for supernova feedback in global simulations of galaxies. MKRJ was supported by an AMNH Graduate Student Fellowship. M-MML acknowledges support by NSF Career grant AST99-85392, and NSF grants AST03-07793, AST03-07854. The software used in this work was in part developed by the DOE-supported ASCI/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. Computations were performed at the Pittsburgh Supercomputing Center supported by the NSF.

  19. Quenching the X-ray spectrum of hot halos with AGN outflows and turbulence

    NASA Astrophysics Data System (ADS)

    Gaspari, M.

    2016-06-01

    I highlight recent advancements in the astrophysics of AGN outflow feedback and diffuse hot gas. Thanks to XMM RGS resolution, we know that the X-ray cores of clusters, groups, and massive galaxies have a strong deficit of soft X-ray emission compared with the classic cooling flow prediction: dL_{x}/dT ∝ (T/T_{hot})^{2±1}. Using 3D hydrodynamic simulations, I show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow feedback. Multiphase filaments condense out of the hot plasma, they rain onto the central SMBH, and boost the AGN outflows via chaotic cold accretion. The sub-relativistic outflows thermalize in the core via shocks and turbulence, releasing more heat in the inner cooler phase, thus inducing the observed soft X-ray decline. I discuss how we can leverage XMM capabilities in the next decade by probing turbulence, conduction, AGN accretion and outflows via the information contained in X-ray spectra and surface brightness. I focus on the importance of selecting a few objects with Ms exposure and how we can unveil multiphase halos through the synergy between simulations and multiwavelength observations.

  20. Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.

    2014-12-01

    Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance

  1. FRAME DEPENDENCE OF THE ELECTRIC FIELD SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C.; Mozer, F. S.

    2011-08-20

    We present the first survey of electric field data using the ARTEMIS spacecraft in the solar wind to study inertial range turbulence. It was found that the average perpendicular spectral index of the electric field depends on the frame of measurement. In the spacecraft frame it is -5/3, which matches the magnetic field due to the large solar wind speed in Lorentz transformation. In the mean solar wind frame, the electric field is primarily due to the perpendicular velocity fluctuations and has a spectral index slightly shallower than -3/2, which is close to the scaling of the velocity. These results are an independent confirmation of the difference in scaling between the velocity and magnetic field, which is not currently well understood. The spectral index of the compressive fluctuations was also measured and found to be close to -5/3, suggesting that they are not only passive to the velocity but may also interact nonlinearly with the magnetic field.

  2. Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets.

    PubMed

    Sukoriansky, Semion; Galperin, Boris; Dikovskaya, Nadejda

    2002-09-16

    The Kolmogorov-Batchelor-Kraichnan (KBK) theory of two-dimensional turbulence is generalized for turbulence on the surface of a rotating sphere. The energy spectrum develops considerable anisotropy; a steep -5 slope emerges in the zonal direction, while in all others the classical KBK scaling prevails. This flow regime in robust steady state is reproduced in simulations with linear drag. The conditions favorable for this regime may be common for giant planets' atmospheric circulations; the same steep spectra are found in their observed zonal velocity profiles and utilized to explain their basic characteristics.

  3. Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere and Some Basic Features of Atmospheric Circulation on Giant Planets

    NASA Astrophysics Data System (ADS)

    Sukoriansky, Semion; Galperin, Boris; Dikovskaya, Nadejda

    2002-08-01

    The Kolmogorov-Batchelor-Kraichnan (KBK) theory of two-dimensional turbulence is generalized for turbulence on the surface of a rotating sphere. The energy spectrum develops considerable anisotropy; a steep -5 slope emerges in the zonal direction, while in all others the classical KBK scaling prevails. This flow regime in robust steady state is reproduced in simulations with linear drag. The conditions favorable for this regime may be common for giant planets' atmospheric circulations; the same steep spectra are found in their observed zonal velocity profiles and utilized to explain their basic characteristics.

  4. Nonlinear propagation of kinetic Alfvén wave and turbulent spectrum in reconnection region of magnetotail

    NASA Astrophysics Data System (ADS)

    Yadav, Nitin; Rai, Rajesh Kumar; Sharma, Prachi; Uma, R.; Sharma, R. P.

    2017-06-01

    Kinetic Alfvén waves (KAWs) are known to play an important role in magnetic reconnection as well as in turbulence. In the present work, we have derived the dynamical equation of KAWs propagating through Harris sheet. It is assumed that background density gets modified due to nonlinearity and background field gets modified due to the presence of Harris sheet. This nonlinear dynamical equation is then solved semi-analytically as well as numerically. Due to the presence of background density and field perturbations, Harris sheet gets perturbed and propagating nonlinear KAWs undergoes localization and coherent structures are formed. The transverse scale size of these structures comes of the order of ion gyro radius which is consistent with the observations as well as with the results obtained from the paraxial approach based simplified model also. We have investigated the role of KAWs in the formation of current sheet/coherent structures due to the propagation of nonlinear KAWs through the Harris sheet. Based on these coherent structures, we have evaluated the power spectrum also and found that the obtained scaling after first breakpoint is quite consistent with the observation reported by Chaston et al. [Phys. Rev. Lett. 102, 015001 (2009)] in the ion diffusion region of magnetotail.

  5. Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Bo; Jiang, Nan

    2015-06-01

    When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Reτ = 996. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB720101 and 2012CB720103) and the National Natural Science Foundation of China (Grant Nos. 11272233, 11332006, and 11411130150).

  6. Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Tsubota, Makoto

    2008-11-01

    The present article reviews the recent developments in the physics of quantum turbulence. Quantum turbulence (QT) was discovered in superfluid 4He in the 1950s, and the research has tended toward a new direction since the mid 90s. The similarities and differences between quantum and classical turbulence have become an important area of research. QT is comprised of quantized vortices that are definite topological defects, being expected to yield a model of turbulence that is much simpler than the classical model. The general introduction of the issue and a brief review on classical turbulence are followed by a description of the dynamics of quantized vortices. Then, we discuss the energy spectrum of QT at very low temperatures. At low wavenumbers, the energy is transferred through the Richardson cascade of quantized vortices, and the spectrum obeys the Kolmogorov law, which is the most important statistical law in turbulence; this classical region shows the similarity to conventional turbulence. At higher wavenumbers, the energy is transferred by the Kelvin-wave cascade on each vortex. This quantum regime depends strongly on the nature of each quantized vortex. The possible dissipation mechanism is discussed. Finally, important new experimental studies, which include investigations into temperature-dependent transition to QT, dissipation at very low temperatures, QT created by vibrating structures, and visualization of QT, are reviewed. The present article concludes with a brief look at QT in atomic Bose-Einstein condensates.

  7. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  8. Arbitrary Metrics in Psychology

    ERIC Educational Resources Information Center

    Blanton, Hart; Jaccard, James

    2006-01-01

    Many psychological tests have arbitrary metrics but are appropriate for testing psychological theories. Metric arbitrariness is a concern, however, when researchers wish to draw inferences about the true, absolute standing of a group or individual on the latent psychological dimension being measured. The authors illustrate this in the context of 2…

  9. Arbitrary Metrics in Psychology

    ERIC Educational Resources Information Center

    Blanton, Hart; Jaccard, James

    2006-01-01

    Many psychological tests have arbitrary metrics but are appropriate for testing psychological theories. Metric arbitrariness is a concern, however, when researchers wish to draw inferences about the true, absolute standing of a group or individual on the latent psychological dimension being measured. The authors illustrate this in the context of 2…

  10. Study of one-dimensional spectral dynamic equations of the Reynolds stresses in homogeneous anisotropic turbulence: Application to split-spectrum modeling

    NASA Technical Reports Server (NTRS)

    Schiestel, R.

    1987-01-01

    The CTR numerical data base generated by direct simulation of homogeneous anisotropic turbulence was used to calculate all of the terms in the spectral balance equations for the turbulent Reynolds stresses. The aim in not only to test the main closure assumptions used in the split-spectrum models, but also to try to devise improved hypotheses deduced from the statistical information. Numerical simulations of turbulent flows provide a large amount of data, a thought provoking wealth of information. The main advantage of this type of comparison is that a great variety of flows can be considered, and this is necessary to test closure hypotheses. Moreover various initial conditions can be introduced in the calculation, even if they are not experimentally feasible. All the terms in the spectral equations can be calculated. The limited Reynolds numbers of the simulations and the statistical noise caused by a small sample, particularly at the large scales, causes some difficulty in the interpretation of the results, but the method of approach proved to be a powerful tool for testing and improving spectral closures.

  11. Arbitrary Waveform Generator.

    DTIC Science & Technology

    This report describes a system for storing an arbitrary waveform on non-volatile random access memory ( NVRAM ) device and generating an analog signal...using the NVRAM device. A central processing unit is used to synthesize an arbitrary waveform and create a digital representation of the waveform and...transfer the digital representation to a microprocessor which, in turn, writes the digital data into an NVRAM device which has been mapped into a

  12. On the decay of homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  13. Hindered Energy Cascade in Highly Helical Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Stepanov, Rodion; Golbraikh, Ephim; Frick, Peter; Shestakov, Alexander

    2015-12-01

    The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can play a significant role in turbulent systems, e.g., supporting the generation of large-scale magnetic fields, but its impact on the energy cascade to small scales has never been observed. We suggest, for the first time, a generalized phenomenology for isotropic turbulence with an arbitrary spectral distribution of the helicity. We discuss various scenarios of direct turbulent cascades with new helicity effect, which can be interpreted as a hindering of the spectral energy transfer. Therefore, the energy is accumulated and redistributed so that the efficiency of nonlinear interactions will be sufficient to provide a constant energy flux. We confirm our phenomenology by high Reynolds number numerical simulations based on a shell model of helical turbulence. The energy in our model is injected at a certain large scale only, whereas the source of helicity is distributed over all scales. In particular, we found that the helical bottleneck effect can appear in the inertial interval of the energy spectrum.

  14. Arbitrary Metrics Redux

    ERIC Educational Resources Information Center

    Blanton, Hart; Jaccard, James

    2006-01-01

    Reducing the arbitrariness of a metric is distinct from the pursuit of validity, rational zero points, data transformations, standardization, and the types of statistical procedures one uses to analyze interval-level versus ordinal-level data. A variety of theoretical, methodological, and statistical tools can assist researchers who wish to make…

  15. Ocean Turbulence. Part 4; Mesoscale Modeling in Isopycnal Coordinates the role of the Spectrum of Vertical Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    1999-01-01

    We study the tracer subgrid term in isopycnal coordinates, S(sub I). We employ two ingredients: the experimental data on vertical spectra of ocean turbulence measured by Gargett et al.(1981) and the stochastic approach recently developed by Dukowicz and Smith (1997). Our result confirms that S(sub I) is made of two parts: an advection and a diffusion term. However, the tracer bolus velocity u** consists of two terms u** = u(sub 1) + u(sub 2) while in the GM model there is only a term related to u(sub 1) which is shown to be: u(sub 1) = k(bar-q)(sup -1)(delta)(sub rho) where bar-q is the thickness weighted average potential vorticity, a result in agreement with the recent suggestions by Treguier et al. (1997), Lee et al. (1997) and Greatbatch (1998). The second component u(sub 2) IS new. We compute it in the geostrophic approximation using the Gargett et al. data (1981) on ocean vertical turbulence. We find that u(sub 2) much greater than u(sub 1) and that u(sub 2) is orthogonal to u(sub 1).

  16. Arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Griffin, Maurice; Sugawara, Glen

    1995-02-01

    A system for storing an arbitrary waveform on nonvolatile random access memory (NVRAM) device and generating an analog signal using the NVRAM device is described. A central processing unit is used to synthesize an arbitrary waveform and create a digital representation of the waveform and transfer the digital representation to a microprocessor which, in turn, writes the digital data into an NVRAM device which has been mapped into a portion of the microprocessor address space. The NVRAM device is removed from address space and placed into an independent waveform generation unit. In the waveform generation unit, an address clock provides an address timing signal and a cycle clock provides a transmit signal. Both signals are applied to an address generator. When both signals are present, the address generator generates and transmits to the NVRAM device a new address for each cycle of the address timing signal. In response to each new address generated, the NVRAM devices provides a digital output which is applied to a digital to analog converter. The converter produces a continuous analog output which is smoothed by a filter to produce the arbitrary waveform.

  17. A Simple Theory of Capillary-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1995-01-01

    Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.

  18. Asymptotic behavior of guiding-center diffusion in a model of electrostatic turbulence

    SciTech Connect

    De Leener, M. )

    1994-07-01

    To compare with computer simulations of the diffusion of a test guiding center in a given electrostatic turbulence, a nonlinear theory is applied to the randomly phased waves'' model, with a single frequency [omega] and an arbitrary wave number spectrum. The asymptotic behavior of the diffusion coefficient [ital D] is determined in both limits of large and small turbulence amplitude [ital a]. For [ital a][r arrow][infinity], the classical frozen turbulence'' scaling [ital D][proportional to][ital a] is found. For [ital a][r arrow]0, an unusual quadratic scaling is obtained: for all isotropic models, [ital D] goes to the same limit ([radical]2 /[omega])[ital a][sup 2]. This behavior originates in the two scales'' character of this asymptotic problem. It is examined in detail on a simple form of the equation where the exact asymptotic solutions are obtained.

  19. Radio wave scattering observations of the solar corona First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.; Vesecky, J. F.; Plume, M. A.; Howard, H. T.; Barnes, A.

    1981-01-01

    Radio wave scattering data were collected at 3.6 and 13 cm wavelengths by means of the radio link between the Viking orbiters and the earth during the Nov. 25, 1976 solar conjunction of Mars, which occurred near the beginning of solar cycle 21; Mariner 10 solar activity observations during 1974 are also used. It is found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma, and the spectral index of electron density turbulence is obtained. The measurements of solar wind velocity and spectral index cover 78 days for Viking and 49 days for Mariner 10 and show the combined effects of changing heliocentric distance, solar latitude, and solar longitude as well as solar activity. It is concluded that the observational velocity profile differs significantly from the theoretical profiles in two ways: (1) the theoretical profile does not show the abrupt change in velocity at about 15 solar radii, and (2) the observational profile shows acceleration at larger radial distances than the model profiles. The observational profiles indicate velocities of less than about 150 km/sec out to 15 solar radii.

  20. Numerical Simulation of Turbulent Fluid Flows

    NASA Technical Reports Server (NTRS)

    Leonard, A.

    1983-01-01

    Numerical simulation of turbulent flows is discussed. Computational requirements for the direct simulaton of turbulence, simulation of arbitrary homogeneous flows, an expansion technique for wall bounded flows with application to pipe flow, and possibilities of flow representations or modeling techniques that allow the simulation of high Reynolds number flows with a relatively small number of dependent variables are included.

  1. How arbitrary is language?

    PubMed Central

    Monaghan, Padraic; Shillcock, Richard C.; Christiansen, Morten H.; Kirby, Simon

    2014-01-01

    It is a long established convention that the relationship between sounds and meanings of words is essentially arbitrary—typically the sound of a word gives no hint of its meaning. However, there are numerous reported instances of systematic sound–meaning mappings in language, and this systematicity has been claimed to be important for early language development. In a large-scale corpus analysis of English, we show that sound–meaning mappings are more systematic than would be expected by chance. Furthermore, this systematicity is more pronounced for words involved in the early stages of language acquisition and reduces in later vocabulary development. We propose that the vocabulary is structured to enable systematicity in early language learning to promote language acquisition, while also incorporating arbitrariness for later language in order to facilitate communicative expressivity and efficiency. PMID:25092667

  2. Spectra of random graphs with community structure and arbitrary degrees.

    PubMed

    Zhang, Xiao; Nadakuditi, Raj Rao; Newman, M E J

    2014-04-01

    Using methods from random matrix theory researchers have recently calculated the full spectra of random networks with arbitrary degrees and with community structure. Both reveal interesting spectral features, including deviations from the Wigner semicircle distribution and phase transitions in the spectra of community structured networks. In this paper we generalize both calculations, giving a prescription for calculating the spectrum of a network with both community structure and an arbitrary degree distribution. In general the spectrum has two parts, a continuous spectral band, which can depart strongly from the classic semicircle form, and a set of outlying eigenvalues that indicate the presence of communities.

  3. Turbulence in quantum fluids

    NASA Astrophysics Data System (ADS)

    Tsubota, Makoto

    2014-02-01

    This paper reviews briefly the recent important developments in the physics of quantum turbulence (QT) in superfluid helium and atomic Bose-Einstein condensates (BECs). After giving the basics of quantum hydrodynamics, we discuss energy spectrum, QT created by vibrating structures, and visualization among the topics on superfluid helium. For atomic BECs we review three-dimensional QT, two-component BECs, and spin turbulence in spinor BECs. The last part is devoted to some perspectives of this issue.

  4. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  5. Stirring turbulence with turbulence

    NASA Astrophysics Data System (ADS)

    Cekli, Hakki Ergun; Joosten, René; van de Water, Willem

    2015-12-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.

  6. Turbulent mix experiments and simulations

    SciTech Connect

    Dimonte, G.; Schneider, M.; Frerking, C.E.

    1995-08-01

    Hydrodynamic instabilities produce material mixing that can significantly degrade weapons performance. We investigate the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities in the turbulent regime in two experimental venues. RM experiments are conducted on the Nova laser with strong radiatively driven shocks (Mach > 20) in planar, two fluid targets. Interfacial perturbations are imposed with single sinusoidal modes to test linear theory and with three dimensional (3D) random modes to produce turbulent mix. RT experiments are conducted on a new facility, the Linear Electric Motor (LEM), in which macroscopic fluids are accelerated with arbitrary temporal profiles. This allows detailed diagnosis of the turbulence over a wide range of conditions. The Nova experiments study the high compression regime whereas the LEM experiments are incompressible. The results are compared to hydrodynamic simulations with the arbitrary Lagrangian-Eulerian code (CALE). The goal is to develop and test engineering models of mix.

  7. A Simple Arbitrary Solid Slicer

    SciTech Connect

    Yao, J

    2005-06-23

    The intersection of a given plane and an arbitrary (possibly non-convex, with multiple connectivities) meshed solid is exactly expressed by a set of planar cross-sections. A rule for marching on the edges of an arbitrary polyhedron is set for obtaining the topology of the cross-section. The method neither seeks triangulation of the surface mesh nor utilizes look-up tables, therefore it has optimal efficiency.

  8. Phenomenology of turbulent convection

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra; Chatterjee, Anando; Kumar, Abhishek; Samtaney, Ravi

    2016-11-01

    We simulate Rayleigh-Bénard convection (RBC) in which a fluid is confined between two thermally conducting plates. We report results from direct numerical simulation (DNS) of RBC turbulence on 40963 grid, the highest resolution hitherto reported, on 65536 cores of Cray XC40, Shaheen II, at KAUST. The non-dimensional parameters of our simulation are: the Rayleigh number Ra = 1 . 1 ×1011 (the highest ever for a pseudo-spectral simulation) and Prandtl number of unity. We present energy flux diagnostics of shell-to-shell (in wave number space) transfer. Furthermore, noting that convective flows are anisotropic due to buoyancy, we quantify anisotropy by subdividing each wavenumber shell into rings and quantify ring energy spectrum. An outstanding question in convective turbulence is the wavenumber scaling of the energy spectrum. Our pseudo-spectral simulations of turbulent thermal convection coupled with novel energy transfer diagnostics have provided a definitive answer to this question. We conclude that convective turbulence exhibits behavior similar to fluid turbulence, that is, Kolmogorov's k - 5 / 3 spectrum with forward and local energy transfers, along with a nearly isotropic energy distribution. The supercomputer Shaheen at KAUST was utilized for the simulations.

  9. Turbulence of swarming sperm

    NASA Astrophysics Data System (ADS)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L.; Plouraboué, Franck

    2015-09-01

    Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation.

  10. Turbulence of swarming sperm.

    PubMed

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L; Plouraboué, Franck

    2015-09-01

    Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k^{-3} power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation.

  11. Dissipation in unsteady turbulence

    NASA Astrophysics Data System (ADS)

    Bos, Wouter J. T.; Rubinstein, Robert

    2017-02-01

    Recent experiments and simulations have shown that unsteady turbulent flows display a universal behavior at short and intermediate times, different from classical scaling relations. The origin of these observations is explained using a nonequilibrium correction to Kolmogorov's energy spectrum, and the exact form of the observed universal scaling is derived.

  12. Critical exponents of Nikolaevskii turbulence

    NASA Astrophysics Data System (ADS)

    Tanaka, Dan

    2005-02-01

    We study the spatial power spectra of Nikolaevskii turbulence in one-dimensional space. First, we show that the energy distribution in wave-number space is extensive in nature. Then, we demonstrate that, when varying a particular parameter, the spectrum becomes qualitatively indistinguishable from that of Kuramoto-Sivashinsky turbulence. Next, we derive the critical exponents of turbulent fluctuations. Finally, we argue that in some previous studies, parameter values for which this type of turbulence does not appear were mistakenly considered, and we resolve inconsistencies obtained in previous studies.

  13. Computation of turbulent near wake for asymmetric airfoils

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.

    1979-01-01

    A numerical procedure for studying the turbulent near wake of two dimensional airfoil sections is presented. The Reynolds Navier-Stokes equations were written for flow about bodies of arbitrary geometry and solved on an arbitrary nonuniform curvilinear computational mesh. Eddy viscosity and Reynolds stress turbulence transport models are considered. Specific examples are shown for airfoil section by using an algebraic viscosity model with streamwise relaxation and the interactive Reynolds stress model.

  14. Multiple-scale turbulence modeling of free turbulent flows

    NASA Technical Reports Server (NTRS)

    Fabris, G.; Harsha, P. T.

    1981-01-01

    As part of an investigation into the application of turbulence models to the computation of flows in advanced scramjet combustors, the multiple-scale turbulence model has been applied to a variety of flowfield predictions. The model appears to have a potential for improved predictions in a variety of areas relevant to combustor problems. This potential exists because of the partition of the turbulence energy spectrum that is the major feature of the model and which allows the turbulence energy dissipation rate to be out of phase with turbulent energy production. To establish the general reliability of the approach, it has been tested through comparison of predictions with experimental data. An appreciable overall improvement in the generality of the predictions is observed, as compared to those of the basic two-equation turbulence model. A Mach number-related correction is found to be necessary to satisfactorily predict the spreading rate of the supersonic jet and mixing layer.

  15. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  16. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: Energy decomposition analysis and energy budget

    NASA Astrophysics Data System (ADS)

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode ak and its companion mode a-k is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  17. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  18. Arbitrary shape surface Fresnel diffraction.

    PubMed

    Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-04-09

    Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to O(N²) in one dimensional or O(N⁴) in two dimensional cases, where N is the number of sampling points. However, the calculation cost of the proposed method is O(N log N) in one dimensional or O(N² log N) in two dimensional cases using non-uniform fast Fourier transform.

  19. Measuring non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Gladysz, Szymon; Stein, Karin; Sucher, Erik; Sprung, Detlev

    2013-10-01

    We have performed a series of experiments aiming at understanding the statistics of deep turbulence over cities. The experimental setup consisted of a Shack-Hartmann wavefront sensor and an imaging camera that simultaneously recorded wavefront-, and focal-plane data, respectively. At the same time, measurements of deep optical turbulence were performed at the urban area of interest using two large-aperture scintillometer systems to get an impression of the strength of Cn2 above the rooftops of Ettlingen. Our focus is "urban" turbulence because we are interested in the usefulness of adaptive optics for free-space optical communications over urban areas. We discuss methods of determining departure from Kolmogorov turbulence. Our "last mile problem" is that urban turbulence can be significantly stronger, in the sense of flatter power spectrum, compared to the classic Kolmogorov turbulence. This could pose a significant challenge for adaptive optics systems.

  20. Depolarization of an uncollimated laser beam in a turbulent medium

    NASA Technical Reports Server (NTRS)

    Chang, F. C.; Mott, H.; Webb, W. E.

    1973-01-01

    The depolarization of a beam wave, with Gaussian intensity distribution and arbitrary divergence, propagating in a turbulent medium is considered. The correlation function of the depolarized component of the beam is determined. The mean-square depolarization fluctuation is then determined for a medium characterized by a Kolmogorov spectrum. If the beam is assumed to be collimated, this expression reduces to that of Collett and Alferness; if the plane-wave limiting case of the Gaussian beam is taken, the results in this paper agree with those of Strohbehn. The results show that off the beam axis the depolarization can be greater than for the plane wave, and that near the beam focal point the depolarization may decrease by orders of magnitude.

  1. Dynamical nature of inviscid power law for two-dimensional turbulences and self-consistent spectrum and transport of plasma filaments

    SciTech Connect

    Zhang, Y.Z.; Mahajan, S.M.

    1994-02-01

    On the basis of equal-time correlation theory (a non-perturbative approach) inviscid power laws of 2D isotropic plasma turbulences with one Lagrangian inviscid constant of motion are unambiguously solved by determining the dynamical characteristics. Two distinct types of induced transport, according to the divergence of the inverse correlation length in the inviscid limit, are revealed. This analysis also suggests a physically reasonable closure. The self-consistent system (a set of integral equations) for plasma filaments is investigated in detail, and is found to be a nonlinear differential eigenvalue problem for the diffusion coefficient D, with the Dyson-like (integral) equation playing the role of a boundary condition. This new type of transport is non-Bohm-like, and shows quasilinear behavior even in the strong turbulence regime. Physically, this behavior arises from a synchronization of the shrinking squared correlation length with the decorrelation time, for which the ``mixing-length`` breaks down. The shrinkage of correlation length is a characteristic pertaining to the new type of turbulence; its relationship with the turbulence observed in supershot regime on TFTR is commented on.

  2. The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Durbin, P. A.

    1980-01-01

    The turbulence downstream of a rapid contraction is calculated for the case when the turbulence scale can have the same magnitude as the mean-flow spatial scale. The approach used is based on the formulation of Goldstein (1978) for turbulence downstream of a contraction, with the added assumptions of a parallel mean flow at downstream infinity and turbulence calculated far enough downstream so that the nonuniformity of the mean flow field has decayed, and by treating the inverse contraction ratio as a small parameter. Consideration is given to the large-contraction-ratio and classical rapid-distortion theory limits, and to results at an arbitrary contraction ratio. It is shown that the amplification effect of the contraction is reduced when the spatial scale of the turbulence increases, with the upstream turbulence actually suppressed for a contraction ratio less than five and a turbulence spatial scale greater than three times the transverse dimensions of the downstream channel.

  3. Emission of sound from turbulence convected by a parallel flow in the presence of solid boundaries

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1973-01-01

    A theoretical description is given of the sound emitted from an arbitrary point in a parallel or nearly parallel turbulent shear flow confined to a region near solid boundaries. The analysis begins with Lighthill's formulation of aerodynamic noise and assumes that the turbulence is axisymmetric. Specific results are obtained for the sound emitted from an arbitrary point in a turbulent flow within a semi-infinite, open-ended duct.

  4. Kinematic dynamo theory for an arbitrary mean flow

    NASA Astrophysics Data System (ADS)

    Hoyng, P.

    1984-11-01

    Arbitrary, incompressible mean flow (vo) in kinematic dynamo theory is analyzed via stochastic differential equations. When the first order smoothing approximation is made the only effect of a nonzero vo is that in the definition of the tensors the turbulent velocity v is replaced by the effect of passive advection by vo. Dynamo action depends only on velocity correlations measured in a frame comoving with and distorted by the mean flow through passive advection. Conclusions apply when the analysis is extended to arbitrary order, relevant for a long correlation time. The result admits straightforward evaluation for given model mean flows. The shear in vo causes a (kinematic) anisotropy in the tensors. This can be a large effect, which comes on top of the intrinsic (dynamical) anisotropy in the velocity correlation functions. Conditions for applicability are very large magnetic Reynolds number; incompressible flows; stationary vo; and correlation time period of the dynamo.

  5. Representing Arbitrary Boosts for Undergraduates.

    ERIC Educational Resources Information Center

    Frahm, Charles P.

    1979-01-01

    Presented is a derivation for the matrix representation of an arbitrary boost, a Lorentz transformation without rotation, suitable for undergraduate students with modest backgrounds in mathematics and relativity. The derivation uses standard vector and matrix techniques along with the well-known form for a special Lorentz transformation. (BT)

  6. Unsteady turbulence cascades

    NASA Astrophysics Data System (ADS)

    Goto, Susumu; Vassilicos, J. C.

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5 /3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935), 10.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  7. Unsteady turbulence cascades.

    PubMed

    Goto, Susumu; Vassilicos, J C

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  8. Turbulence forecasting

    NASA Technical Reports Server (NTRS)

    Chandler, C. L.

    1987-01-01

    In order to forecast turbulence, one needs to have an understanding of the cause of turbulence. Therefore, an attempt is made to show the atmospheric structure that often results when aircraft encounter moderate or greater turbulence. The analysis is based on thousands of hours of observations of flights over the past 39 years of aviation meteorology.

  9. Quantitative vortex models of turbulence

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.

    2001-11-01

    This presentation will review attempts to develop models of turbulence, based on compact vortex elements, that can be used both to obtain quantitative estimates of various statistical properties of turbulent fine scales and also to formulate subgrid-transport models for large-eddy simulation (LES). Attention will be focused on a class of stretched-vortex models. Following a brief review of prior work, recent studies of vortex-based modeling of the small-scale behavior of a passive scalar will be discussed. The large-wavenumber spectrum of a passive scalar undergoing mixing by the velocity field of a stretched-spiral vortex will be shown to consist of the sum of two classical power laws, a k-1 Batchelor spectrum for wavenumbers up to the inverse Batchelor scale, and a k-5/3 Obukov-Corrsin spectrum for wavenumbers less than the inverse Kolmogorov scale (joint work with T.S. Lundgren). We will then focus on the use of stretched vortices as the basic subgrid structure in subgrid-scale (SGS) modeling for LES of turbulent flows. An SGS stress model and a vortex-based scalar-flux model for the LES of flows with turbulent mixing will be outlined. Application of these models to the LES of decaying turbulence, channel flow, the mixing of a passive scalar by homogeneous turbulence in the presence of a mean scalar gradient, and to the LES of compressible turbulence will be described.

  10. Turbulence modeling in non-inertial frames of reference

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1988-01-01

    The effect of an arbitrary change of frame on the structure of turbulence models is examined from a fundamental theoretical standpoint. It is proven, as a rigorous consequence of the Navier-Stokes equations, that turbulence models must be form invariant under arbitrary translational accelerations of the reference frame and should only be affected by rotations through the intrinsic mean vorticity. A direct application of the invariance property along with the Taylor-Proudman Theorem, material frame-indifference in the limit of two-dimensional turbulence and Rapid Distortion Theory is shown to yield powerful constraints on the allowable form of turbulence models. Most of the commonly used turbulence models are demonstrated to be in serious violation of these constraints and consequently are inconsistent with the Navier-Stokes equations in non-inertial frames. Alternative models with improved non-inertial properties are developed and some simple applications to rotating turbulent flows are considered.

  11. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    SciTech Connect

    Klein, Kristopher G.; Howes, Gregory G.; TenBarge, Jason M.; Podesta, John J.

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  12. Arbitrary bending plasmonic light waves.

    PubMed

    Epstein, Itai; Arie, Ady

    2014-01-17

    We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.

  13. Perturbative gadgets at arbitrary orders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen P.; Farhi, Edward

    2008-06-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.

  14. Photonic Arbitrary Waveform Generation Technology

    DTIC Science & Technology

    2006-06-01

    filters or ring resonator based technologies [26-29]. Key aspects of the filter technology are the flatness of the filter channel, the crosstalk...photodetectors would also be warranted. 28 References [1] K. Nosu, “ Advanced coherent lightwave technologies ,” IEEE Commun. Magn,, vol. 26...AFRL-SN-RS-TR-2006-208 Final Technical Report June 2006 PHOTONIC ARBITRARY WAVEFORM GENERATION TECHNOLOGY University of

  15. Broken symmetry in ideal magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1993-01-01

    A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.

  16. Simulation of anisoplanatism of adaptive optical system in inhomogeneous turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Koriabin, A. V.; Shmalhausen, V. I.

    2005-12-01

    The software is presented for simulation of anisoplanatic effect and its influence on performance of adaptive optical phase conjugation system in inhomogeneous turbulent atmosphere. Atmospheric turbulence was simulated with the help of a set of moving random phase screens with arbitrary statistics. Both reference and target are supposed to be the point light sources. To simulate atmospheric turbulence we applied the concept of a number of moving random phase screens with Kolmogorov spectrum. In our investigations we used the model of Shack-Hartmann wavefront sensor and the ideal model of wavefront adaptive mirror that is assumed to reproduce a given number of Zernike polynomials without time delays. The designed software allows to calculate instantaneous and average values of phase correction errors at a different angle between a reference beacon and target source. Simulations can be made with a broad range of parameters of adaptive system and atmospheric turbulence. The approach enables us to estimate residual aberrations as well as to calculate instant parameters of system performance - point spread function (PSF), optical transfer function (OTF) - and system isoplanatic angle. The model of system allows to change the control algorithm of phase corresction. Both common phase conjugation and weighted phase conjugation algorithm have been tested.

  17. Scale-adaptive subgrid-scale modelling for large-eddy simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Yu, Changping; Xiao, Zuoli; Li, Xinliang

    2017-03-01

    The proportionality between the subgrid-scale (SGS) drain rate of kinetic energy and the viscous dissipation rate of the resolved motions is studied a priori by filtering a given fully resolved field and evaluating a generic form of the hypothesized energy spectrum. The ratio of the SGS drain to the resolved dissipation, on which a balance condition for the SGS dissipation across an arbitrary grid scale is founded, is shown to be independent of the turbulence Reynolds number, and can be described by a function in terms of the averaged mesh Reynolds number. Such a balance condition can serve as a physical constraint in the SGS modeling to account for the scale effects of the model coefficient(s). Scale-adaptive dynamic Smagorinsky-Lilly model and mixed nonlinear model are formulated for large-eddy simulation of transitional and/or turbulent flows in such a way that the constraint is satisfied. The newly proposed scale-adaptive dynamic SGS models are validated in simulations of homogeneous isotropic turbulence and turbulent channel flow, and prove to be superior over traditional dynamic SGS models.

  18. Turbulence patterns and neutrino flavor transitions in high-resolution supernova models

    SciTech Connect

    Borriello, Enrico; Mirizzi, Alessandro; Chakraborty, Sovan; Janka, Hans-Thomas; Lisi, Eligio E-mail: sovan@mppmu.mpg.de E-mail: eligio.lisi@ba.infn.it

    2014-11-01

    During the shock-wave propagation in a core-collapse supernova (SN), matter turbulence may affect neutrino flavor conversion probabilities. Such effects have been usually studied by adding parametrized small-scale random fluctuations (with arbitrary amplitude) on top of coarse, spherically symmetric matter density profiles. Recently, however, two-dimensional (2D) SN models have reached a space resolution high enough to directly trace anisotropic density profiles, down to scales smaller than the typical neutrino oscillation length. In this context, we analyze the statistical properties of a large set of SN matter density profiles obtained in a high-resolution 2D simulation, focusing on a post-bounce time (2 s) suited to study shock-wave effects on neutrino propagation on scales as small as O(100) km and possibly below. We clearly find the imprint of a broken (Kolmogorov-Kraichnan) power-law structure, as generically expected in 2D turbulence spectra. We then compute the flavor evolution of SN neutrinos along representative realizations of the turbulent matter density profiles, and observe no or modest damping of the neutrino crossing probabilities on their way through the shock wave. In order to check the effect of possibly unresolved fluctuations at scales below O(100) km, we also apply a randomization procedure anchored to the power spectrum calculated from the simulation, and find consistent results within ± 1σ fluctuations. These results show the importance of anchoring turbulence effects on SN neutrinos to realistic, fine-grained SN models.

  19. The Theories of Turbulence

    NASA Technical Reports Server (NTRS)

    Bass, J; Agostini, L

    1955-01-01

    The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.

  20. Turbulence Effects.

    DTIC Science & Technology

    SONAR SIGNALS, *UNDERWATER SOUND SIGNALS, SHOCK WAVES, TURBULENCE, WAVE PROPAGATION, SOUND TRANSMISSION, ACOUSTIC ATTENUATION, AMPLITUDE, UNDERWATER EXPLOSIONS, ACOUSTIC REFLECTION, SOUND RANGING, BOTTOM LOSS, BOTTOM BOUNCE .

  1. Double Resonances and Spectral Scaling in the Weak Turbulence Theory of Rotating and Stratified Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1999-01-01

    In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.

  2. Light propagation through anisotropic turbulence.

    PubMed

    Toselli, Italo; Agrawal, Brij; Restaino, Sergio

    2011-03-01

    A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

  3. Equientangled bases in arbitrary dimensions

    SciTech Connect

    Karimipour, V.; Memarzadeh, L.

    2006-01-15

    For the space of two identical systems of arbitrary dimensions, we introduce a continuous family of bases with the following properties: (i) the bases are orthonormal (ii) in each basis, all the states have the same values of entanglement, and (iii) they continuously interpolate between the product basis and the maximally entangled basis. The states thus constructed may find applications in many areas related to the quantum information science including quantum cryptography, optimal Bell tests, and the investigation of the enhancement of channel capacity due to entanglement.

  4. Maximal cuts in arbitrary dimension

    NASA Astrophysics Data System (ADS)

    Bosma, Jorrit; Sogaard, Mads; Zhang, Yang

    2017-08-01

    We develop a systematic procedure for computing maximal unitarity cuts of multiloop Feynman integrals in arbitrary dimension. Our approach is based on the Baikov representation in which the structure of the cuts is particularly simple. We examine several planar and nonplanar integral topologies and demonstrate that the maximal cut inherits IBPs and dimension shift identities satisfied by the uncut integral. Furthermore, for the examples we calculated, we find that the maximal cut functions from different allowed regions, form the Wronskian matrix of the differential equations on the maximal cut.

  5. Interpretation of second solar spectrum observations of the Sr I 4607 Å line in a quiet region: Turbulent magnetic field strength determination

    NASA Astrophysics Data System (ADS)

    Bommier, V.; Derouich, M.; Landi Degl'Innocenti, E.; Molodij, G.; Sahal-Bréchot, S.

    2005-03-01

    This paper presents and interprets some observations of the limb polarization of Sr I 4607 Å obtained with the spectropolarimeter of the French-Italian telescope THEMIS in quiet regions close to the solar North Pole on 2002 December 7-9. The linear polarization was measured for a series of limb distances ranging from 4 to 160 arcsec, corresponding to heights of optical depth unity in the line core ranging from about 330 to 220 km, respectively, above the τ5000=1 level. To increase the polarimetric sensitivity, the data were averaged along the spectrograph slit (one arcmin long) set parallel to the solar limb. Since the data show no rotation of the linear polarization direction with respect to the limb direction, the observed depolarization is ascribed to the Hanle effect of a turbulent weak magnetic field, the zero-field polarization being derived from a model. The interpretation is performed by means of an algorithm which describes the process of line formation in terms of the atomic density matrix formalism, the solar atmosphere being described by an empirical, plane-parallel model. The collisional rates entering the model (inelastic collisions with electrons, elastic depolarizing collisions with neutral hydrogen), have been computed by applying fast semi-classical methods having a typical accuracy of the order of 20% or better (see Derouich [CITE]), leading to 6% inaccuracy on the magnetic field strength determination. We assume a unimodal distribution for the intensity of the turbulent field. The computed intensity profile has been adjusted to the observed one in both depth and width, by varying both microturbulent and macroturbulent velocities. The best adjustment is obtained for respectively 1.87 km s-1 (micro) and 1.78 km s-1 (macro). The evaluation of the magnetic depolarization leads then to the average value of 46 Gauss for the turbulent magnetic field strength, with a gradient of -0.12 Gauss/km. Our results are in very good agreement with the value of

  6. Stellar Spectrum Synthesizer

    ERIC Educational Resources Information Center

    Landegren, G. F.

    1975-01-01

    Describes a device which employs two diffraction gratings and three or four simple lenses to produce arbitrary absorption or emission spectra that may be doppler shifted and spectroscopically examined by students some distance away. It may be regarded as a sort of artificial star whose spectrum may be analyzed as an undergraduate laboratory…

  7. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Sridhar, S.

    1995-01-01

    We continue to investigate the possibility that interstellar turbulence is caused by nonlinear interactions among shear Alfven waves. Here, we restrict attention to the symmetric case where the oppositely directed waves carry equal energy fluxes. This precludes application to the solar wind in which the outward flux significantly exceeds the ingoing one. All our detailed calculations are carried out for an incompressible magnetized fluid. In incompressible magnetohydrodynamics (MHD), nonlinear interactions only occur between oppositely direct waves. We present a theory for the strong turbulence of shear Alfven waves. It has the following main characteristics. (1) The inertial-stage energy spectrum exhibits a critical balance between linear wave periods and nonlinear turnover timescales. (2) The 'eddies' are elongated in the direction of the field on small spatial scales; the parallel and perpendicular components of the wave vector, k(sub z) and k(perpendicular) are related by k(sub z) approximately equals k(sub perpendicular to)(exp 2/3) L(exp -1/3), where L is the outer scale of the turbulence. (3) The 'one-dimensional' energy spectrum is proportional to k(sub perpendicular)(exp -5/3)-an anisotropic Kolmogorov energy spectrum. Shear Alfvenic turbulence mixes specific entropy as a passive contaminant. This gives rise to an electron density power spectrum whose form mimics the energy spectrum of the turbulence. Radio wave scattering by these electron density fluctuations produces anisotropic scatter-broadened images. Damping by ion-neutral collisions restricts Alfvenic turbulence to highly ionized regions of the interstellar medium.

  8. Vortex burst as a source of turbulence.

    PubMed

    Cuypers, Yannis; Maurel, Agnès; Petitjeans, Philippe

    2003-11-07

    An important issue in turbulence theory is to understand what kinds of elementary flow structures are responsible for the part of the turbulent energy spectrum described by Kolmogorov's celebrated k(-5/3) law. A model for such structure has been proposed by Lundgren [Phys. Fluids 25, 2193-2203 (1982)

  9. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    PubMed

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  10. A new approach for turbulent simulations in complex geometries

    NASA Astrophysics Data System (ADS)

    Israel, Daniel M.

    Historically turbulence modeling has been sharply divided into Reynolds averaged Navier-Stokes (RANS), in which all the turbulent scales of motion are modeled, and large-eddy simulation (LES), in which only a portion of the turbulent spectrum is modeled. In recent years there have been numerous attempts to couple these two approaches either by patching RANS and LES calculations together (zonal methods) or by blending the two sets of equations. In order to create a proper bridging model, that is, a single set of equations which captures both RANS and LES like behavior, it is necessary to place both RANS and LES in a more general framework. The goal of the current work is threefold: to provide such a framework, to demonstrate how the Flow Simulation Methodology (FSM) fits into this framework, and to evaluate the strengths and weaknesses of the current version of the FSM. To do this, first a set of filtered Navier-Stokes (FNS) equations are introduced in terms of an arbitrary generalized filter. Additional exact equations are given for the second order moments and the generalized subfilter dissipation rate tensor. This is followed by a discussion of the role of implicit and explicit filters in turbulence modeling. The FSM is then described with particular attention to its role as a bridging model. In order to evaluate the method a specific implementation of the FSM approach is proposed. Simulations are presented using this model for the case of a separating flow over a "hump" with and without flow control. Careful attention is paid to error estimation, and, in particular, how using flow statistics and time series affects the error analysis. Both mean flow and Reynolds stress profiles are presented, as well as the phase averaged turbulent structures and wall pressure spectra. Using the phase averaged data it is possible to examine how the FSM partitions the energy between the coherent resolved scale motions, the random resolved scale fluctuations, and the subfilter

  11. Shell model for buoyancy-driven turbulence.

    PubMed

    Kumar, Abhishek; Verma, Mahendra K

    2015-04-01

    In this paper we present a unified shell model for stably stratified and convective turbulence. Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in which the kinetic energy spectrum varies as k(-11/5). The shell model of convective turbulence yields Kolmogorov's spectrum. These results are consistent with the energy flux and energy feed due to buoyancy, and are in good agreement with direct numerical simulations of Kumar et al. [Phys. Rev. E 90, 023016 (2014)].

  12. Diffusion of Heat from a Line Source in Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Uberoi, Mahinder S; Corrsin, Stanley

    1953-01-01

    An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.

  13. Arbitrary Inequality in Reputation Systems

    NASA Astrophysics Data System (ADS)

    Frey, Vincenz; van de Rijt, Arnout

    2016-12-01

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.

  14. Arbitrary Inequality in Reputation Systems

    PubMed Central

    Frey, Vincenz; van de Rijt, Arnout

    2016-01-01

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited. PMID:27995957

  15. Arbitrary Inequality in Reputation Systems.

    PubMed

    Frey, Vincenz; van de Rijt, Arnout

    2016-12-20

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.

  16. Generalization of the electronic susceptibility for arbitrary molecular geometries.

    PubMed

    Scherrer, Arne; Dreßler, Christian; Ahlert, Paul; Sebastiani, Daniel

    2016-04-14

    We generalize the explicit representation of the electronic susceptibility χ[R](r, r') for arbitrary molecular geometries R. The electronic susceptibility is a response function that yields the response of the molecular electronic charge density at linear order to an arbitrary external perturbation. We address the dependence of this response function on the molecular geometry. The explicit representation of the molecular geometry dependence is achieved by means of a Taylor expansion in the nuclear coordinates. Our approach relies on a recently developed low-rank representation of the response function χ[R](r, r') which allows a highly condensed storage of the expansion and an efficient application within dynamical chemical environments. We illustrate the performance and accuracy of our scheme by computing the vibrationally induced variations of the response function of a water molecule and its resulting Raman spectrum.

  17. Magnetosheath electrostatic turbulence

    NASA Technical Reports Server (NTRS)

    Rodriquez, P.

    1977-01-01

    The spectrum of electrostatic plasma waves in the terrestrial magnetosheath was studied using the plasma wave experiment on the IMP-6 satellite. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz- 70 kHz) r.m.s. field intensities typically 0.01 - 1.0 millivolts/m. Peak intensities of about 1.0 millivolts/m near the electron plasma frequency (30 - 60 kHz) were detected occasionally. The components usually identified in the spectrum of magnetosheath electrostatic turbulence include a high frequency ( or = 30 kHz) component peaking at the electron plasma frequency f sub pe, a low frequency component with a broad intensity maximum below the nominal ion plasma frequency f sub pi (approximately f sub pe/43), and a less well defined intermediate component in the range f sub pi f f sub pe. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath.

  18. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  19. Decay of capillary wave turbulence.

    PubMed

    Deike, Luc; Berhanu, Michael; Falcon, Eric

    2012-06-01

    We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave turbulent state.

  20. Magnetohydrodynamic turbulence: Observation and experiment

    SciTech Connect

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  1. Magnetohydrodynamic turbulence: Observation and experimenta)

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-01

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations EB(f ) . We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  2. Turbulence at Finite Reynolds Number

    NASA Astrophysics Data System (ADS)

    George, William K.

    2003-11-01

    Some of the unique features and challenges of turbulence at modest Reynolds number will be discussed and illustrated by example. Almost all laboratory and DNS turbulent flows fall into this class of flows, as do all turbulent wall-bounded flows within at least a few hundred viscous lengths from the surface. Particularly important is absence of an inertial subrange in the energy spectrum, which precludes the applicability of most turbulence theories to-date. Also interesting is the apparent tendency of at least free (no boundary) turbulent flows (e.g., decaying homogeneous turbulence, jets, wakes, etc.) to preserve asymptotically remnants of their initial (or upstream) conditions. These dependencies create great difficulties for the turbulence modellers and theoreticians alike. Equilibrium similarity and near-asymptotics provide useful theoretical tools for analyzing these flows, but troublesome questions remain. These anomalies challenge both the new ideas and the classical high Reynolds number ones as well. Will they vanish as our experiments, computations and theories improve, or are they harbingers of a paradigm shift? Regardless, we must acknowledge the problems and learn to ask the right questions to find out.

  3. Hilbert-Huang Transform in Ocean Turbulence

    NASA Astrophysics Data System (ADS)

    Huang, Yongxiang

    2013-04-01

    Hilbert-Huang Transform is a relative novel time-frequency analysis technique for multi-scale processes. It is a wavelet-like data-driven methodology without a priori basis assumption. This meets the requirement of the analysis of the nonstationary and nonlinear data with short length or irregular sampling time interval. Since it is introduced in 1998 by Dr. N.E Huang, it has been widely applied to different scientific research fields and engineering problems, showing its simplicity and successes. We develop further this method to characterize the scale invariance for turbulence-like/scaling processes, e.g., velocity, temperature, dissolved oxygen observed in ocean, etc. In this talk, we first present a general introduction of this method. The key feature of this Hilbert-based method is that it is free with sub-harmonics when dealing with nonstationary and nonlinear data. This is accomplished by using an Intrawave-Frequency Modulation mechanism to characterize the so-called nonlinear distortion. Therefore, unlike the Fourier based methodologies, artificial energy redistribution in spectral space is constrained. We then show several applications of this method to experimental data from wind tunnel experiments and ocean observations. The interaction between two different scales and two variables are also discussed in statistics sense. The method is general and applicable to other systems, in which the multi-scale is relevant. Reference 1. Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.; Tung, C. C. & Liu, H. H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. London, Ser. A, Royal Society, 1998, 454, 903-995 2. Huang, Y.; Schmitt, F.; Lu, Z. & Liu, Y. An amplitude-frequency study of turbulent scaling intermittency using Hilbert spectral analysis, Europhys. Lett., 2008, 84, 40010 3. Huang, Y.; Schmitt, F.; Lu, Z.; Fougairolles, P.; Gagne, Y. & Liu, Y. Second

  4. Second solar spectrum of the Sr I 4607 Å line: depth probing of the turbulent magnetic field strength in a quiet region

    NASA Astrophysics Data System (ADS)

    Derouich, M.; Bommier, V.; Malherbe, J. M.; Landi Degl'Innocenti, E.

    2006-10-01

    Aims.This paper is devoted to an interpretation of Quiet-Sun, spatially-resolved spectropolarimetric observations of the Hanle effect in terms of turbulent weak magnetic field determination. Methods: . Observations: the slit was positioned perpendicular to the limb, and the spatial resolution along the slit was 1 arcsec, leading to a depth probing along 132 different limb distances. The new polarimeter of the Pic-du-Midi Turret Dome was used on May 14, 2004 to observe a quiet region at the East limb equator in the resonance line of neutral Strontium at 4607 Å. Results: . For each limb distance, we properly adjusted the theoretical intensity profile obtained by applying a zero-field model to the observed one. Micro- and macroturbulent velocities were thus derived (average values v{micro}=1.77 km s-1 and v{macro}=1.95 km s-1). The magnetic field was determined in a second step by interpreting the Hanle effect on the line center linear polarization degree. The depolarizing collisions with neutral hydrogen were taken fully into account through a semi-classical calculation of their rates. An average value of B=38 Gauss was thus derived. Finally, error bars on the magnetic field values were evaluated from a) the polarimetric inaccuracy, b) the limb distance determination inaccuracy, and c) the uncertainty on our theoretical collisional depolarizing rates that we evaluated. This combination leads to 10-20% as total relative error on the magnetic field determination by the Hanle effect method. Since the inaccuracy due to the model itself was hard to properly evaluate, it was ignored. An uncertainty of ±60 km on the line formation depth was, however, derived from the contribution functions. The magnetic field is found to increase slowly with height in the height range 220-300 km above τ5000=1 and then decrease in the height range 300-370 km.

  5. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  6. Existence of a persistent background of turbulence

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1983-01-01

    A plausible scenario for the existence of a persistent back-ground of turbulence in the free atmosphere is described. The MST radar technique is the only existing technique that can be used to describe the morphology of occurrence of turbulence as a function of altitude, wind speed, shear, weather conditions, geographical location, etc. This technique was used also to assess the degree of universality of shape and amplitude of the buoyancy wave spectrum and the relation between the buoyancy wave spectrum and turbulence.

  7. Quantitative photography of intermittency in surface wave turbulence

    SciTech Connect

    Wright, W.; Budakian, R.; Putterman, S.J.

    1997-12-31

    At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state.

  8. Mixing in Magnetized Turbulent Media

    NASA Astrophysics Data System (ADS)

    Sur, Sharanya; Pan, Liubin; Scannapieco, Evan

    2014-04-01

    Turbulent motions are essential to the mixing of entrained fluids and are also capable of amplifying weak initial magnetic fields by small-scale dynamo action. Here we perform a systematic study of turbulent mixing in magnetized media, using three-dimensional magnetohydrodynamic simulations that include a scalar concentration field. We focus on how mixing depends on the magnetic Prandtl number, Pm, from 1 to 4 and the Mach number, { {M}}, from 0.3 to 2.4. For all subsonic flows, we find that the velocity power spectrum has a k -5/3 slope in the early kinematic phase, but steepens due to magnetic back reactions as the field saturates. The scalar power spectrum, on the other hand, flattens compared to k -5/3 at late times, consistent with the Obukohov-Corrsin picture of mixing as a cascade process. At higher Mach numbers, the velocity power spectrum also steepens due to the presence of shocks, and the scalar power spectrum again flattens accordingly. Scalar structures are more intermittent than velocity structures in subsonic turbulence, whereas for supersonic turbulence, velocity structures appear more intermittent than the scalars only in the kinematic phase. Independent of the Mach number of the flow, scalar structures are arranged in sheets in both the kinematic and saturated phases of the magnetic field evolution. For subsonic turbulence, scalar dissipation is hindered in the strong magnetic field regions, probably due to Lorentz forces suppressing the buildup of scalar gradients, whereas for supersonic turbulence, scalar dissipation increases monotonically with increasing magnetic field strength. At all Mach numbers, mixing is significantly slowed by the presence of dynamically important small-scale magnetic fields, implying that mixing in the interstellar medium and in galaxy clusters is less efficient than modeled in hydrodynamic simulations.

  9. Mixing in magnetized turbulent media

    SciTech Connect

    Sur, Sharanya; Scannapieco, Evan; Pan, Liubin E-mail: evan.scannapieco@asu.edu

    2014-04-01

    Turbulent motions are essential to the mixing of entrained fluids and are also capable of amplifying weak initial magnetic fields by small-scale dynamo action. Here we perform a systematic study of turbulent mixing in magnetized media, using three-dimensional magnetohydrodynamic simulations that include a scalar concentration field. We focus on how mixing depends on the magnetic Prandtl number, Pm, from 1 to 4 and the Mach number, M, from 0.3 to 2.4. For all subsonic flows, we find that the velocity power spectrum has a k {sup –5/3} slope in the early kinematic phase, but steepens due to magnetic back reactions as the field saturates. The scalar power spectrum, on the other hand, flattens compared to k {sup –5/3} at late times, consistent with the Obukohov-Corrsin picture of mixing as a cascade process. At higher Mach numbers, the velocity power spectrum also steepens due to the presence of shocks, and the scalar power spectrum again flattens accordingly. Scalar structures are more intermittent than velocity structures in subsonic turbulence, whereas for supersonic turbulence, velocity structures appear more intermittent than the scalars only in the kinematic phase. Independent of the Mach number of the flow, scalar structures are arranged in sheets in both the kinematic and saturated phases of the magnetic field evolution. For subsonic turbulence, scalar dissipation is hindered in the strong magnetic field regions, probably due to Lorentz forces suppressing the buildup of scalar gradients, whereas for supersonic turbulence, scalar dissipation increases monotonically with increasing magnetic field strength. At all Mach numbers, mixing is significantly slowed by the presence of dynamically important small-scale magnetic fields, implying that mixing in the interstellar medium and in galaxy clusters is less efficient than modeled in hydrodynamic simulations.

  10. Sandia's Arbitrary Waveform MEMO Actuator

    SciTech Connect

    Brian Sosnowchik, Mark Jenkins

    2003-08-07

    SAMA is a multichannel, arbitrary waveform generator program for driving microelectromechanical systems (MEMS). It allows the user to piece together twelve available wave parts, thereby permitting the user to create practically any waveform, or upload a previously constructed signal. The waveforms (bundled together as a signal) may simultaneously be output through four different channels to actuate MEMS devices, and the number of output channels may be increased depending on the DAQ card or instrument utilized. Additionally, real-time changes may be made to the frequency and amplitude. The signal may be paused temporarily. The waveform may be saved to file for future uploading. Recent work for this version has focused on modifications that will allow loading previously generated arbitrary waveforms, independent channel waveform amplification, adding a pause function, separating the "modify waveform: and "end program" functions, and simplifying the user interface by adding test blocks with statements to help the user program and output the desired signals. The program was developed in an effort to alleviate some of the limitations of Micro Driver. For example, Micro Driver will not allow the user to select a segment of a sine wave, but rather the user is limited to choosing either a whole or half sine wave pattern. It therefore becomes quite difficult ot construct partial sine wave patterns out of a "ramp" waveparts for several reasons. First, one must determine on paper how many data points each ramp will cover, and what the slopes of these ramps will be. Second, from what was observed, Micro Driver has difficulty processing more than six distinct waveparts during sequencing. The program will allow the user to input the various waves into the desired sequence; however, it will not allow the user to compile them (by clicking "ok" and returning to the main screen). Third, should the user decide that they want to increase the amplitute of the output signal, they must

  11. Hidden surface removal of computer-generated holograms for arbitrary diffraction directions.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2013-07-10

    A fast calculation method for computer-generated holograms for hidden surface removal is proposed. In this method, a three-dimensional object is considered as a set of point light sources emitting light rays. To achieve the hidden surface removal, only appropriate light rays are selected according to their geometrical position, which are then converted into a Fourier spectrum of the wavefront. After the Fourier spectrum on the spherical surface is obtained, diffraction in arbitrary directions is calculated. Numerical simulation of a series of diffracted wavefronts onto arbitrary observation planes has been demonstrated to verify the effectiveness of our proposal.

  12. Effective kinematic viscosity of turbulent He II

    SciTech Connect

    Chagovets, T. V.; Gordeev, A. V.; Skrbek, L.

    2007-08-15

    The temperature dependence of the effective kinematic viscosity of turbulent He II, {nu}{sub eff}(T), is deduced from second sound attenuation data using the late stage of decay of thermally induced counterflow He II turbulence in two channels of square cross section. It is shown to qualitatively agree with the published data for {nu}{sub eff}(T) calculated based on experiments on decaying-grid-generated He II turbulence [Niemela et al., J. Low Temp. Phys. 138, 537 (2005)]. Corrections to these data due to the 'sine squared' law that describes attenuation of the second sound wave propagating along an arbitrary direction with respect to the direction of the core of a quantized vortex in turbulent He II are discussed and applied.

  13. Numerical solution of the Navier-Stokes equations for arbitrary two-dimensional multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Turner, L., III; Long, W. S.; Bearden, J. H.

    1979-01-01

    The development of a numerical simulation of time dependent, turbulent, compressible flow about two dimensional multi-element airfoils of arbitrary shape is described. The basis of this simulation is a technique of automatic numerical generation of coordinate systems fitted to the multiple bodies regardless of their number or shape. Procedures developed whereby the coordinate lines are automatically concentrated in the boundary layer at any Reynolds number are discussed. The compressible turbulent solution involves an algebraic eddy viscosity turbulence model. The laminar version was run for transonic flow at free stream Mach numbers up to 0.9.

  14. In situ measurements of wind and current speed and relationship between output power and turbulence

    NASA Astrophysics Data System (ADS)

    Duran Medina, Olmo; Schmitt, François G.; Sentchev, Alexei; Calif, Rudy

    2015-04-01

    In a context of energy transition, wind and tidal energy are sources of clean energy with the potential of partially satisfying the growing demand. The main problem of this type of energy, and other types of renewable energy remains the discontinuity of the electric power produced in different scales, inducing large fluctuations also called intermittency. This intermittency of wind and tidal energy is inherent to the turbulent nature of wind and marine currents. We consider this intermittent power production in strong relation with the turbulent intermittency of the resource. The turbulence theory is multifractal energy cascades models, a classic in physics of turbulence. From earlier studies in atmospheric sciences, we learn that wind speed and the aggregate power output are intermittent and multifractal over a wide range of scales [Calif and Schmitt 2014]. We want to extend this study to a marine current turbine and compare the scaling properties for those renewable energy sources. We consider here coupling between simultaneous velocity time series and output power from a wind turbine and a marine current turbine. Wind turbine data were obtained from Denmark and marine current data from Western Scheldt, Belgium where a prototype of a vertical and horizontal marine current turbines are tested. After an estimation of their Fourier density power spectra, we study their scaling properties in Kolmogorov's theory and the framework of fully developed turbulence. Hence, we employ a Hilbert-based methodology, namely arbitrary-order Hilbert spectral analysis [Calif et al. 2013a, 2013b] to characterize the intermittent property of the wind and marine current velocity in order to characterize the intermittent nature of the fluid. This method is used in order to obtain the spectrum and the corresponding power law for non-linear and non-stationary time series. The goal is to study the non-linear transfer characteristics in a multi-scale and multi-intensity framework.

  15. Numerical solution of the Navier-Stokes equations for arbitrary 2-dimensional multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.

    1983-01-01

    Numerical solutions of the Navier-Stokes equations, with an algebraic turbulence model, for time-dependent two dimensional flow about multi-element airfoils were developed. Fundamental to these solutions was the use of numerically-generated boundary-conforming curvilinear coordinate systems to allow bodies of arbitrary shape to be treated. A general two dimensional grid generation code for multiple-body configuration was written as a part of this project and made available through the COSMIC code library.

  16. Optical arbitrary waveform characterization using linear spectrograms.

    PubMed

    Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M

    2010-08-01

    We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.

  17. Arbitrary waveform generation using optical direct digital synthesis

    NASA Astrophysics Data System (ADS)

    Chester-Parsons, J.

    2013-11-01

    The objective of this paper is to describe the progress of a project designed to build on recent photonic capabilities in order to develop an ultra-wide band, true Arbitrary Waveform Generator (AWG) capable of providing radar quality signals in the 500MHz to 20GHz spectrum using photonic integration. Within this scope, it is planned to create a single channel radar environment simulator based on a photonic waveform generator, which will demonstrate the dynamic range, stability, and high signal fidelity required to simulate the modern complex radar environment. The paper will present recent measurements of critical parameters that are vital for the practical realisation of this system on a chip.

  18. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  19. Saturation of the turbulent dynamo.

    PubMed

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  20. Soliton turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  1. LAMINAR TRANSITIONAL AND TURBULENT BOUNDARY LAYERS FOR COMPRESSIBLE AXISYMMETRIC FLOW

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1994-01-01

    This is a finite-difference program for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to a fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain factors of arbitrary Reynolds number, free-stream Mach number, free stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile. This program has been implemented on the IBM 7094/7044 Direct Couple System. This program is written in FORTRAN IV and was developed in 1974.

  2. LAMINAR TRANSITIONAL AND TURBULENT BOUNDARY LAYERS FOR COMPRESSIBLE AXISYMMETRIC FLOW

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1994-01-01

    This is a finite-difference program for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to a fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain factors of arbitrary Reynolds number, free-stream Mach number, free stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile. This program has been implemented on the IBM 7094/7044 Direct Couple System. This program is written in FORTRAN IV and was developed in 1974.

  3. Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence.

    PubMed

    Dan, Youquan; Zeng, Shuguang; Hao, Bangyuan; Zhang, Bin

    2010-03-01

    Two characteristic distances for partially coherent beams propagating in atmospheric turbulence have been proposed. The turbulent Rayleigh range is used for characterizing the range over which the beams propagate in turbulence without spreading appreciably; i.e., the concept of the well-known Rayleigh range in free space is extended to the case of turbulence. In this paper the range of turbulence-independent propagation of the beams, in contrast to similar characteristic distances in previous published works, is based on the formula of the beam propagation factor (M(2) factor) and is used for describing the range over which the spatial and angular spreading and the M(2) factor increase due to turbulence are sufficiently small and negligible. Several simple formulas used for calculating the approximate values of these distances are given, and the formulas are applied to Gaussian Schell-model (GSM) beams and illustrated by examples. Furthermore, as a typical example, the effect of the angular spread of GSM beams in turbulence on a thin-lens optical system is also discussed. We show that the turbulent Rayleigh range depends on the Rayleigh range in free space, the waist width, and the spatial power spectrum of the refractive-index fluctuations of the turbulent atmosphere, and that the range of turbulence-independent propagation depends on the waist width, the initial angular spread in the waist plane, and the spatial power spectrum.

  4. Quantum wave turbulence

    NASA Astrophysics Data System (ADS)

    Haeri, M. B.; Putterman, S. J.; Garcia, A.; Roberts, P. H.

    1993-01-01

    The nonlinear quantum kinetic equation for the interaction of sound waves is solved via analytic and numerical techniques. In the classical regime energy cascades to higher frequency (ω) according to the steady-state power law ω-3/2. In the quantum limit, the system prefers a reverse cascade of energy which follows the power law ω-6. Above a critical flux, a new type of spectrum appears which is neither self-similar nor close to equilibrium. This state of nonlinear quantum wave turbulence represents a flow of energy directly from the classical source to the quantum degrees of freedom.

  5. Quantum turbulence

    NASA Astrophysics Data System (ADS)

    Skrbek, L.

    2011-12-01

    We review physical properties of quantum fluids He II and 3He-B, where quantum turbulence (QT) has been studied experimentally. Basic properties of QT in these working fluids are discussed within the phenomenological two-fluid model introduced by Landau. We consider counterflows in which the normal and superfluid components flow against each other, as well as co-flows in which the direction of the two fluids is the same. We pay special attention to the important case of zero temperature limit, where QT represents an interesting and probably the simplest prototype of three-dimensional turbulence in fluids. Experimental techniques to explore QT such as second sound attenuation, Andreev reflection, NMR, ion propagation are briefly introduced and results of various experiments on so-called Vinen QT and Kolmogorov QT both in He II and 3He are discussed, emphasizing similarities and differences between classical and quantum turbulence.

  6. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  7. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  8. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  9. Turbulence processes and simple closure schemes

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1977-01-01

    The problem of closure in turbulence in the case of two-point correlations resides in the existence of two unknowns E and W, the energy spectrum function and the transfer function, respectively, in the spectrum equation. In the case of weak turbulence, W is negligible. In case of higher correlations, closure can be effective by neglecting the inertia term in the highest order term used. Specifying a certain number of spectra at an initial time is also a way of getting around the closure problem. A simple case of turbulent shear flow is then considered, where two-point correlation equations are used and the velocity is broken into mean and fluctuating components. This yields a differential equation for the energy spectrum, the three terms of which are the energy spectrum, production term and dissipation term. They are plotted for a particular time. Similar analyses and comparisons with experiment are made for pipe and boundary layer flows.

  10. On Kraichnan's 'direct interaction approximation' and Kolmogoroff's theory in two-dimensional plasma turbulence

    SciTech Connect

    Kulsrud, R.M.; Sudan, R.N.

    1981-04-01

    The nonlinear damping in a strongly turbulent convecting plasma computed by Kraichnan's modified direct inteaction approximation and the power spectrum are rederived in a physically transparent form using Kolmogoroff's theory of turbulence.

  11. Formulation and closure of compressible turbulence equations in the light of kinetic theory

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1976-01-01

    Fluid-dynamic moment equations, based on a kinetic hierarchy system, are derived governing the interaction between turbulent and thermal fluctuations. The kinetic theory is shown to reduce the inherent complexity of the conventional formalism of compressible turbulence theory and to minimize arbitrariness in formulating the closure condition.

  12. Turbulent combustion

    SciTech Connect

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  13. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1995-01-01

    The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.

  14. INVERSE CASCADE IN IMBALANCED ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Kim, Hoonkyu; Cho, Jungyeon E-mail: jcho@cnu.ac.kr

    2015-03-10

    Electron magnetohydrodynamics (EMHD) provides a fluid-like description of small-scale magnetized plasmas. Balanced EMHD turbulence has been studied for a long time. However, driven imbalanced EMHD turbulence, in which waves moving in one direction (dominant waves) have higher amplitudes than waves moving in the other direction (sub-dominant waves), has not been well studied. In this paper, we numerically study driven three-dimensional imbalanced weak EMHD turbulence. We find the following results. First, in driven imbalanced EMHD turbulence, we clearly observe inverse cascade of magnetic helicity, as well as magnetic energy. This is because magnetic helicity is a conserved quantity and non-zero magnetic helicity is injected into the system in driven imbalanced EMHD turbulence. Second, the magnetic energy spectrum of the dominant waves on scales larger than the energy injection scale does not show a single power-law spectrum, which indicates that the inverse cascade is not a self-similar process. The peak of the spectrum roughly follows a k {sup –3/2} spectrum, which can be explained by a Kolmogorov-type argument for weak turbulence. Third, a small amount of sub-dominant waves is induced by the dominant waves on large scales and the ratio of helicity densities of the dominant and the sub-dominant waves on large scales seems to converge to a certain value.

  15. On turbulence in dilatant dispersions

    NASA Astrophysics Data System (ADS)

    Baumert, Helmut Z.; Wessling, Bernhard

    2016-07-01

    This paper presents a new theory on the behaviour of shear-thickening (dilatant) fluids under turbulent conditions. The structure of a dilatant colloidal fluid in turbulent motion may be characterized by (at least) four characteristic length scales: (i) the ‘statistically largest’ turbulent scale, {λ }0, labeling the begin of the inertial part of the wavenumber spectrum; (ii) the energy-containing scale, { L }; (iii) Kolmogorov’s micro-scale, {λ }{ K }, related with the size of the smallest vortices existing for a given kinematic viscosity and forcing; (iv) the inner (‘colloidal’) micro-scale, {λ }i, typically representing a major stable material property of the colloidal fluid. In particular, for small ratios r={λ }i/{λ }{ K }∼ { O }(1), various interactions between colloidal structures and smallest turbulent eddies can be expected. In the present paper we discuss particularly that for ρ ={λ }0/{λ }{ K }\\to { O }(1) turbulence (in the narrow, inertial sense) is strangled and chaotic but less mixing fluid motions remain. We start from a new stochastic, micro-mechanical turbulence theory without empirical parameters valid for inviscid fluids as seen in publications by Baumert in 2013 and 2015. It predicts e.g. von Karman’s constant correctly as 1/\\sqrt{2 π }=0.399. In its generalized version for non-zero viscosity and shear-thickening behavior presented in this contribution, it predicts two solution branches for the steady state: The first characterizes a family of states with swift (inertial) turbulent mixing and small {λ }{ K }, potentially approaching {λ }i. The second branch characterizes a state family with ρ \\to { O }(1) and thus strangled turbulence, ρ ≈ { O }(1). Stability properties and a potential dynamic commuting between the two solution branches had to be left for future research.

  16. The development of magnetic field line wander in gyrokinetic plasma turbulence: dependence on amplitude of turbulence

    NASA Astrophysics Data System (ADS)

    Bourouaine, Sofiane; Howes, Gregory G.

    2017-06-01

    The dynamics of a turbulent plasma not only manifests the transport of energy from large to small scales, but also can lead to a tangling of the magnetic field that threads through the plasma. The resulting magnetic field line wander can have a large impact on a number of other important processes, such as the propagation of energetic particles through the turbulent plasma. Here we explore the saturation of the turbulent cascade, the development of stochasticity due to turbulent tangling of the magnetic field lines and the separation of field lines through the turbulent dynamics using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many turbulent space and astrophysical plasma environments. We determine the characteristic time 2$ for the saturation of the turbulent perpendicular magnetic energy spectrum. We find that the turbulent magnetic field becomes completely stochastic at time 2$ for strong turbulence, and at 2$ for weak turbulence. However, when the nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of the turbulence, reaches a threshold value (within the regime of weak turbulence) the magnetic field stochasticity does not fully develop, at least within the evolution time interval 22$ . Finally, we quantify the mean square displacement of magnetic field lines in the turbulent magnetic field with a functional form 2\\rangle =A(z/L\\Vert )p$ ( \\Vert $ is the correlation length parallel to the magnetic background field \\mathbf{0}$ , is the distance along \\mathbf{0}$ direction), providing functional forms of the amplitude coefficient and power-law exponent as a function of the nonlinearity parameter.

  17. Performance of wind turbines in a turbulent atmosphere

    NASA Technical Reports Server (NTRS)

    Sundar, R. M.; Sullivan, J. P.

    1981-01-01

    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency.

  18. Two-dimensional convective turbulence

    SciTech Connect

    Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N.

    1996-02-01

    We show that 2D {bold E{times}B} ionospheric turbulence of the electron density in the equatorial electrojet is isomorphic to the viscous convection of an ordinary fluid in a porous medium due to temperature gradients. Numerical simulations reveal the strong anisotropy in the turbulence, which consists of rising hot bubbles and falling cool bubbles. These bubbles break up into fingers leading to the formation of stable shear flows. After reaching a quasisteady state, the omnidirectional energy spectrum approaches a {ital k}{sup {minus}2} behavior, rather than {ital k}{sup {minus}5/3} as expected from isotropic turbulence. Physical mechanisms that lead to anisotropy are analyzed. {copyright} {ital 1996 The American Physical Society.}

  19. Atmospheric turbulence monitoring at DLR

    NASA Astrophysics Data System (ADS)

    David, Florian

    2004-11-01

    Research activities at the German Aerospace Center (DLR) concerning optical free-space communications have focussed on coherent communication systems for inter-satellite link (ISL) applications for a long time. Under DLR contract Tesat Spacecom has developed the DLR-LCT (laser communications terminal) which relies on coherent technology. This terminal will be verified in space as secondary payload onboard the earth observation satellite TerraSAR-X, to be launched in 2006. In a first step, downlink experiments will be carried out. The DLR Institute of Communications and Navigation is involved in this ambitious project by assessing the feasibility of the downlink experiment through atmospheric turbulence and by conducting channel measurements. An initial feasibility study shall theoretically investigate the influence of atmospheric turbulence on coherent optical transmission and assess the success probabilities of the particular experiment with regard to the specific ground station conditions. Since theory is always based on arbitrary assumptions on the composition and structure of the atmosphere, measurements at the specific ground station shall be carried out. Measurement results shall enable a refinement of disturbance models in order to predict the condition during the downlink experiments. Relevant atmospheric parameters, such as scintillations, phase-front distortions, atmospheric seeing, angle-of-arrival fluctuations, attenuation, Cn2- and wind profiles will have to be recorded. To carry out these measurements, DLR will develop an "Atmospheric Turbulence Monitor" (ATM). The ATM mainly consists of a 16-inch telescope and a number of instruments for various measurements. These instruments are based on astronomical devices for use with stars, however have to be modified to be suited for measurements with close objects such as LEO or GEO satellites. The ATM will as well comprise a tracking system, that allows for measurements with LEO satellites such as Terra

  20. Bulk Comptonization by turbulence in accretion discs

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  1. Aspects of wave turbulence in preheating

    SciTech Connect

    Crespo, José A.; De Oliveira, H.P. E-mail: oliveira@dft.if.uerj.br

    2014-06-01

    In this work we have studied the nonlinear preheating dynamics of several inflationary models. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since the matter contents are fields instead of usual fluids. Turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the scalar fields. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number that indicates the energy transfer through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.

  2. From coherent structures to turbulence spectra

    NASA Astrophysics Data System (ADS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-04-01

    Turbulence in the solar wind has been attracting attention since first in-situ measurements in the Heliosphere. Still a lot of open questions remain. In particular, the nature of turbulence around plasma kinetic scales, where self-similarity breaks down and no-power law behaviour of the turbulent spectrum is expected. It is known that approaching these small scales, Probability Distribution Functions (PDF) of magnetic fluctuations deviate strongly from the Gaussian distribution. This is called intermittency and is usually interpreted as presence of coherent structures. Here, using magnetic field waveforms and their wavelet coefficients, we study the nature of these intermittent events. We propose as well a universal description of magnetic fluctuations PDF using a four-parameter function and we describe the evolution of this parameters with increasing frequencies. Using two different approaches we establish the connection between intermittency and the evolution of the turbulent spectrum at ion scales. Finally the relationship between intermittency and ion temperature is discussed.

  3. Magnetofluid Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2008-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations, nor do we understand even now why the solar wind appears to be nearly incompressible with a -5/3 power-spectral index.

  4. Magnetofluid Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2008-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations, nor do we understand even now why the solar wind appears to be nearly incompressible with a -5/3 power-spectral index.

  5. Vortex Burst as a Source of Turbulence

    NASA Astrophysics Data System (ADS)

    Cuypers, Yannis; Maurel, Agnès; Petitjeans, Philippe

    2003-11-01

    An important issue in turbulence theory is to understand what kinds of elementary flow structures are responsible for the part of the turbulent energy spectrum described by Kolmogorov's celebrated k-5/3 law. A model for such structure has been proposed by Lundgren [

    Phys. FluidsPHFLE61070-6631 25, 2193 2203 (1982)
    ] in the form of a vortex with spiral structure subjected to an axially straining field. We report experimental results of a vortex burst in a laminar-flow environment showing that this structure is responsible for a k-5/3 part in the energy spectrum. If there are many experimental evidences of the existence of vortices with spiral structures in turbulent flows, it is the first time that such an elementary structure is experimentally shown to be responsible for the turbulent energy cascade.

  6. Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Newell, Alan C.; Rumpf, Benno

    2011-01-01

    In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.

  7. Recent developments in plasma turbulence and turbulent transport

    SciTech Connect

    Terry, P.W.

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  8. Filament turbulence

    NASA Astrophysics Data System (ADS)

    Davidsen, Joern

    2010-03-01

    How much information do you need to distinguish between different mechanisms for spatiotemporal chaos in three-dimensions? In this talk, I will show that the observation of the dynamics on the surface of a medium can be sufficient. Studying mechanisms for filament turbulence in the context of reaction-diffusion media, we found numerically that two major classes of instabilities leave a very different signature on what can be observed on the surface of a three-dimensional medium. These results are of direct relevance in the context of ventricular fibrillation - a turbulent electrical wave activity that destroys the coherent contraction of the ventricular muscle and its main pumping function leading to sudden cardiac death. While it has been proposed that the three-dimensional structure of the heart plays an important role in this type of filament turbulence, only the surface of the heart is currently accessible to experimental observation preventing the study of the full dynamics. Our results suggest that such observations might be sufficient.

  9. Controlling turbulence

    NASA Astrophysics Data System (ADS)

    Kühnen, Jakob; Hof, Björn

    2015-11-01

    We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.

  10. Impact of a hollow density profile on turbulent particle fluxes: Gyrokinetic and fluid simulations

    NASA Astrophysics Data System (ADS)

    Tegnered, D.; Oberparleiter, M.; Strand, P.; Nordman, H.

    2017-07-01

    Hollow density profiles may occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the pellet fuelling scheme inefficient. In the present work, the particle transport driven by Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence in hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT, and magnetic shear are investigated. In addition, the effects of a fast species are studied and global ITG simulations in a simplified physics description are performed in order to investigate nonlocal effects. It is found that β in particular, has a stabilizing effect in the negative R/Ln region. Both nonlinear GENE and EDWM simulations show a decrease in inward flux for negative R/Ln and a change in the direction from inward to outward for positive R/Ln. Moreover, the addition of fast particles was shown to decrease the inward main ion particle flux in the positive gradient region further. This might have serious consequences for pellet fuelling of high β plasmas. Additionally, the heat flux in global ITG turbulence simulations indicates that nonlocal effects can play a different role from usual in connection with pellet fuelling.

  11. Entropic Lattice Boltzmann Algorithms for Turbulence

    NASA Astrophysics Data System (ADS)

    Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda; Keating, Brian; Carter, Jonathan

    2007-11-01

    For turbulent flows in non-trivial geometry, the scaling of CFD codes (now necessarily non-pseudo spectral) quickly saturate with the number of PEs. By projecting into a lattice kinetic phase space, the turbulent dynamics are simpler and much easier to solve since the underlying kinetic equation has only local algebraic nonlinearities in the macroscopic variables with simple linear kinetic advection. To achieve arbitrary high Reynolds number, a discrete H-theorem constraint is imposed on the collision operator resulting in an entropic lattice Boltzmann (ELB) algorithm that is unconditionally stable and scales almost perfectly with PE's on any supercomputer architecture. At this mesoscopic level, there are various kinetic lattices (ELB-27, ELB-19, ELB-15) which will recover the Navier-Stokes equation to leading order in the Chapman-Enskog asymptotics. We comment on the morphology of turbulence and its correlation to the rate of change of enstrophy as well as simulations on 1600^3 grids.

  12. On stability and turbulence of fluid flows

    NASA Technical Reports Server (NTRS)

    Heisenberg, Werner

    1951-01-01

    This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.

  13. Characterizing Wake Turbulence with Staring Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Bastine, D.; Wächter, M.; Peinke, J.; Trabucchi, D.; Kühn, M.

    2015-06-01

    Lidar measurements in the German offshore wind farm Alpha Ventus were performed to investigate the turbulence characteristics of wind turbine wakes. In particular, we compare measurements of the free flow in the surroundings of the wind turbines with measurements in the inner region of a wake flow behind one turbine. Our results indicate that wind turbines modulate the turbulent structures of the flow on a wide range of scales. For the data of the wake flow, the power spectrum as well as the multifractal intermittency coefficient reveal features of homogeneous isotropic turbulence. Thus, we conjecture that on scales of the rotor a new turbulent cascade is initiated, which determines the features of the turbulent wake flow quite independently from the more complex wind flow in the surroundings of the turbine.

  14. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    PubMed

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  15. Acceleration of particles in imbalanced magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Teaca, Bogdan; Weidl, Martin S.; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  16. Phytoplankton's motion in turbulent ocean.

    PubMed

    Fouxon, Itzhak; Leshansky, Alexander

    2015-07-01

    We study the influence of turbulence on upward motion of phytoplankton. Interaction with the flow is described by the Pedley-Kessler model considering spherical microorganisms. We find a range of parameters when the upward drift is only weakly perturbed or when turbulence completely randomizes the drift direction. When the perturbation is small, the drift is either determined by the local vorticity or is Gaussian. We find a range of parameters where the phytoplankton interaction with the flow can be described consistently as diffusion of orientation in effective potential. By solving the corresponding Fokker-Planck equation we find exponential steady-state distribution of phytoplankton's propulsion orientation. We further identify the range of parameters where phytoplankton's drift velocity with respect to the flow is determined uniquely by its position. In this case, one can describe phytoplankton's motion by a smooth flow and phytoplankton concentrates on fractal. We find fractal dimensions and demonstrate that phytoplankton forms vertical stripes in space with a nonisotropic pair-correlation function of concentration increased in the vertical direction. The probability density function of the distance between two particles obeys power law with the negative exponent given by the ratio of integrals of the turbulent energy spectrum. We find the regime of strong clustering where the exponent is of order one so that turbulence increases the rate of collisions by a large factor. The predictions hold for Navier-Stokes turbulence and stand for testing.

  17. Simulation of turbulent wall pressure

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1978-01-01

    A Monte Carlo procedure was developed to simulate turbulent boundary layer wall pressure fluctuations. The approach utilizes much of the newly available conditional sampling information to construct the required distribution functions. Various disturbance wave forms were examined, as well as the effect of frequency-dependent decay. Good agreement between the simulation and experimental data was achieved for root mean square pressure level, power spectrum, and space time correlation.

  18. Vortex burst as a source of turbulence

    NASA Astrophysics Data System (ADS)

    Cuypers, Yannis; Maurel, Agnes; Petitjeans, Philippe

    2003-11-01

    An important issue in turbulence is to understand what kinds of elementary structures are responsible for the part of the turbulent energy spectrum described by Kolmogorov'S celebrated k-5/3 law. A model for such a structure has been proposed by Lundgren 1982 in the form of a spiral vortex subjected to an axially straining field . We report experimental results of a vortex burst in a laminar flow environment showing that this structure is responsible for a k-5/3 part in the energy spectrum. If there are many experimental evidences of vortices with spiral structure in turbulent flows, it is the first time that such an elementary structure is experimentally shown to provide an inertial range spectrum of Kolmogorov type.

  19. Regimes of turbulence without an energy cascade

    NASA Astrophysics Data System (ADS)

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-10-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics.

  20. Regimes of turbulence without an energy cascade

    PubMed Central

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-01-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005

  1. Creation of arbitrary time-sequenced line spectra with an electro-optic phase modulator.

    PubMed

    Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L

    2011-07-01

    We use a waveguide-based electro-optic phase modulator, driven by a nanosecond-timescale arbitrary waveform generator, to produce an optical spectrum with an arbitrary pattern of peaks. A programmed sequence of linear voltage ramps, with various slopes, is applied to the modulator. The resulting phase ramps give rise to peaks whose frequency offsets relative to the carrier are equal to the slopes of the corresponding linear phase ramps. This simple extension of the serrodyne technique provides multi-line spectra with peak spacings in the 100 MHz range.

  2. Muonium Spectrum Beyond the Nonrelativistic Limit

    SciTech Connect

    Weber, Axel

    2008-07-02

    A generalization of the Gell-Mann-Low theorem is applied to the antimuon-electron system. The bound state spectrum is extracted numerically. As a result, fine and hyperfine structure are reproduced correctly near the nonrelativistic limit (and for arbitrary masses). We compare the spectrum for the relativistic value {alpha} = 0.3 with corresponding calculations in light-front quantization.

  3. Arbitrary order permanent Cartesian multipolar electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Boateng, H. A.; Todorov, I. T.

    2015-01-01

    Recently, there has been a concerted effort to implement advanced classical potential energy surfaces by adding higher order multipoles to fixed point charge electrostatics in a bid to increase the accuracy of simulations of condensed phase systems. One major hurdle is the unwieldy nature of the expressions which in part has limited developers mostly to including only dipoles and quadrupoles. In this paper, we present a generalization of the Cartesian formulation of electrostatic multipolar interactions that enables the specification of an arbitrary order of multipoles. Specifically, we derive formulas for arbitrary order implementation of the particle mesh Ewald method and give a closed form formula for the stress tensor in the reciprocal space. In addition, we provide recurrence relations for common electrostatic potentials employed in molecular simulations, which allows for the generalization to arbitrary order and guarantees a computational cost that scales as O(p3) for Cartesian multipole interactions of order p.

  4. Turbulence Modeling

    DTIC Science & Technology

    1991-10-01

    system of codes for missile detection, the SPIRITS system of codes for aircraft/helicopter detection, the HSCT system of codes (MICOM) NSWC, etc) for...Academic Press, N.Y. 1974. Cebeci, T. and Smith, A.M.O., "Analysis of Turbulent Boundary Layers", Series in A01jed Mathematics and MW1WiG Vol. XV ...647-6, (Naval Ordnance Lab Research Rpt. 280), Jan. 1964. Dash, S.M., et. al., "Computer Code for HSCT Exhaust Flowfield Simulation and Observations

  5. Explosive turbulent magnetic reconnection.

    PubMed

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  6. Arbitrary segments of absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Nie, Linru; Chen, Chongyang; Wang, Chaojie

    2017-01-01

    In previous research work, investigators have reported only one or two segments of absolute negative mobility (ANM) in a periodic potential. In fact, many segments of ANM also occur in the system considered here. We investigate transport of an inertial particle in a gating ratchet periodic potential subjected to a constant bias force. Our numerical results show that its mean velocity can decrease with the bias force increasing, i.e. ANM phenomenon. Furthermore, the ANM can take place arbitrary segments, even up to more than thirty. Intrinsic physical mechanism and conditions for arbitrary segments of ANM to occur are discussed in detail.

  7. Shell model for buoyancy-driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra K.

    2015-04-01

    In this paper we present a unified shell model for stably stratified and convective turbulence. Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in which the kinetic energy spectrum varies as k-11 /5. The shell model of convective turbulence yields Kolmogorov's spectrum. These results are consistent with the energy flux and energy feed due to buoyancy, and are in good agreement with direct numerical simulations of Kumar et al. [Phys. Rev. E 90, 023016 (2014), 10.1103/PhysRevE.90.023016].

  8. 3D linear dispersion relation for arbitrary shear currents

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simen; Smeltzer, Benjamin

    2016-11-01

    Dispesion properties of waves can be strongly affected by the presence of a sub-surface shear current. A number of approximation techniques exist to calculate dispersion properties of waves on shear currents, most relying on assumptions such as long wavelength, weak vorticity or near-potentiality. Another approach has been to approximate the shear current by a piecewise linear function, corresponding to dividing the fluid phase into a sequence of layers with constant vorticity in each layer. We discuss the practical implementation of this scheme in 3D for arbitrary wavelengths, and how how it may be applied to 3D linear surface waves problems where the full Fourier spectrum in the horizontal plane is required. Solutions to particular implementation challenges such as optimal choice of layer distribution and the nature and removal of spurious solutions are presented, as are several validation cases and tests of convergence. Applications to ring waves and ship waves are provided as examples. Norwegian Research Council (FRINATEK).

  9. Arbitrary spot location diffractive beam-splitting elements.

    PubMed

    Bühling, Sven; Wyrowski, Frank

    2002-12-01

    Diffractive beam-splitting elements are typically designed for replicating beams on positions belonging to an equidistant grid in the spatial spectrum. The parameter of the output grid follows directly from the period of the beam-splitter transmission through the grating equation. Our objective is to develop design strategies allowing a more accurate positioning of the replicated beams. Issues occurring when the output grid parameter is decreased below the output beam width are discussed and shown to be avoidable. Furthermore, a design algorithm is introduced, which permits an arbitrary positioning of the replicated beams. This algorithm is constructed for high computational efficiency by utilizing fast Fourier transform operations in the major part of its iterations.

  10. Aspects of Turbulent / Non-Turbulent Interfaces

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Hunt, J. C. R.; Rogers, M. M.; Koen, Dennis (Technical Monitor)

    1999-01-01

    A distinct boundary between turbulent and non-turbulent regions in a fluid of otherwise constant properties is found in many laboratory and engineering turbulent flows, including jets, mixing layers, boundary layers and wakes. Generally, the flow has mean shear in at least one direction within t he turbulent zone, but the non-turbulent zones have no shear (adjacent laminar shear is a different case, e.g. transition in a boundary layer). There may be purely passive differences between the turbulent and non-turbulent zones, e.g. small variations in temperature or scalar concentration, for which turbulent mixing is an important issue. The boundary has several major characteristics of interest for the present study. Firstly, the boundary advances into the non-turbulent fluid, or in other words, nonturbulent fluid is entrained. Secondly, the change in turbulence properties across the boundary is remarkably abrupt; strong turbulent motions come close to the nonturbulent fluid, promoting entrainment. Thirdly, the boundary is irregular with a continually changing convoluted shape, which produces statistical intermittency. Its shape is contorted at all scales of the turbulent motion.

  11. Turbulence and turbulent mixing in natural fluids

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2010-12-01

    Turbulence and turbulent mixing in natural fluids begin with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair release 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until strong-force viscous stresses freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic microwave background temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered as plasma photon-viscous forces permitting gravitational fragmentation on supercluster to galaxy mass scales. Turbulent morphologies and viscous-turbulent lengths appear as linear gas-protogalaxy-clusters in the Hubble ultra-deep field at z~7. Protogalaxies fragment into Jeans mass clumps of primordial-gas planets at decoupling: the dark matter of galaxies. Shortly after the plasma-to-gas transition, planet mergers produce stars that explode on overfeeding to fertilize and distribute the first life.

  12. The residual zonal flow in tokamak plasmas toroidally rotating at arbitrary velocity

    SciTech Connect

    Zhou, Deng

    2014-08-15

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In our previous work [D. Zhou, Nucl. Fusion 54, 042002 (2014)], the residual zonal flow in a tokamak plasma rotating toroidally at sonic speed is found to have the same form as that of a static plasma. In the present work, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved for low speed rotation to give the expression of residual zonal flows, and the expression is then generalized for cases with arbitrary rotating velocity through interpolation. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the former simulation result for high aspect ratio tokamaks.

  13. Arbitrary order transfer maps for RF cavities

    SciTech Connect

    van Zeijts, J.

    1995-12-31

    Current modeling of transfer maps for superconducting RF cavities at CEBAF includes only linear effects. Here we extend the transfer mapping modeling capability to include arbitrary order field information generated from the MAFIA field data. We include coupler kicks, normal and skew quadrupole focussing and higher order effects.

  14. Light storage with light of arbitrary polarization

    SciTech Connect

    Gao Hong; Rosenberry, Mark; Batelaan, Herman

    2003-05-01

    We have demonstrated the phase coherence of stored light in Rb vapor with a completely optical technique. Combining this technique with polarization measurements provides strong evidence that arbitrary polarizations can be stored. The fidelity obtained exceeds 95% for all polarizations. We view the capability to store polarizations as a first step towards building a quantum memory in such a system.

  15. Statistical turbulence theory and turbulence phenomenology

    NASA Technical Reports Server (NTRS)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  16. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  17. Ribbon turbulence

    NASA Astrophysics Data System (ADS)

    Venaille, Antoine; Nadeau, Louis-Philippe; Vallis, Geoffrey

    2014-12-01

    We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel with an initial eastward baroclinically unstable jet in the upper layer, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization in the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these results by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the initial eastward jet in the upper layer appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the global distribution of potential vorticity levels. Statistical mechanical theory of the 1 1/2 layer quasi-geostrophic model predicts the formation of two regions of homogenized potential vorticity separated by a minimal interface. We explain that cascade phenomenology leads to the same result. We then show that the dynamics of the ribbons results from a competition between a tendency to reach the equilibrium state and baroclinic instability that induces meanders of the interface. These meanders intermittently break and induce potential vorticity mixing, but the interface remains sharp throughout the flow evolution. We show that for some parameter regimes, the ribbons act as a mixing barrier which prevents relaxation toward equilibrium, favouring the emergence of multiple zonal (eastward) jets.

  18. Turbulent eddy viscosity modeling in transonic shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Inger, G. R.

    1989-01-01

    The treatment of turbulence effects on transonic shock/turbulent boundary layer interaction is addressed within the context of a triple deck approach valid for arbitrary practical Reynolds numbers between 1000 and 10 billion. The modeling of the eddy viscosity and basic turbulent boundary profile effects in each deck is examined in detail using Law-of-the-Wall/Law-of-the-Wake concepts as the foundation. Results of parametric studies showing how each of these turbulence model aspects influences typical interaction zone property distributions (wall pressure, displacement thickness and local skin friction) are presented and discussed.

  19. Distorted Turbulent Flow in a Shear Layer

    DTIC Science & Technology

    2014-03-01

    acoustically transparent but contain the flow so a jet catcher is not needed. Acoustic data can be taken from anechoic chambers that run alongside the test...in the radiated noise spectrum, is known as haystacking. Theoretical spectrum predictions using random pulse modulation theory indicated that the...scales for turbulence was measured as 400:1. Eddies were observed narrower than the rotor diameter causing short, distinct lift pulses at blade

  20. Using RANS Calculations of Turbulent Kinetic Energy to Provide Two Point Flow Velocity Correlations and Surface Pressure Spectra

    DTIC Science & Technology

    2012-01-31

    and a mode amplitude in the form (18) An((o,ß) = ÄnEa„L) K=yla 2 n+ß 2 The universal energy spectrum is modeled by a von Kaiman energy spectrum (see...homogeneous turbulent flow whose spectrum can be defined by a von Kaiman or Liepmann model, with a specified turbulence intensity and length scale. This

  1. Turbulent resistivity, diffusion and heating

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.

    1971-01-01

    Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.

  2. A model for fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Goldman, I.; Chasnov, J.

    1987-11-01

    A model for stationary, fully developed turbulence is presented in which the turbulent spectral energy function is completely determined once the time scale for the energy fed into the eddy interaction is known. The form of the eddy correlation time scale determining the turbulent viscosity is suggested by the basic equation of the model itself, up to a dimensionless constant that is fixed by demanding that the coefficient of the spectrum in the Heisenberg-Kolmogoroff inertial range of wavenunmbers be the experimental value. The model makes quantitative predictions that are compared with data on turbulent convection; the k-epsilon and Smagorinsky relations; the spectral function, transfer term, and dissipation term; the skewness factor; the Kolmogoroff and Batchelor constants; and the inertial-conductive and inertial-convective ranges.

  3. Are there waves in elastic wave turbulence?

    PubMed

    Mordant, Nicolas

    2008-06-13

    An thin elastic steel plate is excited with a vibrator and its local velocity displays a turbulentlike Fourier spectrum. This system is believed to develop elastic wave turbulence. We analyze here the motion of the plate with a two-point measurement in order to check, in our real system, a few hypotheses required for the Zakharov theory of weak turbulence to apply. We show that the motion of the plate is indeed a superposition of bending waves following the theoretical dispersion relation of the linear wave equation. The nonlinearities seem to efficiently break the coherence of the waves so that no modal structure is observed. Several hypotheses of the weak turbulence theory seem to be verified, but nevertheless the theoretical predictions for the wave spectrum are not verified experimentally.

  4. Inverse energy cascade in rotational turbulence

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Rou; Wang, Hengjie

    2012-11-01

    Rotation influences large-scale motions in the Earth's atmosphere and oceans and it is also important in many industrial applications such as turbo machinery, rotor-craft, and rotating channel etc. We study rotation effects on decaying isotropic turbulence through direct numerical simulation using lattice Boltzmann method. A Coriolis force characterized by the angular velocity of the frame of reference Ω is included in the lattice Boltzmann equations. The effects of rotation on fundamental turbulence features such as kinetic energy and enstrophy decay, energy spectrum, etc. are studied. The decay laws are quantitatively captured. Inverse energy cascade are observed in the 3D turbulence with and without rotation. The scaling of the inverse energy cascade and its relation to initial energy spectrum are explored. Indiana University-Purdue University Indianapolis (IUPUI).

  5. Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios

    NASA Astrophysics Data System (ADS)

    Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant; Adak, Amitava; Lad, Amit D.; Sengupta, Sudip; Kaw, Predhiman; Silva, Luis O.; Das, Amita; Kumar, G. Ravindra

    2017-06-01

    Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments.

  6. Spectrum of Wind Power Fluctuations

    NASA Astrophysics Data System (ADS)

    Bandi, M. M.

    2017-01-01

    Wind power fluctuations for an individual turbine and plant have been widely reported to follow the Kolmogorov spectrum of atmospheric turbulence; both vary with a fluctuation time scale τ as τ2 /3. Yet, this scaling has not been explained through turbulence theory. Using turbines as probes of turbulence, we show the τ2 /3 scaling results from a large scale influence of atmospheric turbulence. Owing to this long-range influence spanning 100s of kilometers, when power from geographically distributed wind plants is summed into aggregate power at the grid, fluctuations average (geographic smoothing) and their scaling steepens from τ2 /3→τ4 /3, beyond which further smoothing is not possible. Our analysis demonstrates grids have already reached this τ4 /3 spectral limit to geographic smoothing.

  7. Fraunhofer diffraction by arbitrary-shaped obstacles.

    PubMed

    Malinka, Aleksey V; Zege, Eleonora P

    2009-08-01

    We consider Fraunhofer diffraction by an ensemble of large arbitrary-shaped screens that are randomly oriented in the plane of a wavefront and have edges of arbitrary shape. It is shown that far outside the main diffraction peak the differential scattering cross section behaves asymptotically as theta(-3), where theta is the diffraction angle. Moreover, the differential scattering cross section depends only on the length of the contours bordering the screens and does not depend on the shape of the obstacles. As both strictly forward and total diffraction cross sections are specified by obstacle area only, the differential cross section of size-distributed obstacles is expected to be nearly independent of obstacle shape over the entire region of the diffraction angles.

  8. General Potential Theory of Arbitrary Wing Sections

    NASA Technical Reports Server (NTRS)

    Theodorsen, T.; Garrick, I. E.

    1979-01-01

    The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.

  9. Unsteady aerodynamic modeling for arbitrary motions

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Ashley, H.; Breakwell, J. V.

    1977-01-01

    A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.

  10. The arbitrariness and normativity of social conventions.

    PubMed

    Al-Amoudi, Ismael; Latsis, John

    2014-06-01

    This paper investigates a puzzling feature of social conventions: the fact that they are both arbitrary and normative. We examine how this tension is addressed in sociological accounts of conventional phenomena. Traditional approaches tend to generate either synchronic accounts that fail to consider the arbitrariness of conventions, or diachronic accounts that miss central aspects of their normativity. As a remedy, we propose a processual conception that considers conventions as both the outcome and material cause of much human activity. This conceptualization, which borrows from the économie des conventions as well as critical realism, provides a novel perspective on how conventions are nested and defined, and on how they are established, maintained and challenged.

  11. Potential flow about arbitrary biplane wing sections

    NASA Technical Reports Server (NTRS)

    Garrick, I E

    1937-01-01

    A rigorous treatment is given of the problem of determining the two-dimensional potential flow around arbitrary biplane cellules. The analysis involves the use of elliptic functions and is sufficiently general to include the effects of such elements as the section shapes, the chord ratio, gap, stagger, and decalage, which elements may be specified arbitrarily. The flow problem is resolved by making use of the methods of conformal representation. Thus the solution of the problem of transforming conformally two arbitrary contours into two circles is expressed by a pair of simultaneous integral equations, for which a method of numerical solution is outlined. As an example of the numerical process, the pressure distribution over certain arrangements of the NACA 4412 airfoil in biplane combinations is presented and compared with the monoplane pressure distribution.

  12. Quantum Fidelity for Arbitrary Gaussian States.

    PubMed

    Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano

    2015-12-31

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  13. Quantum Fidelity for Arbitrary Gaussian States

    NASA Astrophysics Data System (ADS)

    Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano

    2015-12-01

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  14. Probabilistically teleporting arbitrary two-qubit states

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-12-01

    In this paper we make use of two non-maximally entangled three-qubit channels for probabilistically teleporting arbitrary two particle states from a sender to a receiver. We also calculate the success probability of the teleportation. In the protocol we use two measurements of which one is a POVM and the other is a projective measurement. The POVM provides the protocol with operational advantage.

  15. Drag reduction by polymer additives in decaying turbulence.

    PubMed

    Kalelkar, Chirag; Govindarajan, Rama; Pandit, Rahul

    2005-07-01

    We present results from a systematic numerical study of decaying turbulence in a dilute polymer solution by using a shell-model version of the finitely extensible nonlinear elastic and Peterlin equations. Our study leads to an appealing definition of the drag reduction for the case of decaying turbulence. We exhibit several new results, such as the potential-energy spectrum of the polymer, hitherto unobserved features in the temporal evolution of the kinetic-energy spectrum, and characterize intermittency in such systems. We compare our results with the Gledzer-Ohkitani-Yamada shell model for fluid turbulence.

  16. Drag reduction by polymer additives in decaying turbulence

    NASA Astrophysics Data System (ADS)

    Kalelkar, Chirag; Govindarajan, Rama; Pandit, Rahul

    2005-07-01

    We present results from a systematic numerical study of decaying turbulence in a dilute polymer solution by using a shell-model version of the finitely extensible nonlinear elastic and Peterlin equations. Our study leads to an appealing definition of the drag reduction for the case of decaying turbulence. We exhibit several new results, such as the potential-energy spectrum of the polymer, hitherto unobserved features in the temporal evolution of the kinetic-energy spectrum, and characterize intermittency in such systems. We compare our results with the Gledzer-Ohkitani-Yamada shell model for fluid turbulence.

  17. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  18. Reflective ghost imaging through turbulence

    SciTech Connect

    Hardy, Nicholas D.; Shapiro, Jeffrey H.

    2011-12-15

    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghost imager.

  19. Forced organization of flute-type turbulence by convective cell injection

    SciTech Connect

    Iizuka, S.; Huld, T.; Pecseli, H.L.; Rasmussen, J.J.

    1988-03-14

    Nonlinear interactions between flute-type turbulence and an externally excited convective cell in a strongly magnetized plasma are investigated. During the interaction the azimuthal-mode-number spectrum of the turbulence is deformed and a broad spectrum evolves, indicating an inverse cascade. As a result of a modification in phase and amplitude of the fluctuations, an organized structure is created in turbulence. The macroscopic behavior is well explained by a Van der Pol--type equation.

  20. Gaussian entanglement in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Semenov, A. A.; Sperling, J.; Vogel, W.

    2016-07-01

    We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a nontrivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.

  1. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy in incompressible MHD turbulence. The modifications that this is likely to produce in the properties of the turbulence are investigated for high Reynolds numbers. It is found that the turbulent spectrum splits into two parts: (1) an essentially two-dimensional spectrum with both the velocity field and the magnetic fluctuations perpendicular to the dc magnetic field, and (2) a generally weaker and more nearly isotropic spectrum of Alfven waves. These results are discussed in relation to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrorotor tokamak, as well as in relation to measurements of MHD turbulence in the solar wind.

  2. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.

  3. Coherence in Turbulence: New Perspective

    NASA Astrophysics Data System (ADS)

    Levich, Eugene

    2009-07-01

    It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows

  4. TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

    SciTech Connect

    Hopkins, Philip F.; Christiansen, Jessie L.

    2013-10-10

    A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t{sub cool} >> t{sub orbit}). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t{sub dyn} may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M{sub disk}/M{sub *}){sup 2} M{sub disk} (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.

  5. Oceanic turbulence effects on long-exposure and short-exposure imaging

    NASA Astrophysics Data System (ADS)

    Pu, Huan; Ji, Xiaoling

    2016-10-01

    Based on the power spectrum of oceanic turbulence, the modulation transfer functions and the optical resolution for long-exposure and short-exposure imaging through oceanic turbulence are studied in detail. The analytical formulae for the seeing parameter and the tilt variance in oceanic turbulence are derived, and it is found that the relationship between the seeing parameter and the spatial coherence width in oceanic turbulence is just like that in atmospheric turbulence. Furthermore, the model of underwater imaging shown in this paper considers both temperature and salinity fluctuations for oceanic turbulence. It is found that, compared with the dominating salinity-induced turbulence, the range of angular spatial frequency where oceanic turbulence plays the major role rather than particle scattering is higher for the dominating temperature-induced turbulence.

  6. Effects of very high turbulence on convective heat transfer

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Maciejewski, P. K.

    1984-01-01

    The effects of high-intensity, large-scale turbulence on turbulent boundary-layer heat transfer are studied. Flow fields were produced with turbulence intensities up to 40% and length scales up to several times the boundary layer thickness. In addition, three different types of turbulence will be compared to see whether they have the same effect on the boundary layer. The three are: the far field of a free jet, flow downstream of a grid, and flow downstream of a simulated gas turbine combustor. Each turbulence field will be characterized by several measures: intensity (by component), scale, and spectrum. Heat transfer will be measured on a 2.5 m long, 0.5 m wide flat plate using the energy-balance technique. The same plate will be used in each of the four flow fields; a low-turbulence tunnel for baseline data, and the three flow situations mentioned.

  7. Optical distortions by compressible turbulence

    NASA Astrophysics Data System (ADS)

    Mani, Ali

    Optical distortions induced by refractive index fluctuations in turbulent flows are a serious concern in airborne communication and imaging systems. This project focuses on aero-optical flows in which compressible turbulence is the dominant source of optical distortions. These flows include boundary layers, free shear layers, cavity flows, and wakes typically associated with flight conditions. The present study consists of two theoretical analyses and an extensive numerical investigation of optical distortions by separated shear layers and turbulent wakes. We present an analysis of far-field optical statistics in a general aero-optical framework. Based on this analysis, measures of far-field distortion, such as tilt, spread, and loss of focus-depth, are linked to key flow statistics. By employing these measures, we quantify distortion effects through a set of norms that have provable scaling properties with key optical parameters. The second analysis presents a theoretical estimate of the range of optically important flow scales in an arbitrary aero-optical flowfield. We show that in the limit of high Reynolds numbers, the smallest optically important scale does not depend on the Kolmogorov scale. For a given geometry this length scale depends only on the flow Mach number, freestream refractive index, and the optical wavelength. The provided formula can be used to estimate grid resolution requirements for numerical simulations of aero-optical phenomena. A rough estimate indicates that resolution requirements for accurate prediction of aero-optics is not much higher than typical LES requirements. As a model problem, compressible turbulent flows over a circular cylinder is considered to study the fundamental physics of aero-optical effects. Large-eddy simulation with a high-resolution numerical scheme is employed to compute variations of the refractive index field in the separated shear layers and turbulent wakes in a range of flow Mach numbers (0.2--0.85) and

  8. Computer program for calculating laminar, transitional, and turbulent boundary layers for a compressible axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Gregg, J. L.

    1974-01-01

    A finite-difference program is described for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain the factors of arbitrary Reynolds number, free-stream Mach number, free-stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile.

  9. Determining the alpha dynamo parameter in incompressible homogeneous magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.

    1983-01-01

    Alpha, an important parameter in dynamo theory, is proportional to either the kinetic, current, magnetic, or velocity helicity of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first order smoothed equations that describe the alpha effect. In two cases, when alpha is proportional to either the magnetic helicity or velocity helicity, alpha is determined experimentally from two point measurements of the fluctuating fields in incompressible, homogeneous turbulence having arbitrary symmetry. For the other two possibilities, alpha is determined if the turbulence is isotropic.

  10. Mirror Instability in the Turbulent Solar Wind

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Franci, Luca

    2017-04-01

    The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.

  11. Investigation of the effects of nonhomogeneous (or nonstationary) behavior on the spectra of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.; Fischer, R. W.

    1976-01-01

    A new series expansion of the instantaneous power spectrum is used that has for its first term the usual quasi-stationary spectrum approximation. The minimum duration of a burst of turbulence and the minimum rise time of an abrupt onset of turbulence that will not give rise to changes in the spectrum due to the nonstationary behavior are determined. A general criterion for envelope behavior that will not give rise to changes in the spectrum is also determined. Spectra computed from recorded turbulence time histories are shown to be consistent with the theoretical predictions.

  12. Statistical theory of turbulent incompressible multimaterial flow

    SciTech Connect

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.

  13. Clausius entropy for arbitrary bifurcate null surfaces

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Visser, Matt

    2014-02-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation {\\rm{d}}S = \\unicode{x111} Q/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations.

  14. Blur invariants constructed from arbitrary moments.

    PubMed

    Kautsky, Jaroslav; Flusser, Jan

    2011-12-01

    This paper deals with moment invariants with respect to image blurring. It is mainly a reaction to the works of Zhang and Chen , recently published in these Transactions. We present a general method on how to construct blur invariants from arbitrary moments and show that it is no longer necessary to separately derive the invariants for each polynomial basis. We show how to discard dependent terms in blur invariants definition and discuss a proper implementation of the invariants in orthogonal bases using recurrent relations. An example for Legendre moments is given. © 2011 IEEE

  15. Hybrid benchmarking of arbitrary quantum gates

    NASA Astrophysics Data System (ADS)

    Chasseur, Tobias; Reich, Daniel M.; Koch, Christiane P.; Wilhelm, Frank K.

    2017-06-01

    We present a protocol for interleaved randomized benchmarking of arbitrary quantum gates using Monte Carlo sampling of quantum states. It is generally applicable, including non-Clifford gates while preserving key advantages of randomized benchmarking such as error amplification as well as independence from state preparation and measurement errors. This property is crucial for implementations in many contemporary systems. Although the protocol scales exponentially in the number of qubits, it is superior to direct Monte Carlo sampling of the average gate fidelity in both the total number of experiments by orders of magnitude and savings in classical preprocessing, that are exponential.

  16. Metamaterial electromagnetic concentrators with arbitrary geometries.

    PubMed

    Yang, Jingjing; Huang, Ming; Yang, Chengfu; Xiao, Zhe; Peng, Jinhui

    2009-10-26

    The electromagnetic concentrators play an important role in the harnessing of light in solar cells or similar devices, where high field intensities are required. The material parameters for two-dimensional (2D) metamaterial-assisted electromagnetic concentrators with arbitrary geometries are derived based on transformation-optical approach. Enhancements in field intensities of the 2D concentrator have been shown by full-wave simulation. All theoretical and numerical results validate the material parameters for the 2D concentrator with irregular cross section we developed.

  17. Approach of arbitrary clipping in volume rendering

    NASA Astrophysics Data System (ADS)

    Lin, Lan; Li, Lijun; Zhou, Jianzhong; Jiang, Qing

    2005-11-01

    This paper proposes a new clipping method that is capable of using arbitrary geometries in volume rendering. With the assistance of pre-computed outer contour mesh, the method adopts Constructive Solid Geometry (CSG) for clipping, and uses 3D texture for the rendering of clipping surface. The outer contour mesh defines the boundary of the volume data, and improves the efficiency of clipping and rendering. Furthermore, CSG-based clipping method protects the topology of geometries. This method computes the texture coordinate in vertex shader to implement the 3D texture mapping, and achieves high frame rates based on the powerful programming graphics hardware.

  18. Confined systems within arbitrary enclosed surfaces

    NASA Astrophysics Data System (ADS)

    Burrows, B. L.; Cohen, M.

    2016-06-01

    A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.

  19. Gaussian Quadrature Formulae for Arbitrary Positive Measures

    PubMed Central

    Fernandes, Andrew D.; Atchley, William R.

    2007-01-01

    We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student’s t, inverse-gamma, beta, and Fisher’s F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218

  20. Adding control to arbitrary unknown quantum operations

    PubMed Central

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  1. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    DTIC Science & Technology

    2015-09-01

    supersonic (Mach-2 freestream) wind tunnel at Wright Patterson Air Force Base (RC-19), see Fig. 13. Direct Spectrum Matching ( DSM ) Method: A...direct spectrum matching ( DSM ) method for improving the accuracy of the n-LIBS technique in turbulent reacting environments was newly proposed. In this

  2. A filament model of MHD turbulence

    SciTech Connect

    Petviashvili, V.

    1996-11-01

    Turbulence of ordinary fluid is recognized as chaotic motion with almost no linear features. It is well described in wavenumber space by Kolmogorov`s phenomenological theory in wave number k-space: The source of energy should exist in the region of small wavenumbers. Then isotropic energy flux is generated in k-space directed toward a larger k-region where the energy is absorbed by viscosity. The main characteristics of energy spectrum of Kolmogorov turbulence is universal and in good agreement with observations.

  3. Hyperspectral Image Turbulence Measurements of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Kireev, Stanislav; Smith, William L., Sr.; Burdette, Edward M.; Daniels, Taumi; Cornman, Larry

    2012-01-01

    A Forward Looking Interferometer (FLI) sensor has the potential to be used as a means of detecting aviation hazards in flight. One of these hazards is mountain wave turbulence. The results from a data acquisition activity at the University of Colorado s Mountain Research Station will be presented here. Hyperspectral datacubes from a Telops Hyper-Cam are being studied to determine if evidence of a turbulent event can be identified in the data. These data are then being compared with D&P TurboFT data, which are collected at a much higher time resolution and broader spectrum.

  4. Arbitrary Order Hierarchical Bases for Computational Electromagnetics

    SciTech Connect

    Rieben, R N; White, D; Rodrigue, G

    2002-12-20

    We present a clear and general method for constructing hierarchical vector bases of arbitrary polynomial degree for use in the finite element solution of Maxwell's equations. Hierarchical bases enable p-refinement methods, where elements in a mesh can have different degrees of approximation, to be easily implemented. This can prove to be quite useful as sections of a computational domain can be selectively refined in order to achieve a greater error tolerance without the cost of refining the entire domain. While there are hierarchical formulations of vector finite elements in publication (e.g. [1]), they are defined for tetrahedral elements only, and are not generalized for arbitrary polynomial degree. Recently, Hiptmair, motivated by the theory of exterior algebra and differential forms presented a unified mathematical framework for the construction of conforming finite element spaces [2]. In [2], both 1-form (also called H(curl)) and 2-form (also called H(div)) conforming finite element spaces and the definition of their degrees of freedom are presented. These degrees of freedom are weighted integrals where the weighting function determines the character of the bases, i.e. interpolatory, hierarchical, etc.

  5. Search times with arbitrary detection constraints

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç

    2013-08-01

    Random encounters in space are central to describing diffusion-limited reactions, animal foraging, search processes, and many other situations in nature. These encounters, however, are often constrained by the capacity of the searcher to detect and/or recognize its target. This can be due to limited binding and perception abilities of the searcher or hiding and avoiding mechanisms used by the target. Hence detection failure upon passage over the target location turns the process into an n-passage problem, with n being random. Here we provide a general description of this detection problem for arbitrary dimensions and arbitrary detection constraints. The mean detection time (MDT) for a random searcher embedded in a sea of homogeneously distributed targets is obtained as a function of the target density ρ, the size domain L, and the effective detection distance a. While the scaling with ρ and L is found to be universal and equivalent to that found for the corresponding first-passage problem, the scaling of the MDT on a depends on the specific detection mechanism considered.

  6. Correlation Imaging with Arbitrary Sampling Trajectories

    PubMed Central

    Li, Yu

    2014-01-01

    The presented work aims to develop a generalized linear approach to image reconstruction with arbitrary sampling trajectories for high-speed MRI. This approach is based on a previously developed image reconstruction framework, "correlation imaging" (1). In the presented work, correlation imaging with arbitrary sampling trajectories is implemented in a multi-dimensional hybrid space that is formed from the physical sampling space and a virtually defined space. By introducing an undersampling trajectory with both uniformity and randomness in the hybrid space, correlation imaging may take advantage of multiple image reconstruction mechanisms including coil sensitivity encoding, data sparsity and information sharing. This hybrid-space implementation is demonstrated in multi-slice 2D imaging, multi-scan imaging, and radial dynamic imaging. Since more information is used in image reconstruction, it is found that hybrid-space correlation imaging outperforms several conventional techniques. The presented approach will benefit clinical MRI by enabling correlation imaging to be used to accelerate multi-scan clinical protocols that need different sampling trajectories in different scans. PMID:24629517

  7. Generalized anisotropic turbulence spectra and applications in the optical waves' propagation through anisotropic turbulence.

    PubMed

    Cui, Linyan; Xue, Bindang; Zhou, Fugen

    2015-11-16

    Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations.

  8. Introduction to quantum turbulence

    PubMed Central

    Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.

    2014-01-01

    The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870

  9. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  10. Wall Turbulence with Designer Properties: Identification, Characterization and Manipulation of Energy Pathways

    DTIC Science & Technology

    2016-02-26

    wavenumbers, and thus can be used to identify forcing distributions required to manipulate the spectrum . Energetic pathways between modes have been...objectives of this research, as identified in the original proposal, were as follows. Manipulate the dominant energy pathways in the turbulent spectrum ...turbulence”, in which a desirable turbulent spectrum and/or mean velocity profile (wall shear stress) are maintained using wall forcing created either

  11. On the nature of magnetic turbulence in rotating, shearing flows

    NASA Astrophysics Data System (ADS)

    Walker, Justin; Lesur, Geoffroy; Boldyrev, Stanislav

    2016-03-01

    The local properties of turbulence driven by the magnetorotational instability (MRI) in rotating, shearing flows are studied in the framework of a shearing-box model. Based on numerical simulations, we propose that the MRI-driven turbulence comprises two components: the large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component is close to k-2, whereas the spectrum of the small-scale component agrees with the spectrum of strong MHD turbulence k-3/2. While the spectrum of the fluctuations is universal, the outer-scale characteristics of the turbulence are not; they depend on the parameters of the system, such as the net magnetic flux. However, there is remarkable universality among the allowed turbulent states - their intensity v0 and their outer scale λ0 satisfy the balance condition v0/λ0 ˜ dΩ/dln r, where dΩ/dln r is the local orbital shearing rate of the flow. Finally, we find no sustained dynamo action in the Pm = 1 zero net-flux case for Reynolds numbers as high as 45 000, casting doubts on the existence of an MRI dynamo in the Pm ≤ 1 regime.

  12. A small-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1992-01-01

    A model for the small-scale structure of turbulence is reformulated in such a way that it may be conveniently computed. The model is an ensemble of randomly oriented structured two dimensional vortices stretched by an axially symmetric strain flow. The energy spectrum of the resulting flow may be expressed as a time integral involving only the enstrophy spectrum of the time evolving two-dimensional cross section flow, which may be obtained numerically. Examples are given in which a k(exp -5/3) spectrum is obtained by this method without using large wave number asymptotic analysis. The k(exp -5/3) inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the two-dimensional enstrophy spectrum. The results are insensitive to time dependence of the strain-rate, including even intermittent on-or-off strains.

  13. The energy spectrum for stochastic eddies with gamma distribution

    NASA Astrophysics Data System (ADS)

    Kara, Rukiye; Caglar, Mine

    2012-09-01

    Lundgren (1982) showed that strained spiral vortex model for turbulent fine structure has exponential Kolmogorov energy spectrum form. Caglar (2007) has generalized Cinlar velocity field which defined a similar structure with Lundgren vortex and computed the energy spectrum. In this study, we investigate the energy spectrum of the stochastic velocity field using Gamma distribution for small scale eddies.

  14. Mixing and turbulent mixing in fluids, plasma and materials: summary of works presented at the 3rd International Conference on Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.

    2013-07-01

    companion paper Rooker et al provide a very interesting study on the generation and detection of 'whistler waves' induced space plasma turbulence at Gakona (Alaska). Physics of atmosphere. Five papers are devoted to the physics of atmosphere. Byalko presents the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Herring and Kimura provide a review on recent results on homogeneous stably stratified turbulence. Pouquet et al use a high-resolution direct numerical simulation of rotating helical turbulence to obtain new numerical results on the inverse energy cascade in rotating flows. Tailleux discusses energy conversion and dissipation in depth in mixing flows. Zagumennyi and Chashechkin study the structure of convective flows driven by density variations in a stratified fluid by means of experiments and numerical simulations. Geophysics and Earth science. Three papers are dedicated to geophysics and Earth science. Jinadasa et al investigate small-scale and lateral intermittency of oceanic microstructure in the pycnocline. Shrira and Townsend review on a plausible mechanism of deep-ocean mixing caused by near-inertial waves in the abyssal ocean. Using numerical simulations, Imazio and Mininni study how helicity affects the spectrum of a passive scalar in rotating turbulent flows. Combustion. Two papers deal with flows with chemical reactions. Meshram used the Lewis-Kraichnan space-time version of Hopf's functional formalism to investigate turbulence with chemical reaction. Watanabe et al carry out experiments on a turbulent plane liquid jet with a second-order chemical reaction. Theoretical aspects of non-equilibrium dynamics. Six papers are devoted to fundamental aspects of non-equilibrium dynamics. Chen et al present state-of-the-art work on exact and direct derivation of macroscopic theoretical description for a flow at arbitrary Knudsen number from the Boltzmann-Bhatnagar-Gross-Krook kinetic theory with constant relaxation time

  15. Turbulent Spots Inside the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Skarda, Jinhie; Wu, Xiaohua; Moin, Parviz; Lozano-Duran, Adrian; Wallace, James; Hickey, Jean-Pierre

    2016-11-01

    We present evidence that the buffer region of the canonical turbulent boundary layer is populated by locally generated turbulent spots, which cause strong indentations on the near-wall low-momentum streaks. This evidence is obtained from a spatially-developing direct numerical simulation carrying the inlet Blasius boundary layer through a bypass transition to the turbulent boundary layer state over a moderate Reynolds number range. The turbulent spots are structurally analogous to their transitional counter-parts but without any direct causality connection. High-pass filtered time-history records are used to calculate the period of turbulent spot detection and this period is compared to the boundary layer bursting period reported in hot-wire experiments. The sensitivity of the results to parameters such as the high pass filter frequency and the amplitude discriminator level is examined. The characteristics of these turbulent spots are also quantified using a spatial connectivity based conditional sampling technique. This evidence seems to be at odds with the notion that the buffer region is dominated by quasi-streamwise vortices, and contributes to the potential unification of the studies on near-wall turbulent boundary layer dynamics.

  16. Multidimensional Potential Burgers Turbulence

    NASA Astrophysics Data System (ADS)

    Boritchev, Alexandre

    2016-03-01

    We consider the multidimensional generalised stochastic Burgers equation in the space-periodic setting: partial {u}/partial t+(nabla f({u}) \\cdot nabla) {u}-ν Δ {u}= nabla η, quad t ≥ 0, {x} in{T}^d=({R}/ {Z})^d, under the assumption that u is a gradient. Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For solutions u of this equation, we study Sobolev norms of u averaged in time and in ensemble: each of these norms behaves as a given negative power of ν. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence, namely the averages of the increments and of the energy spectrum. These quantities behave as a power of the norm of the relevant parameter, which is respectively the separation ℓ in the physical space and the wavenumber k in the Fourier space. Our bounds do not depend on the initial condition and hold uniformly in {ν}. We generalise the results obtained for the one-dimensional case in [10], confirming the physical predictions in [4, 30]. Note that the form of the estimates does not depend on the dimension: the powers of {ν, |{{k}}|, ℓ} are the same in the one- and the multi-dimensional setting.

  17. Spin filter for arbitrary spins by substrate engineering

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava

    2016-08-01

    We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.

  18. Turbulence, Turbulence Control, and Drag Reduction.

    DTIC Science & Technology

    1987-08-01

    Onsager (1945) and Weizs~cker (1948). has made remarkable strides in advancing our understanding of turbulent flows. It is this description of turbulent...tujrbuilce Inl thle lar to thle Intermiittenit trans’ition to turbulence lus.t ,iedipen itlik. N\\N.tern onI the other. O pen0 * ~ ~ h 1 ~ kdinition10 po...Some Studies of Non-Simple Pipe Flows K R SREENIVASAN 2.AR’ .\\ variety o phenooena occrs ’.5’, ,sTecla’., f we stray,’ away from straight circ- lar i es a

  19. Electron magnetohydrodynamics: Dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k1=k2 do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade ∝k-2. The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.

  20. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers.

    PubMed

    Flowers-Jacobs, Nathan E; Fox, Anna E; Dresselhaus, Paul D; Schwall, Robert E; Benz, Samuel P

    2016-09-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.

  1. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    SciTech Connect

    Zhang, S.; Nordlund, Kai; Djurabekova, Flyura; Zhang, Yanwen; Velisa, Gihan; Wang, T. S.

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  2. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    DOE PAGES

    Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less

  3. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers

    PubMed Central

    Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.

    2016-01-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676

  4. General description of circularly symmetric Bessel beams of arbitrary order

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz

    2016-11-01

    A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.

  5. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  6. Magnetohydrodynamic Turbulence Mediated by Reconnection

    NASA Astrophysics Data System (ADS)

    Boldyrev, Stanislav; Loureiro, Nuno F.

    2017-08-01

    Magnetic field fluctuations in magnetohydrodynamic turbulence can be viewed as current sheets that are progressively more anisotropic at smaller scales. As suggested by Loureiro & Boldyrev and Mallet et al., below a certain critical thickness, {λ }c, such current sheets become tearing-unstable. We propose that the tearing instability changes the effective alignment of the magnetic field lines in such a way as to balance the eddy turnover rate at all scales smaller than {λ }c. As a result, turbulent fluctuations become progressively less anisotropic at smaller scales, with the alignment angle increasing as θ ∼ {(λ /{λ }* )}-4/5+β , where {λ }* ∼ {L}0{S}0-3/4 is the resistive dissipation scale. Here L 0 is the outer scale of the turbulence, S 0 is the corresponding Lundquist number, and 0≤slant β < 4/5 is a parameter. The resulting Fourier energy spectrum is E({k}\\perp )\\propto {k}\\perp -11/5+2β /3, where {k}\\perp is the wavenumber normal to the local mean magnetic field, and the critical scale is {λ }c∼ {S}L-(4-5β )/(7-20β /3). The simplest model corresponds to β = 0, in which case the predicted scaling formally agrees with one of the solutions obtained in Mallet et al. from a discrete hierarchical model of abruptly collapsing current sheets, an approach different from and complementary to ours. We also show that the reconnection-mediated interval is non-universal with respect to the dissipation mechanism. Hyper-resistivity of the form \\tilde{η }{k}2+2s leads (in the simplest case of β = 0) to the different transition scale {λ }c∼ {L}0{\\tilde{S}}0-4/(7+9s) and the energy spectrum E({k}\\perp )\\propto {k}\\perp -(11+9s)/(5+3s), where {\\tilde{S}}0 is the corresponding hyper-resistive Lundquist number.

  7. Cloning quantum entanglement in arbitrary dimensions

    SciTech Connect

    Karpov, E.; Navez, P.; Cerf, N.J.

    2005-10-15

    We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.

  8. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  9. Aerodynamic shape optimization of arbitrary hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.; Sheffer, Scott G.

    1991-01-01

    A new method was developed to optimize, in terms of aerodynamic wave drag minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while maintaining the initial volume and length of the vehicle. This new method uses either a surface fitted Fourier series to represent the vehicle's geometry or an independent point motion algorithm. In either case, the coefficients of the Fourier series or the spatial locations of the points defining each cross section were varied and a numerical optimization algorithm based on a quasi-Newton gradient search concept was used to determine the new optimal configuration. Results indicate a significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low CPU costs. In the case of a cone, the results agreed well with known analytical optimum ogive shapes. The procedure is capable of accepting more complex flow field analysis codes.

  10. Driving atoms with light of arbitrary statistics

    NASA Astrophysics Data System (ADS)

    Gardiner, C. W.; Parkins, A. S.

    1994-08-01

    The main objective of this article was to integrate the work of Kolobov and Sokolov, Gardiner, and Carmichael concerning the possibility of a kind of 'modular quantum optics' in which nonclassical light beams could be generated and then used as inputs to other quantum systems. In addition, to extend this consolidated study to include the feasibilities of multiple input and output into each system; longer chains of systems, each driving the next; and arbitrary quantum white noise inputs into the atoms. Thus, the coupled-systems approach was developed to the extent that its full practical use can be manifested. Included in the investigation were single and two-mode squeezed light, antibunched light of two different kinds, and highly nonclassical light from atom-cavity systems. One problem may be anticipated from realistic systems and that is the size of the matrices which may ensue.

  11. Generalized sheath criterion for arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-01-01

    In this research, we study the generalized sheath criterion for plasmas with an arbitrary degree of electron degeneracy and temperature, ranging from the classical dilute regime to the fully degenerate quantum plasmas. The latter may be relevant to warm dense matter and/or laboratory high energy density matter or even astrophysical stellar plasmas. The hydrostatic one dimensional model is used to establish the generalized Bohm's criterion for sheath entrance ion speed limits, and the small amplitude theory of the sheath problem, which accurately describes the sheath parameters for lower ion acoustic Mach numbers, is developed. Our results indicate that the sheath characteristic parameters such as electrostatic potential and density profiles, as well as the wall potential and the sheath length, are significantly affected by plasma parameters such as the ion and electron temperature and number densities in the plasma region. In particular, there are fundamental differences between sheath structures of the dilute classical plasmas and those of dense quantum ones.

  12. Solving stochastic inflation for arbitrary potentials

    SciTech Connect

    Martin, Jerome; Musso, Marcello

    2006-02-15

    A perturbative method for solving the Langevin equation of inflationary cosmology in the presence of backreaction is presented. In the Gaussian approximation, the method permits an explicit calculation of the probability distribution of the inflaton field for an arbitrary potential, with or without the volume effects taken into account. The perturbative method is then applied to various concrete models, namely, large field, small field, hybrid, and running mass inflation. New results on the stochastic behavior of the inflaton field in those models are obtained. In particular, it is confirmed that the stochastic effects can be important in new inflation while it is demonstrated they are negligible in (vacuum dominated) hybrid inflation. The case of stochastic running mass inflation is discussed in some details and it is argued that quantum effects blur the distinction between the four classical versions of this model. It is also shown that the self-reproducing regime is likely to be important in this case.

  13. Quantum sensing with arbitrary frequency resolution

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Cujia, K. S.; Zopes, J.; Degen, C. L.

    2017-05-01

    Quantum sensing takes advantage of well-controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen-vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 microhertz over a megahertz bandwidth. The continuous sampling further guarantees an enhanced sensitivity, reaching a signal-to-noise ratio in excess of 104 for a 170-nanotesla test signal measured during a 1-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.

  14. Random shearing direction models for isotropic turbulent diffusion

    NASA Astrophysics Data System (ADS)

    Majda, Andrew J.

    1994-06-01

    Recently, a rigorous renormalization theory for various scalar statistics has been developed for special modes of random advection diffusion involving random shear layer velocity fields with long-range spatiotemporal correlations. New random shearing direction models for isotropic turbulent diffusion are introduced here. In these models the velocity field has the spatial second-order statistics of an arbitrary prescribed stationary incompressible isotropic random field including long-range spatial correlations with infrared divergence, but the temporal correlations have finite range. The explicit theory of renormalization for the mean and second-order statistics is developed here. With ɛ the spectral parameter, for -∞<ɛ<4 and measuring the strength of the infrared divergence of the spatial spectrum, the scalar mean statistics rigorously exhibit a phase transition from mean-field behavior for ɛ<2 to anomalous behavior for ɛ with 2<ɛ<4 as conjectured earlier by Avellaneda and the author. The universal inertial range renormalization for the second-order scalar statistics exhibits a phase transition from a covariance with a Gaussian functional form for ɛ with ɛ<2 to an explicit family with a non-Gaussian covariance for ɛ with 2<ɛ<4. These non-Gaussian distributions have tails that are broader than Gaussian as ɛ varies with 2<ɛ<4 and behave for large values like exp(- C c | x|4-ɛ), with C c an explicit constant. Also, here the attractive general principle is formulated and proved that every steady, stationary, zero-mean, isotropic, incompressible Gaussian random velocity field is well approximated by a suitable superposition of random shear layers.

  15. COSMIC-RAY TRANSPORT THEORY IN PARTIALLY TURBULENT SPACE PLASMAS WITH COMPRESSIBLE MAGNETIC TURBULENCE

    SciTech Connect

    Casanova, S.; Schlickeiser, R.

    2012-02-01

    Recently, a new transport theory of cosmic rays in magnetized space plasmas extending the quasilinear approximation to the particle orbit has been developed for the case of an axisymmetric incompressible magnetic turbulence. Here, we generalize the approach to the important physical case of a compressible plasma. As previously obtained in the case of an incompressible plasma, we allow arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field. For the case of quasi-stationary and spatially homogeneous magnetic turbulence we derive, in the small Larmor radius approximation, gyrophase-averaged cosmic-ray Fokker-Planck coefficients. Upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients and for the perpendicular and parallel spatial diffusion coefficients are presented.

  16. Turbulence kinetic energy equation for dilute suspensions

    NASA Technical Reports Server (NTRS)

    Abou-Arab, T. W.; Roco, M. C.

    1989-01-01

    A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.

  17. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-07

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

  18. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    PubMed Central

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-01-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  19. Shock structure in shock-turbulence interactions

    NASA Astrophysics Data System (ADS)

    Donzis, Diego A.

    2012-12-01

    The structure of a shock wave interacting with isotropic turbulence is investigated. General principles of similarity scaling show that consistency with known physical limiting behavior requires incomplete similarity solutions where the governing non-dimensional parameters, namely, the Reynolds, convective, and turbulent Mach numbers (Rλ, M, and Mt, respectively), can be combined to reduce the number of similarity parameters that describes the phenomenon. An important parameter is found to be K = Mt/Rλ1/2(M - 1) which is proportional to the ratio of laminar shock thickness to the Kolmogorov length scale. The shock thickness under turbulent conditions, on the other hand, is essentially a random variable. Under a quasi-equilibrium assumption, shown to be valid when K2 ≪ 1, analytical results are obtained for the first and second moments of the turbulent shock thickness, velocity gradient, and dilatation at the shock. It is shown that these quantities exhibit universal behavior in the parameter K with corrections in Mt/(M - 1), for velocity fields with arbitrary statistics. Excellent agreement is observed with available data from direct numerical simulations. Two-point statistics of velocity gradients at the shock show that the distribution of dilatation over the shock surface is determined by transverse structure functions of the incoming turbulence. The regimes of the interaction are also investigated. It is found that the appropriate parameter to delimit the different regimes is Mt/(M - 1). Flow retardation ahead of the shock is suggested as a mechanism for so-called broken shocks.

  20. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  1. Turbulence Visualization at the Terascale on Desktop PCs.

    PubMed

    Treib, M; Burger, K; Reichl, F; Meneveau, C; Szalay, A; Westermann, R

    2012-12-01

    Despite the ongoing efforts in turbulence research, the universal properties of the turbulence small-scale structure and the relationships between small- and large-scale turbulent motions are not yet fully understood. The visually guided exploration of turbulence features, including the interactive selection and simultaneous visualization of multiple features, can further progress our understanding of turbulence. Accomplishing this task for flow fields in which the full turbulence spectrum is well resolved is challenging on desktop computers. This is due to the extreme resolution of such fields, requiring memory and bandwidth capacities going beyond what is currently available. To overcome these limitations, we present a GPU system for feature-based turbulence visualization that works on a compressed flow field representation. We use a wavelet-based compression scheme including run-length and entropy encoding, which can be decoded on the GPU and embedded into brick-based volume ray-casting. This enables a drastic reduction of the data to be streamed from disk to GPU memory. Our system derives turbulence properties directly from the velocity gradient tensor, and it either renders these properties in turn or generates and renders scalar feature volumes. The quality and efficiency of the system is demonstrated in the visualization of two unsteady turbulence simulations, each comprising a spatio-temporal resolution of 10244. On a desktop computer, the system can visualize each time step in 5 seconds, and it achieves about three times this rate for the visualization of a scalar feature volume.

  2. Lidar sounding of the optical parameter of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Gurvich, A. S.; Fortus, M. I.

    2016-03-01

    The operation of a lidar intended for clear air turbulence (CAT) positioning on the basis of the backscatter enhancement (BSE) effect is analyzed using a turbulence model with a power-law spectrum. Systematic distortions occurring due to a need to regularize the lidar positioning problem solution are estimated. It is shown that the effect of molecular viscosity of air on the positioning result can be neglected if the wave parameter, which characterizes the diffraction manifestation, is higher than 3. This corresponds to sounding ranges of more than 1 km for optical or UV lidars. The analysis results show that the BSE lidar positioning accuracy weakly depends on the exponent in the turbulence spectrum in regions of severe turbulence. The results can justify a physical experiment for the design of an aircraft system for the lidar detection of CAT regions ahead of the flight course.

  3. The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Ye, Zhou

    1997-01-01

    The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.

  4. Submodels of the generalization of the Leith model of the phenomenological theory of turbulence and of the model of nonlinear diffusion in the inhomogeneous media without absorption

    NASA Astrophysics Data System (ADS)

    Chirkunov, Yu A.

    2015-10-01

    We study a nonlinear equation which is equivalent to an equation of generalization of the Leith model of turbulence and to the equation of the model of nonlinear diffusion in an inhomogeneous media without absorption. Using this equation, all submodels admitting continuous Lie transformation groups, acting on the set of solutions of the equations of these submodels are obtained. For obtained submodels, all invariant submodels are found. All essentially distinct invariant solutions describing these invariant submodels are found explicitly, or their finding is reduced to solving nonlinear integral equations. The integral equations defining these solutions reveal new possibilities for analytical and numerical studies. The presence of arbitrary constants in these equations allows one to apply them to the study of different boundary value problems. We have proved the existence and uniqueness of the solution for some boundary value problems. We have investigated the following boundary value problems: (1) a distribution of front-density turbulent kinetic energy in a framework of the generalizion of the Leith model of wave turbulence for which either the spectrum and its wavenumber derivative or the spectrum and its time derivative are given at the initial moment of time at a fixed wavenumber; (2) a nonlinear diffusion process in an inhomogeneous media without absorption, for which either the concentration and its gradient or the concentration and its rate of change are given at the initial moment of time at a fixed point. Under certain additional conditions we have established the existence and uniqueness of the solutions to boundary value problems describing these processes.

  5. DRIFT COEFFICIENTS OF CHARGED PARTICLES IN TURBULENT MAGNETIC FIELDS

    SciTech Connect

    Tautz, R. C.; Shalchi, A. E-mail: andreasm4@yahoo.com

    2012-01-10

    Using test-particle simulations, the off-diagonal elements of the diffusion tensor are evaluated numerically. The comparison of the so-obtained time-dependent drift coefficients with analytical approximations shows that, for weak turbulence strengths or for slab turbulence geometry, the weak scattering result provides an excellent agreement with the numerical results. For two- or three-dimensional turbulence geometry, however, neither the classical scattering result nor alternative analytical approaches provide an accurate description of the numerically obtained values. Furthermore, the influence is discussed of a non-constant energy range in the turbulence spectrum and of non-static turbulence, for which the time dependence is modeled using magnetohydrodynamic plasma waves.

  6. Effects of Turbulence Characteristics in the Spray Combustion

    NASA Astrophysics Data System (ADS)

    Takeuchi, Seiichi; Douhara, Noriyoshi

    The present study was conducted in order to clarify the effects of airflow turbulence on the spray combustion. Methanol was atomized with the two-fluid-type nozzle in order to generate the spray flame, and the turbulence characteristic of the flame was varied by inserting a mesh near the tip of the nozzle. Droplets in the spray flame were measured using a PDPA system in a reaction field, and changes in the turbulence characteristic were measured using a hot-wire anemometer in a no-reaction field in order to clarify the effects of turbulence on combustion behavior. Inserting a finer mesh promoted droplet evaporation and enhanced the dispersion characteristic. Regarding changes in the turbulence characteristic, the integral time scale increased and the energy spectrum decreased as the inserted mesh became finer. Based on the obtained results, we determined that a finer mesh causes vortexes to be more persistent and enhances the dispersion characteristic of the droplets.

  7. Factorized cumulant expansion approximation method for turbulence with reacting and mixing chemical elements of type A + B → Product

    NASA Astrophysics Data System (ADS)

    Meshram, M. C.

    2013-07-01

    The Lewis-Kraichnan space-time version of Hopf functional formalism is considered for the investigation of turbulence with reacting and mixing chemical elements of type A + B → Product. The equations of motion are written in Fourier space. We first define the characteristic functional (or the moments generating functional) for the joint probability distribution of the velocity vector of the flow field and the reactants’ concentration scalar fields and translate the equations of motion in terms of the differential equations for the characteristic functional. These differential equations for the characteristic functional are further written in terms of the second characteristic functional (or the cumulant generating functional). This helps us in obtaining the equations for various order cumulants. We note from these equations for cumulants the characteristic difficulty of the theory of turbulence that the (n + 1)th order cumulant C(n+1) occurs in the equation for the dynamics of nth order cumulant Cn. We use the factorized cumulant expansion approximation method for the present investigation. Under this approximation an arbitrary nth order cumulant Cn is expressed in terms of the lower-order cumulants C(2), C(3) and C(n-1) and thus we obtain a closed but untruncated system of equations for the cumulants. On using the factorized fourth-cumulant approximation method a closed set of equations for the reactants’ energy spectrum functions and the reactants’ energy transfer functions are derived. These equations are solved numerically and the similarity laws of the solutions are derived analytically. The statistical quantities such as the reactants’ energy, the reactants’ enstrophy, the reactants’ scale of segregations and so on are calculated numerically and the statistical laws of these quantities are discussed. Also, the scope of this tool for investigation of turbulent phenomena not covered in the present study is discussed.

  8. A phenomenological treatment of rotating turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.

  9. Geometrical critical phenomena on a random surface of arbitrary genus

    NASA Astrophysics Data System (ADS)

    Duplantier, Bertrand; Kostov, Ivan K.

    1990-08-01

    The statistical mechanics of self-avoiding walks (SAW) or of the O( n)-loop model on a two-dimensional random surface are shown to be exactly solvable. The partition functions of SAW and surface configurations (possibly in the presence of vacuum loops) are calculated by planar diagram enumeration techniques. Two critical regimes are found: a dense phase where the infinite walks and loops fill the infinite surface, the non-filled part staying finite, and a dilute phase where the infinite surface singularity on the one hand, and walk and loop singularities on the other, merge together. The configuration critical exponents of self-avoiding networks of any fixed topology G, on a surface with arbitrary genus H, are calculated as universal functions of G and H. For self-avoiding walks, the exponents are built from an infinite set of basic conformal dimensions associated with central charges c = -2 (dense phase) and c = 0 (dilute phase). The conformal spectrum ΔL, L ⩾ 1 associated with L-leg star polymers is calculated exactly, for c = -2 and c = 0. This is generalized to the set of L-line "watermelon" exponents ΔL of the O( n) model on a random surface. The results are in perfect agreement with the conformal theory of Knizhnik, Polyakov and Zamolodchikov describing matter fields coupled to 2D quantum gravity. The infinite series of dimensions ΔL dressed by gravity calculated here, together with the corresponding SAW conformal dimensions ΔL(0) in the plane, known independently from Coulomb-gas techniques, match the KPZ relation Δ - Δ (0) = {Δ(1 - Δ)}/{κ}, where c = {1 - 6(1 - κ) 2}/{k}. This provides a cross check of Coulomb-gas techniques, the KPZ conformal theory of matter fields with 2D quantum gravity and the universality of random lattices. The divergences of the partition functions of self-avoiding networks on the random surface, possibly in the presence of vacuum loops, are shown to satisfy a factorization theorem over the vertices of the network. This

  10. One-dimensional turbulence

    SciTech Connect

    Kerstein, A.R.

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  11. Turbulence generation by waves

    SciTech Connect

    Kaftori, D.; Nan, X.S.; Banerjee, S.

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  12. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  13. ISOTROPICALLY DRIVEN VERSUS OUTFLOW DRIVEN TURBULENCE: OBSERVATIONAL CONSEQUENCES FOR MOLECULAR CLOUDS

    SciTech Connect

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-10

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  14. Isotropically Driven Versus Outflow Driven Turbulence: Observational Consequences for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-01

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  15. MAGNETIC HELICITY OF ION KINETIC TURBULENCE WITH A NONZERO ELECTRON TEMPERATURE

    SciTech Connect

    Markovskii, S. A.; Vasquez, Bernard J. E-mail: bernie.vasquez@unh.edu

    2016-03-20

    Hybrid numerical simulations of strong turbulence with a nonzero electron temperature are carried out in the proton kinetic range. The turbulent cascade is initiated by a large-scale spectrum with a nonzero cross-helicity. The turbulence evolves freely and produces a magnetic helicity spectrum with a peak at smaller scales. Testing is performed to verify that the shape of the peak is not affected by numerical artifacts. The magnetic helicity spectrum is shown to be determined by both the electron and proton thermal pressures, rather than the proton pressure alone. Implications for the observed correlations between the magnetic helicity and the plasma parameters in the solar wind are discussed.

  16. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  17. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    SciTech Connect

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; Holland, Christopher

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.

  18. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    SciTech Connect

    Staebler, G. M.; Candy, J.; Howard, N. T.; Holland, C.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  19. Zellweger Spectrum

    MedlinePlus

    ... Resources Conference News Contact Us Donate The Zellweger Spectrum Zellweger Syndrome, Neonatal Adrenoleukodystrophy (NALD), and Infantile Refsum’s ... of severity of disease. What causes the Zellweger spectrum of diseases? As we mentioned, disorders of the ...

  20. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  1. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  2. Energy Spectra of Strongly Stratified and Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Nicolaenko, Basil; Zhou, Ye

    1998-01-01

    Turbulence under strong stratification and rotation is usually characterized as quasi-two dimensional turbulence. We develop a "quasi-two dimensional" energy spectrum which changes smoothly between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation, as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence, the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale observations.

  3. Renormalization group analysis of turbulence. I - Basic theory

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor; Orszag, Steven A.

    The dynamic renormalization group (RNG) method is developed for hydrodynamic turbulence. This procedure, which uses dynamic scaling and invariance together with iterated perturbation methods, permits the evaluation of transport coefficients and transport equations for the large-scale (slow) modes. The RNG theory, which does not include any experimentally adjustable parameters, gives the following numerical values for important constants of turbulent flows: Kolmogorov constant for the inertial-range spectrum = 1.617; turbulent Prandtl number for high-Reynolds-number heat transfer = 0.7179; Batchelor constant = 1.161; and skewness factor = 0.4878. A differential transport model, is derived which is particularly useful near walls.

  4. Interaction of turbulence with a detonation wave

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Hussaini, M. Y.; Ribner, H. S.

    1993-01-01

    This paper addresses a specific reactive-flow configuration, namely, the interaction of a detonation wave with convected homogeneous isotropic weak turbulence (which can be constructed by a Fourier synthesis of small-amplitude vorticity waves). The effect of chemical heat release on the rms fluctuations downstream of the detonation is presented as a function of Mach number. In addition, for the particular case of the von Karman spectrum, the one-dimensional power spectra of these flow quantities are given.

  5. Interaction of turbulence with a detonation wave

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Hussaini, M. Y.; Ribner, H. S.

    1993-01-01

    This paper addresses a specific reactive-flow configuration, namely, the interaction of a detonation wave with convected homogeneous isotropic weak turbulence (which can be constructed by a Fourier synthesis of small-amplitude vorticity waves). The effect of chemical heat release on the rms fluctuations downstream of the detonation is presented as a function of Mach number. In addition, for the particular case of the von Karman spectrum, the one-dimensional power spectra of these flow quantities are given.

  6. String Theory and Turbulence

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung

    We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.

  7. Tactical missile turbulence problems

    NASA Technical Reports Server (NTRS)

    Dickson, Richard E.

    1987-01-01

    Of particular interest is atmospheric turbulence in the atmospheric boundary layer, since this affects both the launch and terminal phase of flight, and the total flight for direct fire systems. Brief discussions are presented on rocket artillery boost wind problems, mean wind correction, turbulent boost wind correction, the Dynamically Aimed Free Flight Rocket (DAFFR) wind filter, the DAFFR test, and rocket wake turbulence problems. It is concluded that many of the turbulence problems of rockets and missiles are common to those of aircraft, such as structural loading and control system design. However, these problems have not been solved at this time.

  8. Diffusion of Sound Waves in a Turbulent Atmosphere

    NASA Technical Reports Server (NTRS)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  9. Classes of Hydrodynamic and Magnetohydrodynamic Turbulent Decay

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Kahniashvili, Tina

    2017-02-01

    We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence. We classify our time-dependent solutions by their evolutionary tracks in parametric plots between instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories toward points on a line of self-similar solutions. These trajectories are determined by the underlying physics governing individual cases, while the infrared slope of the initial conditions plays only a limited role. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wave number k ), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k4).

  10. User's guide for a personal computer model of turbulence at a wind turbine rotor

    NASA Astrophysics Data System (ADS)

    Connell, J. R.; Powell, D. C.; Gower, G. L.

    1989-08-01

    This document is primarily: (1) a user's guide for the personal computer (PC) version of the code for the PNL computational model of the rotationally sampled wind speed (RODASIM11), and (2) a brief guide to the growing literature on the subject of rotationally sampled turbulence, from which the model is derived. The model generates values of turbulence experienced by single points fixed in the rotating frame of reference of an arbitrary wind turbine blade. The character of the turbulence depends on the specification of mean wind speed, the variance of turbulence, the crosswind and along-wind integral scales of turbulence, mean wind shear, and the hub height, radius, and angular speed of rotation of any point at which wind fluctuation is to be calculated.

  11. User's guide for a personal computer model of turbulence at a wind turbine rotor

    SciTech Connect

    Connell, J.R.; Powell, D.C.; Gower, G.L.

    1989-08-01

    This document is primarily (1) a user's guide for the personal computer (PC) version of the code for the PNL computational model of the rotationally sampled wind speed (RODASIM11) and (2) a brief guide to the growing literature on the subject of rotationally sampled turbulence, from which the model is derived. The model generates values of turbulence experienced by single points fixed in the rotating frame of reference of an arbitrary wind turbine blade. The character of the turbulence depends on the specification of mean wind speed, the variance of turbulence, the crosswind and along-wind integral scales of turbulence, mean wind shear, and the hub height, radius, and angular speed of rotation of any point at which wind fluctuation is to be calculated. 13 refs., 4 figs., 4 tabs.

  12. Port-based teleportation in arbitrary dimension.

    PubMed

    Studziński, Michał; Strelchuk, Sergii; Mozrzymas, Marek; Horodecki, Michał

    2017-09-07

    Port-based teleportation (PBT), introduced in 2008, is a type of quantum teleportation protocol which transmits the state to the receiver without requiring any corrections on the receiver's side. Evaluating the performance of PBT was computationally intractable and previous attempts succeeded only with small systems. We study PBT protocols and fully characterize their performance for arbitrary dimensions and number of ports. We develop new mathematical tools to study the symmetries of the measurement operators that arise in these protocols and belong to the algebra of partially transposed permutation operators. First, we develop the representation theory of the mentioned algebra which provides an elegant way of understanding the properties of subsystems of a large system with general symmetries. In particular, we introduce the theory of the partially reduced irreducible representations which we use to obtain a simpler representation of the algebra of partially transposed permutation operators and thus explicitly determine the properties of any port-based teleportation scheme for fixed dimension in polynomial time.

  13. Arbitrary-resolution global sensitivity kernels

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Fournier, A.; Dahlen, F.

    2007-12-01

    Extracting observables out of any part of a seismogram (e.g. including diffracted phases such as Pdiff) necessitates the knowledge of 3-D time-space wavefields for the Green functions that form the backbone of Fréchet sensitivity kernels. While known for a while, this idea is still computationally intractable in 3-D, facing major simulation and storage issues when high-frequency wavefields are considered at the global scale. We recently developed a new "collapsed-dimension" spectral-element method that solves the 3-D system of elastodynamic equations in a 2-D space, based on exploring symmetry considerations of the seismic-wave radiation patterns. We will present the technical background on the computation of waveform kernels, various examples of time- and frequency-dependent sensitivity kernels and subsequently extracted time-window kernels (e.g. banana- doughnuts). Given the computationally light-weighted 2-D nature, we will explore some crucial parameters such as excitation type, source time functions, frequency, azimuth, discontinuity locations, and phase type, i.e. an a priori view into how, when, and where seismograms carry 3-D Earth signature. A once-and-for-all database of 2-D waveforms for various source depths shall then serve as a complete set of global time-space sensitivity for a given spherically symmetric background model, thereby allowing for tomographic inversions with arbitrary frequencies, observables, and phases.

  14. Fast approximate surface evolution in arbitrary dimension

    PubMed Central

    Malcolm, James; Rathi, Yogesh; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    The level set method is a popular technique used in medical image segmentation; however, the numerics involved make its use cumbersome. This paper proposes an approximate level set scheme that removes much of the computational burden while maintaining accuracy. Abandoning a floating point representation for the signed distance function, we use integral values to represent the signed distance function. For the cases of 2D and 3D, we detail rules governing the evolution and maintenance of these three regions. Arbitrary energies can be implemented in the framework. This scheme has several desirable properties: computations are only performed along the zero level set; the approximate distance function requires only a few simple integer comparisons for maintenance; smoothness regularization involves only a few integer calculations and may be handled apart from the energy itself; the zero level set is represented exactly removing the need for interpolation off the interface; and evolutions proceed on the order of milliseconds per iteration on conventional uniprocessor workstations. To highlight its accuracy, flexibility and speed, we demonstrate the technique on intensity-based segmentations under various statistical metrics. Results for 3D imagery show the technique is fast even for image volumes. PMID:24392194

  15. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  16. Heterotic string in an arbitrary background field

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    1985-10-01

    An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N=1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N=1 supersymmetric nonlinear and N=2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories.

  17. Understanding rigid body motion in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Leyvraz, Francois

    2015-05-01

    Why would anyone wish to generalize the already unappetizing subject of rigid body motion to an arbitrary number of dimensions? At first sight, the subject seems to be both repellent and superfluous. The author will try to argue that an approach involving no specific three-dimensional constructs is actually easier to grasp than the traditional approach and might thus be generally useful to understand rigid body motion both in three dimensions and in the general case. Specific differences between the viewpoint suggested here and the usual one include the following: here angular velocities are systematically treated as antisymmetric matrices, a symmetric tensor I quite different from the moment of inertia tensor plays a central role, whereas the latter is shown to be a far more complex object, namely a tensor of rank four. A straightforward way to define it is given. The Euler equation is derived and the use of Noether’s theorem to obtain conserved quantities is illustrated. Finally the equations of motion for a heavy top as well as for two bodies linked by a spherical joint are derived to display the simplicity and the power of the method.

  18. Unitary Qubit Representation of Quantum and Classical Turbulence

    NASA Astrophysics Data System (ADS)

    Vahala, George; Zhang, Bo; Vahala, Linda; Soe, Min

    2011-10-01

    A unitary qubit lattice algorithm, which scales almost perfectly to the full number of cores available (216000 cores on a CRAY XT5), is used to examine quantum turbulence and its interrelationship to classical turbulence with production runs on grids up to 57603. The maximal grids achievable by conventional CFD for quantum turbulence is just 20483, and artificial dissipation had to be introduced. Our unitary algorithms preserve the Hamiltonian structure of the Gross-Pitaevskii equation which describes quantum turbulence in a zero-temperature (BEC). As a result, parameter regimes have been uncovered which exhibit very short Poincare recurrence time, as well as a strong triple cascade structure in the kinetic energy spectrum, with small k-region obeying a Kolmogorov k - 5 / 3 spectrum The incompressible energy spectrum shows a k-3 spectrum for large-k, but a Saffman-like k-4 for smaller-k which is attributed to vorticity discontinuities. 2D and 3D turbulence is considered. These unitary qubit lattice algorithms are directly applicable to quantum computers.

  19. High frequency sound emission from moving point multipole sources embedded in arbitrary transversely sheared mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1982-01-01

    Formulas are derived for the high frequency sound emission from moving point multipole sources embedded in an arbitrary unidirectional transversely sheared mean flow. The results are used to study the sound generated by non-axisymmetric turbulent jets. The effect of the asymmetry in both the mean flow and the source distribution is accounted for by a 'circumferential directivity factor', which is easily calculated from the solution of a second order ordinary differential equation in the general case and from an explicit formula when the mean flow is symmetric but the source location is not. This factor is used to assess the potential of employing asymmetric velocity profiles that redirect the sound upward to reduce the noise radiation below the flight path of a jet aircraft.

  20. A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Nivarti, Girish V.; Salehi, M. Mahdi; Bushe, W. Kendal

    2015-01-01

    A space-filling curve (SFC) is a proximity preserving linear mapping of any multi-dimensional space and is widely used as a clustering tool. Equi-sized partitioning of an SFC ignores the loss in clustering quality that occurs due to inaccuracies in the mapping. Often, this results in poor locality within partitions, especially for the conceptually simple, Morton order curves. We present a heuristic that improves partition locality in arbitrary geometries by slicing a Morton order curve at points where spatial locality is sacrificed. In addition, we develop algorithms that evenly distribute points to the extent possible while maintaining spatial locality. A metric is defined to estimate relative inter-partition contact as an indicator of communication in parallel computing architectures. Domain partitioning tests have been conducted on geometries relevant to turbulent reactive flow simulations. The results obtained highlight the performance of our method as an unsupervised and computationally inexpensive domain partitioning tool.

  1. A controlled laboratory environment to study EO signal degradation due to underwater turbulence

    NASA Astrophysics Data System (ADS)

    Matt, Silvia; Hou, Weilin; Goode, Wesley; Liu, Guigen; Han, Ming; Kanaev, Andrey; Restaino, Sergio

    2015-05-01

    Temperature microstructure in the ocean can lead to localized changes in the index of refraction and can distort underwater electro-optical (EO) signal transmission. A similar phenomenon is well-known from atmospheric optics and generally referred to as "optical turbulence". Though turbulent fluctuations in the ocean distort EO signal transmission and can impact various underwater applications, from diver visibility to active and passive remote sensing, there have been few studies investigating the subject. To provide a test bed for the study of impacts from turbulent flows on underwater EO signal transmission, and to examine and mitigate turbulence effects, we set up a laboratory turbulence environment allowing the variation of turbulence intensity. Convective turbulence is generated in a large Rayleigh- Bénard tank and the turbulent flow is quantified using high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The turbulence measurements are complemented by computational fluid dynamics simulations of convective turbulence emulating the tank environment. These numerical simulations supplement the sparse laboratory measurements. The numerical data compared well to the laboratory data and both conformed to the Kolmogorov spectrum of turbulence and the Batchelor spectrum of temperature fluctuations. The controlled turbulence environment can be used to assess optical image degradation in the tank in relation to turbulence intensity, as well as to apply adaptive optics techniques. This innovative approach that combines optical techniques, turbulence measurements and numerical simulations can help understand how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as advance optical techniques to probe oceanic processes.

  2. Computation of large-scale statistics in decaying isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Chasnov, Jeffrey R.

    1993-01-01

    We have performed large-eddy simulations of decaying isotropic turbulence to test the prediction of self-similar decay of the energy spectrum and to compute the decay exponents of the kinetic energy. In general, good agreement between the simulation results and the assumption of self-similarity were obtained. However, the statistics of the simulations were insufficient to compute the value of gamma which corrects the decay exponent when the spectrum follows a k(exp 4) wave number behavior near k = 0. To obtain good statistics, it was found necessary to average over a large ensemble of turbulent flows.

  3. Plume rise, entrainment and dispersion in turbulent winds

    NASA Astrophysics Data System (ADS)

    Netterville, Dennett D. J.

    This paper describes a new analytical model which combines within one theoretical framework several aspects of the phenomena of plume rise, dispersion, thermal stratification and ambient turbulence. The model is based in part on knowledge gained from recent investigations of flow within free shear layers. The observations suggest a simple model for the turbulent mixing process, which accounts for the known entrainment of air into smoke plumes by plume-generated turbulence. More importantly, the model also predicts a path by which ambient turbulence causes reverse entrainment of plume material into the surrounding fluids. This gives rise to a new 'extrainment' term in each of the plume momentum and buoyancy equations. These equations are solved for a turbulent atmosphere of arbitrary thermal stability, and yield plume trajectories which gradually level off at final rise heights that depend on the degree of thermal stratification and on the scale and intensity of ambient turbulence. A link between plume rise and dispersion is identified by means of the concentration species equation, which is solved to show that the plume acts along its length as a distributed source of passively dispersing material. The new theory, specialized for an adiabatic atmosphere, plus the familiar x2/3 law and a semi-empirical final rise theory from the literature, are all compared against full-scale data on plume rise in turbulent winds. The new theory significantly improves the accuracy of estimates of plume trajectory and final plume height. The price for this improved predictive ability is the need to evaluate the air temperature and its gradient at plume level, and the corresponding intensity and scale of turbulent air movement. This is no longer a technical obstacle since recently developed SODAR and RASS remote sensors have this capability.

  4. MHD turbulent processes

    NASA Technical Reports Server (NTRS)

    Montgomery, David

    1988-01-01

    Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.

  5. Some comments on turbulence

    NASA Technical Reports Server (NTRS)

    Lumley, J. L.

    1992-01-01

    Consideration is given to the average dissipation of energy in unsteady turbulent flows, and to the way in which it is modeled. Some suggestions are made which place the customary models on a more rational basis and which lead to an improved model. Sample calculations with the improved model are presented. Philosophical comments are made about turbulence as a field, theoreticians, and other subjects.

  6. Transmission spectrum of an optical cavity containing N atoms

    SciTech Connect

    Leslie, Sabrina; Shenvi, Neil; Brown, Kenneth R.; Whaley, K. Birgitta; Stamper-Kurn, Dan M.

    2004-04-01

    The transmission spectrum of a high-finesse optical cavity containing an arbitrary number of trapped atoms is presented in the zero-temperature, low saturation limit. We take spatial and motional effects into account and show that in the limit of strong coupling, the important spectral features can be determined for an arbitrary number of atoms, N. We also show that these results have important ramifications in limiting our ability to determine the number of atoms in the cavity.

  7. Zombie Turbulence and More in Stratified Couette Flow

    NASA Astrophysics Data System (ADS)

    Marcus, Philip; Barranco, Joe; Pei, Suyang; Jiang, Chung-Hsiang

    2016-11-01

    Zombie turbulence occurs in rotating, shearing vertically-stratified flows such as stratified Couette flows. The turbulence is triggered by a neutrally-stable eigenmode with a critical layer receptive to finite-amplitude perturbations. Once excited, the critical layer becomes a vortex layer pair that rolls up into discrete vortices. Those vortices excite new critical layers, and the process repeats ad infinitum. When the vortex amplitudes become sufficiently large, the flow becomes turbulent. Although possessing a mid-range energy spectrum with E (k) k - 5 / 3 , the turbulence is non-Kolmogorov, highly anisotropic, and with large turbulent, but coherent, structures that retain the length scales of the spacing between the critical layers. The motivation for this study is protoplanetary disks (PPDs) where new stars form. In the PPD the Brunt-Vaisala frequency N increases as a function of distance from the midplane where it is zero. We cannot trigger the initial finite amplitude instability where N is small (close to the midplane). However, computations in PPDs and Couette flows show that zombie turbulence forms where N is large, and then a new type of turbulence, that is neither zombie nor Kolmogorov turbulence, fills in the remainder of the domain even where N = 0 .

  8. Hot-air turbulence generator for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Keskin, Onur; Jolissaint, Laurent; Bradley, Colin; Dost, Sadik; Sharf, Inna

    2003-12-01

    In this article, a simple low-cost, statistically repeatable, hot air optical turbulence generator based on the mixing of two air flows with different temperatures is described. Characterization results show that it is possible to create any turbulence strength up to CN2Δh ≍ 6 x 10-10 m1/3, allowing Fried's parameter as small as r0 ≍ 1.7 mm for one crossing through the turbulator or r0 ≍ 1.1 mm for two crossings. Outer scale of (L0 ≍ 133 +/- 60 mm) is found to be compatible to the turbulator chamber size (170 mm), and inner scale (l0 ≍ 7.6 mm +/- 3.8 mm) compatible with usual values measured by other authors for the free atmosphere. Power spectrum analysis of the centroid of the focused image shows a perfect and accurate agreement with Kolmogorov's theory, allowing to conclude that this device can be used with confidence to emulate good and easily controllable turbulence. In particular, this turbulator will be used with the MCAO test bench developed at the University of Victoria. By allowing two passes of the optical beam through the turbulator, without overlapping, two independent turbulent layers, set at equivalent altitudes of 5 and 15 km above the telescope entrance pupil, will be generated.

  9. Helicopter rotor noise due to ingestion of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.; Greitzer, E. M.

    1986-01-01

    A theoretical study was conducted to develop an analytical prediction method for helicopter main rotor noise due to the ingestion of atmospheric turbulence. This study incorporates an atmospheric turbulence model, a rotor mean flow contraction model and a rapid distortion turbulence model which together determine the statistics of the non-isotropic turbulence at the rotor plane. Inputs to the combined mean inflow and turbulence models are controlled by atmospheric wind characteristics and helicopter operating conditions. A generalized acoustic source model was used to predict the far field noise generated by the non-isotropic flow incident on the rotor. Absolute levels for acoustic spectra and directivity patterns were calculated for full scale helicopters, without the use of empirical or adjustable constants. Comparisons between isotropic and non-isotropic turbulence at the rotor face demonstrated pronounced differences in acoustic spectra. Turning and contraction of the flow for hover and low speed vertical ascent cases result in a 3 dB increase in the acoustic spectrum energy and a 10 dB increase in tone levels. Compared to trailing edge noise, turbulence ingestion noise is the dominant noise mechanism below approximately 30 rotor harmonics, while above 100 harmonics, trailing edge noise levels exceed turbulence ingestion noise by 25 dB.

  10. Turbulence Studies of a Rectangular Slotted Noise-Suppressor Nozzle

    NASA Technical Reports Server (NTRS)

    Laurence, James C.

    1960-01-01

    The problem of noise suppression of turbojet engines has shown a need for turbulence data within the flow field of various types of nozzles used in ad hoc investigations of the sound power. The result of turbulence studies in a nozzle configuration of four parallel rectangular slots is presented in this report with special attention to the effect of the spacing of the nozzles on the intensity of turbulence, scale of turbulence, spectrum of turbulence, and the mean stream velocity. Taylor's hypothesis, which describes the convection of the turbulence eddies, was tested and found correct within experimental error and certain experimental and theoretical limitations. The convection of the pressure patterns was also investigated, and the value of the convection velocity was found to be about 0.43 times the central core velocity of the jets. The effect of the spacing-to-width ratio of the nozzles upon the turbulence intensity, the scale of turbulence, and the spectral distribution of the noise was found in general to produce a maximum change for spacing-to-width ratios of 1.5 to 2.0. These changes may be the cause of the reduction in sound power reported for similar full-scale nozzles and test conditions under actual (static) engine operation. A noise reduction parameter is defined from Lighthill's theory which gives qualitative agreement with experiments which show the noise reduction is greatest for spacing-to-width ratios of 1.5 to 2.0.

  11. Multiplicative asset exchange with arbitrary return distributions

    NASA Astrophysics Data System (ADS)

    Moukarzel, Cristian F.

    2011-08-01

    The conservative wealth exchange process derived from trade interactions is modeled as a multiplicative stochastic transference of value, where each interaction multiplies the wealth of the poorest of the two intervening agents by a random gain η = 1 + κ, with κ a random return. Analyzing the kinetic equation for the wealth distribution P(w, t), general properties are derived for arbitrary return distributions π(κ). If the geometrical average of the gain is larger than one, i.e. if langlnηrangπ > 0, in the long time limit a nontrivial equilibrium wealth distribution P(w) is attained. Whenever langlnηrangπ < 0, on the other hand, wealth condensation occurs, meaning that a single agent gets the whole wealth in the long run. This concentration phenomenon happens even if the average return langκrangπ of the poor agent is positive. In the stable phase, P(w) behaves as w(T - 1) for w\\to 0 , and we find T exactly. This exponent is nonzero in the stable phase but goes to zero on approach to the condensation interface. The exact wealth distribution can be obtained analytically for the particular case of Kelly betting, and it turns out to be an exponential P(w) = e - w. We show, however, that our model is never reversible, no matter what π(κ) is. In the condensing phase, the wealth of an agent with relative rank x is found to be w(x, t) ~ extlanglnηrangπ for finite times t. The wealth distribution is consequently P(w) ~ 1/w for finite times, while all wealth ends up in the hands of the richest agent for large times. Numerical simulations are carried out and found to satisfactorily compare with the above-mentioned analytical results.

  12. Arbitrary Shape Deformation in CFD Design

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2014-01-01

    Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.

  13. Ion trajectory simulation for electrode configurations with arbitrary geometries.

    PubMed

    Wu, Guangxiang; Cooks, R Graham; Ouyang, Zheng; Yu, Meng; Chappell, William J; Plass, Wolfgang R

    2006-09-01

    A multi-particle ion trajectory simulation program ITSIM 6.0 is described, which is capable of ion trajectory simulations for electrode configurations with arbitrary geometries. The electrode structures are input from a 3D drawing program AutoCAD and the electric field is calculated using a 3D field solver COMSOL. The program CreatePot acts as interface between the field solver and ITSIM 6.0. It converts the calculated electric field into a field array file readable by ITSIM 6.0 and ion trajectories are calculated by solving Newton's equation using Runge-Kutta integration methods. The accuracy of the field calculation is discussed for the ideal quadrupole ion trap in terms of applied mesh density. Electric fields of several different types of devices with 3D geometry are simulated, including ion transport through an ion optical system as a function of pressure. Ion spatial distributions, including the storage of positively charged ions only and simultaneous storage of positively/negatively charged ions in commercial linear ion traps with various geometries, are investigated using different trapping modes. Inelastic collisions and collision induced dissociation modeled using RRKM theory are studied, with emphasis on the fragmentation of n-butylbenzene inside an ideal quadrupole ion trap. The mass spectrum of 1,3-dichlorobenzene is simulated for the rectilinear ion trap device and good agreement is observed between the simulated and the experimental mass spectra. Collisional cooling using helium at different pressures is found to affect mass resolution in the rectilinear ion trap.

  14. Elasto-inertial turbulence

    PubMed Central

    Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N.; Wagner, Christian; Hof, Björn

    2013-01-01

    Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called “maximum drag reduction” asymptote, which is exhibited by a wide range of viscoelastic fluids. PMID:23757498

  15. MHD turbulent mixing layers

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Benjamin, R.A.; Cho, J.; Leitner, S.N.

    2005-09-28

    Turbulent mixing layers have been proposed to explain observations of line ratios of highly ionized elements in the interstellar medium. We present preliminary results of numerical simulations of turbulent mixing layers in a magnetized medium. We developed a MHD code with radiative cooling. The magnetic field is expected to be a controlling factor by suppressing instabilities that lead to the turbulent mixing. Our results suggest that the difference in turbulent mixing in the unmagnetized case as compared to the case of a weak magnetic field, {beta} = Pgas/Pmag {approx} 10, is insignificant. With a more thorough exploration of parameter space, this work will provide more reliable diagnostics of turbulent mixing layers than those available today.

  16. Stochastic superparameterization in quasigeostrophic turbulence

    SciTech Connect

    Grooms, Ian; Majda, Andrew J.

    2014-08-15

    In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and

  17. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  18. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, S. J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  19. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    2011-01-01

    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  20. Scattering of radio frequency waves by turbulence in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.

    2016-10-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back

  1. Turbulent Flow Past Spinning Cylinders

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Carlucci, Donald; Carlucci, Pasquale; Thangam, Siva

    2009-11-01

    Flow past cylinders aligned along their axis where a base freely spins while attached to a non-spinning forebody is considered from a computational and experimental point of view. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. Experiments are performed for a range of spin rates and free stream flow conditions. The experimental results of Carlucci & Thangam (2001) are used to benchmark flow over spinning cylinders. The data is extended to munitions spinning in the wake of other munitions. Applications involving the design of projectiles are discussed.

  2. Verification of Gyrokinetic (delta)f Simulations of Electron Temperature Gradient Turbulence

    SciTech Connect

    Nevins, W M; Parker, S E; Chen, Y; Candy, J; Dimits, A; Dorland, W; Hammett, G W; Jenko, F

    2007-05-07

    The GEM gyrokinetic {delta}f simulation code [Chen, 2003] [Chen, 2007] is shown to reproduce electron temperature gradient turbulence at the benchmark operating point established in previous work [Nevins, 2006]. The electron thermal transport is within 10% of the expected value, while the turbulent fluctuation spectrum is shown to have the expected intensity and two-point correlation function.

  3. Optical Arbitrary Waveform Generation and Measurement Transmission Systems and Its Application to Flexible Bandwidth Networking

    NASA Astrophysics Data System (ADS)

    Geisler, David Jason

    The exponentially increasing demand for Internet bandwidth demands a bandwidth scalable optical network infrastructure. Next-generation flexible-bandwidth networks expect to operate over a broad bandwidth using arbitrary bandwidth channels in arbitrary modulation formats. These dynamically reconfigurable networks rely on optical transceivers capable of providing an efficient match between allocated bandwidth and demand while maximizing the achievable spectral efficiency. Implementing flexible-bandwidth networking at the physical layer, however, requires a technique for overcoming the electronic bottleneck and exploiting photonic device technology to create a bandwidth scalable transmission system. This dissertation focuses on the development of a flexible-bandwidth capable transmission system based on a dynamic optical arbitrary waveform generation (OAWG) and measurement (OAWM). Dynamic OAWG enables the generation of large bandwidth optical waveforms (>100-GHz) by coherently combining many lower bandwidth (<40-GHz) spectral slices together to form a contiguous bandwidth output. This technique operates by creating many spectral slices from a set of coherent comb lines using a parallel modulator structure. In a complementary fashion, OAWM allows for the measurement of large bandwidth optical signals by dividing a continuous spectrum into lower bandwidth (<40-GHz) spectral slices for parallel detection using a set of digital coherent receivers. Experimental demonstrations verify the bandwidth scalability of the dynamic OAWG technique, and show its ability to generate modulated data waveforms in arbitrary modulation formats without time-duration limitations. Additionally, dynamic OAWG/OAWM transmission system demonstrations show operation using multiple arbitrary bandwidth channels in arbitrary modulation formats, including both single- and multi-carrier formats. This work continues with flexible-bandwidth networking testbed demonstrations that leverage the versatility

  4. Inverse scattering problem in turbulent magnetic fluctuations

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang; Narita, Yasuhito

    2016-08-01

    We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand-Levitan-Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes advantage of a particular

  5. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  6. Beyond the Maltese Cross: Geometry of Turbulence Between 0.2 and 1 au

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland

    2016-11-01

    The spectral anisotropy of turbulent structures has been measured in the solar wind since 1990, relying on the assumption of axisymmetry about the mean magnetic field, B 0. However, several works indicate that this hypothesis might be partially wrong, thus raising two questions: (i) is it correct to interpret measurements at 1 au (the so-called Maltese cross) in term of a sum of slab and two-dimensional (2D) turbulence; and (ii) what information is really contained in the Maltese cross? We solve direct numerical simulations of the magnetohydrodynamic equations including the transverse stretching exerted by the solar wind flow and study the genuine 3D anisotropy of turbulence as well as that one resulting from the assumption of axisymmetry about B 0. We show that the evolution of the turbulent spectrum from 0.2 to 1 au depends strongly on its initial anisotropy. An axisymmetric spectrum with respect to B 0 keeps its axisymmetry, i.e., resists stretching perpendicular to radial, while an isotropic spectrum becomes essentially axisymmetric with respect to the radial direction. We conclude that close to the Sun, slow-wind turbulence has a spectrum that is axisymmetric around B 0 and the measured 2D component at 1 au describes the real shape of turbulent structures. In contrast, fast-wind turbulence has a more isotropic spectrum at the source and becomes radially symmetric at 1 au. Such structure is hidden by the symmetrization applied to the data that instead returns a slab geometry.

  7. Implementation and Validation of the BHR Turbulence Model in the FLAG Hydrocode

    SciTech Connect

    Denissen, Nicholas A.; Fung, Jimmy; Reisner, Jon M.; Andrews, Malcolm J.

    2012-08-29

    The BHR-2 turbulence model, developed at Los Alamos National Laboratory for variable density and compressible flows, is implemented in an Arbitrary Lagrangian-Eulerian hydrocode, FLAG. The BHR-2 formulation is discussed, with emphasis on its connection to multi-component flow formulations that underlie FLAG's treatment of multi-species flow. One-dimensional and two-dimensional validation tests are performed and compared to experiment and Eulerian simulations. Turbulence is an often studied and ubiquitous phenomenon in nature, and modeling its effects is essential in many practical applications. Specifically the behavior of turbulence in the presence of strong density gradients and compressibility is of fundamental importance in applications ranging from Inertial Confinement Fusion (ICF) [1], supernovae [2], and atmospheric flows. The BHR closure approach [3] seeks to model the physical processes at work in variable density turbulence including Kelvin-Helmholtz (KH) [4], Rayleigh-Taylor (RT) [5], and Richtmyer-Meshkov (RM) [6], driven turbulence. The effectiveness of the BHR-2 implementation has been demonstrated for variable density mixing in the KH, RT, and RM cases in an Eulerian framework [7]. The primary motivation of the present work is to implement the BHR-2 turbulence model in the Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code FLAG. The goal is not only to demonstrate results in agreement with previous Eulerian calculations, but also document behavior that arises from the underlying differences in code philosophy.

  8. Microwave beam power transmission at an arbitrary range

    NASA Technical Reports Server (NTRS)

    Pinero, L. R.; Christian, J. L., Jr.; Acosta, R. J.

    1992-01-01

    The power transfer efficiency between two circular apertures at an arbitrary range is obtained numerically. The apertures can have generally different sizes and arbitrary taper illuminations. The effects of distance and taper illumination on the transmission efficiency are investigated for equal size apertures. The result shows that microwave beam power is more effective at close ranges, namely distances less than 2D(exp 2)/lambda. Also shown was the power transfer efficiency increase with taper illumination for close range distances. A computer program was developed for calculating the power transfer efficiency at an arbitrary range.

  9. Conformal array design on arbitrary polygon surface with transformation optics

    SciTech Connect

    Deng, Li Hong, Weijun Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  10. Solving Einstein's Equation Numerically on Manifolds with Arbitrary Topologie

    NASA Astrophysics Data System (ADS)

    Lindblom, Lee

    2017-01-01

    This talk will summarize some of the numerical methods we have developed for solving Einstein's equation numerically on manifolds with arbitrary spatial topologies. These methods include the use of multi-cube representations of arbitrary manifolds, a convenient new way to specify the differential structure on multi-cube representations, and a new fully covariant first-order symmetric hyperbolic representation of Einstein's equation. Progress on the problem of constructing the ``reference metrics'' (which are an essential element of our numerical method) for arbitrary manifolds will be described, and numerical results will be presented for some example simulations.

  11. Turbulent scaling in fluids

    SciTech Connect

    Ecke, R.; Li, Ning; Chen, Shiyi; Liu, Yuanming

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a study of turbulence in fluids that are subject to different body forces and to external temperature gradients. Our focus was on the recent theoretical prediction that the Kolomogorov picture of turbulence may need to be modified for turbulent flows driven by buoyancy and subject to body forces such as rotational accelerations. Models arising from this research are important in global climate modeling, in turbulent transport problems, and in the fundamental understanding of fluid turbulence. Experimentally, we use (1) precision measurements of heat transport and local temperature; (2) flow visualization using digitally- enhanced optical shadowgraphs, particle-image velocimetry, thermochromic liquid-crystal imaging, laser-doppler velocimetry, and photochromic dye imaging; and (3) advanced image- processing techniques. Our numerical simulations employ standard spectral and novel lattice Boltzmann algorithms implemented on parallel Connection Machine computers to simulate turbulent fluid flow. In laboratory experiments on incompressible fluids, we measure probability distribution functions and two-point spatial correlations of temperature T and velocity V (both T-T and V-T correlations) and determine scaling relations for global heat transport with Rayleigh number. We also explore the mechanism for turbulence in thermal convection and the stability of the thermal boundary layer.

  12. Classical Vs. Superfluid Turbulence

    NASA Astrophysics Data System (ADS)

    Roche, P.-E.

    2008-11-01

    Thanks to a zero-viscosity, superfluids offer a unique testing ground for hydrodynamic models, in particular for turbulence ones. In Kolmogorov's turbulence model, viscosity is well known to damp the kinetic energy of the smallest eddies, and thus to introduce a cut-off at one end of the turbulent cascade. Significant differences between this ``classical'' turbulence and the turbulence of a superfluid are therefore expected, but --surprisingly- most experiments rather evidenced strong similarities. We will give an overview of a set of experiments designed to compare in details the classical versus superfluid turbulences, up to a record mass flow of superfluid (700g/s of He @ 1.6K). Then, we will focus on some unexpected vorticity measurements, which can be interpreted assuming that the superfluid vortices are passively advected by the largest scales of the flow, in contrast with the ``classical'' turbulence counterpart. Numerical simulations -based on regular DNS- will be presented to complete this interpretation. In collaboration with C. Barenghi, University of Newcastle; B. Castaing and E. Levèque, ENSL, Lyon; S. David, IEF, CNRS, Orsay; B. Rousset, SBT/CEA, Grenoble; and P. Tabeling, H. Willaime MMN, ESPCI, Paris.

  13. Edge turbulence in tokamaks

    NASA Astrophysics Data System (ADS)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  14. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  15. Wall turbulence control

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.

    1986-01-01

    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.

  16. Introducing the concept of anisotropy at different scales for modeling optical turbulence.

    PubMed

    Toselli, Italo

    2014-08-01

    In this paper, the concept of anisotropy at different atmospheric turbulence scales is introduced. A power spectrum and its associated structure function with inner and outer scale effects and anisotropy are also shown. The power spectrum includes an effective anisotropic parameter ζ(eff) to describe anisotropy, which is useful for modeling optical turbulence when a non-Kolmogorov power law and anisotropy along the direction of propagation are present.

  17. Statistics of intense turbulent vorticity events.

    PubMed

    Moriconi, L

    2004-08-01

    We investigate statistical properties of vorticity fluctuations in fully developed turbulence, which are known to exhibit a strong intermittent behavior. Taking as the starting point the Navier-Stokes equations with a random force term correlated at large scales, we obtain in the high Reynolds number regime a closed analytical expression for the probability distribution function of an arbitrary component of the vorticity field. The central idea underlying the analysis consists in the restriction of the velocity configurational phase-space to a particular sector where the rate of strain and the rotation tensors can be locally regarded as slow and fast degrees of freedom, respectively. This prescription is implemented along the Martin-Siggia-Rose functional framework, whereby instantons and perturbations around them are taken into account within a steepest-descent approach.

  18. Numerical Studies of Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi

    2017-09-01

    We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.

  19. Numerical Studies of Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi

    2017-07-01

    We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.

  20. Sequential recall of meaningful and arbitrary sequences by orangutans and human children: Does content matter?

    PubMed

    Renner, Elizabeth; Price, Elizabeth E; Subiaul, Francys

    2016-01-01

    Do visual cues such as size, color, and number facilitate sequential recall in orangutans and human children? In Experiment 1, children and adult orangutans solved two types of sequences, arbitrary (unrelated pictures) and meaningful (pictures varied along a spectrum according to the size, color, or number of items shown), in a touchscreen paradigm. It was found that visual cues did not increase the percentage of correct responses for either children or orangutans. In order to demonstrate that the failure to spontaneously seriate along these dimensions was not due to a general inability to perceive the dimensions nor to an inability to seriate items, in Experiment 2, orangutans were trained on one type of sequence and tested on novel sequences organized according to the same rule (i.e., pictures varied on the number spectrum only). The orangutans performed significantly better on novel meaningful sequences in this task than on novel arbitrary sequences. These results indicate that, while orangutans and human children share the ability to learn how to order items according to their size, color, or number, both orangutans and humans lack a cognitive propensity to spontaneously (i.e., without prior training or enculturation) order multiple items by size, color, or number.

  1. Turbulent current drive mechanisms

    NASA Astrophysics Data System (ADS)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  2. Turbulence and Global Properties of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2010-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations. The plasma in the magnetic tail of Earth's magnetosphere also shows aspects of turbulence, as does the plasma in the dayside magnetosphere near the poles the dayside cusps. Recently, new analyses of high time resolution magnetic field data from Cluster have offered a glimpse of how turbulence is dissipated, thus heating the ambient plasma.

  3. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  4. Macroscopic effects of the spectral structure in turbulent flows

    NASA Astrophysics Data System (ADS)

    Tran, Tuan; Chakraborty, Pinaki; Guttenberg, Nicholas; Prescott, Alisia; Kellay, Hamid; Goldburg, Walter; Goldenfeld, Nigel; Gioia, Gustavo

    2010-06-01

    There is a missing link between the macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. The turbulent spectrum is a power law of exponent α (the `spectral exponent') that gives the characteristic velocity of a turbulent fluctuation (or `eddy') of size s as a function of s (ref. 1). Here we seek the missing link by comparing the frictional drag in soap-film flows, where α=3 (refs 9, 10), and in pipe flows, where α=5/3 (refs 11, 12). For moderate values of the Reynolds number Re, we find experimentally that in soap-film flows the frictional drag scales as Re-1/2, whereas in pipe flows the frictional drag scales as Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum.

  5. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  6. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  7. Modelling wall pressure fluctuations under a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  8. Diff-invariant kinetic terms in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Villaseñor, Eduardo J.

    2002-06-01

    We study the physical content of quadratic diff-invariant Lagrangians in arbitrary dimensions by using covariant symplectic techniques. This paper extends previous results in dimension four. We discuss the difference between the even and odd dimensional cases.

  9. Spectra and statistics in compressible isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Jianchun; Gotoh, Toshiyuki; Watanabe, Takeshi

    2017-01-01

    Spectra and one-point statistics of velocity and thermodynamic variables in isotropic turbulence of compressible fluid are examined by using numerical simulations with solenoidal forcing at the turbulent Mach number Mt from 0.05 to 1.0 and at the Taylor Reynolds number Reλ from 40 to 350. The velocity field is decomposed into a solenoidal component and a compressible component in terms of the Helmholtz decomposition, and the compressible velocity component is further decomposed into a pseudosound component, namely, the hydrodynamic component associated with the incompressible field and an acoustic component associated with sound waves. It is found that the acoustic mode dominates over the pseudosound mode at turbulent Mach numbers Mt≥0.4 in our numerical simulations. At turbulent Mach numbers Mt≤0.4 , there exists a critical wave number kc beyond which the pseudosound mode dominates while the acoustic mode dominates at small wave numbers k spectrum scales as Mt4k-3 in the inertial range. It is also found that in the inertial range, the spectra of pressure, density, and temperature exhibit a k-7 /3 scaling for Mt≤0.3 and a k-5 /3 scaling for Mt≥0.5 .

  10. Inverse turbulent cascade in swarming sperm

    NASA Astrophysics Data System (ADS)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa; Plouraboue, Franck; Inra, Cnrs, Umr, F-37380 Nouzilly, France Team; Université de Toulouse, Inpt, Ups, Imft, Umr 5502, France Team

    2014-11-01

    Collective motion of self-sustained swarming flows has recently provided examples of small scale turbulence arising where viscosity effects are dominant. We report the first observation of an universal inverse enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of velocity field power-spectrum and relative dispersion of small beads consistent with theoretical predictions in two-dimensional turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures the size of which provides turbulence's integral scale. We propose a consistent explanation for this quasi-two-dimensional turbulence based on self-structured laminated flow forced by steric interaction and alignment, a state of active matter that we call ``swarming liquid crystal.'' We develop scaling arguments consistent with this interpretation. The implication of multi-scale collective dynamics of sperm's collective motility for fertility assessment is discussed. This work has been supported by the French Agence Nationale pour la Recherche (ANR) in the frame of the Contract MOTIMO (ANR-11-MONU-009-01). We thank Pierre Degond, Eric Climent, Laurent Lacaze and Frédéric Moulin for interesting discussions.

  11. Near isotropic behavior of turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Nath, Dinesh; Pandey, Ambrish; Kumar, Abhishek; Verma, Mahendra K.

    2016-10-01

    We investigate the anisotropy in turbulent convection in a three-dimensional (3D) box using direct numerical simulation. We compute the anisotropic parameter A =u⊥2/(2 u∥2) , where u⊥ and u∥ are the components of velocity perpendicular and parallel to the buoyancy direction, the shell and ring spectra, and shell-to-shell energy transfers. We observe that the flow is nearly isotropic for the Prandtl number Pr ≈1 , but the anisotropy increases with the Prandtl number. For Pr =∞ ,A ≈0.3 , anisotropy is not very significant even in extreme cases. We also observe that u∥ feeds energy to u⊥ via pressure. The computation of shell-to-shell energy transfers reveals that the energy transfer in turbulent convection is local and forward, similar to hydrodynamic turbulence. These results are consistent with the Kolmogorov's spectrum observed by Kumar et al. [Phys. Rev. E 90, 023016 (2014), 10.1103/PhysRevE.90.023016] for turbulent convection.

  12. Computation of beam propagation in turbulent field

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Cen, Zhaofeng; Li, Xiaotong

    2016-10-01

    The split-step Fourier method (SSFM) is introduced to analyze the beam propagation in a relatively large-sized turbulent filed, whose refractive-index profile is already detected. The numerical method is achieved by fast Fourier transform (FFT).To obtain the optimal sampling number, we propose an adaptive spread-spectrum method as an optimization. The SSFM is widely used for solving the nonlinear Schrödinger equation [1].The advantage of the SSFM is apparently its simple formalism and suitability to our situation. The direct numerical solution of the Helmholtz equation, derived from this method, yields detailed information of the spatial and angular properties of the propagation beam. On the other hand, a set of approximations restrict its applicability, the requirements for the accurate application of the method are summarized and a set of formulas is generalized in this paper. The efficiency of the SSFM depends on the sampling number, the adaptive spread-spectrum method yields optimal sampling number to increase the computational efficiency .To testify the accuracy of our algorithm, we use graded-index medium as the turbulent filed, for the reason that the beam propagation in turbulent field with random refractive-index profile is ruleless and has no unified reference. The simulation result testifies our algorithm is tremendously accurate, capable of selecting the optimal N automatically and much more computationally efficient than the original algorithm.

  13. Universal constants and equations of turbulent motion

    NASA Astrophysics Data System (ADS)

    Baumert, Helmut

    2011-11-01

    For turbulence at high Reynolds number we present an analogy with the kinetic theory of gases, with dipoles made of vortex tubes as frictionless, incompressible but deformable quasi-particles. Their movements are governed by Helmholtz' elementary vortex rules applied locally. A contact interaction or ``collision'' leads either to random scatter of a trajectory or to the formation of two likewise rotating, fundamentally unstable whirls forming a dissipative patch slowly rotating around its center of mass, the latter almost at rest. This approach predicts von Karman's constant as 1/sqrt(2 pi) = 0.399 and the spatio-temporal dynamics of energy-containing time and length scales controlling turbulent mixing [Baumert 2005, 2009]. A link to turbulence spectra was missing so far. In the present contribution it is shown that the above image of dipole movements is compatible with Kolmogorov's spectra if dissipative patches, beginning as two likewise rotating eddies, evolve locally into a space-filling bearing in the sense of Herrmann [1990], i.e. into an ``Apollonian gear.'' Its parts and pieces are are frictionless, excepting the dissipative scale of size zero. Our approach predicts the dimensionless pre-factor in the 3D Eulerian wavenumber spectrum (in terms of pi) as 1.8, and in the Lagrangian frequency spectrum as the integer number 2. Our derivations are free of empirical relations and rest on geometry, methods from many-particle physics, and on elementary conservation laws only. Department of the Navy Grant, ONR Global

  14. Lagrangian turbulence and the Brownian motion paradox

    NASA Astrophysics Data System (ADS)

    Viecelli, J. A.

    1991-11-01

    The unique properties of three-dimensional hydrodynamic turbulence depend on the nature of the long-range time correlations as well as the spatial correlations. Although Kolmogorov's second similarity hypothesis predicts a power-law spatial scaling exponent for the Eulerian velocity fluctuations in agreement with experiments, it also leads, via the Lagrangian velocity time structure function relationship, to particle dispersion predictions that are inconsistent with enhanced diffusion. Recently, a new computational technique has been developed which can generate random power-law correlated fields in any number of dimensions with unlimited scale range. This new method is used to explore the consequences of a proposed set of assumptions about the nature of the time correlations and their relationship to the spatial correlations. In particular, the Brownian motion paradox is examined and it is shown that it can be resolved if the time domain constraint part of Kolmogorov's second hypothesis is relaxed and replaced with an assumption of space-time isotropy. The proposed modification preserves the observed one-dimensional k-5/3 spatial energy spectrum, allows for enhanced diffusion consistent with Richardson's law, is consistent with Taylor's frozen turbulence assumption under the appropriate conditions, and yields an ω-5/3 frequency spectrum for the velocity fluctuations in a frame at rest with respect to the turbulence.

  15. Closed description of arbitrariness in resolving quantum master equation

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.

  16. RF arbitrary waveform generation using tunable planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Samadi, P.; Chen, L. R.; Callender, C.; Dumais, P.; Jacob, S.; Celo, D.

    2011-07-01

    We demonstrate photonically-assisted generation of RF arbitrary waveforms using planar lightwave circuits (PLCs) fabricated on silica-on-silicon. We exploit thermo-optic effects in silica in order to tune the response of the PLC and hence reconfigure the generated waveform. We demonstrate the generation of pulse trains at 40 GHz and 80 GHz with flat-top, Gaussian, and apodized profiles. These results demonstrate the potential for RF arbitrary waveform generation using chip-scale photonic solutions.

  17. Skin effect with arbitrary specularity in Maxwellian plasma

    SciTech Connect

    Latyshev, A. V.; Yushkanov, A. A.

    2010-11-15

    The problem of the skin effect with arbitrary specularity in Maxwellian plasma with specular-diffuse boundary conditions is solved. A new analytical method is developed that makes it possible to obtain a solution up to an arbitrary degree of accuracy. The method is based on the idea of symmetric continuation of not only the electric field, but also electron distribution function. The solution is obtained in a form of von Neumann series.

  18. Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties

    SciTech Connect

    Reid, M. T. Homer; White, Jacob; Johnson, Steven G.

    2011-07-15

    We extend a recently introduced method for computing Casimir forces between arbitrarily shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett. 103 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface-surface separation at which finite-size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  19. Containerless Ripple Turbulence

    NASA Astrophysics Data System (ADS)

    Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles

    2002-11-01

    One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear

  20. Inflow Turbulence Generation Methods

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua

    2017-01-01

    Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.

  1. Containerless Ripple Turbulence

    NASA Technical Reports Server (NTRS)

    Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles

    2002-01-01

    One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear

  2. Turbulent flow through screens

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1984-01-01

    A detailed experimental investigation has been carried out on the effects of different types of screens on turbulent flow, in particular turbulent boundary layers. The effect of a screen on a turbulent boundary layer is to give it a 'new lease of life'. The boundary layer turbulence is reorganized and the thickness reduced, thus making it less susceptible to separation. The aerodynamic properties of plastic screens are found to differ significantly from those of the conventional metal screens, evidently because of differences in the weaving properties. The 'overshoot' in mean velocity profile near the boudnary layer edge is shown to be a result of the effect of screen inclination on pressure drop coefficient. A more accurate formulation for the deflection coefficient of a screen is also proposed.

  3. Vortex annihilation and inverse cascades in two dimensional superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Chesler, Paul M.

    2015-03-01

    The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.

  4. RF wave propagation and scattering in turbulent tokamak plasmas

    SciTech Connect

    Horton, W. Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  5. NON-LOCALITY OF HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Cho, Jungyeon

    2010-12-20

    We compare non-locality of interactions between different scales in hydrodynamic (HD) turbulence and magnetohydrodynamic (MHD) turbulence in a strongly magnetized medium. We use three-dimensional incompressible direct numerical simulations to evaluate non-locality of interactions. Our results show that non-locality in MHD turbulence is much more pronounced than that in HD turbulence. Roughly speaking, non-local interactions count for more than 10% of total interactions in our MHD simulation on a grid of 512{sup 3} points. However, there is no evidence that non-local interactions are important in our HD simulation with the same numerical resolution. We briefly discuss how non-locality affects the energy spectrum.

  6. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  7. Spectral characteristics of interchange turbulence in the ionosphere. Memorandum report

    SciTech Connect

    Hassam, A.B.; Hall, W.; Huba, J.D.; Keskinen, M.J.

    1986-10-22

    The spectral characteristics of turbulence associated with the magnetized-plasma Rayleigh-Taylor instability in the presence of a background neutral gas are studied. Particular attention is paid to comparing the spectra obtained in the ion-neutral collision-dominated case with the spectra from the ion inertia-dominated case. A saturated level of turbulence is obtained for a model system confined between conducting boundaries with an imposed density gradient between the boundaries. The potential spectrum in the collisional case shows a marked anisotropy in contrast to that in the inertial case which is isotropic and exhibits Kolmogorov scaling. The anisotropy in the collisional case is attributed to the viscous nature of the turbulence and the consequent suppression of inertial overshoots. Application of these results to ionospheric turbulence is discussed.

  8. On the Development of Turbulent Wakes from Vortex Streets

    NASA Technical Reports Server (NTRS)

    Roshko, Anatol

    1954-01-01

    Wake development behind circular cylinders at Reynolds numbers from 40 to 10,000 was investigated in a low-speed wind tunnel. Standard hot-wire techniques were used to study the velocity fluctuations. The Reynolds number range of periodic vortex shedding is divided into two distinct subranges. At r=40 to 150, called the stable range, regular vortex streets are formed and no turbulent velocity fluctuations accompany the periodic formation of vortices. The range r=150 to 300 is a transition range to a regime called the irregular range, in which turbulent velocity fluctuations accompany the periodic formation of vortices. The turbulence is initiated by laminar-turbulent transition in the free layers which spring from the separation points on the cylinder. The transition first occurs in the range r=150 to 300. Spectrum and statistical measurements were made to study the velocity fluctuations.

  9. Turbulence near thunderstorm tops

    NASA Technical Reports Server (NTRS)

    Lester, Peter F.

    1993-01-01

    For several years, scientists at San Jose State University, NASA-Ames, and the University of Arizona have carried out cooperative research programs to understand the causes and effects of severe turbulence. The primary sources of data for this work are Digital Flight Data Recorder (DFDR) tapes from airliners that have been involved in turbulence incidents. A significant result of the analysis of these data has been the identification and quantification of the turbulence causes. Turbulence signatures include breaking Kelvin-Helmholtz waves, large amplitude mountain lee waves, turbulence in and around thunderstorms, and maneuvering. The requirements that must be met for a turbulence incident to be included in the NASA study are rather straightforward: (1) severe or greater turbulence must have been reported (usually with passenger injuries) and (2) the flight data tapes must be available. Despite these rather general criteria, and the fact that our cases are drawn from a wide geographical area over the U.S. and the Atlantic Ocean, we have found an interesting bias in our sample. Of 12 cases at cruise altitude, four were definitely associated with thunderstorms and two are suspected thunderstorm cases. The others were due to mountain waves, CAT, high level windshear/maneuvering, or to causes not yet determined. Although our sample is small, these numbers have raised several questions, not the least of which are: How pervasive is the problem of aircraft encounters with severe turbulence in or near thunderstorm tops (TNTT)? Given the available visible and radar evidence of thunderstorms, Why do such incidents occur? Can anything be done to allevaite the problem? This paper outlines some very preliminary efforts to answer these questions. In the following sections, physical and statistical characteristics of TNTT are discussed (Section 2), TNTT causes are summarized (Section 3), current recommendations for TNTT avoidance are reviewed (Section 4), and some suggestions to

  10. Turbulence control by intake

    NASA Astrophysics Data System (ADS)

    Pailhas, G.

    1991-01-01

    Results from the first part of an experimental study aimed at establishing the effects of a local intake by slots on a turbulent boundary layer are reported. Measurements were taken on the wall of a test vein of an Eiffel type wind tunnel. Results show that a local wall intake leads to a significant decrease of deflection type fluctuations of longitudinal velocity in the internal region of the boundary layer region where the turbulent production is maximum.

  11. Turbulence Heating Observer - Thor

    NASA Astrophysics Data System (ADS)

    Retino, A.; Vaivads, A.; Escoubet, C. P.; Khotyaintsev, Y. V.; Soucek, J.; Valentini, F.; Chen, C. H. K.; Fazakerley, A. N.; Lavraud, B.; Marcucci, M. F.; Narita, Y.; Vainio, R. O.; Gehler, M.; Voirin, T.; Wielders, A.; Boudin, N.; Osuna, P.

    2016-12-01

    Turbulent fluctuations are ubiquitous in astrophysical plasmas and reach up scales as large as stars, bubbles and clouds blown out by stellar winds as well as entire galaxies. However, most of the irreversible energy dissipation associated to turbulent fluctuations occurs at very small scales, the so-called kinetic scales, where the plasma no longer behaves as a fluid and the properties of individual plasma species (electrons, protons, and other ions) become important. The heating of different plasma species as well as the acceleration of particles to high energies are governed by kinetic processes which determine how the turbulent electromagnetic fluctuations dissipate. Thus, processes at kinetic scales directly affect the large-scale properties of astrophysical plasmas. Turbulence Heating ObserveR (THOR) is one of the three candidates for selection as the next ESA M-class mission (M4). THOR will be the first mission ever flown in space that is fully dedicated to study plasma turbulent fluctuations and associated energization mechanisms. It will explore the kinetic plasma processes that determine the fundamental behavior of the majority of baryonic matter in the universe, and will lead to an understanding of the basic plasma heating and particle acceleration mechanisms, of their effect on different plasma species and of their relative importance in different turbulent regimes. THOR will provide closure of these fundamental questions by making detailed in situ measurements of the closest available dilute and turbulent magnetized plasmas - the Near-Earth's space - at unprecedented temporal and spatial resolution. THOR focuses on particular regions in space: the pristine solar wind, the Earth's bow shock and interplanetary shocks, and the compressed solar wind regions downstream of shocks. These regions are selected because of their different turbulence properties and reflect the properties of a number of distant astrophysical environments. Here we present THOR

  12. Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    2005-01-01

    For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to the free stream turbulence viscosity limit, the reference Reynolds number and the angle of attack, but not to background turbulence intensity below a certain threshold value. The computed results showed encouraging agreements with the experimental measurements at the corresponding geometry and flow conditions.

  13. The decay of isotropic turbulence in a rapidly rotating frame

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.; Mansour, N. N.; Rogallo, R. S.

    1987-01-01

    A direct numerical simulation of the decay of initially isotropic turbulence in a rapidly rotating frame was conducted. This 128 x 128 x 128 simulation was completed for a Reynolds number Re sub lambda = 15.3 and a Rossby number Ro sub lambda = 0.07 based on the initial turbulent kinetic energy and Taylor microscale. The numerical results indicate that the turbulence remains essentially isotropic during the major part of the decay (i.e., beyond the point where the turbulent kinetic energy has decayed to less than 10 percent of its initial value). The rapid rotation has the primary effect of shutting off the energy transfer so that the turbulence dissipation (and hence the rate of decay of the turbulent kinetic energy) is substantially reduced. Consequently, the anisotropy tensor remains essentially unchanged while the energy spectrum undergoes a nearly linear viscous decay (the same results that are predicted by Rapid Distortion Theory which is only formally valid for much shorter elapsed times. Surprisingly, no Taylor-Proudman reorganization of the flow to a two-dimensional state is observed. The implications that these results have on turbulence modeling are discussed briefly along with prospective future research.

  14. Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients

    NASA Technical Reports Server (NTRS)

    Frenkiel, Francois N.

    1958-01-01

    In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.

  15. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    SciTech Connect

    Wang, W. X.; Diamond, P. H.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.

    2010-07-07

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E × B shear. The ITG turbulence driven “intrinsic” torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by “intrinsic” torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a “flow pinch” in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  16. Charge pariticle transport in the non-isotropic turbulences

    NASA Astrophysics Data System (ADS)

    Sun, P.; Jokipii, J. R.

    2015-12-01

    The scattering and diffusion of energetic charged particles is not only important for understanding phenomena such as diffusive shock acceleration but it also is a natural probe of the statistical characteristics of magnetohydrodynamic (MHD) turbulence. Although Parker's transport equation (Parker 1965) allows us to describe the propagation of charged particles, the transport coefficients needed in the equation must be determined. Using Quasi-Linear Theory (QLT, e.g. Jokipii (1966)), one finds that coefficients can be related to the correlation function or power spectrum of homogeneous magnetic turbulence. However, different turbulence models will generally have a different influence on particle's scattering and diffusion. Among those models developed in MHD Turbulence, such as isotropic, Slab plus 2D (Tu & Marsch 1993; Gray et al 1996; Bieber et al 1996), etc. Here, using test-particle orbit simulations to calculate the transport coefficients, we study particle transport in synthesized asymmetric turbulence using the form first proposed by Goldreich & Sridhar (1995). We developed and introduce a systematic method to synthesize scale-dependent non-isotropic magnetic turbulences. We also developed and introduce a method to synthesize the 3d turbulent magnetic field from the observed solar wind time series dataset. We present the comparison of their effects on charge particle transport with previous theories and models.

  17. Flavor evolution of supernova neutrinos in turbulent matter

    SciTech Connect

    Lund, Tina; Kneller, James P.

    2014-01-01

    The neutrino signal from the next galactic supernova carries with it an enormous amount of information on the explosion mechanism of a core-collapse supernova, as well as on the stellar progenitor and on the neutrinos themselves. In order to extract this information we need to know how the neutrino flavor evolves over time due to the interplay of neutrino self-interactions and matter effects. Additional turbulence in the supernova matter may impart its own signatures on the neutrino spectrum, and could partly obscure the imprints of collective and matter effects. We investigate the neutrino flavor evolution due to neutrino self-interactions, matter effects due to the shock wave propagation, and turbulence in three progenitors with masses of 8.8 M⊙, 10.8 M⊙ and 18.0 M⊙. In the lightest progenitor we find that the impact of moderate turbulence of the order 10% is limited and occurs only briefly early on. This makes the signatures of collective and matter interactions relatively straightforward to interpret. Similarly, with moderate turbulence the two heavier progenitors exhibit only minor changes in the neutrino spectrum, and collective and matter signatures persists. However, when the turbulence is increased to 30% and 50% the high density matter resonance features in the neutrino spectrum get obscured, while new features arise in the low density resonance channel and in the non-resonant channels. We conclude that with moderate amounts of turbulence spectral features of collective and matter interactions survive in all three progenitors. For the larger amounts of turbulence in the 10.8 M⊙ and 18.0 M⊙ progenitor new features arise, as others disappear.

  18. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  19. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1982-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

  20. Perturbing turbulence beyond collapse

    NASA Astrophysics Data System (ADS)

    Kühnen, Jakob; Scarselli, Davide; Hof, Björn; Nonlinear Dynamics; Turbulence Group Team

    2016-11-01

    Wall-bounded turbulent flows are considered to be in principle stable against perturbations and persist as long as the Reynolds number is sufficiently high. We show for the example of pipe flow that a specific perturbation of the turbulent flow field disrupts the genesis of new turbulence at the wall. This leads to an immediate collapse of the turbulent flow and causes complete relaminarisation further downstream. The annihilation of turbulence is effected by a steady manipulation of the streamwise velocity component only, greatly simplifying control efforts which usually require knowledge of the highly complex three dimensional and time dependent velocity fields. We present several different control schemes from laboratory experiments which achieve the required perturbation of the flow for total relaminarisation. Transient growth, a linear amplification mechanism measuring the efficiency of eddies in redistributing shear that quantifies the maximum perturbation energy amplification achievable over a finite time in a linearized framework, is shown to set a clear-cut threshold below which turbulence is impeded in its formation and thus permanently annihilated.

  1. Anisotropic Particles in Turbulence

    NASA Astrophysics Data System (ADS)

    Voth, Greg A.; Soldati, Alfredo

    2017-01-01

    Anisotropic particles are common in many industrial and natural turbulent flows. When these particles are small and neutrally buoyant, they follow Lagrangian trajectories while exhibiting rich orientational dynamics from the coupling of their rotation to the velocity gradients of the turbulence field. This system has proven to be a fascinating application of the fundamental properties of velocity gradients in turbulence. When particles are not neutrally buoyant, they experience preferential concentration and very different preferential alignment than neutrally buoyant tracer particles. A vast proportion of the parameter range of anisotropic particles in turbulence is still unexplored, with most existing research focusing on the simple foundational cases of axisymmetric ellipsoids at low concentrations in homogeneous isotropic turbulence and in turbulent channel flow. Numerical simulations and experiments have recently developed a fairly comprehensive picture of alignment and rotation in these cases, and they provide an essential foundation for addressing more complex problems of practical importance. Macroscopic effects of nonspherical particle dynamics include preferential concentration in coherent structures and drag reduction by fiber suspensions. We review the models used to describe nonspherical particle motion, along with numerical and experimental methods for measuring particle dynamics.

  2. Characterizing glottal jet turbulence.

    PubMed

    Alipour, Fariborz; Scherer, Ronald C

    2006-02-01

    Air pressure associated with airflow from the lungs drives the vocal folds into oscillation and allows the air to exit the glottis as a turbulent jet, even though laminar flow may enter the glottis from the trachea. The separation of the turbulence from the deterministic portion of the glottal jet was investigated in the excised canine larynx model. The present study is methodological in that the main goal was to examine three methods of obtaining reasonable representations of both the deterministic signal and the residual turbulence portion: (a) smoothing, (b) wavelet denoising, and (c) ensemble averaging. Ensemble averaging resulted in a deterministic signal that disregarded gross cyclic alterations while exaggerating the turbulence intensity. Wavelet denoising can perform an excellent analysis and synthesis of the glottal velocity, but was problematic in determining which levels of analysis to choose to represent both the deterministic and turbulence appropriately. Smoothing appeared to be the most appropriate for phonation velocities because it preserved gross cyclic variations important to perturbations and modulations, while extracting turbulence at what appears to be reasonable levels.

  3. Turbulent current drive

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2014-11-01

    The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.

  4. COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS

    SciTech Connect

    Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan; Schlickeiser, Reinhard

    2015-09-20

    Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  5. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  6. General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance.

    PubMed

    Toselli, Italo; Korotkova, Olga

    2015-06-01

    We generalize a recently introduced model for nonclassic turbulent spatial power spectrum involving anisotropy along two mutually orthogonal axes transverse to the direction of beam propagation by including two scale-dependent weighting factors for these directions. Such a turbulent model may be pertinent to atmospheric fluctuations in the refractive index in stratified regions well above the boundary layer and employed for air-air communication channels. When restricting ourselves to an unpolarized, coherent Gaussian beam and a weak turbulence regime, we examine the effects of such a turbulence type on the OOK FSO link performance by including the results on scintillation flux, probability of fade, SNR, and BERs.

  7. Reducing global turbulent resistivity by eliminating large eddies in a spherical liquid-sodium experiment.

    PubMed

    Kaplan, E J; Clark, M M; Nornberg, M D; Rahbarnia, K; Rasmus, A M; Taylor, N Z; Forest, C B; Spence, E J

    2011-06-24

    Three-wave turbulent interactions and the role of eddy size on the turbulent electromotive force are studied in a spherical liquid-sodium dynamo experiment. A symmetric, equatorial baffle reduces the amplitude of the largest-scale turbulent eddies, which is inferred from the magnetic fluctuations spectrum (measured by a 2D array of surface probes). Differential rotation in the mean flow is >2 times more effective in generating mean toroidal magnetic fields from the applied poloidal field (via the Ω effect) when the largest-scale eddies are eliminated, thus demonstrating that the global turbulent resistivity (the β effect from the largest-scale eddies) is reduced by a similar amount.

  8. The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence

    SciTech Connect

    Newman, David E.

    1993-09-01

    Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics.

  9. A small-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1993-01-01

    A previously derived analytical model for the small-scale structure of turbulence is reformulated in such a way that the energy spectrum may be computed. The model is an ensemble of two-dimensional (2D) vortices with internal spiral structure, each stretched by an axially symmetric strain flow. Stretching and differential rotation produce an energy cascade to smaller scales in which the stretching represents the effect of instabilities and the spiral structure is the source of dissipation at the end of the cascade. The energy spectrum of the resulting flow may be expressed as a time integration involving only the enstrophy spectrum of the time evolving 2D cross section flow, which may be obtained numerically. Examples are given in which a k exp -5/3 spectrum is obtained by this method. The k exp -5/3 inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the 2D enstrophy spectrum. The results are found to be insensitive to time dependence of the strain rate, including even intermittent on-or-off strains.

  10. Matter-wave turbulence: Beyond kinetic scaling

    NASA Astrophysics Data System (ADS)

    Scheppach, Christian; Berges, Jürgen; Gasenzer, Thomas

    2010-03-01

    Turbulent scaling phenomena are studied in an ultracold Bose gas away from thermal equilibrium. Fixed points of the dynamical evolution are characterized in terms of universal scaling exponents of correlation functions. The scaling behavior is determined analytically in the framework of quantum field theory, using a nonperturbative approximation of the two-particle irreducible effective action. While perturbative Kolmogorov scaling is recovered at higher energies, scaling solutions with anomalously large exponents arise in the infrared regime of the turbulence spectrum. The extraordinary enhancement in the momentum dependence of long-range correlations could be experimentally accessible in dilute ultracold atomic gases. Such experiments have the potential to provide insight into dynamical phenomena directly relevant also in other present-day focus areas like heavy-ion collisions and early-universe cosmology.

  11. Lagrangian measurement in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Pinton, J.-F.; Michel, O.; Mordant, N.; Metz, P.

    2002-07-01

    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rlambda = 1200. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentz form EL(omega = urms2TL/(1 + (TLomega2, in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.

  12. Lagrangian measurement in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Mordant, N.; Metz, P.; Pinton, J.-F.; Michel, O.

    2002-07-01

    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rλ = 1200. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentz form EL(ω) = urms2TL/(1 + (TLω)2), in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.

  13. Turbulent Flow Past Projectiles: A Computational Investigation

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Carlucci, Donald; Buckley, Liam; Carlucci, Pasquale; Thangam, Siva

    2010-11-01

    Projectiles with free spinning bases are often used for smart munitions to provide effective control, stability and terminal guidance. Computational investigations are performed for flow past cylinders aligned along their axis where a base freely spins while attached to and separated at various distances from a non-spinning fore-body. The energy spectrum is modified to incorporate the effects of swirl and rotation using a parametric characterization of the model coefficients. An efficient finite-volume algorithm is used to solve the time-averaged equations of motion and energy along with the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation. Computations are performed for both rigid cylinders as well as cylinders with free-spinning bases. Experimental data for a range of spin rates and free stream flow conditions obtained from subsonic wind tunnel with sting-mounted spinning cylinders is used for validating the computational findings.

  14. Multifractal energy exchange between gravity waves and turbulence in an upper tropospheric front

    NASA Astrophysics Data System (ADS)

    Koch, Steven

    2014-05-01

    Intermittent generation of strong turbulence measured by reconnaissance aircraft occurred in association with a wide spectrum of upward propagating gravity waves above the core of an upper level jet stream. The turbulence generation process could be described as an energy cascade process, initiated as gravity-inertia waves were produced in a region of diagnosed unbalanced upper-level frontogenesis near a tropopause fold. High resolution numerical weather prediction model forecasts produced bimodal waves with dominant wavelengths of 120-216 km and 1-20 km, the latter of which perturbed the atmosphere to create conditions conducive to turbulence generation. Cross spectral, wavelet transformation, and polarization analysis of the in situ aircraft data allowed unambiguous determination of the presence of the spectrum of gravity waves, reconstruction of the waves' evolving character, and identification of intermittent wave packets. Introduction of wavelet cross spectrum into the Stokes parameter theory shed light on how turbulence production was intimately related to increasing levels of polarization, only to be followed by sudden reduction of polarization as turbulence arose. Wavelet and structure function analysis indicated that episodes of high turbulent kinetic energy were the result of upscale feedback effects ("inverse energy cascade" processes linked to wave breaking). The bi-fractal nature of the gravity waves and turbulence suggest new approaches for parameterizing sub grid-scale effects caused by the interaction of waves and turbulence in numerical models.

  15. Turbulent Flow and Large Surface Wave Events in the Marine Boundary Layers

    DTIC Science & Technology

    2009-01-01

    of our base LES code and developing an al­ gorithm to allow simulations of turbulent winds over nearly arbitrary 3- D wave fields. APPROACH We plan on...technical advance is the development of a computational tool that allows for nearly arbitrary 3- D wave fields, i.e., the sea surface elevation h = h...enforce mass conservation by iteratively solving (n+1) (n)�2 �2 D p = D p + 1 �· U(n) , (4) Δtγ for the pressure p. In (4), n is the iteration index

  16. Imbalanced magnetohydrodynamic turbulence modified by velocity shear in the solar wind

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.; Voitenko, Y. M.

    2016-11-01

    We study incompressible imbalanced magnetohydrodynamic turbulence in the presence of background velocity shears. Using scaling arguments, we show that the turbulent cascade is significantly accelerated when the background velocity shear is stronger than the velocity shears in the subdominant Alfvén waves at the injection scale. The spectral transport is then controlled by the background shear rather than the turbulent shears and the Tchen spectrum with spectral index -1 is formed. This spectrum extends from the injection scale to the scale of the spectral break where the subdominant wave shear becomes equal to the background shear. The estimated spectral breaks and power spectra are in good agreement with those observed in the fast solar wind. The proposed mechanism can contribute to enhanced turbulent cascades and modified -1 spectra observed in the fast solar wind with strong velocity shears. This mechanism can also operate in many other astrophysical environments where turbulence develops on top of non-uniform plasma flows.

  17. Universal equations and constants of turbulent motion

    NASA Astrophysics Data System (ADS)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  18. Dynamic balance in turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Higashimori, K.; Hoshino, M.

    2012-12-01

    Dynamic balance between the enhancement and suppression of transports due to turbulence in magnetic reconnection is discussed analytically and numerically by considering the interaction of the large-scale field structures with the small-scale turbulence in a consistent manner. Turbulence is expected to play an important role in bridging small and large scales related to magnetic reconnection. The configurations of the mean-field structure are determined by turbulence through the effective transport. At the same time, statistical properties of turbulence are determined by the mean-field structure through the production mechanisms of turbulence. This suggests that turbulence and mean fields should be considered simultaneously in a self-consistent manner. Following the theoretical prediction on the interaction between the mean-fields and turbulence in magnetic reconnection presented by Yokoi and Hoshino (2011), a self-consistent model for the turbulent reconnection is constructed. In the model, the mean-field equations for compressible magnetohydrodynamics are treated with the turbulence effects incorporated through the turbulence correlation such as the Reynolds stress and turbulent electromotive force. Transport coefficients appearing in the expression for these correlations are not adjustable parameters but are determined through the transport equations of the turbulent statistical quantities such as the turbulent MHD energy, the turbulent cross helicity. One of the prominent features of this reconnection model lies in the point that turbulence is not implemented as a prescribed one, but the generation and sustainment of turbulence through the mean-field inhomogeneities are treated. The theoretical predictions are confirmed by the numerical simulation of the model equations. These predictions include the quadrupole cross helicity distribution around the reconnection region, enhancement of reconnection rate due to turbulence, localization of the reconnection region

  19. Wave turbulence in shallow water models

    NASA Astrophysics Data System (ADS)

    Clark di Leoni, P.; Cobelli, P. J.; Mininni, P. D.

    2014-06-01

    We study wave turbulence in shallow water flows in numerical simulations using two different approximations: the shallow water model and the Boussinesq model with weak dispersion. The equations for both models were solved using periodic grids with up to 20482 points. In all simulations, the Froude number varies between 0.015 and 0.05, while the Reynolds number and level of dispersion are varied in a broader range to span different regimes. In all cases, most of the energy in the system remains in the waves, even after integrating the system for very long times. For shallow flows, nonlinear waves are nondispersive and the spectrum of potential energy is compatible with ˜k-2 scaling. For deeper (Boussinesq) flows, the nonlinear dispersion relation as directly measured from the wave and frequency spectrum (calculated independently) shows signatures of dispersion, and the spectrum of potential energy is compatible with predictions of weak turbulence theory, ˜k-4/3. In this latter case, the nonlinear dispersion relation differs from the linear one and has two branches, which we explain with a simple qualitative argument. Finally, we study probability density functions of the surface height and find that in all cases the distributions are asymmetric. The probability density function can be approximated by a skewed normal distribution as well as by a Tayfun distribution.

  20. Inverse Energy Cascades in Rotating Turbulence

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. L.; Marino, R.; Mininni, P.; Pouquet, A.

    2013-12-01

    We present the results of direct numerical simulations (DNS) of rapidly rotating turbulent flows on grids of 20483 grid points that are forced at intermediate scales. Injection of energy at such scales at small Rossby numbers (~0.04) leads to a direct cascade toward small scales and an inverse cascade toward large scales. These results essentially validate those obtained using large eddy simulation (LES) (Sen et al., PRE 86:036319 (2012)): for a (helical) forcing that injects energy largely in 2D modes, the large scale energy spectrum scales as kperp-5/3, consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology; for a nonhelical isotropic forcing, the large scale energy spectrum scales as kperp-3. The (helical) anisotropic forcing DNS solution, like that of the LES models, shows a k-1 isotropic energy spectrum, which Sen et al. attribute to a large scale shear. The higher resolution of the DNS runs allows us to carry out probability distribution and conditional analyses that show that this interpretation may, in fact, be consistent with wall-bounded turbulent shear flow.

  1. Response of a rigid aircraft to nonstationary atmospheric turbulence.

    NASA Technical Reports Server (NTRS)

    Verdon, J. M.; Steiner, R.

    1973-01-01

    The plunging response of an aircraft to a type of nonstationary turbulent excitation is considered. The latter consists of stationary Gaussian noise modulated by a well-defined envelope function. The intent of the investigation is to model the excitation experienced by an airplane flying through turbulence of varying intensity and to examine the influence of intensity variations on exceedance frequencies of the gust velocity and the airplane's plunging velocity and acceleration. One analytical advantage of the proposed model is that the Gaussian assumption for the gust excitation is retained. The analysis described herein is developed in terms of an envelope function of arbitrary form; however, numerical calculations are limited to the case of harmonic modulation.

  2. Plasma shaping effects on tokamak scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo

    2017-03-01

    The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\

  3. PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Xia, Qian; Perez, Jean C.; Chandran, Benjamin D. G.; Quataert, Eliot E-mail: benjamin.chandran@unh.edu E-mail: eliot@astro.berkeley.edu

    2013-10-20

    Recent theoretical studies argue that the rate of stochastic ion heating in low-frequency Alfvén-wave turbulence is given by Q = c{sub 1}((δu){sup 3}/ρ)exp (– c{sub 2}/ε), where δu is the rms turbulent velocity at the scale of the ion gyroradius ρ, ε = δu/v{sub i}, v{sub i} is the perpendicular ion thermal speed, and c{sub 1} and c{sub 2} are dimensionless constants. We test this theoretical result by numerically simulating test particles interacting with strong reduced magnetohydrodynamic (RMHD) turbulence. The heating rates in our simulations are well fit by this formula. The best-fit values of c{sub 1} are ∼1. The best-fit values of c{sub 2} decrease (i.e., stochastic heating becomes more effective) as the Reynolds number and the number of grid points in the RMHD simulations increase. As an example, in a 1024{sup 2} × 256 RMHD simulation with a dissipation wavenumber of the order of the inverse ion gyroradius, we find c{sub 2} = 0.21. We show that stochastic heating is significantly stronger in strong RMHD turbulence than in a field of randomly phased Alfvén waves with the same power spectrum, because coherent structures in strong RMHD turbulence increase orbit stochasticity in the regions where ions are heated most strongly. We find that c{sub 1} increases by a factor of ∼3 while c{sub 2} changes very little as the ion thermal speed increases from values <

  4. Transport Bifurcation in Plasma Interchange Turbulence

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2016-10-01

    Transport bifurcation and mean shear flow generation in plasma interchange turbulence are explored with self-consistent two-fluid simulations in a flux-driven system with both closed and open field line regions. The nonlinear evolution of interchange modes shows the presence of two confinement regimes characterized by the low and high mean flow shear. By increasing the input heat flux above a certain threshold, large-amplitude oscillations in the turbulent and mean flow energy are induced. Both clockwise and counter-clockwise types of oscillations are found before the transition to the second regime. The fluctuation energy is decisively transferred to the mean flows by large-amplitude Reynolds power as turbulent intensity increases. Consequently, a transition to the second regime occurs, in which strong mean shear flows are generated in the plasma edge. The peak of the spectrum shifts to higher wavenumbers as the large-scale turbulent eddies are suppressed by the mean shear flow. The transition back to the first regime is then triggered by decreasing the input heat flux to a level much lower than the threshold for the forward transition, showing strong hysteresis. During the back transition, the mean flow decreases as the energy transfer process is reversed. This transport bifurcation, based on a field-line-averaged 2D model, has also been reproduced in our recent 3D simulations of resistive interchange turbulence, in which the ion and electron temperatures are separated and the parallel current is involved. Supported by the MOST of China Grant No. 2013GB112006, US DOE Contract No. DE-FC02-08ER54966, US DOE by LLNL under Contract DE-AC52-07NA2734.

  5. Spectrum Services 2007

    NASA Astrophysics Data System (ADS)

    Dobos, L.; Budavári, T.; Csabai, I.; Szalay, A. S.

    2008-10-01

    We present the Filter and Spectrum Services consisting of easy-to-use web applications and web services for searching, plotting and managing large collections of spectral energy distribution data and filter profiles as well as for performing various scientific operations on spectra in a unified framework. The services provide keyword search, advanced query forms and SQL query possibilities for selecting spectra or bandpass curves which may be retrieved in a variety of file formats including XML, VOTable and ASCII. All SDSS DR1-DR5 spectra had been loaded into a database as well as the entire 2dF catalog that adds up to more than 2.5 million SEDs of about a million spatial objects, but registered users can upload their own data making it available for the rest of the community and are free to modify or delete them at any time. Theoretical catalogs, such as the Bruzual-Charlot stochastic burst model spectrum library (100k spectra) and the BaSeL stellar library are also available. Scientific services allow building rest-frame composite spectra out of selected spectra; calculating synthetic magnitudes by convolving spectra with an arbitrary set of bandpass curves of optical instrument filters to generate simulated photometric catalogs on-the-fly; galactic extinction correction, fitting of the continuum using different set of templates (Bruzual-Charlot '03 templates, SDSS eigenspectra), line fitting. All scientific functionalities are available from the web user interface and via the SOAP web services for programmers. MySpectrum is a cross-platform version of the spectrum web service for setting up your own spectrum repository. It integrates into the main service allowing easy access to your data for the whole VO community. The main idea behind our web services is to move scientific functionalities physically close to the database in order to spare network bandwidth. This way scientists may do research without setting up expensive hardware, downloading large datasets

  6. Computer program for solving compressible nonsimilar-boundary-layer equations for laminar, transitional, or turbulent flows of a perfect gas

    NASA Technical Reports Server (NTRS)

    Price, J. M.; Harris, J. F.

    1972-01-01

    A computer program is described which solves the compressible laminar, transitional, or turbulent boundary-layer equations for planar or axisymmetric flows. Three-point implicit difference relations are used to reduce the momentum and energy equations to finite-difference form. These equations are solved simultaneously without iteration. Turbulent flow is treated by the inclusion of either a two-layer eddy-viscosity model or a mixing-length formulation. The eddy conductivity is related to the eddy viscosity through a static turbulent Prandtl number which may be an arbitrary function of the distance from the wall boundary. The transitional boundary layer is treated by the inclusion of an intermittency function which modifies the fully turbulent model. The laminar-boundary-layer equations are recovered when the intermittency is zero, and the fully turbulent equations are solved when the intermittency is unity.

  7. A new approach to the study of the turbulence layer

    NASA Technical Reports Server (NTRS)

    Levenson, Ruth A.

    1993-01-01

    Turbulent thermal convection is of considerable importance in fluid dynamical transport phenomena occurring, for example, in the planetary boundary layer of the Earth, the interiors of stars, and accretion disks. In particular, during a significant portion of the evolutionary phase of many stars having convectively unstable cores or outer envelopes, a substantial fraction of energy is transported from the central layers to the outer layers by thermal convection. Moreover, as much of the interior of a star is in highly turbulent motion, a complete theory of stellar structure and evolution requires the explicit consideration of turbulence in order to have expressions for the turbulent quantities arising in the stellar structure equations, and particularly, the turbulent fluxes that appear in the total flux conservation equation, such as the convective flux, kinetic energy flux, etc. A reliable quantification of these fluxes continues to present a challenge in astrophysical fluid dynamics, primarily because astrophysical turbulence is almost always fully-developed and nearly inviscid, and therefore governed by strong nonlinear interactions that distribute the energy among a very wide spectrum of eddies with scales ranging from the characteristic dimension of the flow to those sufficiently small to be affected by viscous dissipation. Furthermore, astrophysical flows are invariably compressible, anisotropic, and inhomogeneous, which requires the consideration of the dynamics of longitudinal modes and their interaction with the transverse modes, as well as complicated boundary conditions. In order to reach a compromise between analytical and numerical tractability and the basic physics of turbulent convection, we have constructed a model of stationary turbulent convection that yields various turbulence statistics, including the convective flux, that are required in stellar evolution models.

  8. Numerical Simulation of the turbulent flow around a wing

    NASA Astrophysics Data System (ADS)

    Auerswald, Torsten; Bange, Jens

    2014-05-01

    In this talk the simulation of turbulent flow around a 3D-wing will be presented. For the simulations the compressible flow model TAU is used which is developed by the German Aerospace Center DLR. The model domain consists of two grids which are communicating with each other by using the chimera technique. The primary grid is the unstructured body-fitted grid that contains the wing and the secondary grid is a cartesian grid upstream of the wing on which the turbulent flow is simulated. During the simulation the cartesian grid is moved towards the wing and in a short distance in front of the wing the grid is stopped and the turbulent flow is passed to the primary grid where it can interact with the wing. Since, the earth surface is not simulated there is no source for atmospheric turbulence in the model. That means that the simulation has to be initialised with an already turbulent wind field. For this purpose a synthetic turbulence generator is used that takes the statistics of measurement data from the atmospheric boundary layer and generates a three-dimensional wind field with the same statistics. The statistics used as input comprise the energy spectrum, the correlation matrix and the variances. In the future it is planned to improve the turbulence generator to also consider coherent structures of the turbulent flow. With this simulation strategy it is possible to simulate the flight of a wing through realistic atmospheric boundary layer turbulence in different weather situations and investigate the effects of the turbulence on the wing. Especially during flights with high angle of attack and at low altitudes it is of interest to investigate how the angle of stall is influenced by the turbulent flow and which scales of the turbulence have an significant effect on the lift and drag produced by the wing. The talk will cover the simulation strategy with TAU and the generation of the synthetic turbulent wind fields based on measurements. Furthermore, results from

  9. Turbulence in Natural Environments

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirtha

    Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be

  10. Higher order mode laser beam intensity fluctuations in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2017-05-01

    Intensity fluctuations of the higher order mode laser beams are evaluated when these beams propagate in a medium exhibiting strong oceanic turbulence. Our formulation involves the modified Rytov solution that extends the Rytov solution to cover strong turbulence as well, and our recently reported expression that relates the atmospheric turbulence structure constant to the oceanic turbulence parameters and oceanic wireless optical communication link parameters. The variations of the intensity fluctuations are reported against the changes of the ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, viscosity and the source size of the higher order mode laser beam. Our results indicate that under any oceanic turbulence parameters, it is advantageous to employ higher order laser modes in reducing the scintillation noise in wireless optical communication links operating in a strongly turbulent ocean.

  11. Multiple-scale turbulence modeling of boundary layer flows for scramjet applications

    NASA Technical Reports Server (NTRS)

    Fabris, G.; Harsha, P. T.; Edelman, R. B.

    1981-01-01

    As part of an investigation into the application of turbulence models to the computation of flows in advanced scramjet combustors, the multiple-scale turbulence model was applied to a variety of flowfield predictions. The model appears to have a potential for improved predictions in a variety of areas relevant to combustor problems. This potential exists because of the partition of the turbulence energy spectrum that is the major feature of the model and which allows the turbulence energy dissipation rate to be out of phase with turbulent energy production. The computations were made using a consistent method of generating experimentally unavailable initial conditions. An appreciable overall improvement in the generality of the predictions is observed, as compared to those of the basic two-equation turbulence model. A Mach number-related correction is found to be necessary to satisfactorily predict the spreading rate of the supersonic jet and mixing layer.

  12. Turbulent complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  13. Gyrokinetic turbulent heating

    SciTech Connect

    Hinton, F. L.; Waltz, R. E.

    2006-10-15

    Expressions for particle and energy fluxes and heating rates due to turbulence are derived. These fluxes and heating rates are identified from moments of an extended drift-kinetic equation for the equilibrium distribution function. These include neoclassical as well as turbulent diffusion and heating. Phase-space conservation is demonstrated, allowing the drift-kinetic equation to be expressed in conservative form. This facilitates taking moments with few approximations, mainly those consistent with drift kinetics for the equilibrium distribution function and the relative smallness of the fluctuations. The turbulent heating is uniquely defined by choosing the standard gyrokinetic definition for the energy flux. With this definition, most of the heating can be expressed in the form of ohmic heating from turbulent parallel and perpendicular current density perturbations. The latter current is identified with grad-B and curvature drifts, plus terms involving magnetic perturbations (which are smaller for low beta). A small contribution to the heating comes from the divergence of an energy flux that is dependent on the finite gyroradius of the ions. The fluxes and heating rates are expressed in a form that can be easily evaluated from gyrokinetic turbulence simulations.

  14. Linearly Forced Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    2003-01-01

    Stationary isotropic turbulence is often studied numerically by adding a forcing term to the Navier-Stokes equation. This is usually done for the purpose of achieving higher Reynolds number and longer statistics than is possible for isotropic decaying turbulence. It is generally accepted that forcing the Navier-Stokes equation at low wave number does not influence the small scale statistics of the flow provided that there is wide separation between the largest and smallest scales. It will be shown, however, that the spectral width of the forcing has a noticeable effect on inertial range statistics. A case will be made here for using a broader form of forcing in order to compare computed isotropic stationary turbulence with (decaying) grid turbulence. It is shown that using a forcing function which is directly proportional to the velocity has physical meaning and gives results which are closer to both homogeneous and non-homogeneous turbulence. Section 1 presents a four part series of motivations for linear forcing. Section 2 puts linear forcing to a numerical test with a pseudospectral computation.

  15. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters

    NASA Astrophysics Data System (ADS)

    Wen, Fa-Kai; Yang, Zhan-Ying; Cui, Shuai; Cao, Jun-Peng; Yang, Wen-Li

    2015-05-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11375141, 11475135, 11434013 and 11425522, the Ministry of Education Doctoral Program Fund under Grant No 20126101110004, and the Northwest University Graduate Student Innovation Fund under Grant No YZZ14104.

  16. Statistics of Complex Cross Spectrum Estimate for Sinusoidal Signals and Arbitrary Noise Spectra

    DTIC Science & Technology

    1994-07-27

    Nuttall (Code 302). This technical report was prepared with funds provided by the NUWC In-House Independent Research Program, sponsored by the Office...two averages. The first conditional average can be expressed as ((a 1+a,)2 + (p1+ b1 )2) = [f da db exp (b ( a)2 + ft’+b ½ S2x fr dt du exp[- (t - a...moment D2 defined by (59). Inputs required of the user are Delf (Af) in line 10, P (K) in line 20, Rx (R x) in line 30, Ry (R y) in line 40, N (N) in

  17. Wave turbulence theory of elastic plates

    NASA Astrophysics Data System (ADS)

    Düring, Gustavo; Josserand, Christophe; Rica, Sergio

    2017-05-01

    This article presents the complete study of the long-time evolution of random waves of a vibrating thin elastic plate in the limit of small plate deformation so that modes of oscillations interact weakly. According to the wave turbulence theory a nonlinear wave system evolves in longtime creating a slow redistribution of the spectral energy from one mode to another. We derive step by step, following the method of cumulants expansion and multiscale asymptotic perturbations, the kinetic equation for the second order cumulants as well as the second and fourth order renormalization of the dispersion relation of the waves. We characterize the non-equilibrium evolution to an equilibrium wave spectrum, which happens to be the well known Rayleigh-Jeans distribution. Moreover we show the existence of an energy cascade, often called the Kolmogorov-Zakharov spectrum, which happens to be not simply a power law, but a logarithmic correction to the Rayleigh-Jeans distribution. We perform numerical simulations confirming these scenarii, namely the equilibrium relaxation for closed systems and the existence of an energy cascade wave spectrum. Both show a good agreement between theoretical predictions and numerics. We show also some other relevant features of vibrating elastic plates, such as the existence of a self-similar wave action inverse cascade which happens to blow-up in finite time. We discuss the mechanism of the wave breakdown phenomena in elastic plates as well as the limit of strong turbulence which arises as the thickness of the plate vanishes. Finally, we discuss the role of dissipation and the connection with experiments, and the generalization of the wave turbulence theory to elastic shells.

  18. Turbulence and fossil turbulence in oceans and lakes

    NASA Astrophysics Data System (ADS)

    Leung, Pak Tao; Gibson, Carl H.

    2013-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the intertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-tubulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent

  19. Calculation of Wyngaard turbulence distortion coefficients and turbulence ratios; and influence of instrument-induced wakes on accuracy

    NASA Astrophysics Data System (ADS)

    Norment, Hillyer G.

    1992-10-01

    Methods that use potential-flow calculations to correct turbulence measurements for instrument-induced flow distortions are discussed in general terms for two- and three-dimensional geometries. A simple calculation method is described for the Wyngaard distortion coefficients, from which the corrections are determined, that previously had not been fully exploited. Panel methods, which are especially well suited to the simple method and allow calculations for arbitrary instrument geometries, are also discussed. Applications of all methods are illustrated by use of examples. Distortions caused by wakes that result from flow separation from the instruments thermselves cannot be corrected for by use of potential-flow calculations. Neglect of these distortions may compromise accuracy of the corrections. Severity of this problem for atmospheric turbulence measurements is illustrated by results calculated for some simple geometries.

  20. Impact of collisionality on fluctuation characteristics of micro-turbulence

    SciTech Connect

    Vermare, L.; Hennequin, P.; Guercan, Oe. D.; Bourdelle, C.; Clairet, F.; Garbet, X.; Sabot, R.

    2011-01-15

    The influence of changing collisionality on density fluctuation characteristics is studied during dedicated {nu}* scaling experiments, using Doppler backscattering system. First, the repartition of fluctuation energy over different spatial scales, as represented by the wavenumber spectrum, is investigated and a modification of the shape of the perpendicular wavenumber spectrum in the low wavenumber part of the spectrum is observed when changing collisionality. In addition, a new procedure to evaluate the dispersion relation of micro-turbulence is presented. From the behavior of the perpendicular mean velocity of density fluctuations with the perpendicular wavenumber, different dispersion relations are obtained between low and high collisionality cases.