Science.gov

Sample records for arborescens leaf extract

  1. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    PubMed

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  2. A biochemical and cellular approach to explore the antiproliferative and prodifferentiative activity of Aloe arborescens leaf extract.

    PubMed

    Di Luccia, Blanda; Manzo, Nicola; Vivo, Maria; Galano, Eugenio; Amoresano, Angela; Crescenzi, Elvira; Pollice, Alessandra; Tudisco, Raffaella; Infascelli, Federico; Calabrò, Viola

    2013-12-01

    Aloe arborescens Miller, belonging to the Aloe genus (Liliaceae family), is one of the main varieties of Aloe used worldwide. Although less characterized than the commonest Aloe vera, Aloe arborescens is known to be richer in beneficial phytotherapeutic, anticancer, and radio-protective properties. It is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. However, very few studies have addressed the biological effects of Aloe at molecular level. The aim of the research is to provide evidences for the antiproliferative properties of Aloe arborescens crude leaf extract using an integrated proteomic and cellular biological approach. We analysed the composition of an Aloe arborescens leaf extract by gas chromatography-mass spectrometry analysis. We found it rich in Aloe-emodin, a hydroxylanthraquinone with known antitumoral activity and in several compounds with anti-oxidant properties. Accordingly, we show that the Aloe extract has antiproliferative effects on several human transformed cell lines and exhibits prodifferentiative effects on both primary and immortalized human keratinocyte. Proteomic analysis of whole cell extracts revealed the presence of proteins with a strong antiproliferative and antimicrobial activity specifically induced in human keratinocytes by Aloe treatment supporting its application as a therapeutical agent.

  3. The Relation between Photosynthesis, Respiration, and Crassulacean Acid Metabolism in Leaf Slices of Aloe arborescens Mill.

    PubMed

    Denius, H R; Homann, P H

    1972-06-01

    Leaves and leaf slices from Aloe arborescens Mill. were used to study the interrelations between Crassulacean acid metabolism, photosynthesis, and respiration. Oxygen exchange of leaf slices was measured polarographically. It was found that the photosynthetic utilization of stored malic acid resulted in a net evolution of oxygen. This oxygen production, and the decrease in acid content of the leaf tissue, were completely inhibited by amytal, although the rate of respiratory oxygen uptake was hardly affected by the presence of this inhibitor of mitochondrial electron transport. Other poisons of respiration (cyanide) and of the tricarboxylic acid cycle (trifluoroacetate, 2-diethyl malonate) also were effective in preventing acid-dependent oxygen evolution. It is concluded that the mobilization of stored acids during light-dependent deacidification of the leaves depends on the operation of the tricarboxylic acid cycle and of the electron transport of the mitochondria.A comparison of enzyme activities in extracts from Aloe leaves and from other plants and studies of leaf anatomy and chloroplast morphology revealed typical characteristics of C(3)-, as well as C(4)-, plants in Aloe.

  4. The Relation between Photosynthesis, Respiration, and Crassulacean Acid Metabolism in Leaf Slices of Aloe arborescens Mill 1

    PubMed Central

    Denius, Homer R.; Homann, Peter H.

    1972-01-01

    Leaves and leaf slices from Aloe arborescens Mill. were used to study the interrelations between Crassulacean acid metabolism, photosynthesis, and respiration. Oxygen exchange of leaf slices was measured polarographically. It was found that the photosynthetic utilization of stored malic acid resulted in a net evolution of oxygen. This oxygen production, and the decrease in acid content of the leaf tissue, were completely inhibited by amytal, although the rate of respiratory oxygen uptake was hardly affected by the presence of this inhibitor of mitochondrial electron transport. Other poisons of respiration (cyanide) and of the tricarboxylic acid cycle (trifluoroacetate, 2-diethyl malonate) also were effective in preventing acid-dependent oxygen evolution. It is concluded that the mobilization of stored acids during light-dependent deacidification of the leaves depends on the operation of the tricarboxylic acid cycle and of the electron transport of the mitochondria. A comparison of enzyme activities in extracts from Aloe leaves and from other plants and studies of leaf anatomy and chloroplast morphology revealed typical characteristics of C3−, as well as C4−, plants in Aloe. Images PMID:16658075

  5. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    PubMed

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD.

  6. Comparative analysis of the oil and supercritical CO(2) extract of Artemisia arborescens L. and Helichrysum splendidum (Thunb.) Less.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia

    2006-05-10

    Isolation of volatile concentrate from the dried leaves of Artemisia arborescens and of Helichrysum splendidum has been obtained by supercritical extraction with carbon dioxide. To obtain a pure volatile extract devoid of cuticular waxes, the extraction products were fractionated in two separators operating in series. A good extraction process was obtained operating at 90 bar and 50 degrees C in the extraction vessel, at 90 bar and at -5 degrees C in the first separator and at a pressure between 20 and 15 bar and temperatures in the range 10-20 degrees C in the second one. The composition of the volatile concentrate has been analyzed by GC/MS. The volatile concentrate of A. arborescens was found to contain: trans-thujone (13.96%), camphor (6.15%) and chamazulene (5.95%). The main constituents in the extract of H. splendidum were: germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and delta-cadinene (8.43%). A comparison with the oils obtained by hydrodistillation is also given. The differences observed between the composition of the SFE volatile concentrates and of the hydrodistilled (HD) oils were relevant. Indeed, the HD oils had a blue color whereas the volatile concentrates were pale yellow. The HD oil of H. splendidum had a blue color due to the presence of guaiazulene (0.42% vs 0%), whereas the coloration of HD oil of A. arborecens was due to the high concentration of chamazulene (26.64% vs 3.37%).

  7. New flavonoids from bioactive extract of Algerian medicinal plant Launeae arborescens

    PubMed Central

    Sekkoum, Khaled; Belboukhari, Nasser; Cheriti, Abdelkrim

    2014-01-01

    Objective To investigate the butanol fraction of the water/acetone extract and isolate of the new flavonoids from Launeae arboescens. Methods The compounds were isolated by liquid chromatographic methods and their structures were identified by using spectroscopic analysis. Results The isolated compounds were identified as: 7-O-[α-rhamnopyranosyl 4′,5,6-Trihydroxy flavone 1,4′,5′-Di-Methoxy 7-(5″-Me Hexan)1-oyl flavanone 2, 3″-isopropyl pyrano [1″:7,4″:6] 3′,4′,5′,5-Tetrahydroxy flavanone 3,5,4′,5′-Tri-Hydroxy 7-(3″-Me butan) -yl flavanone 4, 5,7-Dihydroxy-2′,4′,5′ –trimethoxy-isoflavanone 5,5,6,7,4′-tetrahydroxy flavonol 6,7-O-[α-rhamnopyranosyl-(1->6)-β-glucopyranosyl]- 4′,5,7-tri-hydroxy-flavanone 7,7-O-[α-rhamnopyranosyl-(1->6)-β-glucopyranosyl] 3′,5-Dihydroxy 4′-Methoxy flavanone 8. Conclusions The presence of different types of bioactive flavonoids in Launeae arboescens extract can explain the large ethnopharmacological uses and the potential activity of this medicinal plant. PMID:25182549

  8. Antibacterial activity on Citrullus colocynthis Leaf extract

    PubMed Central

    gowri, S. Shyamala; Priyavardhini, S.; Vasantha, K.; Umadevi, M.

    2009-01-01

    Studies on the antibacterial activities of the leaf extract of Citrullus colocynthis (Cucurbitaceae), a medicinal plant used for the treatment of various ailments was carried out using agar disc diffusion technique. The results revealed that the crude acetone extract exhibited antibacterial activities against Pseudomonas aeruginosa with zones of inhibition measuring 14.0mm. The chloroform leaf extract exhibited no antibacterial activity against Staphylococcus aureus. The minimum inhibitory concentration for the chloroform extract was 4.0mm for Escherichia coli. PMID:22557336

  9. Antioxidant properties of fermented mango leaf extracts.

    PubMed

    Park, Anna; Ku, Taekyu; Yoo, Ilsou

    2015-01-01

    Antioxidant properties of mango (Mangifera indica) leaves were evaluated. Hydroalcoholic leaf extracts that were lyophilized were subsequently fermented with either Lactobacillus casei or effective microorganisms (EM) such as probiotic bacteria and/or other anaerobic organisms. Antioxidant properties were measured as a function of the mango leaf extract concentration in the fermentation broth. Tests for radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl radical showed higher antioxidant activity for Lactobacillus- and EM-fermented mango leaf extracts than for the synthetic antioxidant butylated hydroxytoluene. Antioxidant activity generally increased with increasing fermented extract concentration as did the fermented extracts' polyphenol and flavonoid contents. Fermented extracts reduced reactive oxygen species generation by lipopolysaccharide in RAW 264.7 cells when measured via fluorescence of dichlorodihydrofluorescein acetate treated cells using flow cytometry. RAW 264.7 cells also showed a concentration-dependent cytotoxic effect of the fermented extracts using the 3-(4,5-dimethylthialol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inhibition of mushroom tyrosinase activity as well as nitrite scavenging by the fermented extracts increased as fermented extract concentrations increased. Tyrosinase activity was assayed with 3,4-dihydroxyphenylalanine as substrate. Nitrite scavenging was assessed via measurement of inhibition of chromophore production from nitrite-naphthylamine-sulfanilic acid mixtures. The antioxidant properties of fermented mango leaf extracts suggest the fermented extracts may be useful in developing health food and fermentation-based beauty products.

  10. Comparison of half and full-leaf shape feature extraction for leaf classification

    NASA Astrophysics Data System (ADS)

    Sainin, Mohd Shamrie; Ahmad, Faudziah; Alfred, Rayner

    2016-08-01

    Shape is the main information for leaf feature that most of the current literatures in leaf identification utilize the whole leaf for feature extraction and to be used in the leaf identification process. In this paper, study of half-leaf features extraction for leaf identification is carried out and the results are compared with the results obtained from the leaf identification based on a full-leaf features extraction. Identification and classification is based on shape features that are represented as cosines and sinus angles. Six single classifiers obtained from WEKA and seven ensemble methods are used to compare their performance accuracies over this data. The classifiers were trained using 65 leaves in order to classify 5 different species of preliminary collection of Malaysian medicinal plants. The result shows that half-leaf features extraction can be used for leaf identification without decreasing the predictive accuracy.

  11. The edge extraction of agricultural crop leaf

    NASA Astrophysics Data System (ADS)

    Wang, Beilei; Cao, Ying; Xiao, Huiming; Jiang, Huiyan; Liu, Hongjuan

    2009-07-01

    In agricultural engineering, to ensure rational use of pesticide and improvement of crop production, computer image recognition technology is currently applied to help farmers to identify the degree of crop diseases. Considering the importance of feature extraction in this field, in this paper, we first present and discuss several widely used edge operator, including Sobel, Prewitt, Roberts, Canny and LoG. Furthermore, an experiment is conducted to compare performance and accuracy of five operators by applying them to a leaf image taken from agricultural crop for edge detection. The results of experiment show that, in practice, LoG edge operator is relatively a better choice and performs well for edge detection of agricultural crop leaf image.

  12. Antibacterial activity of various leaf extracts of Merremia emarginata

    PubMed Central

    Elumalai, EK; Ramachandran, M; Thirumalai, T; Vinothkumar, P

    2011-01-01

    Objective To investigate the antibacterial activity and phytochemical screening of the aqueous, methanol and petroleum ether leaf extracts of Merremia emarginata (M. emarginata). Methods The antibacterial activity of leaf extracts of M. emarginata were evaluated by agar well diffusion method against four selected bacterial species. Results The presence of tannins, flavonoids, amino acids, starch, glycosides and carbohydrates in the different leaf extracts was established. The methanol extract was more effective against Bacillus cereus and Escherichia coli, whereas aqueous extract was more effective against Staphylococcus aureus and Pseudomonas aeruginosa. Conclusions : The results in the present study suggest that M. emarginata leaf can be used in treating diseases caused by the tested organisms. PMID:23569802

  13. An unusual case of lipoma arborescens

    PubMed Central

    Chaturvedi, A; Peach, C

    2016-01-01

    Introduction Lipoma arborescens is a rare condition of the synovial lining. It is particularly uncommon in the bicipitoradial bursae of the elbow. Case Report A 68-year-old woman presented with a 5-month history of anterior elbow pain and swelling causing discomfort. Radiography demonstrated reactive changes of radial tuberosity and magnetic resonance imaging confirmed lipoma arborescens of the bicipitoradial bursa with distal biceps tendinopathy. A bicipital bursa bursectomy and lipoma excision was performed. Gross pathology and histology was consistent with lipoma arborescens. Three months postoperatively, our patient had full range of motion and good strength. Conclusions To our knowledge, this is the first published case report of lipoma arborescens affecting the elbow. Recognising the differential diagnoses of anterior elbow pain and the characteristic imaging is essential for accurate diagnosis. PMID:27241604

  14. Olive leaf extract inhibits lead poisoning-induced brain injury

    PubMed Central

    Wang, Yu; Wang, Shengqing; Cui, Wenhui; He, Jiujun; Wang, Zhenfu; Yang, Xiaolu

    2013-01-01

    Olive leaves have an antioxidant capacity, and olive leaf extract can protect the blood, spleen and hippocampus in lead-poisoned mice. However, little is known about the effects of olive leaf extract on lead-induced brain injury. This study was designed to determine whether olive leaf extract can inhibit lead-induced brain injury, and whether this effect is associated with antioxidant capacity. First, we established a mouse model of lead poisoning by continuous intragastric administration of lead acetate for 30 days. Two hours after successful model establishment, lead-poisoned mice were given olive leaf extract at doses of 250, 500 or 1 000 mg/kg daily by intragastric administration for 50 days. Under the transmission electron microscope, olive leaf extract attenuated neuronal and capillary injury and reduced damage to organelles and the matrix around the capillaries in the frontal lobe of the cerebral cortex in the lead-poisoned mice. Olive leaf extract at a dose of 1 000 mg/kg had the greatest protective effect. Spectrophotometry showed that olive leaf extract significantly increased the activities of superoxide dismutase, catalase, alkaline phosphatase and acid phosphatase, while it reduced malondialdehyde content, in a dose-dependent manner. Furthermore, immunohistochemical staining revealed that olive leaf extract dose-dependently decreased Bax protein expression in the cerebral cortex of lead-poisoned mice. Our findings indicate that olive leaf extract can inhibit lead-induced brain injury by increasing antioxidant capacity and reducing apoptosis. PMID:25206510

  15. Lipoma arborescens of the biceps tendon sheath.

    PubMed

    White, Eric A; Omid, Reza; Matcuk, George R; Domzalski, Jerome T; Fedenko, Alexander N; Gottsegen, Christopher J; Forrester, Deborah M; Patel, Dakshesh B

    2013-10-01

    Lipoma arborescens, described as lipomatous infiltration and distention of synovial villi resulting in a frond-like appearance, most frequently affects the suprapatellar recess of the knee. While there have been reports of this entity involving the upper extremity joints, bursa, and tendon sheaths, we present the first reported case of lipoma arborescens isolated to the biceps tendon sheath. We describe imaging and histologic findings with clinical correlation.

  16. Characterization and genus identification of rhizobial symbionts from Caragana arborescens in western Canada.

    PubMed

    Moukoumi, Judicaël; Hynes, Russell K; Dumonceaux, Timothy J; Town, Jennifer; Bélanger, Nicolas

    2013-06-01

    Naturally occurring nitrogen-fixing symbionts from root nodules of caragana (Caragana arborescens) growing in central Saskatchewan were isolated following surface sterilization of caragana root nodules and squashing and spreading of the contents on yeast extract - mannitol medium. The symbiotic nature of the strains was confirmed following inoculation onto surface-sterilized C. arborescens seed in a gnotobiotic Leonard jar system. The Rhizobium isolates from C. arborescens root nodules were intermediate in generation time (g) (mean g of 5 isolates was 6.41 h) compared with the fast growers, Rhizobium leguminosarum NRG457 (g: 4.44 h), Rhizobium tropici 899 (g: 3.19 h), and Sinorhizobium meliloti BALSAC (g: 3.45 h), but they were faster than the slow-growing Bradyrhizobium japonicum USDA 110 (g: 13.86 h) and similar to Mesorhizobium amorphae (g: 7.76 h). Nitrogen derived from fixation by measuring changes in δ(15)N natural abundance in plant tissue confirmed the effectiveness of the strains; approximately 80% N2 from fixation. Strain identification was carried out by determining the sequences of 3 genes: 16S rRNA-encoding genes, cpn60, and recA. This analysis determined that the symbiotic partner of Canadian C. arborescens belongs to the genus Mesorhizobium and seems more related to M. loti than to previously described caragana symbionts like M. caraganae. This is the first report of Mesorhizobium sp. nodulating C. arborescens in western Canada.

  17. Withanolides from leaves of cultivated Acnistus arborescens.

    PubMed

    Batista, Pedro Henrique J; de Lima, Karísia Sousa B; Pinto, Francisco das Chagas L; Tavares, Juliane L; de A Uchoa, Daniel E; Costa-Lotufo, Letícia V; Rocha, Danilo D; Silveira, Edilberto R; Bezerra, Antonio Marcos E; Canuto, Kirley M; Pessoa, Otília Deusdenia L

    2016-10-01

    Seven withanolides, including four previously unknown, were isolated from the acetone and ethanol extracts of cultivated specimens of Acnistus arborescens. These four compounds were identified as rel-(18R,22R)-5β,6β:18β,20-diepoxy-3β,18α-dimethoxy-4β-hydroxy-1-oxowith-24-enolide, rel-(20R,22R)-5β,6β-epoxy-4β,16α,20-trihydroxy-1-oxowitha-2,24dienolide, rel-(20R,22R)-16α-acetoxy-6α-chloro-4β,5β,20-trihydroxy-1-oxowitha-2,24-dienolide and rel-(20R,22R)-16α-acetoxy-20-hydroxy-1-oxowitha-2,5,24-trienolide. Their structures were elucidated by interpretation of spectroscopic data (1D and 2D NMR), HRESIMS experiments and comparison with published data for similar compounds. Cytotoxicity of the isolated compounds was evaluated against a panel of four tumor cell lines (HL-60, HCT-116, SF-268 and PANC-1). Withanolide D was the most active, with an IC50 value in the range of 0.3-1.7 μM, rel-(18R,22R)-5β,6β:18β,20-diepoxy-3β,18α-dimethoxy-4β-hydroxy-1-oxowith-24-enolide and rel-(20R,22R)-5β,6β-epoxy-4β,16α,20-trihydroxy-1-oxowitha-2,24dienolide were moderately active, while all the others were non-cytotoxic.

  18. Ocimum sanctum leaf extract induces drought stress tolerance in rice

    PubMed Central

    Pandey, Veena; Ansari, M.W.; Tula, Suresh; Sahoo, R.K.; Bains, Gurdeep; Kumar, J.; Tuteja, Narendra; Shukla, Alok

    2016-01-01

    ABSTRACT Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner. PMID:26890603

  19. Encapsulation of olive leaf extract in beta-cyclodextrin.

    PubMed

    Mourtzinos, Ioannis; Salta, Fotini; Yannakopoulou, Konstantina; Chiou, Antonia; Karathanos, Vaios T

    2007-10-03

    Olive leaf extract, rich in oleuropein, formed an inclusion complex with beta-cyclodextrin (beta-CD) upon mixing of the components in aqueous media and subsequent freeze-drying. Inclusion complex formation was confirmed by differential scanning calorimetry (DSC). DSC thermograms indicated that the endothermic peaks of both the olive leaf extract and the physical mixture of olive leaf extract with beta-CD, attributed to the melting of crystals of the extract, were absent in DSC thermogram of inclusion complex. Moreover, DSC studies under oxidative conditions indicated that the complex of olive leaf extract with beta-CD was protected against oxidation, since it remained intact at temperatures where the free olive leaf extract was oxidized. Phase solubility studies afforded A L type diagrams, 1:1 complex stoichiometry, a moderate binding constant ( approximately 300 M (-1)), and an increase of the aqueous solubility by approximately 50%. The formation of the inclusion complex was also confirmed by nuclear magnetic resonance (NMR) studies of beta-CD solutions in the presence of both pure oleuropein and olive leaf extract. The NMR data have established the formation of a 1:1 complex with beta-CD that involves deep insertion of the dihydroxyphenethyl moiety inside the cavity from its secondary side.

  20. Antimicrobial activity of commercial Olea europaea (olive) leaf extract.

    PubMed

    Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A

    2009-05-01

    The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.

  1. Safety and efficacy of Bixa orellana (achiote, annatto) leaf extracts.

    PubMed

    Stohs, Sidney J

    2014-07-01

    Bixa orellana leaf preparations have been used for many years by indigenous people for a variety of medicinal applications. Published research studies in animals indicate that various extracts of Bixa leaves exhibit antioxidant, broad antimicrobial (antibacterial and antifungal), anti-inflammatory, analgesic, hypoglycemic, and antidiarrheal activities. No studies have specifically assessed the ability of leaf extracts to inhibit urogenital infections although Bixa products have been used in folkloric medicine to treat gonorrhea and other infections. Few human studies have been conducted and published using Bixa leaf preparations. Many more studies have been conducted and published involving Bixa seed (annatto) extracts than with leaf extracts. No subchronic safety (toxicity) studies have been conducted in animals. A 6 month study in humans given 750 mg of leaf powder per day demonstrated no significant or serious adverse effects. Bixa leaf extracts appear to be safe when given under current conditions of use. However, additional human and animal controlled safety and efficacy studies are needed. In addition, detailed chemical analyses are required to establish structure-function relationships.

  2. Phenolic compounds and antioxidant activity of olive leaf extracts.

    PubMed

    Kontogianni, Vassiliki G; Gerothanassis, Ioannis P

    2012-01-01

    The total phenolic content and antioxidant activities of olive leaf extracts were determined. Plant material was extracted with methanol and fractionated with solvents of increasing polarity, giving certain extracts. The qualitative changes in the composition of the extracts were determined after the storage of leaves for 22 h at 37°C, before the extraction. Total polyphenol contents in extracts were determined by the Folin-Ciocalteu procedure. They were also analysed by liquid chromatography-mass spectrometry. Their antioxidant activities were evaluated using the diphenyl picrylhydrazyl method and the β-carotene linoleate model assay. Moreover, the effects of different crude olive leaf extracts on the oxidative stability of sunflower oil at 40°C and sunflower oil-in-water emulsions (10% o/w) at 37°C, at a final concentration of crude extract 200 mg kg(-1) oil, were tested and compared with butylated hydroxyl toluene.

  3. The potential of papaya leaf extract in controlling Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Tay, Z. H.; Chong, K. P.

    2016-06-01

    Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.

  4. Clinical research of persimmon leaf extract and ginkgo biloba extract in the treatment of vertebrobasilar insufficiency.

    PubMed

    Guo, S G; Guan, S H; Wang, G M; Liu, G Y; Sun, H; Wang, B J; Xu, F

    2015-01-01

    This paper aims to compare the curative effects of persimmon leaf extract and ginkgo biloba extract in the treatment of headache and dizziness caused by vertebrobasilar insufficiency. Sixty patients were observed, who underwent therapy with persimmon leaf extract and ginkgo biloba extract based on the treatment of nimodipine and aspirin. After 30 days, 30 patients treated with persimmon leaf extract and 30 patients with ginkgo biloba extract were examined for changes in hemodynamic indexes and symptoms, such as headache and dizziness. The results showed statistically significant differences of 88.3% for the persimmon leaf extract and 73.1% for the ginkgo biloba extract, P < 0.05. Compared to the group of ginkgo biloba extract, the group of persimmon leaf extract had more apparent improvement in the whole blood viscosity, plasma viscosity, fibrinogen, hematokrit, and platelet adhesion rate, and the difference was statistically significant (P < 0.05 or P < 0.01). Based on these analyses, it can be concluded that persimmon leaf extract is better than ginkgo biloba extract in many aspects, such as cerebral circulation improvement, cerebral vascular expansion, hypercoagulable state lowering and vertebrobasilar insufficiency-induced headache and dizziness relief.

  5. Analgesic activity of Justicia beddomei leaf extract.

    PubMed

    Srinivasa, U; Rao, J Venkateshwara; Krupanidhi, A M; Shanmukhappa, S

    2007-10-01

    The analgesic activity of ethanolic extract of Justicia beddome leaves (Family: Acanthaceae) was evaluated in albino rats using Eddy's hot plate method. The extract at 50 and 100 mg/ kg, (i.p), showed significant analgesic activity at 90 minutes of administration. The analgesic effect of the extract was comparable to that of morphine sulphate.

  6. Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts

    PubMed Central

    Eshwarappa, Ravi Shankara Birur; Iyer, Shanthi; Subaramaihha, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa

    2015-01-01

    An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals

  7. Antimicrobial activity of Gymnema sylvestre leaf extract.

    PubMed

    Satdive, R K; Abhilash, P; Fulzele, Devanand P

    2003-12-01

    The ethanolic extract of Gymnema sylvestre leaves demonstrated antimicrobial activity against Bacillus pumilis, B. subtilis, Pseudomonas aeruginosa and Staphylococcus aureus and inactivity against Proteus vulgaris and Escherichia coli.

  8. Leaf extract assisted green synthesis and characterization of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Reddy, Y. Ashok Kumar; Reddy, P. Sreedhara

    2015-06-01

    In the present study AgNPs were synthesized through simple green route using leaf extract of Crossandra nilotica which act as combined reductant and surfactant at once. The bio-reduced AgNPs were appropriately characterized for studying their structural and optical properties. TEM micrograph confirms the formation of spherical nanoparticles without any agglomeration and particle size range was found to be 12 nm. UV-Vis study elucidates the presence of single plasmon peak, attesting the spherical nanoparticles formation. FTIR results revealed that different functional groups of leaf extract are responsible for the reduction of silver ions and their stabilization.

  9. Candelabra aloe (Aloe arborescens) in the therapy and prophylaxis of upper respiratory tract infections: traditional use and recent research results.

    PubMed

    Bastian, Petra; Fal, Andrzej M; Jambor, Jerzy; Michalak, Anna; Noster, Britta; Sievers, Hartwig; Steuber, Anke; Walas-Marcinek, Natalia

    2013-02-01

    Aloe arborescens (Candelabra Aloe) has been used in the treatment of upper respiratory tract infections in Central and Eastern European countries for many decades. Originally introduced to support the healing and recovery in cornea transplant patients, aqueous A. arborescens extracts soon became popular in the treatment of upper respiratory tract infections with a focus on toddlers and children. Recent preclinical and clinical data show that immunomodulatory, antiinflammatory, and antiviral effects contribute to its therapeutic efficacy. Based on its well documented, longstanding traditional use and its excellent safety and tolerability, A. arborescens may be considered a valuable addition to the spectrum of herbal medicinal products for the treatment and prophylaxis of upper respiratory tract infections, in particular common cold, in adults and children.

  10. Antimalarial activity of methanolic leaf extract of Piper betle L.

    PubMed

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05) schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  11. Antioxidant activity of Syzygium cumini leaf gall extracts

    PubMed Central

    Eshwarappa, Ravi Shankara Birur; Iyer, Raman Shanthi; Subbaramaiah, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa

    2014-01-01

    Introduction: Free radicals are implicated in several metabolic diseases and the medicinal properties of plants have been explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Syzygium cumini (S. cumini), which have been extensively used in traditional medications to treat various metabolic diseases. Methods: The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. Results: In all the methods, the methanolic extract showed higher antioxidant potential than the standard ascorbic acid. The presence of phenolics, flavonoids, phytosterols, terpenoids, and reducing sugars was identified in both the extracts. When compared, the methanol extract had the highest total phenolic and flavonoid contents at 474±2.2 mg of GAE/g d.w and 668±1.4 mg of QUE/g d.w, respectively. The significant high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. Conclusion: The present study confirms the folklore use of S. cumini leaves gall extracts as a natural antioxidant and justifies its ethnobotanical use. Further, the result of antioxidant properties encourages the use of S. cumini leaf gall extracts for medicinal health, functional food and nutraceuticals applications. PMID:25035854

  12. Leaf anatomy affects the extraction of photosynthetic pigments by DMSO.

    PubMed

    Nikolopoulos, Dimosthenis; Korgiopoulou, Christina; Mavropoulos, Kyriakos; Liakopoulos, Georgios; Karabourniotis, George

    2008-09-15

    Dimethylsulfoxide (DMSO) is a widely used solvent for the extraction of chlorophylls (Chls) from leaves of higher plants. The method is preferred because the time-consuming steps of grinding and centrifuging are not required and the extracts are stable for a long time period. However, the extraction efficiency of this solvent is not comparable among plant species, whereas the particular leaf anatomical characteristics responsible for this unevenness remain unknown. In order to examine the influence of leaf anatomy on the extraction efficiency of DMSO (i.e. the concentration of Chls extracted with DMSO as % of the concentration of Chls extracted with 80% acetone), leaves of 19 plant species with different anatomical characteristics were incubated for 40min in DMSO at 65 degrees C. Under these conditions, heterobaric leaves, which are characterized by the occurrence of bundle sheath extensions in the mesophyll, showed lower extraction efficiency of DMSO compared to homobaric leaves and conifer needles. Microscopical observations of DMSO incubated leaf tissues showed that bundle sheath extensions behave as anatomical barriers which prevent the diffusion of DMSO within heterobaric leaves, even after prolonged incubation with the solvent. The effect was stronger in heterobaric leaves possessing thick bundle sheath extensions. The extraction efficiency of DMSO in these leaves was improved by vacuum infiltration of the samples in the presence of warm (65 degrees C) solvent.

  13. Hepatocellular toxicity of kava leaf and root extracts.

    PubMed

    Lüde, Saskia; Török, Michael; Dieterle, Sandy; Jäggi, René; Büter, Karin Berger; Krähenbühl, Stephan

    2008-01-01

    Kava extracts are used widely for different purposes and were thought to be safe. Recently, several cases of hepatotoxicity have been published. To explore possible mechanisms of kava hepatotoxicity, we prepared and analyzed three different kava extracts (a methanolic and an acetonic root and a methanolic leaf extract), and investigated their toxicity on HepG2 cells and isolated rat liver mitochondria. All three extracts showed cytotoxicity starting at a concentration of 50 microg/ml (lactate dehydrogenase leakage) or 1 microg/ml (MTT test). The mitochondrial membrane potential was decreased (root extracts starting at 50 microg/ml) and the respiratory chain inhibited and uncoupled (root extracts) or only uncoupled (leaf extract) at 150 microg/ml, and mitochondrial beta-oxidation was inhibited by all extracts starting at 100 microg/ml. The ratio oxidized to reduced glutathione was increased in HepG2 cells, whereas the cellular ATP content was maintained. Induction of apoptosis was demonstrated by all extracts at a concentration of 150 microg/ml. These results indicate that the kava extracts are toxic to mitochondria, leading to inhibition of the respiratory chain, increased ROS production, a decrease in the mitochondrial membrane potential and eventually to apoptosis of exposed cells. In predisposed patients, mitochondrial toxicity of kava extract may explain hepatic adverse reactions of this drug.

  14. Leaf tissue sampling and DNA extraction protocols.

    PubMed

    Semagn, Kassa

    2014-01-01

    Taxonomists must be familiar with a number of issues in collecting and transporting samples using freezing methods (liquid nitrogen and dry ice), desiccants (silica gel and blotter paper), and preservatives (CTAB, ethanol, and isopropanol), with each method having its own merits and limitations. For most molecular studies, a reasonably good quality and quantity of DNA is required, which can only be obtained using standard DNA extraction protocols. There are many DNA extraction protocols that vary from simple and quick ones that yield low-quality DNA but good enough for routine analyses to the laborious and time-consuming standard methods that usually produce high quality and quantities of DNA. The protocol to be chosen will depend on the quality and quantity of DNA needed, the nature of samples, and the presence of natural substances that may interfere with the extraction and subsequent analysis. The protocol described in this chapter has been tested for extracting DNA from eight species and provided very good quality and quantity of DNA for different applications, including those genotyping methods that use restriction enzymes.

  15. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.

    PubMed

    Song, Jae Yong; Kim, Beom Soo

    2009-01-01

    Five plant leaf extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their extracellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO(3) with the plant leaf extracts as reducing agent of Ag(+) to Ag(0). UV-visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Magnolia leaf broth was the best reducing agent in terms of synthesis rate and conversion to silver nanoparticles. Only 11 min was required for more than 90% conversion at the reaction temperature of 95 degrees C using Magnolia leaf broth. The synthesized silver nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle analyzer. The average particle size ranged from 15 to 500 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO(3) concentration. This environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods and medical applications.

  16. In vitro antioxidant activities of Solanum surattense leaf extract

    PubMed Central

    Muruhan, Sridevi; Selvaraj, Senthil; Viswanathan, Pugalendi Kodukkur

    2013-01-01

    Objective To evaluate the antioxidant activity of alcoholic leaf-extract of Solanum surattense (Solanaceae) (S. surattense). Methods Leaf extract were tested for in vitro free radical scavenging assays, such as hydroxyl radical and hydrogen peroxide, inhibition of superoxide anion radical and 2, 2-diphenyl-1-picryl hydrazyl radical (DPPH), total antioxidant activity and reducing ability. Further, total phenolic content of S. surattense was analyzed. Results S. surattense extract effectively scavenged free radicals at all different concentrations and showed its potent antioxidant activity. Further, these effects were in a dose dependent manner. Results were compared to standard antioxidants such as butylated hydroxytoluene, ascorbic acid and α-tocopherol. Conclusions S. surattense have strong antioxidant potential. Further the study validates the therapeutic benefits of the Indian system of medicine. PMID:23570013

  17. Antiinflammatory activity of the aqueous leaf extract of Byrsocarpus coccineus.

    PubMed

    Akindele, A J; Adeyemi, O O

    2007-01-01

    The antiinflammatory effect of the aqueous leaf extract of Byrsocarpus coccineus was evaluated using the carrageenan and egg albumin induced rat paw edema, xylene induced mouse ear edema and formaldehyde induced arthritis inflammation tests. The extract administered orally at doses of 50, 100, 200 and 400 mg/kg b.w produced a significant (P<0.05) dose dependent inhibition of edema formation in all four methods used. The results obtained suggest that the aqueous leaf extract of B. coccineus is endowed with effective antiinflammatory activity mediated via either inhibition of phospholipase A(2) (PLA(2)) activity or cyclooxygenase cascade and by blocking the release of vasoactive substances (histamine, serotonin and kinins). These findings seem to justify the use of the plant in traditional African medicine in the treatment of inflammation, including arthritic conditions.

  18. Hypoglycemic and hypocholesterolemic potential of Persea americana leaf extracts.

    PubMed

    Brai, Bartholomew I C; Odetola, A A; Agomo, P U

    2007-06-01

    The effect of aqueous and methanolic leaf extracts of Persea americana on plasma glucose, total cholesterol, low-density lipoprotein cholesterol (LDL-CHOL), and high-density lipoprotein cholesterol (HDL-CHOL) in rats was investigated. Albino rats were fed a diet containing 20% groundnut oil, 0.5% cholesterol, and 0.25% cholic acid to induce hypercholesterolemia. They were then treated daily with aqueous or methanolic extract of P. americana leaf (10 mg/kg of body weight) for 8 weeks. There were no significant (P > .05) differences in the overall body weight gain of the hypercholesterolemic rats compared to normal control. Liver to body weight ratio, plasma glucose, total cholesterol (T-CHOL), and LDL-CHOL levels were significantly (P < .05) elevated in rats fed hypercholesterolemic diet compared to normal controls. The administration of aqueous and methanolic leaf extracts of P. americana induced reductions in plasma glucose (16% and 11%,respectively), T-CHOL (8% and 5%, respectively), and LDL-CHOL (19% and 20%, respectively) in the treated rats compared to the hypercholesterolemic controls. Also, plasma HDL-CHOL concentrations increased by 85% and 68%, respectively, in the aqueous and methanolic extract-treated rats compared to the hypercholesterolemic controls. These results suggest that aqueous and methanolic leaf extracts of P. americana lower plasma glucose and influence lipid metabolism in hypercholesterolemic rats with consequent lowering of T-CHOL and LDL-CHOL and a restoration of HDL-CHOL levels. This could represent a protective mechanism against the development of atherosclerosis.

  19. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment

    PubMed Central

    Sasidharan, Sreenivasan; Logeswaran, Selvarasoo; Latha, Lachimanan Yoga

    2012-01-01

    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties. PMID:22312255

  20. Evidence of oleuropein degradation by olive leaf protein extract.

    PubMed

    De Leonardis, Antonella; Macciola, Vincenzo; Cuomo, Francesca; Lopez, Francesco

    2015-05-15

    The enzymatic activity of raw protein olive leaf extract has been investigated in vivo, on olive leaf homogenate and, in vitro with pure oleuropein and other phenolic substrates. At least two types of enzymes were found to be involved in the degradation of endogenous oleuropein in olive leaves. As for the in vitro experiments, the presence of active polyphenoloxidase and β-glucosidase was determined by HPLC and UV-Visible spectroscopy. Interestingly, both the enzymatic activities were found to change during the storage of olive leaves. Specifically, the protein extracts obtained from fresh leaves showed the presence of both the enzymatic activities, because oleuropein depletion occurred simultaneously with the formation of the oleuropein aglycon, 3,4-DHPEA-EA. In comparison leaves subjected to the drying process showed a polyphenoloxidase activity leading exclusively to the formation of oxidation products responsible for the typical brown coloration of the reaction solution.

  1. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    PubMed

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased.

  2. Biological reduction of graphene oxide using plant leaf extracts.

    PubMed

    Lee, Geummi; Kim, Beom Soo

    2014-01-01

    Two-dimensional graphene has attracted significant attention due to its unique mechanical, electrical, thermal, and optical properties. Most commonly employed methods to chemically reduce graphene oxide to graphene use hydrazine or its derivatives as the reducing agent. However, they are highly hazardous and explosive. Various phytochemicals obtained from different natural sources such as leaves and peels of a plant are used as reducing agents in the preparation of different gold, silver, copper, and platinum nanoparticles. In this study, seven plant leaf extracts (Cherry, Magnolia, Platanus, Persimmon, Pine, Maple, and Ginkgo) were compared for their abilities to reduce graphene oxide. The optimized reaction conditions for the reduction of graphene oxide were determined as follows. Type of plant: Cherry (Prunus serrulata), reaction time: 12 h, composition of the reaction mixture: 16.7% v/v of plant leaf extract in total suspension, and temperature: 95°C. The degree of reduction caused by Cherry leaf extract was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The reduction of graphene oxide was also confirmed by ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis.

  3. Evaluation of cytotoxicity and anticarcinogenic potential of Mentha leaf extracts.

    PubMed

    Jain, Deepika; Pathak, Neelam; Khan, Saba; Raghuram, Gorantla Venkata; Bhargava, Arpit; Samarth, Ravindra; Mishra, Pradyumna Kumar

    2011-03-01

    We examined the possible molecular mechanisms underlying the cytotoxicity and anticarcinogenic potential of Mentha leaf extracts (petroleum ether, benzene, chloroform, ethyl acetate, methanol, and water extracts) on 6 human cancer (HeLa, MCF-7, Jurkat, T24, HT-29, MIAPaCa-2) and normal (IMR-90, HEK-293) cell lines. Of all the extracts tested, chloroform and ethyl acetate extracts of M piperita showed significant dose- and time-dependent anticarcinogenic activity leading to G1 cell cycle arrest and mitochondrial-mediated apoptosis, perturbation of oxidative balance, upregulation of Bax gene, elevated expression of p53 and p21 in the treated cells, acquisition of senescence phenotype, while inducing pro-inflammatory cytokines response. Our results provide the first evidence of direct anticarcinogenic activity of Mentha leaf extracts. Further, bioassay-directed isolation of the active constituents might provide basis for mechanistic and translational studies for designing novel anticancer drugs to be used alone or as adjuvant for prevention of tumor progression and/or treatment of human malignancies.

  4. Artemisia arborescens Essential Oil Composition, Enantiomeric Distribution, and Antimicrobial Activity from Different Wild Populations from the Mediterranean Area.

    PubMed

    Said, Mohammed El-Amin; Militello, Marcello; Saia, Sergio; Settanni, Luca; Aleo, Aurora; Mammina, Caterina; Bombarda, Isabelle; Vanloot, Pierre; Roussel, Christian; Dupuy, Nathalie

    2016-08-01

    Aerial parts of Artemisia arborescens were collected from different sites of the Mediterranean area (southwestern Algeria and southern Italy) and the chemical composition of their essential oil (EO) extracted by hydrodistillation was studied by both gas chromatography (GC) equipped with an enantioselective capillary column and GC/mass spectrometry (GC/MS). The EOs obtained were tested against several Listeria monocytogenes strains. Using GC and GC/MS, 41 compounds were identified, accounting for 96.0 - 98.8% of the total EO. All EOs showed a similar terpene profile, which was rich in chamazulene, β-thujone, and camphor. However, the concentration of such compounds varied among the EOs. A. arborescens EO inhibited up to 83.3% of the L. monocytogenes strains, but the inhibitory spectrum varied among the EOs, with those from Algeria showing a higher inhibition degree than the Italian EOs. Such effect likely depended on the ketone (β-thujone + camphor) content of the EO. The differences in the EO composition support the hypothesis that A. arborescens has at least two different chemotypes: a β-thujone and a chamazulene type. The EO inhibitory spectrum indicates the A. arborescens EO as a valuable option in the control of the food-borne pathogens.

  5. Genotoxic potential of leaf extracts of Jatropha gossypiifolia L.

    PubMed

    Almeida, P M; Araújo, S S; Santos, I R M R; Marin-Morales, M A; Benko-Iseppon, A M; Santos, A V; Randau, K P; Brasileiro-Vidal, A C

    2016-02-05

    Jatropha gossypiifolia L. (Euphorbiaceae) is widely used in popular medicine. However, further toxicological studies are necessary for its reliable use. The present study aimed to evaluate the cytotoxic, genotoxic, and mutagenic effects of ethanolic and aqueous leaf extracts of J. gossypiifolia, using the test system Allium cepa. In addition, the phytochemical profile of the extracts was also obtained. Seeds of A. cepa were subjected to different concentrations of the two extracts (0.001, 0.01, 0.1, 1, and 10 mg/mL). Distilled water was used for the negative control and methyl methanesulfonate (4 x 10(-4) M) and trifluralin (0.84 ppm) for the positive controls. The values of mitotic index at all concentrations of ethanolic extract and at 0.1, 1, and 10 mg/mL aqueous extract showed a significant decrease. Alterations, such as chromosome adherence, C-metaphases, chromosome bridges, nuclear buds, and micronuclei were verified in both extracts but chromosome loss indicating genotoxic activity was observed only in the ethanolic extract. Presence of micronuclei on administration of the extracts, also indicated mutagenic action at the chromosome level. In the ethanolic extract, aneugenicity seemed to be the main activity, probably as a result of the action of terpenes and/or flavonoids, whereas in the aqueous extract, clastogenic action appeared to be the principal activity, presumably as a consequence of the effect of flavonoids and/or saponins. Thus, we suggest that the extracts of this species should be used with great caution for medicinal purpose.

  6. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst.

    PubMed

    Ajitha, B; Ashok Kumar Reddy, Y; Shameer, Syed; Rajesh, K M; Suneetha, Y; Sreedhara Reddy, P

    2015-08-01

    Silver nanoparticles (AgNPs) have been synthesized by Lantana camara leaf extract through simple green route and evaluated their antibacterial and catalytic activities. The leaf extract (LE) itself acts as both reducing and stabilizing agent at once for desired nanoparticle synthesis. The colorless reaction mixture turns to yellowish brown attesting the AgNPs formation and displayed UV-Vis absorption spectra. Structural analysis confirms the crystalline nature and formation of fcc structured metallic silver with majority (111) facets. Morphological studies elicit the formation of almost spherical shaped nanoparticles and as AgNO3 concentration is increased, there is an increment in the particle size. The FTIR analysis evidences the presence of various functional groups of biomolecules of LE is responsible for stabilization of AgNPs. Zeta potential measurement attests the higher stability of synthesized AgNPs. The synthesized AgNPs exhibited good antibacterial activity when tested against Escherichia coli, Pseudomonas spp., Bacillus spp. and Staphylococcus spp. using standard Kirby-Bauer disc diffusion assay. Furthermore, they showed good catalytic activity on the reduction of methylene blue by L. camara extract which is monitored and confirmed by the UV-Vis spectrophotometer.

  7. In Vitro Antileukemic Activity of Xanthosoma sagittifolium (Taioba) Leaf Extract

    PubMed Central

    Caxito, Marina L. C.; Correia, Rachell R.; Gomes, Anne Caroline C.; Justo, Graça; Coelho, Marsen G. P.; Sakuragui, Cássia M.; Kuster, Ricardo M.; Sabino, Katia C. C.

    2015-01-01

    Xanthosoma sagittifolium Schott is a herb of the Araceae family, popularly known as taioba, which is consumed as food in some regions of Brazil, Africa, and Asia. This species has already been evaluated for the antifungal activities. However, based on its potential antitumor activity, the present study further aimed to examine the antitumor, as well as chelation, activity of X. sagittifolium leaf extract. Results showed that hydroethanolic extract of X. sagittifolium leaves (HEXs-L) exhibits cytotoxic effects against the immortalized line of human T-lymphocytic (Jurkat) and myelogenous (K562) leukemia cells, but not nontumor RAW 264.7 macrophages or NIH/3T3 fibroblasts. HEXs-L inhibited 50.3% of Jurkat cell proliferation, reducing by 20% cells in G2/M phase, but increasing cells in sub-G1 phase, thereby inducing apoptosis by 54%. In addition, HEXs-L inhibited NO production by 59%, as determined by Griess reaction, and chelated 93.8% of free Fe(II), as demonstrated by ferrozine assay. Phytochemical studies were carried out by ESI-MS, identifying apigenin di-C-glycosides as major compounds. Overall, this work revealed that leaf extract of Xanthosoma sagittifolium presented chelating activity and in vitro antitumor activity, arresting cell cycle and inducing apoptosis of leukemia cells, thus providing evidence that taioba leaves may have practical application in cancer therapy. PMID:26180533

  8. Glioprotective Effects of Ashwagandha Leaf Extract against Lead Induced Toxicity

    PubMed Central

    Kumar, Praveen; Singh, Raghavendra; Nazmi, Arshed; Lakhanpal, Dinesh; Kataria, Hardeep; Kaur, Gurcharan

    2014-01-01

    Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning. PMID:24987671

  9. Investigation of antioxidant properties of Nasturtium officinale (watercress) leaf extracts.

    PubMed

    Ozen, Tevfik

    2009-01-01

    The objective of this study was to examine the in vitro and in vivo antioxidative properties of aqueous and ethanolic extracts of the leaf of Nasturtium officinale R. Br. (watercress). Extracts were evaluated for total antioxidant activity by ferric thiocyanate method, total reducing power by potassium ferricyanide reduction method, 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical scavenging activities, superoxide anion radical scavenging activities in vitro and lipid peroxidation in vivo. Those various antioxidant activities were compared to standards such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol. The ethanolic extract was found as the most active in total antioxidant activity, reducing power, DPPH* radicals and superoxide anion radicals scavenging activities. Administration of the ethanol extract to rats decreased lipid peroxidation in liver, brain and kidney. These results lead to the conclusion that N. officinale extracts show relevant antioxidant activity by means of reducing cellular lipid peroxidation and increasing antioxidant activity, reducing power, free radiacal and superoxide anion radical scavenging activities. In addition, total phenolic compounds in the aqueous and ethanolic extract of N. officinale were determined as pyrocatechol.

  10. Gamma irradiation enhances biological activities of mulberry leaf extract

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-04-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE2, and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods.

  11. Liquid-liquid extraction for the enrichment of edible oils with phenols from olive leaf extracts.

    PubMed

    Japón-Luján, R; Luque de Castro, M D

    2008-04-09

    A liquid-liquid extraction method to enrich edible oils--olive, sunflower, and soy oils--with phenols from olive leaf extracts is proposed. After microwave assistance to remove the phenols from three varieties of olive leaves, concentrations in the extracts between 12921 and 5173 mg/L of oleuropein, between 488 and 192 mg/L of apigenin-7-glucoside, between 444 and 219 mg/L of luteolin-7-glucoside, and between 501 and 213 mg/L of verbascoside were obtained, which clearly depended on the target variety. After optimization of the liquid-liquid extraction step, the concentrations in oils were 442, 162, and 164 mg/L of oleuropein, respectively, which were also enriched in apigenin-7-glucoside (between 8 and 15 mg/L, depending of the oil), lutelin-7-glucoside (between 11 and 12 mg/L), and verbascoside (between 11 and 13 mg/L). The oil-extract distribution factor of these compounds was also calculated for all olive leaf varieties and edible oils using different extracts concentrations and also different oil-extract volume ratios. Thus, a door is open to enrichment of any oil with olive phenols at preset concentrations using extracts preconcentrated as required and taking into account the distribution factor of the target compounds between the oil and the extracts.

  12. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    PubMed

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

  13. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology.

    PubMed

    Şahin, Selin; Samlı, Rüya

    2013-01-01

    In the present article, ultrasound-assisted extraction (UAE) of polyphenols from agricultural and industrial waste of olive oil and table oil productions, olive tree (Olea europaea) leaves were investigated. The aim of the study is to examine the extraction parameters such as solvent concentration (0-100% ethanol (EtOH), v/v), the ratio of solid to solvent (25-50mg/mL) and extraction time (20-60 min), and to obtain the best possible combinations of these parameters through response surface methodology (RSM). The extract yield was stated as mg extract per g of dried leaf (DL). Total phenolic content was expressed in gallic acid equivalent (GAE) per g of dried leaf. Free radical scavenging activity for the antioxidant capacity was tested by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The second order polynomial model gave a satisfactory description of the experimental data. 201.2158 mg extract/g DL, 25.0626 mg GAE/g DL, and 95.5610% in respect to inhibition of DPPH radical were predicted at the optimum operating conditions (500 mg solid to 10 mL solvent ratio, 60 min of extraction time and 50% EtOH composition), respectively.

  14. Sulphur treatment alters the therapeutic potency of alliin obtained from garlic leaf extract.

    PubMed

    Nasim, S A; Dhir, B; Samar, F; Rashmi, K; Mahmooduzzafa; Mujib, A

    2009-04-01

    The therapeutic potency of garlic leaf extract obtained from normal and sulphur treated plants was compared. Alliin, the active compound of garlic leaf extract showed 32% increase in yield under sulphur treated conditions. Alliin obtained from leaf extract of plants brought a significant reduction in serum glucose, triglycerides, total lipids, total cholesterol, LDL- and VLDL-cholesterol levels than glibenclamide in alloxan-induced diabetic rats. Alliin from sulphur treated plants was more effective in comparison to that obtained from plants raised in normal conditions. Serum glucose levels showed significant reduction of 50% in rats administered with leaf extract from sulphur treated plants in comparison to 37% noted in rats administered with leaf extract from normal plants. No alteration in HDL-cholesterol was noted. Similarly, alliin obtained from leaf extract of plants lowered the serum enzyme (ALP, AST and ALT) levels towards normal than glibenclamide. The reduction in serum enzyme levels was significant in rats administered with leaf extract of plants raised under sulphur treated conditions in comparison to that raised under normal conditions. The present findings suggest that leaf extract from sulphur treated garlic possess more antidiabetic potential and hence show more therapeutic potency in comparison to extract obtained from normal plants.

  15. Phytochemical screening of Artemisia arborescens L. by means of advanced chromatographic techniques for identification of health-promoting compounds.

    PubMed

    Costa, Rosaria; Ragusa, Salvatore; Russo, Marina; Certo, Giovanna; Franchina, Flavio A; Zanotto, Antonio; Grasso, Elisa; Mondello, Luigi; Germanò, Maria Paola

    2016-01-05

    Artemisia arborescens, also known as tree wormwood, is a typical species of the Mediterranean flora. It has been used in folk medicine for its antispasmodic, anti-pyretic, anti-inflammatory, and abortifacient properties. In the current study, the application of multidimensional comprehensive gas chromatography (GC×GC), allowed to obtain a detailed fingerprint of the essential oil from A. arborescens aerial parts, highlighting an abundant presence of chamazulene followed by camphor, β-thujone, myrcene, and α-pinene. Moreover, flavonoids in the dichloromethane extract were analyzed by means of liquid chromatography with photodiode array and atmospheric pressure chemical ionization-mass spectrometry detections (HPLC-PDA and HPLC-APCI-MS). Six polymethoxyflavones were identified and three of them, including chrysosplenetin, eupatin, and cirsilineol, were described in this species for the first time. The anti-angiogenic activity was investigated in the dichloromethane extract by two in vivo models, chick chorioallantoic membrane (CAM) and zebrafish embryos. Results showed that this extract produced a strong reduction on vessel formation, both on zebrafish (57% of inhibition, 0.1 mg/mL) and chick chorioallantoic membrane (58% of inhibition, 0.8 mg/mL). The high separation power and sensitivity of the analytical methodology applied confirmed the safety of A. arborescens essential oil for human consumption, due to the very low level of the psychotrope α-thujone determined. Moreover, the knowledge of the flavonoidic profile holds a great significance for the use of A. arborescens as a valuable source of anti-angiogenic compounds that might contribute to the valorization of the phytotherapeutic potential of this plant.

  16. Evaluation of the genotoxicity of ginseng leaf extract UG0712

    PubMed Central

    Kim, Ji-Young; Ri, Yu; Do, Seon-Gil; Lee, Young-Chul

    2014-01-01

    Although ginseng (genus Panax) leaf extract contains high concentrations of bioactive constituents, its effects have been reported in few preclinical studies, and information regarding its toxicity is not sufficient to allow for its clinical use. We evaluated the genotoxicity of UG0712, which is a powdered extract of ginseng leaves. UG0712 did not increase the number of revertant colonies in 4 histidine auxotrophic strains of Salmonella typhimurium (TA100, TA1535, TA98, and TA1537) or in a tryptophan auxotrophic strain of Escherichia coli (WP2uvrA(pKM101)) at any concentration evaluated, either in the absence or presence of the metabolic activation system. There was no significant increase in the number of metaphase cells with structural or numerical aberrations in the UG0712-treated groups compared to the concurrent vehicle control at any dose, regardless of the presence of the metabolic activation system. Oral administration of the extract at doses up to 2,000 mg/kg in male mice did not increase the frequency of micronucleated polychromatic erythrocytes in the bone marrow, and did not result in any significant clinical signs, body weight loss, gross findings, or mortality. These results suggest that UG0712 does not act as a mutagenic or genotoxic material at the concentrations evaluated. PMID:25324871

  17. Antimicrobial Compounds from Leaf Extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata

    PubMed Central

    Rahman, M. M.; Ahmad, S. H.; Mohamed, M. T. M.; Ab Rahman, M. Z.

    2014-01-01

    The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested. PMID:25250382

  18. Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata.

    PubMed

    Rahman, M M; Ahmad, S H; Mohamed, M T M; Ab Rahman, M Z

    2014-01-01

    The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.

  19. Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...

  20. Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains

    PubMed Central

    Naz, Rabia; Bano, Asghari

    2012-01-01

    Objective To investigate the in vitro antimicrobial activities of the leaf extract in different solvents viz., methanol, ethanol and water extracts of the selected plant Ricinus communis. Methods Agar well diffusion method and agar tube dilution method were carried out to perform the antibacterial and antifungal activity of methanol, ethanol and aqueous extracts. Results Methanol leaf extracts were found to be more active against Gram positive bacteria (Bacillus subtilis: ATCC 6059 and Staphylococcus aureus: ATCC 6538) as well as Gram negative bacteria (Pseudomonas aeruginosa: ATCC 7221 and Klebsiella pneumoniae) than ethanol and aqueous leaf extracts. Antifungal activity of methanol and aqueous leaf extracts were also carried out against selected fungal strains as Aspergillus fumigatus and Aspergillus flavus. Methanolic as well as aqueous leaf extracts of Ricinus communis were effective in inhibiting the fungal growth. Conclusions The efficient antibacterial and antifungal activity of Ricinus communis from the present investigation revealed that the methanol leaf extracts of the selected plant have significant potential to inhibit the growth of pathogenic bacterial and fungal strains than ethanol and aqueous leaf extracts. PMID:23593573

  1. Promotion of hair growth by Rosmarinus officinalis leaf extract.

    PubMed

    Murata, Kazuya; Noguchi, Kazuma; Kondo, Masato; Onishi, Mariko; Watanabe, Naoko; Okamura, Katsumasa; Matsuda, Hideaki

    2013-02-01

    Topical administration of Rosmarinus officinalis leaf extract (RO-ext, 2 mg/day/mouse) improved hair regrowth in C57BL/6NCrSlc mice that experienced hair regrowth interruption induced by testosterone treatment. In addition, RO-ext promoted hair growth in C3H/He mice that had their dorsal areas shaved. To investigate the antiandrogenic activity mechanism of RO-ext, we focused on inhibition of testosterone 5α-reductase, which is well recognized as one of the most effective strategies for the treatment of androgenic alopecia. RO-ext showed inhibitory activity of 82.4% and 94.6% at 200 and 500 µg/mL, respectively. As an active constituent of 5α-reductase inhibition, 12-methoxycarnosic acid was identified with activity-guided fractionation. In addition, the extract of R. officinalis and 12-methoxycarnosic acid inhibited androgen-dependent proliferation of LNCaP cells as 64.5% and 66.7% at 5 µg/mL and 5 μM, respectively. These results suggest that they inhibit the binding of dihydrotestosterone to androgen receptors. Consequently, RO-ext is a promising crude drug for hair growth.

  2. Antioxidant and antimutagenic potential of Psidium guajava leaf extracts.

    PubMed

    Zahin, Maryam; Ahmad, Iqbal; Aqil, Farrukh

    2017-04-01

    Fruits, vegetables and medicinal herbs rich in phenolics antioxidants contribute toward reduced risk of age-related diseases and cancer. In this study, Psidium guajava leaf extract was fractionated in various organic solvents viz. petroleum ether, benzene, ethyl acetate, ethanl and methanol and tested for their antioxidant and antimutagenic properties. Methanolic fraction showed maximum antioxidant activity comparable to ascorbic acid and butylated hydroxyl toluene (BHT) as tested by DPPH free radical scavenging, phosphomolybdenum, FRAP (Fe3 + reducing power) and CUPRAC (cupric ions (Cu(2+)) reducing ability) assays. The fraction was analyzed for antimutagenic activities against sodium azide (NaN3), methylmethane sulfonate (MMS), 2-aminofluorene (2AF) and benzo(a)pyrene (BP) in Ames Salmonella tester strains. The methanol extracted fraction at 80 μg/ml concentration inhibited above 70% mutagenicity. Further, phytochemical analysis of methanol fraction that was found to be most active revealed the presence of nine major compounds by gas chromatography-mass spectrometry (GC-MS). This data suggests that guava contains high amount of phenolics responsible for broad-spectrum antimutagenic and antioxidant properties in vitro and could be potential candidates to be explored as modern phytomedicine.

  3. Multiple antimelanoma potential of dry olive leaf extract.

    PubMed

    Mijatovic, Sanja A; Timotijevic, Gordana S; Miljkovic, Djordje M; Radovic, Julijana M; Maksimovic-Ivanic, Danijela D; Dekanski, Dragana P; Stosic-Grujicic, Stanislava D

    2011-04-15

    Various constituents of the olive tree (Olea europaea) have been traditionally used in the treatment of infection, inflammation, prevention of chronic diseases, cardiovascular disorders and cancer. The anticancer potential of dry olive leaf extract (DOLE) represents the net effect of multilevel interactions between different biologically active compounds from the extract, cancer cells and conventional therapy. In this context, it was of primary interest to evaluate the influence of DOLE on progression of the highly malignant, immuno- and chemoresistant type of skin cancer-melanoma. DOLE significantly inhibited proliferation and subsequently restricted clonogenicity of the B16 mouse melanoma cell line in vitro. Moreover, late phase tumor treatment with DOLE significantly reduced tumor volume in a syngeneic strain of mice. DOLE-treated B16 cells were blocked in the G(0) /G(1) phase of the cell cycle, underwent early apoptosis and died by late necrosis. At the molecular level, the dying process started as caspase dependent, but finalized as caspase independent. In concordance, overexpression of antiapoptotic members of the Bcl-2 family, Bcl-2 and Bcl-XL, and diminished expression of their natural antagonists, Bim and p53, were observed. Despite molecular suppression of the proapoptotic process, DOLE successfully promoted cell death mainly through disruption of cell membrane integrity and late caspase-independent fragmentation of genetic material. Taken together, the results of this study indicate that DOLE possesses strong antimelanoma potential. When DOLE was applied in combination with different chemotherapeutics, various outcomes, including synergy and antagonism, were observed. This requires caution in the use of the extract as a supplementary antitumor therapeutic.

  4. In vitro susceptibility of viridans streptococci to leaf extracts of Mangifera Indica.

    PubMed

    Jose, S; Beegum, G R J

    2007-06-01

    The susceptibility of Viridans streptococci to leaf extracts of Mangifera indica was studied on 53 clinical isolates from 39 patients. All the isolates were found to be susceptible to both water and methanol extract of M. indica leaves. Minimum inhibitory concentration (MIC) of methanol extract for all isolates were <50 mg/mL and MIC of water extract for all isolates were <200 mg/mL. Methanol extract was found to have better action against Viridans streptococci than water extract.

  5. Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers.

    PubMed

    Rahman, M M; Ahmad, S H; Lgu, K S

    2012-01-01

    The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. "Carola" and "Pallas Orange" carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a "germicide" (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers.

  6. Bioefficacy of Graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes.

    PubMed

    Son, Yu-Ra; Choi, Eun-Hye; Kim, Goon-Tae; Park, Tae-Sik; Shim, Soon-Mi

    2016-02-01

    The aims of this study were to determine bioactive components of Graviola leaf extracts and to examine the radical scavenging capacity, gene expression and transcription factors of antioxidant enzymes. Rutin, kaempferol-rutinoside, and vitamin U were identified from the steaming and 50% EtOH extracts of Graviola leaves. Graviola leaf extracts effectively scavenged peroxy and nitrogen radicals. 50% EtOH of Graviola leaves provided a 1-2.9 times higher trolox equivalent than the steaming extract. It also had a higher VCEAC. Graviola leaf extracts reduced the generation of reactive oxygen species (ROS) induced by H2O2 in a dose-dependent manner. The 50% EtOH extract of Graviola leaves upregulated SOD1 and Nrf2, but catalase and HMOX1 were not altered by the 50% EtOH extract of Graviola leaves.

  7. Influence of Leaf Litter Moisture on the Efficiency of the Winkler Method for Extracting Ants

    PubMed Central

    Delsinne, Thibaut D.; Arias-Penna, Tania M.

    2012-01-01

    The Winkler extraction is one of the two fundamental sampling techniques of the standardized “Ants of the Leaf Litter” protocol, which aims to allow qualitative and quantitative comparisons of ant (Hymenoptera: Formicidae) assemblages. To achieve this objective, it is essential that the standard 48—hour extraction provides a reliable picture of the assemblages under study. Here, we tested to what extent the efficiency of the ant extraction is affected by the initial moisture content of the leaf litter sample. In an Ecuadorian mountain rainforest, the leaf litter present under rainfall—excluded and rainfall—allowed plots was collected, its moisture content measured, and its ant fauna extracted with a mini—Winkler apparatus for a 48—hour and a 96—hour period. The efficiency of the Winkler method to extract ant individuals over a 48—hour period decreased with the moisture content of the leaf litter sample. However, doubling the extraction time did not improve the estimations of the ant species richness, composition, and relative abundance. Although the moisture content of the leaf litter slightly affected the ant sampling, our results indicated that a 48—hour Winkler extraction, as recommended by the “Ants of the Leaf Litter” protocol, is sufficient to allow reliable comparisons of ant assemblages. PMID:22962850

  8. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract.

    PubMed

    Lee, Ok-Hwan; Lee, Boo-Yong

    2010-05-01

    Olive leaves, an agricultural waste, have great potential as a natural antioxidant. The current study was made to assess the antioxidant and antimicrobial activities of both the individual and combined phenolics in olive leaf extract. A combined phenolics mixture was prepared by amount ratios of the phenolic compounds in the olive leaf extract. The results showed that both the individual and combined phenolics exhibited good radical scavenging abilities, and also revealed superoxide dismutase (SOD)-like activity. In terms of antimicrobial activity, both oleuropein and caffeic acid showed inhibition effects against microorganisms. Furthermore, the antimicrobial effect of the combined phenolics was significantly higher than those of the individual phenolics. These results show that the combination of olive leaf extract phenolics possessed antioxidant and antimicrobial activities. This study indicates that olive leaf extract might be a valuable bioactive source, and would seem to be applicable in both the health and medical food.

  9. In Vivo Antihypercholesterolemic Potential of Swietenia mahagoni Leaf Extract

    PubMed Central

    2016-01-01

    The present investigation aims to evaluate antihypercholesterolemic potential of Swietenia mahagoni leaf aqueous extract (MAE) in diet-induced hypercholesterolemic rat model. In the study, Wistar albino rats (170–220 g) were segregated into 5 groups; all the groups except normal control group were given high fat diet to induce hypercholesterolemia. After induction of cholesterolemia, normal control and positive control groups were treated with saline, statin group was treated with atorvastatin, and remaining two groups received MAE in two doses (250 and 500 mg kg−1 BW) for a treatment period of one month. After the treatment period, weight of rats was recorded and they were anesthetized and decapitated. Blood samples were taken and triglycerides, total cholesterol, LDL-C, HDL-C, malondialdehyde (MDA), and urea were determined. Liver and kidney were taken for the estimation of lipid peroxides. The positive control group showed higher values of triglycerides (109 ± 5.1 mg/dL), total cholesterol (134 ± 4.6 mg/dL), LDL-C (44 ± 1.2 mg/dL), MDA, and bile acid content when compared to a normal control group (triglycerides (89 ± 3.2 mg/dL), total cholesterol (72 ± 3.4 mg/dL), and LDL-C (28 ± 1.2 mg/dL)). Treatment with MAE decreased the cholesterol levels, HDL-C, ALT, AST, and bilirubin levels and the effect was dependent on the dose. The results of this study indicated that MAE possesses hypolipidemic potential and thus could be useful in the treatment of hypercholesterolemic condition. PMID:27818794

  10. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats.

    PubMed

    Wainstein, Julio; Ganz, Tali; Boaz, Mona; Bar Dayan, Yosefa; Dolev, Eran; Kerem, Zohar; Madar, Zecharia

    2012-07-01

    Olive tree (Olea europaea L.) leaves have been widely used in traditional remedies in European and Mediterranean countries as extracts, herbal teas, and powder. They contain several potentially bioactive compounds that may have hypoglycemic properties. To examine the efficacy of 500 mg oral olive leaf extract taken once daily in tablet form versus matching placebo in improving glucose homeostasis in adults with type 2 diabetes (T2DM). In this controlled clinical trial, 79 adults with T2DM were randomized to treatment with 500 mg olive leaf extract tablet taken orally once daily or matching placebo. The study duration was 14 weeks. Measures of glucose homeostasis including Hba1c and plasma insulin were measured and compared by treatment assignment. In a series of animal models, normal, streptozotocin (STZ) diabetic, and sand rats were used in the inverted sac model to determine the mechanism through which olive leaf extract affected starch digestion and absorption. In the randomized clinical trial, the subjects treated with olive leaf extract exhibited significantly lower HbA1c and fasting plasma insulin levels; however, postprandial plasma insulin levels did not differ significantly by treatment group. In the animal models, normal and STZ diabetic rats exhibited significantly reduced starch digestion and absorption after treatment with olive leaf extract compared with intestine without olive leaf treatment. Reduced digestion and absorption was observed in both the mucosal and serosal sides of the intestine. Though reduced, the decline in starch digestion and absorption did not reach statistical significance in the sand rats. Olive leaf extract is associated with improved glucose homeostasis in humans. Animal models indicate that this may be facilitated through the reduction of starch digestion and absorption. Olive leaf extract may represent an effective adjunct therapy that normalizes glucose homeostasis in individuals with diabetes.

  11. Phytochemical analysis of Andrographis paniculata and Orthosiphon stamineus leaf extracts for their antibacterial and antioxidant potential.

    PubMed

    Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A

    2013-09-01

    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.

  12. Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters

    PubMed Central

    Showraki, Najmeh; Mardani, Maryam; Emamghoreishi, Masoumeh; Andishe-Tadbir, Azadeh; Aram, Alireza; Mehriar, Peiman; Omidi, Mahmoud; Sepehrimanesh, Masood; Koohi-Hosseinabadi, Omid; Tanideh, Nader

    2016-01-01

    Statement of the Problem: Oral mucositis (OM) is a common side effect of anti-cancer drugs and needs significant attention for its prevention. Purpose: This study aimed to evaluate the healing effects of olive leaf extract on 5-fluorouracil-induced OM in golden hamster. Materials and Method: OM was induced in 63 male golden hamsters by the combination of 5-fluorouracil injections (days 0, 5 and 10) and the abrasion of the cheek pouch (days 3 and 4). On day 12, hamsters were received topical olive leaf extract ointment, base of ointment, or no treatment (control) for 5 days. Histopathology evaluations, blood examinations, and tissue malondialdehyde level measurement were performed 1, 3 and 5 days after treatments. Results: Histopathology score and tissue malondialdehyde level were significantly lower in olive leaf extract treated group in comparison with control and base groups (p= 0.000). Significant decreases in white blood cell, hemoglobin, hematocrit , and mean corpuscular volume and an increase in mean corpuscular hemoglobin concentration were observed in olive leaf extract treated group in comparison with control and base groups (p< 0.05). Conclusion: Our findings demonstrated that daily application of olive leaf extract ointment had healing effect on 5-fluorouracil induced OM in hamsters. Moreover, the beneficial effect of olive leaf extract on OM might be due to its antioxidant and anti-inflammatory properties. PMID:27942549

  13. Evaluation of antinociceptive effect of methanolic leaf and root extracts of Clitoria ternatea Linn. in rats

    PubMed Central

    Kamilla, Linggam; Ramanathan, Surash; Sasidharan, Sreenivasan; Mansor, Sharif Mahsufi

    2014-01-01

    Aim: Clitoria ternatea Linn. (C. ternatea) is an Ayurvedic herb traditionally used as medicine to relieve inflammatory, rheumatism, ear diseases, fever, arthritis, eye ailments, sore throat and body ache. This study aims to evaluate and elucidate the possible mechanism underlying the antinociceptive action of methanolic extracts of C. ternatea leaf and root using several antinociception models. Materials and Methods: The different antinociception models such as hot plate, tail-flick and formalin tests were used along with naloxone (a non-selective opioid antagonist) to establish the antinociceptive activity of both leaf and root extracts. Results: Both C. ternatea leaf and root extracts markedly demonstrated antinociceptive action in experimental animals. Results of formalin test showed that the antinociceptive activity of the extracts may be mediated at both central and peripheral level. Moreover, the results of hot plate and tail-flick tests further implies that C. ternatea root extract mediates antinociceptive activity centrally at supraspinal and spinal levels whereas, the C. ternatea leaf extract's antinociceptive activity is mediated centrally at supraspinal level only. It is believed that the opioid receptors are probably involved in antinociceptive activity of both C. ternatea root extract. Conclusions: Our studies support the traditional use of C. ternatea leaf and root against pain. The extracts can also be utilised as a new source of central analgesics in treatment of pain. PMID:25298581

  14. Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger.

    PubMed

    Kamilla, L; Mansor, S M; Ramanathan, S; Sasidharan, S

    2009-08-01

    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract.

  15. Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes

    PubMed Central

    Balakumar, S; Rajan, S; Thirunalasundari, T; Jeeva, S

    2011-01-01

    Objective To evaluate the in vitro antifungal activity of Aegle marmelos leaf extracts and fractions on the clinical isolates of dermatophytic fungi like Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of various extracts and fractions of the leaves of Aegle marmelos were measured using method of National Committee for Clinical Laboratory Standards (NCCLS). Results Aegle marmelos leaf extracts and fractions were found to have fungicidal activity against various clinical isolates of dermatophytic fungi. The MIC and MFC was found to be high in water and ethyl alcohol extracts and methanol fractions (200µg/mL) against dermatophytic fungi studied. Conclusions Aegle marmelos leaf extracts significantly inhibites the growth of all dermatophytic fungi studied. If this activity is confirmed by in vivo studies and if the compound is isolated and identified, it could be a remedy for dermatophytosis. PMID:23569781

  16. Study of wound healing activity of Tectona grandis Linn. leaf extract on rats

    PubMed Central

    Varma, Sushilkumar B.; Giri, Sapna P.

    2013-01-01

    Aims: The aim of the study is to determine the wound healing activity of Tectona grandis (TG) Linn. leaf extract on rats. Materials and Methods: Healthy albino rats (150-200 g) of either sex were taken for excision and incision wound model. Animals were divided into four groups of six animals in each group. For Group simple ointment served as control. The Groups 2 and 3 had 5 and 10% ointment of TG leaf extract and Group 4 soframycin ointment served as standard. In excision wound percentage of wound contraction was assessed, whereas in incision wound tensile strength was assessed. Statistical analysis was performed by one-way analysis of variance followed by t-test. Results: In excision wound model, 5% ointment of TG leaf extract showed a reduction in wound area 8th day onwards. Reduction in wound area was very significant (P < 0.01) as compared to control. Whereas 10% ointment of TG leaf extract and standard showed a reduction in wound area fourth day onwards, which was highly significant (P < 0.001) as compared to control. In incision wound model, animals treated with 5% ointment of TG leaf extract showed significant (P < 0.05) increase in tensile strength as compare to control. However, animals treated with 10% ointment of TG leaf extract showed very significant (P < 0.001) increase in tensile strength as compare with control. However, animals treated with soframycin showed highly significant (P < 0.001) increase in tensile strength as compare with control. Conclusions: TG leaf extract showed significant wound healing activity. PMID:24991074

  17. Effect of Euphorbia hirta plant leaf extract on immunostimulant response of Aeromonas hydrophila infected Cyprinus carpio

    PubMed Central

    Sukumaran, NatarajaPillai

    2014-01-01

    The main objective of the present study is to improve the immune power of Cyprinus carpio by using Euphorbia hirta plant leaf extract as immunostimulants. The haematological, immunological and enzymatic studies were conducted on the medicated fish infected with Aeromonas hydrophila pathogen. The results obtained from the haematological studies show that the RBC count, WBC count and haemoglobin content were increased in the infected fish at higher concentration of leaf extract. The feeds with leaf extract of Euphorbia hirta were able to stimulate the specific immune response by increasing the titre value of antibody. It was able to stimulate the antibody production only up to the 5th day, when fed with higher concentrations of (25 g and 50 g) plant leaf extract. The plant extract showed non-specific immune responses such as lysozyme activity, phagocytic ratio, NBT assay, etc. at higher concentration (50 g) and in the same concentration (50 g), the leaf extract of Euphorbia hirta significantly eliminated the pathogen in blood and kidney. It was observed that fish have survival percentage significantly at higher concentration (50 g) of Euphorbia hirta, when compared with the control. The obtained results are statistically significant at P < 0.05 and P < 0.01 levels. This research work suggests that the plant Euphorbia hirta has immunostimulant activity by stimulating both specific and non-specific immunity at higher concentrations. PMID:25405077

  18. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum

    PubMed Central

    Poonkothai, M.

    2006-01-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity. PMID:22557222

  19. Allelopathic effects of Medicago sativa L. and Vicia cracca L. leaf and root extracts on weeds.

    PubMed

    Koloren, Onur

    2007-05-15

    In this study, the allelopathic potential of different concentration (5, 25 and 50%) of M. sativa and V. cracca leaf and root extracts were evaluated on germination and radicle length of four weed species (Amaranthus retroflexus L., Lolium perenne L., Ipomoea hederacea L. and Portulaca oleracea L.) in laboratory condition. As a result, germination and radicle length of all species were reduced by the extract from M. sativa and V. cracca leaf and root at different percentage. Increasing the water extract concentrations from 5 to 50% of test plants parts significantly increased the inhibition of all weed species germination and radicle length.

  20. Effect of Azadirachta indica leaf methanol extracts on stem cell reproduction.

    PubMed

    González-Garza, M Teresa; Codinach, Margarita; Alcaraz, Citlali; Moreno-Cuevas, Jorge; Carranza-Rosales, Pilar; Cruz-Vega, Delia E

    2007-04-01

    Methanol extracts of Azadirachta indica leaves at concentration from 0.1 to 40 microg/ml showed in vitro an stimulatory activity in stem cell reproduction. These results suggest that the effect of methanol leaf extracts on stem cell reproduction could be of benefit to improve health.

  1. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    PubMed Central

    Wang, Ching-Ying; Huang, Shun-Chueh; Zhang, Yongjun; Lai, Zhen-Rung; Kung, Szu-Hao; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2012-01-01

    Pandemic infection or reemergence of Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L.) DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50 = 35.88 μg/mL) and CVA16 (IC50 = 42.91 μg/mL). Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions. PMID:22666293

  2. Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice.

    PubMed

    Ojewole, John A O; Amabeoku, George J

    2006-08-01

    Various morphological parts of Persea americana Mill (Lauraceae) (avocado) are widely used in African traditional medicines for the treatment, management and/or control of a variety of human ailments, including childhood convulsions and epilepsy. This study examined the anticonvulsant effect of the plant's leaf aqueous extract (PAE, 50-800 mg/kg i.p.) against pentylenetetrazole (PTZ)-, picrotoxin (PCT)- and bicuculline (BCL)-induced seizures in mice. Phenobarbitone and diazepam were used as reference anticonvulsant drugs for comparison. Like the reference anticonvulsant agents used, Persea americana leaf aqueous extract (PAE, 100-800 mg/kg i.p.) significantly (p < 0.05-0.001) delayed the onset of, and antagonized, pentylenetetrazole (PTZ)-induced seizures. The plant's leaf extract (PAE, 100-800 mg/kg i.p.) also profoundly antagonized picrotoxin (PCT)-induced seizures, but only weakly antagonized bicuculline (BCL)-induced seizures. Although the data obtained in the present study do not provide conclusive evidence, it would appear that 'avocado' leaf aqueous extract (PAE) produces its anticonvulsant effect by enhancing GABAergic neurotransmission and/or action in the brain. The findings of this study indicate that Persea americana leaf aqueous extract possesses an anticonvulsant property, and thus lends pharmacological credence to the suggested ethnomedical uses of the plant in the management of childhood convulsions and epilepsy.

  3. Understanding leaf membrane protein extraction to develop a food-grade process.

    PubMed

    Tamayo Tenorio, Angelica; Boom, Remko M; van der Goot, Atze Jan

    2017-02-15

    Leaf membrane proteins are an underutilised protein fraction for food applications. Proteins from leaves can contribute to a more complete use of resources and help to meet the increasing protein demand. Leaf protein extraction and purification is applied by other disciplines, such as proteomics. Therefore, this study analysed proteomic extraction methods for membrane proteins as an inspiration for a food-grade alternative process. Sugar beet leaves were extracted with two proteomic protocols: solvent extraction and Triton X-114 phase partitioning method. Extraction steps contributed to protein purity and/or to selective fractionation, enabling the purification of specific proteins. It was observed that membrane proteins distributed among different solvents, buffers and solutions used due to their physicochemical heterogeneity. This heterogeneity does not allow a total membrane protein extraction by a unique method or even combinations of processing steps, but it enables the creation of different fractions with different physicochemical properties useful for food applications.

  4. Studies on antibacterial activity of Ficus racemosa Linn. leaf extract.

    PubMed

    Mandal, S C; Saha, B P; Pal, M

    2000-06-01

    Extracts of Ficus racemosa Linn. leaves were tested for antibacterial potential against Escherichia coli ATCC 10536, Basillus pumilis ATCC 14884, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 25619 and Staphylococcus aureus ATCC 29737. The effects produced by the extracts were significant and were compared with chloramphenicol. The petroleum ether extract was the most effective against the tested organisms.

  5. Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernonia amygdalina del. Leaf in Swiss mice

    PubMed Central

    Omoregie, Ehimwenma Sheena; Pal, Anirban

    2016-01-01

    Objective: Vernonia amygdalina (V. amygdalina) leaf is locally employed in the Southern region of Nigeria in the treatment of malaria infection. This study evaluated the in vivo antiplasmodial, antioxidant and immunomodulatory effect of ethanol extract of V. amygdalina leaf. Materials and Methods: The active principles of the dried leaf were extracted with ethanol. For quality validation, chemical finger-print of the extract was performed through high performance thin layer chromatography (HPTLC). The extract was assessed for antiplasmodial activity by the standard four-day suppressive test on Plasmodium berghei (ANKA) infected male Swiss mice (six weeks old) placed into five groups of six animals each. Result: The absorption spectra from the HPTLC revealed several peaks suggesting presence of some bioactive compounds. Results from the in vivo study showed that the ethanol extract of the plant leaf was significantly active against P. berghei in a dose-dependent manner with the minimum and maximum activity observed in the mice treated orally with 100mg/kg (% inhibition of 23.7%) and 1000 mg/kg (% inhibition of 82.3 %) of the extract, respectively, on day four of the study. There was also a dose-dependent decrease (p<0.05) in some oxidative stress indices including nitric oxide and lipid peroxidation levels in the extract treated groups as against the non-treated infected group which had high levels of these parameters. The pro-inflammatory cytokines (TNF-α and IFN-ɣ) levels were also considerably low in the extract treated groups relative to the non-treated infected group. Conclusion: The results suggest that ethanol extract of V. amygdalina leaf was active, with some immunomodulatory effect, against P. berghei infection. PMID:27222837

  6. In vivo antimalarial activity of ethanolic leaf extract of Stachytarpheta cayennensis

    PubMed Central

    Okokon, Jude E.; Ettebong, Ette; Antia, Bassey S.

    2008-01-01

    Objective: To evaluate the in vivo antiplasmodial activity of the ethanol leaf extract of Stachytarpheta cayennensis in the treatment of various ailment in Niger Delta region of Nigeria, in Plasmodium berghei infected mice. Materials and Methods: The ethanolic leaf extract of Stachytarpheta cayennensis (90-270 mg/kg/day) was screened for blood schizonticidal activity against chloroquine sensitive Plasmodium berghei berghei in mice. The schizonticidal effect during early and established infections was investigated. Result: Stachytarpheta cayennensis (90-270 mg/kg/day) exhibited significant (P< 0.05) blood schizonticidal activity both in 4-day early infection test and in established infection with a considerable mean survival time comparable to that of the standard drug, chloroquine, 5 mg/kg/day. Conclusion: The leaf extract possesses significant (P< 0.05) antiplasmodial activity which confirms it's use in folkloric medicine in the treatment of malaria. PMID:20040937

  7. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    PubMed

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  8. Evaluation of Aqueous Leaf Extract of Cardiospermum halicacabum (L.) on Fertility of Male Rats

    PubMed Central

    Peiris, L. Dinithi. C.; Dhanushka, M. A. T.; Jayathilake, T. A. H. D. G.

    2015-01-01

    Treatment with 100 mg/kg and 200 mg/kg body weight of aqueous leaf extract (ALE) of Cardiospermum halicacabum for 30 days produced a significant dose dependent increase in the sperm counts and sperm motility in both caput and cauda regions. Further, significant increase in serum testosterone level was evident at all applied doses. However, no significant changes in the weight of sex organs were observed. Aqueous leaf extract also increased the number of females impregnated, number of implantations, and number of viable fetuses while decreasing the total number of resorption sites in the pregnant females. However, the total cholesterol level in the serum remained unchanged and there were no records on renotoxicity; nevertheless ALE exhibited a hepatoprotective effect. It was concluded that aqueous leaf extract of Cardiospermum halicacabum enhanced sperm concentration, motility, and testosterone, leading to positive results in fertility. PMID:26064883

  9. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  10. Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4

    PubMed Central

    Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph

    2017-01-01

    Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507

  11. Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert.

    PubMed

    Shukla, Shruti; Mehta, Archana; Mehta, Pradeep; Bajpai, Vivek K

    2012-11-01

    In the present study, we carried out a systematic research on relative antioxidant activity of aqueous leaf extract of Stevia rebaudiana. The DPPH activity of aqueous leaf extract (20, 40, 50, 100 and 200 μg/ml) was increased in a dose dependent manner, which was found in the range of 40.00-72.37% as compared to ascorbic acid 64.26-82.58%. The IC(50) values of aqueous extract and ascorbic acid in DPPH radical scavenging assay were obtained to be 83.45 and 26.75 μg/ml, respectively. Measurement of total phenolic content of the aqueous leaf extract of S. rebaudiana was achieved using Folin-Ciocalteau reagent containing 56.73 mg/g of phenolic content, which was found significantly potent when compared to reference standard gallic acid. The aqueous extract also inhibited the hydroxyl radical, nitric oxide and superoxide anions with IC(50) values of 100.86, 98.73 and 100.86 μg/ml, respectively. The greater amount of phenolic compounds leads to more potent radical scavenging effects as shown by the aqueous leaf extract of S. rebaudiana.

  12. Ethanolic extract of Boswellia ovalifoliolata bark and leaf attenuates doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Uma Mahesh, Bandari; Shrivastava, Shweta; Kuncha, Madhusudhana; Sahu, Bidya Dhar; Swamy, Challa Veerabhadra; Pragada, Rajeswara Rao; Naidu, V G M; Sistla, Ramakrishna

    2013-11-01

    The aim of the study was to investigate the potential protective effect of ethanolic extract of Boswellia ovalifoliolata (BO) bark and leaf against doxorubicin (DOX)-induced cardiotoxicity in mice. Ethanolic extracts of BO bark (400 mg/kg) and leaves (250 mg/kg) were given orally to mice for 9 consecutive days and DOX (15 mg/kg; i.p.) was administered on the seventh day. Extract protected against DOX-induced ECG changes. It significantly inhibited DOX-provoked glutathione depletion and accumulation of malondialdehyde. The decrease in antioxidant enzyme activities of catalase, superoxide dismutase, glutathione peroxidase in cardiac tissue were significantly (p<0.05) mitigated after treatment with BO bark and leaf extracts. Pretreatment with BO significantly (p<0.05) restored the levels of DOX-induced rise of SGPT, SGOT, serum lactate dehydrogenase and creatine kinase-MB levels. These findings suggest that ethanolic extract of BO has protective effects against DOX-induced cardiotoxicity.

  13. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  14. Bauhinia variegata Leaf Extracts Exhibit Considerable Antibacterial, Antioxidant, and Anticancer Activities

    PubMed Central

    Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K.; Pandey, Abhay K.

    2013-01-01

    The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts. PMID:24093108

  15. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.

    PubMed

    Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K

    2013-01-01

    The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  16. Phytochemical, analgesic, antibacterial, and cytotoxic effects of Alpinia nigra (Gaertn.) Burtt leaf extract.

    PubMed

    Abu Ahmed, A M; Sharmen, Farjana; Mannan, Adnan; Rahman, Md Atiar

    2015-10-01

    This research evaluated the phytochemical contents as well as the analgesic, cytotoxic, and antimicrobial effects of the methanolic extract of Alpinia nigra leaf. Phytochemical analysis was carried out using established methods. The analgesic effects of the extract were measured with the formalin test and tail immersion test. The antibacterial activity of the extract was evaluated using the disc diffusion technique. Cytotoxicity was assessed with the brine shrimp lethality bioassay. Data were analyzed with one-way analysis of variance using statistical software (SPSS, Version 19.0). The qualitative phytochemical screening of A. nigra leaf extract showed the presence of medicinally active secondary metabolites such as alkaloids, glycosides, cardiac glycosides, flavonoids, steroids, tannins, anthraquinone glycosides, and saponins. The extract at a dose of 200 mg/kg revealed a prevailed central nociception increasing the reaction time in response to thermal stimulation. The extract also showed a response to chemical nociceptors, causing pain inhibition in the late phase. The leaf extract (2 mg/disc) showed mild antibacterial activity compared to tetracycline (50 μg/disc). In the brine shrimp lethality bioassay, the LC50 (lethal concentration 50) value of the extract was found to be 57.12 μg/mL, implying a promising cytotoxic effect. The results evidenced the moderate analgesic and antibacterial effects with pronounced cytotoxic capability.

  17. Phytochemical, analgesic, antibacterial, and cytotoxic effects of Alpinia nigra (Gaertn.) Burtt leaf extract

    PubMed Central

    Abu Ahmed, A.M.; Sharmen, Farjana; Mannan, Adnan; Rahman, Md Atiar

    2015-01-01

    This research evaluated the phytochemical contents as well as the analgesic, cytotoxic, and antimicrobial effects of the methanolic extract of Alpinia nigra leaf. Phytochemical analysis was carried out using established methods. The analgesic effects of the extract were measured with the formalin test and tail immersion test. The antibacterial activity of the extract was evaluated using the disc diffusion technique. Cytotoxicity was assessed with the brine shrimp lethality bioassay. Data were analyzed with one-way analysis of variance using statistical software (SPSS, Version 19.0). The qualitative phytochemical screening of A. nigra leaf extract showed the presence of medicinally active secondary metabolites such as alkaloids, glycosides, cardiac glycosides, flavonoids, steroids, tannins, anthraquinone glycosides, and saponins. The extract at a dose of 200 mg/kg revealed a prevailed central nociception increasing the reaction time in response to thermal stimulation. The extract also showed a response to chemical nociceptors, causing pain inhibition in the late phase. The leaf extract (2 mg/disc) showed mild antibacterial activity compared to tetracycline (50 μg/disc). In the brine shrimp lethality bioassay, the LC50 (lethal concentration 50) value of the extract was found to be 57.12 μg/mL, implying a promising cytotoxic effect. The results evidenced the moderate analgesic and antibacterial effects with pronounced cytotoxic capability. PMID:26587396

  18. ANTIBACTERIAL STUDIES ON LEAF EXTRACT OF ELEPHANTOPUS SCABER Linn

    PubMed Central

    Kumar, S. Suresh; Perumal, P.; Suresh, B.

    2004-01-01

    Methanolic extract of Elephantopus scaber Linn was investigated for its antibacterial activity against Staphylococcus aureus (NCIM – 2079), Escherichia coli (NCIM-2067), Bacillus subtilis (NCIM-2063), Pseudomonas aeruginosa (NCIM-2036), Proteus vulgaris (NCIM-2027) at 100 μg/disc by using disc diffusion method. The extract showed significant anti bacterial activity and were compared to chloramphenicol (30 μg/disc). PMID:22557125

  19. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  20. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats

    PubMed Central

    Ibrahim, Doaa S; Abd El-Maksoud, Marwa A E

    2015-01-01

    Diabetic nephropathy is a clinical syndrome characterized by albuminuria, hypertension and progressive renal insufficiency. The aim of this study was to investigate the effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Streptozotocin (STZ) diabetic rats were orally treated with three doses (50, 100 and 200 mg/kg) of strawberry leaf extract for 30 days. Nephropathy biomarkers in plasma and kidney were examined at the end of the experiment. The three doses of strawberry leaf extract significantly decreased the levels of blood glucose, urea nitrogen, plasma creatinine, kidney injury molecule (Kim)-1, renal malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), interleukin (IL)- 6 and caspase-3 in diabetic rats. Meanwhile, the levels of plasma insulin, albumin, uric acid, renal catalase (CAT), superoxide dismutase (SOD) and vascular endothelial growth factor A (VEGF-A) were significantly elevated in diabetic rats treated with strawberry leaf extract. These results indicate the role of strawberry leaves extract as anti-diabetic, antioxidant, anti-inflammatory and anti-apoptosis in diabetic nephropathy. PMID:25645466

  1. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    SciTech Connect

    Jagajjanani Rao, K.; Paria, Santanu

    2013-02-15

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60 nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.

  2. Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods

    PubMed Central

    Mohd Azman, Nurul Aini; Gallego, Maria Gabriela; Segovia, Francisco; Abdullah, Sureena; Shaarani, Shalyda Md; Almajano Pablos, María Pilar

    2016-01-01

    The common bearberry (Arctostaphylos uva-ursi L. Sprengel) is a ubiquitous procumbent evergreen shrub located throughout North America, Asia, and Europe. The fruits are almost tasteless but the plant contains a high concentration of active ingredients. The antioxidant activity of bearberry leaf extract in the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation assay was 90.42 mmol Trolox equivalents/g dry weight (DW). The scavenging ability of the methanol extract of bearberry leaves against methoxy radicals generated in the Fenton reaction was measured via electron paramagnetic resonance. Lipid oxidation was retarded in an oil–water emulsion by adding 1 g/kg lyophilised bearberry leaf extract. Also, 1 g/kg of lyophilised bearberry leaf extract incorporated into a gelatin-based film displayed high antioxidant activity to retard the degradation of lipids in muscle foods. The present results indicate the potential of bearberry leaf extract for use as a natural food antioxidant. PMID:27043639

  3. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats.

    PubMed

    Ibrahim, Doaa S; Abd El-Maksoud, Marwa A E

    2015-04-01

    Diabetic nephropathy is a clinical syndrome characterized by albuminuria, hypertension and progressive renal insufficiency. The aim of this study was to investigate the effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Streptozotocin (STZ) diabetic rats were orally treated with three doses (50, 100 and 200 mg/kg) of strawberry leaf extract for 30 days. Nephropathy biomarkers in plasma and kidney were examined at the end of the experiment. The three doses of strawberry leaf extract significantly decreased the levels of blood glucose, urea nitrogen, plasma creatinine, kidney injury molecule (Kim)-1, renal malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), interleukin (IL)- 6 and caspase-3 in diabetic rats. Meanwhile, the levels of plasma insulin, albumin, uric acid, renal catalase (CAT), superoxide dismutase (SOD) and vascular endothelial growth factor A (VEGF-A) were significantly elevated in diabetic rats treated with strawberry leaf extract. These results indicate the role of strawberry leaves extract as anti-diabetic, antioxidant, anti-inflammatory and anti-apoptosis in diabetic nephropathy.

  4. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.

    PubMed

    Machado, S; Pacheco, J G; Nouws, H P A; Albergaria, J T; Delerue-Matos, C

    2015-11-15

    In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5-10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation.

  5. Effect of Methanolic Leaf Extract of Ocimum basilicum L. on Benzene-Induced Hematotoxicity in Mice.

    PubMed

    Saha, S; Mukhopadhyay, M K; Ghosh, P D; Nath, D

    2012-01-01

    The aim of the present study was to investigate the protective role of methanolic leaf extract of Ocimum basilicum L. against benzene-induced hematotoxicity in Swiss albino mice. GC analysis and subacute toxicity level of the extract were tested. Mice were randomly divided into three groups among which II and III were exposed to benzene vapour at a dose 300 ppm × 6 hr/day × 5 days/week for 2 weeks and group I was control. Group III of this experiment was treated with the leaf methanolic extract at a dose of 100 mg/kg body weight, a dose in nontoxic range. Hematological parameters (Hb%, RBC and WBC counts), cell cycle regulatory proteins expression and DNA fragmentation analysis of bone marrow cells was performed. There was an upregulation of p53 and p21 and downregulation of levels of CDK2, CDK4, CDK6, and cyclins D1 and E in leaf extract-treated group. DNA was less fragmented in group III compared to group II (P < 0.05). The present study indicates that the secondary metabolites of O. basilicum L. methanolic leaf extract, comprising essential oil monoterpene geraniol and its oxidized form citral as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice.

  6. Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods.

    PubMed

    Mohd Azman, Nurul Aini; Gallego, Maria Gabriela; Segovia, Francisco; Abdullah, Sureena; Shaarani, Shalyda Md; Almajano Pablos, María Pilar

    2016-04-01

    The common bearberry (Arctostaphylos uva-ursi L. Sprengel) is a ubiquitous procumbent evergreen shrub located throughout North America, Asia, and Europe. The fruits are almost tasteless but the plant contains a high concentration of active ingredients. The antioxidant activity of bearberry leaf extract in the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation assay was 90.42 mmol Trolox equivalents/g dry weight (DW). The scavenging ability of the methanol extract of bearberry leaves against methoxy radicals generated in the Fenton reaction was measured via electron paramagnetic resonance. Lipid oxidation was retarded in an oil-water emulsion by adding 1 g/kg lyophilised bearberry leaf extract. Also, 1 g/kg of lyophilised bearberry leaf extract incorporated into a gelatin-based film displayed high antioxidant activity to retard the degradation of lipids in muscle foods. The present results indicate the potential of bearberry leaf extract for use as a natural food antioxidant.

  7. Effect of Methanolic Leaf Extract of Ocimum basilicum L. on Benzene-Induced Hematotoxicity in Mice

    PubMed Central

    Saha, S.; Mukhopadhyay, M. K.; Ghosh, P. D.; Nath, D.

    2012-01-01

    The aim of the present study was to investigate the protective role of methanolic leaf extract of Ocimum basilicum L. against benzene-induced hematotoxicity in Swiss albino mice. GC analysis and subacute toxicity level of the extract were tested. Mice were randomly divided into three groups among which II and III were exposed to benzene vapour at a dose 300 ppm × 6 hr/day × 5 days/week for 2 weeks and group I was control. Group III of this experiment was treated with the leaf methanolic extract at a dose of 100 mg/kg body weight, a dose in nontoxic range. Hematological parameters (Hb%, RBC and WBC counts), cell cycle regulatory proteins expression and DNA fragmentation analysis of bone marrow cells was performed. There was an upregulation of p53 and p21 and downregulation of levels of CDK2, CDK4, CDK6, and cyclins D1 and E in leaf extract-treated group. DNA was less fragmented in group III compared to group II (P < 0.05). The present study indicates that the secondary metabolites of O. basilicum L. methanolic leaf extract, comprising essential oil monoterpene geraniol and its oxidized form citral as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. PMID:22988471

  8. Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus.

    PubMed

    Ghosh, Srikanta; Tiwari, Shashi Shankar; Srivastava, Sharad; Sharma, Anil Kumar; Kumar, Sachin; Ray, D D; Rawat, A K S

    2013-02-18

    Indian cattle ticks have developed resistance to commonly used acaricides and an attempt has been made to formulate an ecofriendly herbal preparation for the control of acaricide resistant ticks. A 95% ethanolic extract of Ricinus communis was used to test the efficacy against reference acaricide resistant lines by in vitro assay. In in vitro assay, the extract significantly affects the mortality rate of ticks in dose-dependent manner ranging from 35.0 ± 5.0 to 95.0 ± 5.0% with an additional effect on reproductive physiology of ticks by inhibiting 36.4-63.1% of oviposition. The leaf extract was found effective in killing 48.0, 56.7 and 60.0% diazinon, deltamethrin and multi-acaricide resistant ticks, respectively. However, the cidal and oviposition limiting properties of the extract were separated when the extract was fractionated with hexane, chloroform, n-butanol and water. The HPTLC finger printing profile of R. communis leaf extract under λ(max.) - 254 showed presence of quercetin, gallic acid, flavone and kaempferol which seemed to have synergistic acaricidal action. In vivo experiment resulted in 59.9% efficacy on Ist challenge, however, following 2nd challenge the efficacy was reduced to 48.5%. The results indicated that the 95% ethanolic leaf extract of R. communis can be used effectively in integrated format for the control of acaricide resistant ticks.

  9. Evaluation of Cytotoxicity and Genotoxicity of Inula viscosa Leaf Extracts with Allium Test

    PubMed Central

    Aşkin Çelik, Tülay; Aslantürk, Özlem Sultan

    2010-01-01

    I. viscosa has been used for years in folk medicine for its anti-inflammatory, antipyretic, antiseptic, and paper antiphlogistic activities. In this study, cytotoxic and genotoxic effects of I. viscosa leaf extracts on the root meristem cells of Allium cepa have been examined. Onion bulbs were exposed to 2.5 mg/ml, 5 mg/ml, and 10 mg/ml concentrations of the extracts for macroscopic and microscopic analysis. Tap water has been used as a negative control and Ethyl methanesulfonate (EMS) (2 · 10−2 M) has been used as a positive control. The test concentrations have been determined according to doses which are recommended for use in alternative medicine. There has been statistically significant (P < .05) inhibition of root growth depending on concentration by the extracts when compared with the control groups. All the tested extracts have been observed to have cytotoxic effects on cell division in A. cepa. I. viscosa leaf extract induces the total number of chromosomal aberrations and micronuclei (MNC) formations in A. cepa root tip cells significantly when compared with control groups. Also, this paper shows for the first time the induction of cell death, ghost cells, cells with membrane damage, and binucleated cells by extract treatment. These results suggest the cytotoxic and genotoxic effects of the I. viscosa leaf extracts on A. cepa. PMID:20617136

  10. Anticoagulant activity of some Artemisia dracunculus leaf extracts

    PubMed Central

    Duric, Kemal; Kovac-Besovic, Elvira E.; Niksic, Haris; Muratovic, Samija; Sofic, Emin

    2015-01-01

    Platelet hyperactivity and platelet interaction with endothelial cells contribute to the development and progression of many cardiovascular diseases such as atherosclerosis and thrombosis. The impact of platelet activity with different pharmacological agents, such as acetylsalicylic acid and coumarin derivatives, has been shown to be effective in the prevention of cardiovascular disease. Artemisia dracunculus, L. Asteraceae (Tarragon) is used for centuries in the daily diet in many Middle Eastern countries, and it is well known for its anticoagulant activity. The present study investigates the presence of coumarins in tarragon leaves and subsequently determines the extract with a major amount of coumarin derivatives. The solvents of different polarities and different pH values were used for the purpose of purifying the primary extract in order to obtain fractions with the highest coumarin content. Those extracts and fractions were investigated for their anticoagulant activity by determining prothrombin time (PT) and the international normalized ratio (INR), expressed in relation to the coagulation time of the healthy person. Purified extracts and fractions obtained from plant residue after essential oil distillation, concentrated in coumarin derivatives, showed the best anticoagulant activity, using samples of human blood. INR maximum value (2.34) and consequently the best anticoagulant activity showed the methanol extract at concentration of 5%. The INR value of normal plasma in testing this extract was 1.05. PMID:26042507

  11. Optimization of green synthesis of silver nanoparticles from leaf extracts of Pimenta dioica (Allspice).

    PubMed

    Geetha, Akshay Rajeev; George, Elizabeth; Srinivasan, Akshay; Shaik, Jameel

    2013-01-01

    Production of silver nanoparticles from the leaf extracts of Pimenta dioica is reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles-fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.

  12. Comparison of oil recovered from tea tree leaf by ethanol extraction and steam distillation.

    PubMed

    Baker, G R; Lowe, R F; Southwell, I A

    2000-09-01

    Two methods for the determination of oil and oil major components from tea tree (Melaleuca alternifolia) leaf are quantitatively compared. A microwave assisted ethanol extraction and a 2-h hydrodistillation technique were used on both dry and fresh leaf from a low and a high oil concentration tree. There was no significant difference between dry and fresh leaf. The distillation technique recovered 88% and 82% of the extractable oil for the low and high concentration material, respectively. For both samples this distilled oil was composed of lower absolute amounts of sesquiterpenoids and marginally lower amounts of monoterpenoids. Extending the distillation to 6 h increased the sesquiterpenoid recovery but this resulted in a reduction in both the absolute and relative amounts of the oxygenated monoterpenoids, terpinen-4-ol and 1,8-cineole.

  13. Polyarticular lipoma arborescens--a clinical and aesthetical case.

    PubMed

    Silva, Lígia; Terroso, Georgina; Sampaio, Luzia; Monteiro, Eurico; Pimenta, Sofia; Pinto, Fernanda; Pinto, José A; Ventura, Francisco S

    2013-06-01

    Lipoma arborescens is a benign tumor, but it may be a reactive process to other disorders, and its clinical, analytical, radiological and ultrasound presentation may be redundant to any synovial tumor. Despite the characteristic feature on magnetic resonance imaging (MRI), the correct differential diagnosis in atypical presentation, and the need for timely removal of the lesion to prevent joint damage, forces, ultimately, to invasive procedures. The clinical case reported here, fourth described in English language publications on the polyarticular form, also presented other specificities related to one of the swellings, in the knee. Because of its atypical location in the popliteal fossa, recurrent episodes of joint effusion, personal history of knee trauma, pulmonary tuberculosis, and family history of rheumatoid arthritis required particular attention. This process was hampered by the refusal of knee (and ankle) surgery by the patient. He accepted surgical removal of the swellings of the wrists, for aesthetical reasons, with pathologic confirmation of the diagnosis, and clinical success in that location. MRI of the knee showed the typical image of lipoma arborescens, but also other changes that compromise the prognosis.

  14. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  15. Phytochemistry and heamatological potential of ethanol seed leaf and pulp extracts of Carica papaya (Linn.).

    PubMed

    Ikpeme, E V; Ekaluo, U B; Kooffreh, M E; Udensi, O

    2011-03-15

    This study was aimed at qualitative evaluation of the ethanol seed, leaf and pulp extracts of C. papaya for bioactive compounds and also to investigate their effect on the haematology in male albino rats. A 3 x 4 factorial experimental layout using randomized complete design was adopted. Results show that the phytochemicals found in seed, leaf and pulp were almost the same but however, in varying proportions. Present result also revealed that there were significant effects (p < 0.05) of the extracts on the heamatology of the treated rats, which was blamed on the varying and different variants ofbioactive compounds found in the extracts they were administered with. Suggestively, C. papaya extracts could be used to enhance the production of selected blood parameters, taking issue of dosage into consideration.

  16. Bioassay guided isolation and identification of anti-Acanthamoeba compounds from Tunisian olive leaf extracts.

    PubMed

    Sifaoui, Ines; López-Arencibia, Atteneri; Ticona, Juan Carlos; Martín-Navarro, Carmen M; Reyes-Batlle, María; Mejri, Mondher; Lorenzo-Morales, Jacob; Jiménez, Antonio Ignacio; Valladares, Basilio; Lopez-Bazzocchi, Isabel; Abderabba, Manef; Piñero, José E

    2014-11-01

    Pathogenic Acanthamoeba strains are causative agents of Granulomatous Amoebic Encephalitis (GAE) and Acanthamoeba keratitis (AK) worldwide. The existence of the cyst stage complicates Acanthamoeba therapy as it is highly resistant to antibiotics and physical agents. The aim of this study was to investigate the activity of Limouni olive leaf cultivar against the trophozoite stage of Acanthamoeba. The ethyl acetate and methanol extracts of this variety were tested against Acanthamoeba castellanii Neff. The ethyl acetate extract of olive leaf was the most active showing an IC50 of 5.11±0.71μg/ml of dry extract. Bio-guided fractionation of this extract was conducted and led to the identification of three active compounds namely oleanolic and maslinic acids and oleuropein which could be used for the development of novel therapeutic approaches against Acanthamoeba infections.

  17. Determination of saponins and flavonoids in ivy leaf extracts using HPLC-DAD.

    PubMed

    Yu, Miao; Shin, Young June; Kim, Nanyoung; Yoo, Guijae; Park, SeonJu; Kim, Seung Hyun

    2015-04-01

    A new method for the determination of six compounds, chlorogenic acid, rutin, nicotiflorin, hederacoside C, hederasaponin B and α-hederin, in ivy leaf extracts using high-performance liquid chromatography with diode array detector was developed. The chromatographic separation was performed on a YMC Hydrosphere C18 analytical column using a gradient elution of 0.1% phosphoric acid and acetonitrile. The method was validated in terms of specificity, linearity (r(2) > 0.9999), precision [relative standard deviation (RSD) < 0.36%] and accuracy (97.4-103.8%). The limit of detection and limit of quantification were <20.32 and 61.56 ng for all analytes, respectively. The tested compounds were found to be stable in the ivy leaf extract from 0 to 48 h, and the RSD value for each compound was <0.90%. The validated method was successfully applied to quantify all six compounds in a 30% ethanol ivy leaf extract and 13 ivy leaf extract products. The results showed that all the tested products satisfied the minimum requirement for the content of hederacoside C. However, there were some differences between the contents of other constituents.

  18. The Comparative Effects of Atorvastatin and Quince Leaf Extract on Atherosclerosis

    PubMed Central

    Khademi, Farzaneh; Danesh, Behnam; Mohammad Nejad, Daruosh; Soleimani Rad, Jafar

    2013-01-01

    Background This study investigates the ability of quince leaf extract to prevent progression of atherosclerosis and to determine the lipid-lowering effect of it. Objectives This study suggested that quince leaf effects on progression of atherosclerosis, and performed comparison with atorvastatin as a standard medication. Materials and Methods The effect of 50mg/kg of the quince leaf extract on lipid profiles was assessed by measuring the levels of totalcholesterol, triglyceride, LDL, HDL, and liver enzymes (AST, ALT, and AP) in plasma and were evaluated the thickness of aortic plaques in the hypercholesterolemic rabbits after stopping. These assessments were performed using 0.5 mg/kg of atorvastatin. Results Oral administration of cholesterol for 8 weeks resulted in a significant increase (P < 0.05) in plasma markers. Treatment with the extract at dose of 50 mg/kg and 0.5 mg/kg of atorvastatin not only were reduced lipid profile in plasma (P < 0.05) but also were increased HDL-cholesterol levels. There were decrease (P = 0.04) in the liver enzymes in extract treated rabbits. However, plaque thickness had no significant difference in the aorta of treated rabbits compared with studied control. Conclusions These results indicate the lipid-lowering effects of quince leaf similar to atorvastatin and it can probably serve as a new potential natural product for atherosclerosis treatment. PMID:24578828

  19. Inhibition of forage seed germination by leaf litter extracts of overstory hardwoods used in silvopastoral systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silvopastoral management strategies seek to expand spatial and temporal boundaries of forage production and promote ecosystem integrity through a combination of tree thinning and understory pastures. We determined the effects of water extracts of leaf litter from yellow poplar, Liriodendron tulipife...

  20. Olive Leaf Extract Improves the Atherogenic Lipid Profile in Rats Fed a High Cholesterol Diet.

    PubMed

    Olmez, Ercument; Vural, Kamil; Gok, Sule; Ozturk, Zeynep; Kayalar, Husniye; Ayhan, Semin; Var, Ahmet

    2015-10-01

    Coronary heart disease because of atherosclerosis is still the most common cause of mortality. Elevated levels of low-density lipoprotein and total cholesterol are major risk factors for atherosclerotic cardiovascular disease. The aim of this study was to evaluate the effects of the olive leaf extract on serum lipid profile, early changes of atherosclerosis and endothelium-dependent relaxations in cholesterol-fed rats. For this purpose, rats were fed by 2% cholesterol-enriched or standard chow for 8 weeks. Some rats in each group were also fed orally by olive leaf extract at doses of 50 or 100 mg/kg/day. Atorvastatin at dose of 20 mg/kg of body weight daily was also given as positive control. After 8 weeks, lipid profiles of rat serums were analyzed. Antioxidant enzyme activities (superoxide dismutase and glutathione peroxidase) and degree of lipid peroxidation (malondialdehyde levels) were also measured in the hearts isolated from rats. In addition, expression of adhesion molecules and endothelium-dependent relaxations of isolated thoracic aortas of rats were evaluated. Total cholesterol and LDL-cholesterol levels were found to be increased in cholesterol-fed rats, and both doses of olive leaf extract and atorvastatin significantly decreased those levels. In conclusion, because the olive leaf extract attenuates the increased cholesterol levels, it may have beneficial effects on atherosclerosis.

  1. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells.

    PubMed

    Sreelatha, S; Jeyachitra, A; Padma, P R

    2011-06-01

    Medicinal plants provide an inexhaustible source of anticancer drugs in terms of both variety and mechanism of action. Induction of apoptosis is the key success of plant products as anticancer agents. The present study was designed to determine the antiproliferative and apoptotic events of Moringa oleifera leaf extract (MLE) using human tumor (KB) cell line as a model system. KB cells were cultured in the presence of leaf extracts at various concentrations for 48 h and the percentage of cell viability was evaluated by MTT assay. MLE showed a dose-dependent inhibition of cell proliferation of KB cells. The antiproliferative effect of MLE was also associated with induction of apoptosis as well as morphological changes and DNA fragmentation. The morphology of apoptotic nuclei was quantified using DAPI and propidium iodide staining. The degree of DNA fragmentation was analyzed using agarose gel electrophoresis. In addition, MLE at various concentrations was found to induce ROS production suggesting modulation of redox-sensitive mechanism. Eventually, HPTLC analysis indicated the presence of phenolics such as quercetin and kaempferol. Thus, these findings suggest that the leaf extracts from M. oleifera had strong antiproliferation and potent induction of apoptosis. Thus, it indicates that M. oleifera leaf extracts has potential for cancer chemoprevention and can be claimed as a therapeutic target for cancer.

  2. Antibacterial activity of stem and leaf extract of Kedrostis foetidissima (Jacq.) Cogn.

    PubMed Central

    Priyavardhini, S.; Gowri, S. Shyamala; Vasantha, K.; Umadevi, M.

    2008-01-01

    The present study aimed at evaluating the antimicrobial activity of chloroform extracts of stem and leaf of Kedrostis foetidissima (jacq.) cogn. (Cucurbitaceae) against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Serratia marcescens and Klebsiella pneumoniae. was carried out using agar disc diffusion technique. The results revealed that the chloroform extract of stem presented the highest zone of inhibition against Pseudomonas aeruginosa others show significant zone of inhibition. PMID:22557304

  3. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei

    PubMed Central

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 107 parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment. PMID:27092277

  4. Antidiabetic Effect of Young and Old Ethanolic Leaf Extracts of Vernonia amygdalina: A Comparative Study

    PubMed Central

    Asante, Du-Bois; Effah-Yeboah, Emmanuel; Barnes, Precious; Abban, Heckel Amoabeng; Ameyaw, Elvis Ofori; Boampong, Johnson Nyarko; Ofori, Eric Gyamerah; Dadzie, Joseph Budu

    2016-01-01

    The young leaves of Vernonia amygdalina are often utilized as vegetable and for medicinal purpose compared to the old leaves. This study was designed to evaluate and compare the antidiabetic effects between ethanolic leaf extracts of old and young V. amygdalina on streptozotocin (STZ) induced diabetic rat for four weeks. Preliminary screening of both young and old ethanolic extracts revealed the presence of the same phytochemicals except flavonoids which was only present in the old V. amygdalina. Difference in antioxidant power between the young and old leaf extracts was statistically significant (p < 0.05). Both leaf extracts produced a significant (p < 0.05) antihyperglycaemic effect. Also results from treated rats revealed increasing effect in some haematological parameters. Similarly, the higher dose (300 mg/kg) of both extracts significantly (p < 0.05) reduced serum ALT, AST, and ALP levels as compared to the diabetic control rats. Results also showed significant (p < 0.05) decrease in LDL-C and VLDL-C in the extract-treated rats with a corresponding increase in HDL-C, as compared to the diabetic control rats. Moreover histopathological analysis revealed ameliorative effect of pathological insults induced by the STZ in the pancreas, liver, and spleen, most significantly the regeneration of the beta cells of the islets of Langerhans in treated rats. PMID:27294153

  5. Olive leaf extract activity against Candida albicans and C. dubliniensis - the in vitro viability study.

    PubMed

    Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan

    2016-09-01

    Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.

  6. Apple leaf extract as a potential candidate for suppressing postprandial elevation of the blood glucose level.

    PubMed

    Shirosaki, Miyuki; Koyama, Tomoyuki; Yazawa, Kazunaga

    2012-01-01

    While the industrial value of fruits has long been recognized, only recently have the leaves of fruit trees been considered to have immense and mostly-untapped potential. In the present study, the physiological effects of apple leaf extract in mice were investigated. In addition, we sought to elucidate the active principle(s) and examined its potential for application. Apple leaf extract suppressed postprandial elevation of the blood glucose level and increased the residual amount of glucose in the small intestine in glucose-loaded mice compared with those in control mice. Bioassay-guided fractionation led to an active component that was identified as phloridzin, a known SGLT inhibitor, based on an analysis of its spectral data. With regard to an anti-hyperglycemic effect, extraction with ethanol from leaves of apple tree gave the best results. These effects decreased with heating during the extraction procedure. Since bolus ingestion of the extract did not affect blood glucose levels in normal mice with or without an overnight fast, the inhibitory effects on glucose absorption were not considered to be associated with unspecific gastrointestinal impairment and the extract did not cause hypoglycemia at a normally effective dose. Therefore, the leaf parts of apple tree may be a promising candidate as an industrial resource for maintaining good health in the future.

  7. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    PubMed

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities.

  8. Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill

    PubMed Central

    Wintola, Olubunmi Abosebe; Afolayan, Anthony Jide

    2011-01-01

    Background: Aloe ferox Mill. (Asphodelaceae) is used in South Africa for the treatment of constipation among various ailments. Despite the extensive studies conducted on the antioxidant activities of the leaf gel and pulp extract of the plant, there is no information on the antioxidant properties of the whole leaf extract of the species. Materials and Methods: The antioxidant activities of ethanol, acetone, methanol and aqueous extracts of A. ferox were investigated spectrophotometrically against 1,1- diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) diammonium salt, hydrogen peroxide (H2O2), nitric oxide (NO), lipid peroxidation and ferric reducing power. Total phenols, flavonoids, flavonols, proanthocyanidins, tannins, alkaloids and saponins were also determined using the standard methods. Results: The percentage compositions of phenols (70.33), flavonols (35.2), proanthocyanidins (171.06) and alkaloids (60.9) were significantly high in the acetone extract, followed by the ethanol extract with values of 70.24, 12.53, 76.7 and 23.76 respectively, while the least composition was found in the aqueous extract. Moreover, both flavonoids and saponins contents were appreciably high in both methanol and ethanol extracts, while others were very low. Tannins levels were, however, not significantly different (P > 0.05) in all the solvent extracts. At 0.5 mg/ml, the free radical scavenging activity of the methanol, acetone and ethanol extracts showed higher inhibition against ABTS, hydrogen peroxide and nitric oxide radicals. Whereas, scavenging activity of the extracts against DPPH* and lipid peroxidation were observed at a concentration of 0.016 and 0.118 mg/ml respectively in comparison to the butylated hydroxyltoluene (BHT), gallic acid and rutin. The ferric reducing potential of the extracts was concentration dependent and significantly different from that of vitamin C and BHT. Conclusion: The present study showed high

  9. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures

    PubMed Central

    Wan, Chunpeng; Yu, Yanying; Zhou, Shouran; Liu, Wei; Tian, Shuge; Cao, Shuwen

    2011-01-01

    Background: Extraction temperature influences the total phenolic content (TPC), total flavonoid content (TFC) of medicinal plant extracts to a great extend. TPC and TFC are the principle activity constituents present in the plant. The effects of extraction temperature on TPC, TFC and free radical-scavenging capacity of Gynura divaricata leaf extracts are worth to study. Materials and Methods: Folin–Ciocalteu and aluminum chloride colorimetric assay were used to determine the TPC and TFC of Gynura divaricata leaf extracts at different temperatures. The antioxidant and free radical-scavenging activity were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and phosphomolybdenum methods. Results: TPC and TFC were significantly elevated with increasing extraction temperature (from 40°C to 100°C). However, TPC and TFC were not significantly different (P > 0.05) at the extraction temperatures 90°C and 100°C. Also, the extracts obtained at a higher temperature exhibited a significant free radical-scavenging activity compared with extraction at lower temperatures (P < 0.05). The TPCs (13.95-36.68 mg gallic acid equivalent/g dry material) were highly correlated with DPPH (R2 = 0.9229), ABTS (R2 = 0.9951) free radical-scavenging capacity, and total antioxidant activity (R2 = 0.9872) evaluated by phosphomolybdenum method. Conclusion: The TPC and TFC of G. divaricata leaf was significantly influenced by the extraction temperatures, which were the main antioxidant constituents present in the G. divaricata plant. PMID:21472078

  10. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    PubMed Central

    Mattana, C. M.; Cangiano, M. A.; Alcaráz, L. E.; Sosa, A.; Escobar, F.; Sabini, C.; Sabini, L.; Laciar, A. L.

    2014-01-01

    Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE) and ethanolic extract (EE) of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings. PMID:25530999

  11. Genotoxicity testing of Ambelania occidentalis (Apocynaceae) leaf extract in vivo.

    PubMed

    Castro, L S; Perazzo, F F; Maistro, E L

    2009-04-22

    Ambelania occidentalis is routinely used in folk medicine for treating gastrointestinal disorders, even though there have been no safety trials. We evaluated the genotoxic potential of hydro-alcoholic extracts of this plant in mice; induced DNA damage was assessed in peripheral blood leukocytes and micronucleus induction was assessed in polychromatic erythrocytes from bone marrow. The extract was administered by an oral route at single doses of 1000, 1500 and 2000 mg/kg body weight. N-nitroso-N-ethylurea was used as a positive control. The comet assay was performed on peripheral blood leukocytes at 4 and 24 h after treatment, and the micronucleus test was carried out on bone marrow cells collected at 24 and 48 h after treatment. The ratio of polychromatic/normochromatic erythrocytes was scored for cytotoxicity assessment. No increase in the number of micronucleated polychromatic erythrocytes from bone marrow or in leukocyte DNA damage was observed. The hydro-alcoholic extracts of A. occidentalis had no mutagenic or cytotoxic effects in the mouse cells.

  12. Antileishmanial Activity of a Calophyllum brasiliense Leaf Extract.

    PubMed

    Cardoso, Bruna Muller; De Mello, Tatiane Franca Perles; Lera, Daniele Stefani Lopes; Brenzan, Mislaine Adriana; Cortez, Diógenes Aparecido Garcia; Donatti, Lucélia; Silveira, Thais Gomes Verzignassi; Lonardoni, Maria Valdrinez Campana

    2017-01-01

    Calophyllum brasiliense (Clusiaceae) is a tree that grows mainly in the Atlantic Forest in Brazil. Its leaves possess antibacterial activity, cytotoxic activity against certain tumor cell lines, and antimicrobial activity in BALB/c mice infected with Leishmania (Leishmania) amazonensis.Aiming to identify ultrastructural changes and DNA fragmentation in Leishmania (Viannia) braziliensis, promastigotes were treated with a concentration of the dichloromethane extract and coumarin (-) mammea A/BB from C. brasiliense leaves that inhibited 50 % of the parasites (IC50), and were evaluated by transmission and scanning electron microscopy. Ultrastructural changes showed different levels of mitochondrial alterations, including mitochondrial swelling and a reduction in the density of the mitochondrial matrix. Induced DNA fragmentation, as observed by TUNEL, suggested that the extract and coumarin (-) mammea A/BB induced apoptosis-like cell death. These results suggest that the combination of C. brasiliense extract and coumarin (-) mammea A/BB can be considered a promising candidate for the development of new antiprotozoal agents, because of its significant leishmanicidal activity.

  13. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2015-01-05

    Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms.

  14. Antihyperglycemic and Insulin Secretagogue Activities of Abrus precatorius Leaf Extract

    PubMed Central

    Umamahesh, Balekari; Veeresham, Ciddi

    2016-01-01

    Aim: Abrus precatorius leaves methanolic extract (APME) was evaluated for in vivo antihyperglycemic activity and in vitro insulinotropic effect. Materials and Methods: In vivo antihyperglycemic and insulin secretagogue activities were assessed in streptozotocin-induced diabetic rats by oral administration of APME (200 mg/kg body weight [bw]) for 28 days. In vitro insulin secretion mechanisms were studied using mouse insulinoma beta cells (MIN6-β). In vivo body weight and blood glucose and in vivo and in vitro insulin levels were estimated. Results: In diabetic rats, APME treatment significantly restored body weight (26.39%), blood glucose (32.39%), and insulin levels (73.95%) in comparison to diabetic control rats. In MIN6-β cells, APME potentiated insulin secretion in a dependent manner of glucose (3–16.7 mM) and extract (5–500 μg/mL) concentration. Insulin secretagogue effect was demonstrated in the presence of 3-isobutyl-1-methyl xanthine, glibenclamide, elevated extracellular calcium, and K+ depolarized media. Insulin release was reduced in the presence of nifedipine, ethylene glycol tetra acetic acid (calcium blocking agents), and diazoxide (potassium channel opener). Conclusion: The study suggests that APME antihyperglycemic activity might involve the insulin secretagogue effect by pancreatic beta cells physiological pathways via K+-ATP channel dependent and independently, along with an effect on Ca2+ channels. SUMMARY Abrus precatorius leaves methanolic extract (APME) showed a significant anti hyperglycemic and insulin secretagogue activities in streptozotocin induced diabetic rats. Also demonstrated a potent In vitro insulin secretagogue effect in mouse insulinoma beta cells (MIN6-β)APME treatment significantly restored body weight (26.39%), reduced blood glucose (32.39%) and enhanced circulatory insulin levels (73.95%) in diabetic ratsAPME demonstrated glucose and extract dose dependent insulin secretionInsulin secretagogue effect was demonstrated

  15. Pathogenesis-related protein expression in the apoplast of wheat leaves protected against leaf rust following application of plant extracts.

    PubMed

    Naz, Rabia; Bano, Asghari; Wilson, Neil L; Guest, David; Roberts, Thomas H

    2014-09-01

    Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.

  16. Activity assessment of Tunisian olive leaf extracts against the trophozoite stage of Acanthamoeba.

    PubMed

    Sifaoui, Ines; López-Arencibia, Atteneri; Martín-Navarro, Carmen Ma; Chammem, Nadia; Mejri, Mondher; Lorenzo-Morales, Jacob; Abderabba, Manef; Piñero, José E

    2013-08-01

    The olive tree (Olea europaea, Oleaceae) has historically provided huge economic and nutritional benefits to the Mediterranean basin. In fact, olive leaf extracts have also been used by native people of this area in folk medicine to treat fever and other diseases such as malaria. Recently, several studies have focused on the extraction of high-added-value compounds from olive leaves. However, no previous studies have been developed in order to evaluate the activity of these extracts against Acanthamoeba. In the present work, olive leaf extracts from five different Tunisian varieties of olive trees (Chemlali Tataouine, Zarrazi, Toffehi, Dhokkar, and Limouni) were obtained by using three different solvents, and their activity against the trophozoite stage of Acanthamoeba castellanii Neff was screened. The IC50/96 h (50% parasite growth inhibition) was chosen as the appropriate and comparable data to give as previously described. It could be observed that the amoebicidal activity was dose dependent. Trophozoite growth was inhibited by all the tested extracts with IC50 ranging from 8.234 ± 1.703 μg/ml for the alcoholic mixture of the Dhokkar extract to 33.661 ± 1.398 μg/ml for the methanolic extract of the Toffehi variety. The activity in fact was affected especially by the tested variety and not by the solvent extraction, the Dhokkar variety being the most active one as mentioned above.

  17. Anti-Lipoxygenase Activity of Leaf Gall Extracts of Terminalia chebula (Gaertn.) Retz. (Combretaceae)

    PubMed Central

    Eshwarappa, Ravi Shankara Birur; Ramachandra, Yarappa Lakshmikantha; Subaramaihha, Sundara Rajan; Subbaiah, Sujan Ganapathy Pasura; Austin, Richard Surendranath; Dhananjaya, Bhadrapura Lakkappa

    2016-01-01

    Lipoxygenase (LOX) inhibitors are the promising therapeutic target for treating a wide spectrum of inflammatory-related diseases such as cancer, asthma, lymphoma, leukemia, and autoimmune disorders. In the present study, the photochemical constituents and the anti-LOX potential of leaf galls of Terminalia chebula are evaluated to exemplify its further potential development as medicine. Extracts of T. chebula galls were tested for anti-LOX activity using linoleic acid as substrate and lipoxidase as an enzyme and also the total content of polyphenols with phytochemical analysis of the extract were determined. The presence of highest total phenolic and flavonoid content of 141 ± 2.2 mg of gallic acid equivalent/g d.w and 125 ± 1.4 mg of quercetin equivalent/g d.w and maximal LOX inhibitory activity (52.67%) at 800 μg/mL concentrations were identified in the ethanolic extracts of leaf galls of T.chebula. The higher LOX inhibitory activity was positively correlated to the high content of total polyphenols/flavonoids. The results of this study confirm the folklore use of T. chebula leaves gall extracts as a natural anti-inflammatory agent and justify its ethnobotanical use. Therefore, the results encourage the use of T. chebula leave gall extracts for medicinal health, functional food, and nutraceuticals applications. SUMMARY The present investigation demonstrated promising anti-LOX proper-ties of T. chebula leaves gall extracts. Presumably, these activities could be attributed in part to the polyphenolic features of the extract, as there was a strong correlation of higher LOX inhibiting activities with that of high total phenolic and flavonoid content in the methanolic leaf gall extracts of T. chebula. The results of this study confirm the folklore use of T. chebula leaves gall extracts as a natural anti-inflammatory agent and justify the ethnobotanical approach in the search for novel bioactive com-pounds. PMID:26941541

  18. The gastroprotective effects of Eugenia dysenterica (Myrtaceae) leaf extract: the possible role of condensed tannins.

    PubMed

    Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges

    2014-01-01

    We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.

  19. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats.

    PubMed

    Ying, Changjiang; Mao, Yizhen; Chen, Lei; Wang, Shanshan; Ling, Hongwei; Li, Wei; Zhou, Xiaoyan

    2017-03-27

    Diabetic nephropathy (DN) is one of the most severe diabetic complication and it is becoming become a worldwide epidemic, accounting for approximately one-third of all case of end-stage renal disease. However, the underlying mechanism and strategy to alleviate renal injury remain unclear. In the present study, we assessed the protective effect of bamboo leaf extract on the DN, and investigated the underlying mechanism by which bamboo leaf extract ameliorating DN. Diabetic rats were induced by 4 weeks high sugar and high fat diet, and then injected a single dose of STZ (35mg/kg) into abdominal cavity. Different dose of bamboo extract (50mg/kg, 100mg/kg and 200mg/kg) were orally administered every day for a period of 12 weeks. Body weight, blood glucose, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and 24-hour urinary protein (24 h-UP) were assessed. Total superoxide dismutase (T-SOD) activity and MDA (methane dicarboxylic aldehyde, MDA) level were tested by assay kit. Microstructural changes were observed by hematoxylin-eosin (HE) staining and electron microscopy. Expression of phosphorylated ser/thr protein kinase (P-AKT), phosphorylated glycogen synthase kinase-3 beta (P-GSK-3β), B cell lymphoma/leukemia 2-associated X protein (BAX) and cleaved-cysteinyl aspartate-specific proteinase-3 (Cleaved Caspase-3) were measured by Western-Blotting (WB). Results showed that diabetic rats had weight loss, high blood glucose, HbAlc, BUN, Scr and 24-UP and T-SOD activity were increased and MDA level was decreased in diabetic rats. Moreover, hyperglycemia could injury renal tissue ultrastructure, inhibit P-AKT level and increase P-GSK-3β, BAX and Cleaved Caspase-3 levels in rats. However, bamboo leaf extract treatment could reduce body weight loss, BUN, Scr, 24 h-UP and MDA level, improve T-SOD activity and alleviate renal injury in diabetic rats. Furthermore, bamboo leaf extract increased P-AKT level, decreased P-GSK-3β, BAX and

  20. Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice

    PubMed Central

    Chen, Yingying; Vanegas, Diana; McLamore, Eric Scott; Shen, Yingbai

    2016-01-01

    The purpose of this study was to investigate the effects of leaf extract from Lithocarpus polystachyus Rehd. on type II diabetes mellitus (T2DM) and the active ingredients of this effect. In addition, this study determined, for the first time, the underlying molecular and pharmacological mechanisms of the extracts on hyperglycemia using long-term double high diet-fed and streptozotocin (STZ) induced type II diabetic mice. In the present study, leaf extract, phloridzin and trilobatin were assessed in vivo (gavage) and in vitro (non-invasive micro-test technique, NMT) in experimental T2DM mice. The biochemical parameters were measured including blood glucose and blood lipid level, liver biochemical indexes, and hepatic glycogen. The relative expression of glycometabolism-related genes was detected. The effect of leaf extracts on physiological glucose flux in liver tissue from control and T2DM mice was also investigated. Body weight of experimental T2DM mice increased significantly after the first week, but stabilized over the subsequent three weeks; body weight of all other groups did not change during the four weeks’ study. After four weeks, all treatment groups decreased blood glucose, and treatment with leaf extract had numerous positive effects: a) promoted in glucose uptake in liver, b) increased synthesis of liver glycogen, c) reduced oxidative stress, d) up-regulation of glucokinase (GK), glucose transporter 2 (GLUT2), insulin receptor (IR) and insulin receptor substrate (IRS) expression in liver, e) down-regulation of glucose-6-phosphatase (G-6-P) expression, and f) ameliorated blood lipid levels. Both treatment with trilobatin or phloridzin accelerated liver glycogen synthesis, decreased oxidative stress and increased expression of GK. IRS and phosphoenolpyruvate carboxykinase (PEPCK) were both up-regulated after treatment with trilobatin. Expression of GLUT2, PEPCK and G-6-P were also increased in liver tissue after treatment with phloridzin. Our data

  1. Mechanism of Wound-Healing Activity of Hippophae rhamnoides L. Leaf Extract in Experimental Burns

    PubMed Central

    Upadhyay, Nitin K.; Kumar, Ratan; Siddiqui, M. S.; Gupta, Asheesh

    2011-01-01

    The present investigation was undertaken to evaluate the healing efficacy of lyophilized aqueous leaf extract of Sea buckthorn (Hippophae rhamnoides L., family Elaeagnaceae) (SBT) and to explore its possible mechanism of action on experimental burn wounds in rats. The SBT extract, at various concentrations, was applied topically, twice daily for 7 days. Treatment with silver sulfadiazine (SSD) ointment was used as reference control. The most effective concentration of the extract was found to be 5.0% (w/w) for burn wound healing and this was further used for detailed study. The SBT-treated group showed faster reduction in wound area in comparison with control and SSD-treated groups. The topical application of SBT increased collagen synthesis and stabilization at the wound site, as evidenced by increase in hydroxyproline, hexosamine levels and up-regulated expression of collagen type-III. The histological examinations and matrix metalloproteinases (MMP-2 and -9) expression also confirmed the healing efficacy of SBT leaf extract. Furthermore, there was significant increase in levels of endogenous enzymatic and non-enzymatic antioxidants and decrease in lipid peroxide levels in SBT-treated burn wound granulation tissue. The SBT also promoted angiogenesis as evidenced by an in vitro chick chorioallantoic membrane model and in vivo up-regulated vascular endothelial growth factor (VEGF) expression. The SBT leaf extract had no cytotoxic effect on BHK-21 cell line. In conclusion, SBT aqueous leaf extract possesses significant healing potential in burn wounds and has a positive influence on the different phases of wound repair. PMID:19946025

  2. Mechanism of Wound-Healing Activity of Hippophae rhamnoides L. Leaf Extract in Experimental Burns.

    PubMed

    Upadhyay, Nitin K; Kumar, Ratan; Siddiqui, M S; Gupta, Asheesh

    2011-01-01

    The present investigation was undertaken to evaluate the healing efficacy of lyophilized aqueous leaf extract of Sea buckthorn (Hippophae rhamnoides L., family Elaeagnaceae) (SBT) and to explore its possible mechanism of action on experimental burn wounds in rats. The SBT extract, at various concentrations, was applied topically, twice daily for 7 days. Treatment with silver sulfadiazine (SSD) ointment was used as reference control. The most effective concentration of the extract was found to be 5.0% (w/w) for burn wound healing and this was further used for detailed study. The SBT-treated group showed faster reduction in wound area in comparison with control and SSD-treated groups. The topical application of SBT increased collagen synthesis and stabilization at the wound site, as evidenced by increase in hydroxyproline, hexosamine levels and up-regulated expression of collagen type-III. The histological examinations and matrix metalloproteinases (MMP-2 and -9) expression also confirmed the healing efficacy of SBT leaf extract. Furthermore, there was significant increase in levels of endogenous enzymatic and non-enzymatic antioxidants and decrease in lipid peroxide levels in SBT-treated burn wound granulation tissue. The SBT also promoted angiogenesis as evidenced by an in vitro chick chorioallantoic membrane model and in vivo up-regulated vascular endothelial growth factor (VEGF) expression. The SBT leaf extract had no cytotoxic effect on BHK-21 cell line. In conclusion, SBT aqueous leaf extract possesses significant healing potential in burn wounds and has a positive influence on the different phases of wound repair.

  3. CNS activity of Alstonia macrophylla leaf extracts: an ethnomedicine of Onge of Bay Islands.

    PubMed

    Chattopadhyay, Debprasad; Arunachalam, G; Ghosh, Lopamudra; Mandal, Asit B

    2004-12-01

    Methanol extract at 100-200 mg/kg p.o. and major nonpolar fraction B at 50 mg/kg of Alstonia macrophylla leaves caused a significant reduction in spontaneous activity, remarkable decrease in exploratory behavioural pattern, a reduction in muscle relaxant activity and also significantly potentiated phenobarbitone sodium-induced sleeping time. The phytochemical study of crude leaf extract revealed the presence of tannin, triterpenoid, flavonoid, sterol, alkaloid and reducing sugars. Further fractionation and purification of the n-butanol part of methanol extract yielded fraction A, fraction B and fraction C along with some minor fatty acids as the major compounds.

  4. The leaf extract of Siberian Crabapple (Malus baccata (Linn.) Borkh) contains potential fatty acid synthase inhibitors.

    PubMed

    Wei, Xiang; Zhao, Ran; Sun, Ying-Hui; Cong, Jian-Ping; Meng, Fan-Guo; Zhou, Hai-Meng

    2009-02-01

    The present work focused on the kinetics of the inhibitory effects of the leaf extract of Siberian Crabapple, named Shan jingzi in China, on chicken liver fatty acid synthase. The results showed that this extract had much stronger inhibitory ability on fatty acid synthase than that from green teas described in many previous reports. The inhibitory ability of this extract is closely related to the extracting solvent, and the time of extraction was also an important influencing factor. The inhibitory types of this extract on diffeerent substrates of chicken liver fatty acid synthase, acetyl-CoA, malonyl-CoA and NADPH, were found to be noncompetitive, uncompetitive and mixed, respectively. The studies here shed a new light on the exploration for inhibitors of fatty acid synthase.

  5. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae)

    PubMed Central

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J.; Shivakumar, Muthugounder S.

    2016-01-01

    Background The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Methods Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. Results The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. Conclusions The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors. PMID:27391146

  6. LIPOMA ARBORESCENS: RARE CASE OF ROTATOR CUFF TEAR ASSOCIATED WITH THE PRESENCE OF LIPOMA ARBORESCENS IN THE SUBACROMIAL-SUBDELTOID AND GLENOHUMERAL BURSA

    PubMed Central

    Benegas, Eduardo; Neto, Arnaldo Amado Ferreiro; Teodoro, Daniel Sabatini; da Silva, Marcos Vinícius Muriano; de Oliveira, Augusto Medaglia; Filippi, Renée Zon; de Santis Prada, Flávia

    2015-01-01

    Lipoma arborescens is a rare intra-articular disease that is usually monoarticular and is characterized by extensive proliferation of the synovial villi and hyperplasia of the subsynovial fat. The synovial tissue is progressively replaced by mature fat cells in the synovial membrane. The present study reports a case of a rare condition of lipoma arborescens that was simultaneously intra-articular (glenohumeral joint) and in the subacromial-subdeltoid bursa, in association with a torn supraspinatus tendon. The clinical, histological and radiographic presentations and treatment are discussed here. The description of this case includes radiographic and magnetic resonance evaluations and pathological examination. Although lipoma arborescens is a rare condition, it should be taken into consideration in cases presenting synovial hyperproliferation and synovial fat replacement. PMID:27047861

  7. Effects of Lantana camara leaf extract on the activity of superoxide dismutase and accumulation of H2O2 in water hyacinth leaf.

    PubMed

    Zheng, Hui-Qiong; Wei, Ning; Wang, Liu-Fa; He, Ping

    2006-04-01

    Water hyacinth (Eichhornia crassipes) is one of the most productive plants, but is also a troublesome weed in the world. In order to protect the public water system from chemical herbicides pollution, biological method has been suggested to control the growth and the reproduction of this weed. Lantana (Lantana camara L.) is an important weed of the family Verbenaceae and its leaf extract is highly toxic to water hyacinth. The results of this study showed that the extract of lantana leaves suppressed the emergence of leaf buds of water hyacinth plant, and caused the decay of its leaves by foliar spraying. In addition, the increase of SOD activity in water hyacinth leaves was in accordance with the accumulation of H(2)O(2) and the increase in degree of membrane peroxidation, while the activity of catalase, which might remove the excessive H(2)O(2) in water hyacinth leaves, was inhibited by treatment with lantana extract. At tissue level, high H(2)O(2) histochemical labeling was detected in guard cells after treatment with lantana extract. This overproduction of H(2)O(2) could kill the leaf cells and cause leaf necrosis in the treated plant. Therefore, the high toxicity of lantana leaf extract to water hyacinth might be due to oxidative stress.

  8. Analgesic and Anti-Inflammatory Activities of Leaf Extract of Mallotus repandus (Willd.) Muell. Arg.

    PubMed Central

    Hasan, Md. Mahadi; Uddin, Nizam; Hasan, Md. Rakib; Islam, A. F. M. Mahmudul; Hossain, Md. Monir; Rahman, Akib Bin; Hossain, Md. Sazzad; Chowdhury, Ishtiaque Ahmed; Rana, Md. Sohel

    2014-01-01

    In folk medicine Mallotus repandus (Willd.) Muell. Arg. is used to treat muscle pain, itching, fever, rheumatic arthritis, snake bite, hepatitis, and liver cirrhosis. This study aimed to evaluate the antinociceptive as well as the anti-inflammatory activities of the methanol extract of leaf. The leaves were extracted with methanol following hot extraction and tested for the presence of phytochemical constituents. Analgesic and anti-inflammatory activities were evaluated using acetic acid induced writhing test, xylene induced ear edema, cotton pellet induced granuloma, and tail immersion methods at doses of 500, 1000, and 2000 mg/kg body weight. The presence of flavonoids, saponins, and tannins was identified in the extract. The extract exhibited considerable antinociceptive and anti-inflammatory activities against four classical models of pain. In acetic acid induced writhing, xylene induced ear edema, and cotton pellet granuloma models, the extract revealed dose dependent activity. Additionally, it increased latency time in tail immersion model. It can be concluded that M. repandus possesses significant antinociceptive potential. These findings suggest that this plant can be used as a potential source of new antinociceptive and anti-inflammatory candidates. The activity of methanol extract is most likely mediated through central and peripheral inhibitory mechanisms. This study justified the traditional use of leaf part of this plant. PMID:25629031

  9. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves.

    PubMed

    Racovita, Radu C; Peng, Chen; Awakawa, Takayoshi; Abe, Ikuro; Jetter, Reinhard

    2015-05-01

    The present work aimed at a comprehensive chemical characterization of the cuticular wax mixtures covering leaves of the monocot species Aloe arborescens. The wax mixtures were found to contain typical aliphatic compound classes in characteristic chain length distributions, including alkanes (predominantly C31), primary alcohols (predominantly C28), aldehydes (predominantly C32), fatty acid methyl esters (predominantly C28) and fatty acids (bimodal distribution around C32 and C28). Alkyl esters ranging from C42 to C52 were identified, and found to mainly contain C28 alcohol linked to C16-C20 acids. Three other homologous series were identified as 3-hydroxy fatty acids (predominantly C28), their methyl esters (predominantly C28), and 2-alkanols (predominantly C31). Based on structural similarities and homolog distributions, the biosynthetic pathways leading to these novel wax constituents can be hypothesized. Further detailed analyses showed that the A. arborescens leaf was covered with 15 μg/cm(2) wax on its adaxial side and 36 μg/cm(2) on the abaxial side, with 3:2 and 1:1 ratios between epicuticular and intracuticular wax layers on each side, respectively. Terpenoids were found mainly in the intracuticular waxes, whereas very-long-chain alkanes and fatty acids accumulated to relatively high concentrations in the epicuticular wax, hence near the true surface of the leaf.

  10. Influence of environmental parameters on mycotoxin production by Alternaria arborescens.

    PubMed

    Vaquera, Sandra; Patriarca, Andrea; Fernández Pinto, V

    2016-02-16

    Alternaria arborescens has been reported as a common fungal species invading tomatoes and is capable of producing several mycotoxins in infected plants, fruits and in agricultural commodities. Alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA) are some of the main Alternaria mycotoxins that can be found as contaminants of food. This species can produce these toxic metabolites together with AAL toxins (Alternaria alternata f. sp. lycopersicum toxins), which can act as inhibitors of sphingolipid biosynthesis. The objective of this study was to determine the effect of water activity (aw, 0.995, 0.975, 0.950) and temperature (6, 15, 20, 25 and 30 °C) on mycotoxin production by A. arborescens on a synthetic tomato medium. The optimum production of AOH and AME occurred at 0.975 aw after 40 days of incubation at 30 °C. The maximum TeA accumulation was observed at 0.975 aw and 25 °C and at 0.950 aw and 30 °C. AAL TA was produced in higher quantities at 0.995 aw and 30 °C. At 6 °C no quantifiable levels of AOH or AME were detected, but significant amounts of TeA were produced at 0.975 aw. In general, high aw levels and high temperatures were favorable for mycotoxin production. The greatest accumulation of all four toxins occurred at 0.975 aw and 30 °C. The results obtained here could be extrapolated to evaluate the risk of tomato fruits and tomato products contamination caused by these toxins.

  11. Effects of quince leaf extract on biochemical markers and coronary histopathological changes in rabbits

    PubMed Central

    Khademi, Farzaneh; Danesh, Behnam; Delazar, Abbas; Mohammad Nejad, Daryoush; Ghorbani, Masoud; Soleimani Rad, Jafar

    2013-01-01

    BACKGROUND Atherosclerosis is the main cause of cardiovascular disease which is caused by a high-fat diet. Many of these patients use boiled quince leaves for their treatment. However, the supporting scientific information is limit. The aim of this study was to evaluate the effect of quince leaf on the progression of atherosclerosis and whether it can be an appropriate alternative to statins. METHODS 24 male rabbits were randomly divided into two groups: normal diet (6 n) and high-cholesterol diet (2% cholesterol, 18 n) for 8 weeks. At the end of the 8 weeks, both groups underwent blood sampling and their biochemical markers were measured. Then, all animals in the normal-diet group and three of the high-cholesterol diet group were killed to investigate atheromic plaque in their coronary artery. The 15 remaining rabbits of the high-cholesterol diet group were randomly divided into 3 groups (5 n) after discontinuation of the fatty diet. The first group was not given any treatment, the second received atorvastatin (0.5 mg/kg) orally, and the third received quince leaf extract (50 mg/kg) orally for 12 weeks. At the end of this period, after blood sampling, biopsy of coronary artery was performed for histological study. RESULTS The results showed that atorvastatin and quince leaf significantly decreased total cholesterol, triglyceride, LDL, AST, ALT, AP, BUN, and Cr levels compared with the first group of the high-cholesterol diet group (P < 0.05). No significant difference was found between atorvastatin and quince leaf extract groups in biochemical markers and atherosclerotic plaque in coronary artery. CONCLUSION Atorvastatin and quince leaf extract can effectively prevent the progression of atherosclerosis in coronary arteries. According to the results of this study and also lower toxic effects of herbal medication compared to synthetic medication, leaf extract can be a substitute for statins in treatment and prevention of cardiovascular disease. The anti

  12. Extraction of rebaudioside-A by sonication from Stevia rebaudiana Bertoni leaf and decolorization of the extract by polymers.

    PubMed

    Gasmalla, Mohammed Abdalbasit A; Yang, Ruijin; Hua, Xiao

    2015-09-01

    Optimization of steviol glycosides extraction from Stevia rebaudiana Bertoni leaf was carried out by investigating the effects of isopropyl alcohol concentration (60 %, v/v), time (6-24 min), temperature (30 °C) and sonic power (300-480 W) on extraction of rebaudioside A from Stevia rebaudiana leaves and decolorization of the extract by polymer (Separan AP30 and Resin ADS-7). The results showed that isopropyl alcohol was suitable for the extraction of rebaudioside A from Stevia rebaudiana leaves and the yield of rebaudioside A achieved 35.61 g/100 g when the output power was 360 W and treatment time was 18 min. The sonication had influence on the particle size of stevia leaf and the color of the extracted solution. As the sonication intensity increased, the particle size decreased. The colour of differently treated stevia solutions were significantly different (P < 0.05). Separan AP30 and adsorption resin ADS-7 were performed to remove the colour impurity. The results showed that more than 65 % of the coloured impurity was removed by Separan AP30 combined with Calcium oxide (CaO).

  13. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  14. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  15. Engineering liposomes of leaf extract of seabuckthorn (SBT) by supercritical carbon dioxide (SCCO2)-mediated process.

    PubMed

    Ghatnur, Shashidhar M; Sonale, R Swapna; Balaraman, Manohar; Kadimi, Udaya Sankar

    2012-09-01

    Seabuckthorn (SBT; Hipphophae rhamnoides) leaf extract obtained by supercritical carbon dioxide (SCCO(2)) using ethanol as an entrainer, containing mainly flavanoids as bioactive principles with antioxidant and antibacterial properties, was used for the preparation of liposomes. Liposomes are promising drug carriers with sustained release because they can enhance the membrane penetration of drugs, deliver the entrapped drugs across cell membranes, and improve extract stability and bioavailability. The aim of the present study was to compare the two different methods of liposome production: the Bangham thin-film method and SCCO(2) gas antisolvent method (SCCO(2) GAS) for the incorporation of SBT leaf extract in terms of particle size, morphology, encapsulation efficiency, antioxidant activity, and thermal stability. Liposomes obtained with the thin-film method were multilamellar vesicles with average particle size (3,740 nm), encapsulation efficiency (14.60%), and particle-size range (1.57-6.0 µm), respectively. On the other hand, liposomes by the SCCO(2) GAS method were nanosized (930 nm) with an improved encapsulation efficiency (28.42%) and narrow range of size distribution (0.48-1.07 µm), respectively. Further, the antioxidant activity of leaf extract of SBT was determined by the 2 diphenyl-1-picrylhydrazyl method and expressed as Trolox equivalents as well as of the intercalated extract in liposomes. The oxidative stability of SBT encapsulated in liposomes was again estimated using differential scanning calorimetry (DSC). Thermal-oxidative decomposition of the samples (i.e., pure liposomes and encapsulated extracts) and the modification of the main transition temperature for the lipid mixture and the splitting of the calorimetric peak in the presence of the antioxidants were also studied by DSC. After encapsulation in liposomes, antioxidant activity proved to be higher than those of the same extracts in pure form.

  16. Anticonvulsant and anxiolytic evaluation of leaf extracts of Ocimum gratissimum, a culinary herb

    PubMed Central

    Okoli, C. O.; Ezike, A. C.; Agwagah, O. C.; Akah, P. A.

    2010-01-01

    Anticonvulsant and anxiolytic activities of leaf extracts and fraction of Ocimum gratissimum L. (Lamiaceae) were studied using seizures induced by pentylenetetrazol and open-field tests in mice. The results showed that the extracts and fraction increased the latency of tonic and tonic-clonic seizures and death and elicited 50% protection against mortality. In the open-field test, the extracts and fraction decreased the frequency of line crossing, center square entries, rearing against a wall and grooming, whereas grooming duration and freezing frequency and duration were increased. Acute toxicity test in mice gave an oral LD50 greater than 5000 mg/kg for the methanol extract. These findings suggest that extracts of this plant possess anticonvulsant and anxiolytic-like properties. PMID:21808537

  17. Antidiabetic and antihyperlipidaemic activity of ethanol extract of Melastoma malabathricum Linn. leaf in alloxan induced diabetic rats

    PubMed Central

    Balamurugan, Karuppasamy; Nishanthini, Antony; Mohan, Veerabahu Ramasamy

    2014-01-01

    Objective To evaluate the antidiabetic and antihyperlipidaemic effect of ethanol extract of Melastoma malabathricum (M. malabathricum) Linn. leaf in alloxan induced diabetic rats. Methods Diabetes was induced in albino rats by administration of alloxan monohydrate (150 mg/kg i.p). the ethanol extracts of M. malabathricum at a dose of 150 and 300 mg/kg of body weight were administrated at a single dose per day to diabetes induced rats for a period of 14 d. The effect of ethanol extract of M. malabathricum leaf extract on blood glucose, plasma insulin, creatinine, glycosylated haemoglobin, urea serum lipid profile [total cholesterol, triglycerides, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, high density lipoprotein-cholesterol and phospholipid, serum protein, albumin, globulin, serum enzymes (serum glutamate pyruvate transaminases), serum glutamate oxaloacetate transaminases, and alkaline phosphatase] were measured in the diabetic rats. Results In the acute toxicity study, ethanol extract of M. malabathricum leaf was non-toxic at 2 000 mg/kg in rats. The increased body weight, decreased blood glucose, glycosylated haemoglobin and other biochemical parameters level were observed in diabetic rats treated with both doses of ethanol extract of M. malabathricum leaf compared to diabetic control rats. In diabetic rats, ethanol extract of M. malabathricum leaf administration, altered lipid profiles were reversed to near normal than diabetic control rats. Conclusions Ethanol extract of M. malabathricum leaf possesses significant antidiabetic and antihyperlipidaemic activity in diabetic rats. PMID:25183126

  18. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet

    PubMed Central

    2010-01-01

    Background Lotus (Nelumbo nucifera) leaf has been used to treat obesity. The purpose of this study was to investigate the antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in high fat diet-induced obese rats. Methods Four week-old male Sprague-Dawley rats were randomly divided into four groups with 8 rats in each group for a period of 6 weeks (normal diet, N group; high fat diet, HF group; high fat diet + lotus leaf hot water extract, HFL group; high fat diet + lotus leaf hot water extract + taurine, HFLT group). Lotus leaf hot water extract was orally administrated to HFL and HFLT groups and the same amount of distilled water was orally administered (400 mg/kg/day) to N and HF groups. Taurine was supplemented by dissolving in feed water (3% w/v). Results The body weight gain and relative weights of epididymal and retroperitoneal adipose tissues were significantly lower in N, HFL and HFLT groups compared to HF group. HFL and HFLT groups showed lower concentrations of total cholesterol, triglyceride and low density lipoprotein cholesterol in serum. HFLT group showed higher the ratio of high density lipoprotein cholesterol/total cholesterol compared to HFL group. HFLT group showed better blood lipid profiles compared to HFL group. Conclusions Lotus leaf hot water extract with taurine supplementation showed antiobesity and hypolipidemic effects in high fat diet-induced obese rats, which was more effective than lotus leaf hot water extract alone. PMID:20804619

  19. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain

    PubMed Central

    Gautam, Akash; Wadhwa, Renu; Thakur, Mahendra K.

    2016-01-01

    Background In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. Purpose However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. Methods In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. Results The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. Conclusion Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction. PMID:27647956

  20. Antibacterial Activity of Rhodomyrtus tomentosa (Aiton) Hassk. Leaf Extract against Clinical Isolates of Streptococcus pyogenes

    PubMed Central

    Limsuwan, Surasak; Kayser, Oliver; Voravuthikunchai, Supayang Piyawan

    2012-01-01

    Ethanol extract of Rhodomyrtus tomentosa (Aiton) Hassk. leaf was evaluated for antibacterial activity against 47 clinical isolates of Streptococcus pyogenes. The extract exhibited good anti-S. pyogenes activity against all the tested isolates with similar minimum inhibitory concentration (MIC, 3.91–62.5 μg mL−1) and minimum bactericidal concentration (MBC, 3.91–62.5 μg mL−1) ranges. No surviving cells were detected at 16 h after treatment with 8 × MIC of the extract. The extract-treated cells demonstrated no lysis and cytoplasmic leakage through the bacterial membrane. Electron micrographs further revealed that the extract did not cause any dramatic changes on the treated cells. Rhodomyrtone, an isolated compound, exhibited good anti-S. pyogenes activity (14 isolates), expressed very low MIC (0.39–1.56 μg mL−1) and MBC (0.39-1.56 μg mL−1) values. Rhodomyrtus tomentosa leaf extract and rhodomyrtone displayed promising antibacterial activity against clinical isolates of S. pyogenes. PMID:22973404

  1. Antibacterial Activity of Rhodomyrtus tomentosa (Aiton) Hassk. Leaf Extract against Clinical Isolates of Streptococcus pyogenes.

    PubMed

    Limsuwan, Surasak; Kayser, Oliver; Voravuthikunchai, Supayang Piyawan

    2012-01-01

    Ethanol extract of Rhodomyrtus tomentosa (Aiton) Hassk. leaf was evaluated for antibacterial activity against 47 clinical isolates of Streptococcus pyogenes. The extract exhibited good anti-S. pyogenes activity against all the tested isolates with similar minimum inhibitory concentration (MIC, 3.91-62.5 μg mL(-1)) and minimum bactericidal concentration (MBC, 3.91-62.5 μg mL(-1)) ranges. No surviving cells were detected at 16 h after treatment with 8 × MIC of the extract. The extract-treated cells demonstrated no lysis and cytoplasmic leakage through the bacterial membrane. Electron micrographs further revealed that the extract did not cause any dramatic changes on the treated cells. Rhodomyrtone, an isolated compound, exhibited good anti-S. pyogenes activity (14 isolates), expressed very low MIC (0.39-1.56 μg mL(-1)) and MBC (0.39-1.56 μg mL(-1)) values. Rhodomyrtus tomentosa leaf extract and rhodomyrtone displayed promising antibacterial activity against clinical isolates of S. pyogenes.

  2. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    PubMed

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  3. Inhibition of Platelet Aggregation by the Leaf Extract of Carica papaya During Dengue Infection: An In Vitro Study.

    PubMed

    Chinnappan, Shobia; Ramachandrappa, Vijayakumar Shettikothanuru; Tamilarasu, Kadhiravan; Krishnan, Uma Maheswari; Pillai, Agiesh Kumar Balakrishna; Rajendiran, Soundravally

    2016-04-01

    Dengue cases were reported to undergo platelet activation and thrombocytopenia by a poorly understood mechanism. Recent studies suggested that Carica papaya leaf extract could recover the platelet count in dengue cases. However, no studies have attempted to unravel the mechanism of the plant extract in platelet recovery. Since there are no available drugs to treat dengue and considering the significance of C. papaya in dengue treatment, the current study aimed to evaluate two research questions: First one is to study if the C. papaya leaf extract exerts its action directly on platelets and second one is to understand if the extract can specifically inhibit the platelet aggregation during dengue viral infection. Sixty subjects with dengue positive and 60 healthy subjects were recruited in the study. Platelet-rich plasma (PRP) and platelet-poor plasma were prepared from both the dengue-infected and healthy control blood samples. Effect of the leaf extract obtained from C. papaya leaves was assessed on plasma obtained as well as platelets collected from both healthy and dengue-infected individuals. Platelet aggregation was significantly reduced when leaf extract preincubated with dengue plasma was added into control PRP, whereas no change in aggregation when leaf extract incubated-control plasma was added into control PRP. Upon direct addition of C. papaya leaf extract, both dengue PRP and control PRP showed a significant reduction in platelet aggregation. Within the dengue group, PRP from severe and nonsevere cases showed a significant decrease in aggregation without any difference between them. From the study, it is evident that C. papaya leaf extract can directly act on platelet. The present study, the first of its kind, found that the leaf extract possesses a dengue-specific neutralizing effect on dengue viral-infected plasma that may exert a protective role on platelets.

  4. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts.

    PubMed

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-12-01

    Silver nanoparticles (AgNPs) are fabricated using Sacha inchi (SI) or (Plukenetia volubilis L.) leaf extract as non-toxic reducing agent with particle size ranging from 4 to 25 nm. Optical, structural and morphological properties of the synthesized nanoparticles have been characterized by using Visual, UV-Vis spectrophotometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Infrared spectrum measurement was carried out to hypothesize the possible phytochemicals responsible for stabilization and capping of the AgNPs. It shows the significant antioxidant efficacy in comparison with SI leaf extracts against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green AgNPs could be used effectively in future engineering and medical concerns.

  5. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts

    PubMed Central

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-01-01

    Silver nanoparticles (AgNPs) are fabricated using Sacha inchi (SI) or (Plukenetia volubilis L.) leaf extract as non-toxic reducing agent with particle size ranging from 4 to 25 nm. Optical, structural and morphological properties of the synthesized nanoparticles have been characterized by using Visual, UV–Vis spectrophotometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Infrared spectrum measurement was carried out to hypothesize the possible phytochemicals responsible for stabilization and capping of the AgNPs. It shows the significant antioxidant efficacy in comparison with SI leaf extracts against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green AgNPs could be used effectively in future engineering and medical concerns. PMID:25473370

  6. In vitro efficacy of Bryophyllum pinnatum leaf extracts as potent therapeutics.

    PubMed

    Gupta, Suneel; Adak, Sunita; Rajak, Rajiv Chandra; Banerjee, Rintu

    2016-07-03

    Leaf extracts of Bryophyllum pinnatum (BPEs) are used in several countries. Contextually, evaluation of the therapeutic potential of these was carried out in this study to explore antioxidant and antityrosinase potential through different in vitro methods. The radical scavenging properties of BPEs were studied using various techniques, based on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) dot blot thin-layer chromatography (TLC) method, electron paramagnetic resonance (EPR) spectroscopy, metal chelation, β-carotene bleaching, inhibition of DNA breakage on agarose gel, and lipid peroxidation inhibition using liver and brain microsomes. EC50 values of the results reflected that aqueous-methanolic BPE was the most active one. Antibrowning potential of the fresh leaf extract showed an antityrosinase property, with EC50 values of enzymatic assay of tyrosinase inhibitory activity further advocating the findings.

  7. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens

    NASA Astrophysics Data System (ADS)

    Das, J.; Paul Das, M.; Velusamy, P.

    2013-03-01

    Simple, effective and rapid approach for the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Sesbania grandiflora and their in vitro antibacterial activity against selected human pathogens has been demonstrated in the study. Various instrumental techniques were adopted to characterize the synthesized AgNPs viz. UV-Vis, FTIR, XRD, TEM, EDX and AFM. Surface Plasmon spectra for AgNPs are centered at 422 nm with dark brown color. The synthesized AgNPs were found to be spherical in shape with size in the range of 10-25 nm. The presence of water soluble proteins in the leaf extract was identified by FTIR which were found to be responsible for the reduction of silver ions (Ag+) to AgNPs. Moreover, the synthesized AgNPs showed potent antibacterial activity against multi-drug resistant (MDR) bacteria such as Salmonella enterica and Staphylococcus aureus.

  8. Effects of potato and lotus leaf extract intake on body composition and blood lipid concentration

    PubMed Central

    Lee, Keuneil; Kim, Jongkyu; Lee, Namju; Park, Sok; Cho, Hyunchul; Chun, Yoonseok

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of potato and lotus leaf extract intake on body composition, abdominal fat, and blood lipid concentration in female university students. [Methods] A total of 19 female university students participated in this 8-week study, and they were randomly assigned into 2 groups; potato and lotus leaf extract (skinny-line) administered group (SKG, n =9) and placebo group (PG, n = 10). The main results of the present study are presented below. [Results] 1) Body mass index, and percent body fat and abdominal fat in students of the SKG showed a decreasing tendency without significant interaction, 2) total cholesterol (TC), triglyceride (TG), and low density lipoprotein (LDL-C) in students of the SKG showed an averagely decreasing tendency and there was a significant interaction of TC only, 3) high density lipoprotein (HDL-C) in students of the SKG showed an increasing tendency without significant interaction, and 4) Z-score of fatness testing interaction in group × repetition did not show a significant interaction; however, there was a significant interaction of TC in group × repetition. Based on these results, 8-week intake of potato and lotus leaf extract had a positive effect of lowering TC. On the other hand, it had no significant effect on other types of lipids and percent body fat changes. [Conclusion] There was a positive tendency of blood lipids in students of the SKG and it seems that potato and lotus leaf extract intake might prevent obesity and improve obesity related syndromes. PMID:25960952

  9. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract.

    PubMed

    Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P

    2015-04-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV-vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV-vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures.

  10. Psidium guajava leaf extract prevents intestinal colonization of Citrobacter rodentium in the mouse model

    PubMed Central

    Gupta, Pooja; Birdi, Tannaz

    2015-01-01

    Diarrheal diseases are the second highest cause of mortality of children under 5 years worldwide. There is a continuous search for developing a cost-effective treatment for diarrhea as the present ones are facing challenges. Medicinal plants can be explored further as an alternative treatment for diarrhea. Psidium guajava leaves have been used as an antidiarrheal globally. Citrobacter rodentium, a common mouse pathogen, is known to mimic the pathogenecity of enteropathogenic and enterohemorrhagic E. coli. It can thus present an effective model to study infectious diarrhea. In the present study, the P. guajava leaf extract was tested for its efficacy in treating infectious diarrhea using a C. rodentium mouse model. The mice in the test group (treated with P. guajava leaf extract) showed quicker clearance of infection as compared with the control group. The bacterial load in the fecal sample of the mice in the test group was high on Day 4 as compared with that in the control group, suggesting a flush out of the bacteria. In the test group, 6/7 (85.71%) mice showed clearance of infection by Day 19. The control group continued to show infection till Day 29. P. guajava leaf extract thus has the potential for use in the treatment of infectious diarrhea. PMID:25878465

  11. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis.

    PubMed

    Kim, Sung-Jo; Hwang, Eunmi; Yi, Sun Shin; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Park, Sang-Kyu; Jung, Yun Joo; Jun, Hyun Sik

    2017-02-08

    Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.

  12. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae)

    PubMed Central

    Musa, Aliyu Muhammad; Ibrahim, Mohammed Auwal; Aliyu, Abubakar Babando; Abdullahi, Mikhail Sabo; Tajuddeen, Nasir; Ibrahim, Halliru; Oyewale, Adebayo Ojo

    2015-01-01

    Objective: The aim was to determine the chemical constituents and antimicrobial activity of the hexane leaf extract of Anisopus mannii against a wide range of human pathogenic microorganisms. Methods: The chemical constituents of the hexane leaf extract was determined using gas chromatography-mass spectrometry (GC-MS) analysis; and the antimicrobial activity was evaluated on “standard strains”, clinical susceptible and resistant bacterial and fungal isolates using the disc diffusion and broth microdilution methods. Results: GC-MS analysis of the hexane leaf extract revealed 32 compounds, representing 73.8% of the identified components. The major compounds were hexadecanoic acid, ethyl ester (34%), oxirane, hexadecyl- (11%) and 9, 12, 15-octadecatrienoic acid, ethyl ester, (Z, Z, Z) (9.6%). Results from the antimicrobial activity demonstrated higher inhibition zones against Bacillus cereus (29 mm), followed by Streptococcus pyogenes (28 mm). Other notable inhibitions were observed with Enterococcus faecalis (27 mm), Proteus vulgaris (26 mm) and MRSA (25 mm). The MIC values ranged from 0.625 mg/mL to 1.25 mg/mL while the MBC/MFC values ranged from 2.5 mg/mL to 5.0 mg/mL. Conclusion: These results support the traditional use of the plant and demonstrate the huge potential of A. mannii as a source of antimicrobial compounds. PMID:26401399

  13. "Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract".

    PubMed

    Kharat, Sopan N; Mendhulkar, Vijay D

    2016-05-01

    The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties.

  14. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  15. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  16. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract.

    PubMed

    Gavade, N L; Kadam, A N; Suwarnkar, M B; Ghodake, V P; Garadkar, K M

    2015-02-05

    Herein, we are reporting for the first time one step biogenic synthesis of silver nanoparticles (AgNPs) at room temperature by using Ziziphus Jujuba leaf extract as a reducing and stabilizing agent. The process of nanoparticles preparation is green, rapid, environmentally benign and cost effective. The synthesized AgNPs were characterized by means of UV-Vis., XRD, FT-IR, TEM, DLS and Zeta potential. The absorption band centered at λmax 434 nm in UV-Vis. reflects surface plasmon resonance (SPR) of AgNPs. XRD analysis revealed, that biosynthesized AgNPs are crystalline in nature with the face centered cubic structure. FT-IR analysis indicates that nanoparticles were capped with the leaf extract. TEM images shows the synthesized nanoparticles are having different shapes with 20-30 nm size. The data obtained from DLS that support the hydrodynamic size of 28 nm. Zeta potential of -26.4 mV indicates that the nanoparticles were highly stable in colloidal state. The effect of pH, quantity of leaf extract and concentrations of AgNO3 were also studied to attend control over the particle size and stability. The synthesized AgNPs shows highly efficient catalytic activity towards the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) and Methylene Blue (MB) for environmental protection. Synthesized AgNPs also exhibited good antimicrobial activity against Escherichia coli.

  17. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  18. Morinda citrifolia Linn. (Rubiaceae) leaf extracts mitigate UVB-induced erythema.

    PubMed

    West, Brett J; Deng, Shixin; Palu, Afa K; Jensen, C Jarakae

    2009-07-01

    Morinda citrifolia Linn. (Rubiaceae) leaves have been used in tropical folk medicine to treat topical inflammation and burns. A carbomer gel base, containing the ethanol extract and juice pressed from the leaves, was evaluated for potential allergenic properties in a repeat-insult patch test in 49 volunteers. To investigate the topical photo-protective properties, the combined ethanol extract and leaf juice were evaluated in a UVB-induced erythema model in 25 volunteers. The crude ethanol extract of M. citrifolia leaves was also evaluated in vitro for potential anti-inflammatory activity in a histamine H-1 receptor antagonism assay. There was no evidence of allergenic potential in the repeat-insult patch test. When the combination of ethanol extract and leaf juice was applied, the UVB dose required to induce erythema was almost 3.5 times greater than with untreated skin (P < 0.001). In the histamine H-1 receptor-binding assay, the crude ethanol extract of M. citrifolia leaves inhibited receptor binding by 57%. These results suggest that M. citrifolia leaves are safe for topical use and may be useful in mitigating UVB-induced injury to the skin.

  19. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract

    PubMed Central

    Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq

    2016-01-01

    This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm−1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis. PMID:27785011

  20. Functional components of bamboo shavings and bamboo leaf extracts and their antioxidant activities in vitro.

    PubMed

    Gong, Jinyan; Xia, Daozong; Huang, Jun; Ge, Qing; Mao, Jianwei; Liu, Shiwang; Zhang, Ying

    2015-04-01

    This study was designed to detect characteristic compounds and evaluate the free radical scavenging capacity of the bamboo leaves extract and bamboo shavings extract (BSE). The antioxidant capacity of bamboo leaf n-butanol fraction (AOB) exhibited the highest total phenolic content (49.93%), total flavonoids content (24.11%), and characteristic flavonoids and phenolic acids, such as chlorogenic acid, caffeic acid, ferulic acid, p-coumaric acid, orientin, homoorientin, vitexin, and isovitexin. Available data obtained with in vitro models suggested that AOB had higher free radical scavenging capacity with IC(50) values of 1.04, 4.48, 5.37, and 1.12 μg/mL on DPPH(•), O(2)(•-), (•)OH, and H(2)O(2), respectively, than the other two extracts, bamboo leaf water extract and BSE. The results indicated that the extracts from different parts of the bamboo possess excellent antioxidant activity, which can be used potentially as a readily accessible and valuable bioactive source of natural antioxidants.

  1. Aqueous Leaf Extract of Jatropha mollissima (Pohl) Bail Decreases Local Effects Induced by Bothropic Venom

    PubMed Central

    Gomes, Jacyra Antunes dos Santos; Geraldo Amaral, Juliano; Lopes, Norberto Peporine; Tabosa do Egito, Eryvaldo Sócrates; da Silva-Júnior, Arnóbio Antônio; Maria Zucolotto, Silvana

    2016-01-01

    Snakebites are a serious worldwide public health problem. In Brazil, about 90% of accidents are attributed to snakes from the Bothrops genus. The specific treatment consists of antivenom serum therapy, which has some limitations such as inability to neutralize local effects, difficult access in some regions, risk of immunological reactions, and high cost. Thus, the search for alternative therapies to treat snakebites is relevant. Jatropha mollissima (Euphorbiaceae) is a medicinal plant popularly used in folk medicine as an antiophidic remedy. Therefore, this study aims to evaluate the effect of the aqueous leaf extract from J. mollissima on local effects induced by Bothrops venoms. High Performance Liquid Chromatography with Diode Array Detection analysis and Mass Spectrometry analysis of aqueous leaf extract confirmed the presence of the flavonoids isoschaftoside, schaftoside, isoorientin, orientin, vitexin, and isovitexin. This extract, at 50–200 mg/kg doses administered by intraperitoneal route, showed significant inhibitory potential against local effects induced by Bothrops erythromelas and Bothrops jararaca snake venoms. Local skin hemorrhage, local edema, leukocyte migration, and myotoxicity were significantly inhibited by the extract. These results demonstrate that J. mollissima extract possesses inhibitory potential, especially against bothropic venoms, suggesting its potential as an adjuvant in treatment of snakebites. PMID:27847818

  2. Anti-Inflammatory Effects of a Pomegranate Leaf Extract in LPS-Induced Peritonitis.

    PubMed

    Marques, Lucia C F; Pinheiro, Aruanã J M C R; Araújo, João G G; de Oliveira, Raimundo A G; Silva, Selma N; Abreu, Iracelle C; de Sousa, Eduardo M; Fernandes, Elizabeth S; Luchessi, André D; Silbiger, Vivian N; Nicolete, Roberto; Lima-Neto, Lidio G

    2016-11-01

    Folk medicine suggests that pomegranate (peels, seeds and leaves) has anti-inflammatory properties; however, the precise mechanisms by which this plant affects the inflammatory process remain unclear. Herein, we analyzed the anti-inflammatory properties of a hydroalcoholic extract prepared from pomegranate leaves using a rat model of lipopolysaccharide-induced acute peritonitis. Male Wistar rats were treated with either the hydroalcoholic extract, sodium diclofenac, or saline, and 1 h later received an intraperitoneal injection of lipopolysaccharides. Saline-injected animals (i. p.) were used as controls. Animals were culled 4 h after peritonitis induction, and peritoneal lavage and peripheral blood samples were collected. Serum and peritoneal lavage levels of TNF-α as well as TNF-α mRNA expression in peritoneal lavage leukocytes were quantified. Total and differential leukocyte populations were analyzed in peritoneal lavage samples. Lipopolysaccharide-induced increases of both TNF-α mRNA and protein levels were diminished by treatment with either pomegranate leaf hydroalcoholic extract (57 % and 48 % mean reduction, respectively) or sodium diclofenac (41 % and 33 % reduction, respectively). Additionally, the numbers of peritoneal leukocytes, especially neutrophils, were markedly reduced in hydroalcoholic extract-treated rats with acute peritonitis. These results demonstrate that pomegranate leaf extract may be used as an anti-inflammatory drug which suppresses the levels of TNF-α in acute inflammation.

  3. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract.

    PubMed

    Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq

    This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm(-1), showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.

  4. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves

    PubMed Central

    Zhang, Chen; Sanders, Johan P. M.; Xiao, Ting T.; Bruins, Marieke E.

    2015-01-01

    Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results. PMID:26200774

  5. Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles1[W][OA

    PubMed Central

    Price, Charles A.; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S.

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure. PMID:21057114

  6. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Kerdsomboon, Kittikhun; Tatip, Supinda; Kosasih, Sattawat; Auesukaree, Choowong

    2016-05-01

    Moringa oleifera leaves are a well-known source of antioxidants and traditionally used for medicinal applications. In the present study, the protective action of soluble M. oleifera leaf extract (MOLE) against cadmium toxicity was investigated in the model eukaryote Saccharomyces cerevisiae. The results showed that this extract exhibited a protective effect against oxidative stress induced by cadmium and H2O2 through the reduction of intracellular reactive oxygen species. Interestingly, not only the co-exposure of soluble MOLE with cadmium but also pretreatment of this extract prior to cadmium exposure significantly reduced the cadmium uptake through an inhibition of Fet4p, a low-affinity iron(II) transporter. In addition, the supplementation of soluble MOLE significantly reduced intracellular iron accumulation in a Fet4p-independent manner. Our findings suggest the potential use of soluble extract from M. oleifera leaves as a dietary supplement for protection against cadmium accumulation and oxidative stress.

  7. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water.

    PubMed

    Nair, B

    2001-01-01

    Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, Mentha Piperita (Peppermint) Leaf Water are obtained from the Mentha piperita plant. The oil is currently used in cosmetic formulations as a fragrance component, but previously had been also described as a denaturant. The extract and leaves are described as biological additives, but only the extract is reported to be used. Peppermint Water is described as a flavoring agent or fragrance component, but is not currently in use. Peppermint Oil is used at a concentration of < or = 3% in rinse-off formulations and < or = 0.2% in leave-on formulations. Peppermint Oil is composed primarily of menthol and menthone. Other possible constituents include pulegone, menthofuran, and limone. Most of the safety test data concern Peppermint Oil. The oil is considered to present the "worst case scenario" because of its many constituents, so data on the oil were considered relevant to the entire group of ingredients. Peppermint Oil was minimally toxic in acute oral studies. Short-term and sub-chronic oral studies reported cystlike lesions in the cerebellum in rats that were given doses of Peppermint Oil containing pulegone, pulegone alone, or large amounts (>200 mg/kg/day) of menthone. Pulegone is also a recognized hepatotoxin. Repeated intradermal dosing with Peppermint Oil produced moderate and severe reactions in rabbits, although Peppermint Oil did not appear to be phototoxic. Peppermint Oil was negative in the Ames test and a mouse lymphoma mutagenesis assay but gave equivocal results in a Chinese hamster fibroblast cell chromosome aberration assay. In a carcinogenicity study of toothpaste and its components, no apparent differences were noted between mice treated with Peppermint Oil and those treated with the toothpaste base. Isolated clinical cases of irritation and/or sensitization to Peppermint Oil and/or its constituents have been reported, but Peppermint Oil (8

  8. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti.

    PubMed

    Suganya, Ayyappan; Murugan, Kadarkarai; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Hwang, Jiang-Shiou

    2013-04-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the activity of silver nanoparticles (AgNPs) synthesized using Murraya koenigii plant leaf extract against first to fourth instars larvae and pupae of Anopheles stephensi and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (5, 10, 20, 30, and 40 ppm) and ethanol leaf extract (50, 200, 350, 500, and 650 ppm) were tested against the larvae of A. stephensi and A. aegypti. The synthesized AgNPs from M. koenigii leaf were highly toxic than crude leaf ethanol extract in both mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24 h. The maximum mortality was observed in synthesized AgNPs, and ethanol leaf extract of M. koenigii against A. stephensi had LC50 values of 10.82, 14.67, 19.13, 24.35, and 32.09 ppm and 279.33, 334.61, 406.95, 536.11, and 700.16 ppm and LC90 values of 32.38, 42.52, 53.65, 63.51, and 75.26 ppm and 737.37, 843.84, 907.67, 1,187.62, and 1,421.13 ppm. A. aegypti had LC50 values of 13.34, 17.19, 22.03, 27.57, and 34.84 ppm and 314.29, 374.95, 461.01, 606.50, and 774.01 ppm and LC90 values of 36.98, 47.67, 55.95, 67.36, and 77.72 ppm and 777.32, 891.16, 1,021.90, 1,273.06, and 1,509.18 ppm, respectively. These results suggest that the use of M. koenigii synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target

  9. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  10. Formulation and evaluation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd.

    PubMed

    Nesseem, D I; Michel, C G; Sleem, A A; El-Alfy, T S

    2009-02-01

    This study deals with the formulation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd. A bioactivity guided fractionation of different leaf extracts [defatted ethanol 70% (a), butanol (b), ethanol 70% (c), ethyl acetate (d) and petroleum ether (e) extracts] revealed that extract (c) possessed the highest antihyperglycemic activity followed by (b) and (a). HPLC was adopted for standardization of the extract (c) based on evaluation of the major saponin christinin-A which was used as marker. The detection limit was 9.45 mg/ml for Christinin-A. Extracts (a), (b) and (c) were separately formulated in soft (S) and hard (H) gelatin capsules. Two different formulations (F1 and F2) were tried using different excipients suitable for oral drug delivery. Formula 1, used for soft gelatin capsules [(F1) Sa, Sb, Sc] Formula 2, used for hard gelatin capsules [(F2) - Ha, Hb, Hc]. The recovery rates of the samples of saponin were in the range 99.43-101.86% at 200, 800 microg/ml and 1200 microg/ml. Saponin release rates from different formulae were carried out using dissolution tester USP XXIV. The highest release was obtained from formulation Sc. The release of the extracts followed diffusion mechanism. The selected formula Sc exhibited highest anti-diabetic activity (P < 0.01) on acute and long-term administration and highest saponin release. This formula (Sc) contained poly-oxyethylene (20) cetyl ether (BC-20TX), PEG 400, PEG 6000, purified water, meglyol 810, ascorbic acid and 200 mg of extract (c).

  11. Phytochemical, Anti-oxidant and Anthelmintic activities of various leaf extracts of Flacourtia sepiaria Roxb

    PubMed Central

    Sreejith, M; Kannappan, N; Santhiagu, A; Mathew, Ajith P

    2013-01-01

    Objective The present study was carried out to investigate the phytochemical constituents, in vitro antioxidant potential and anthelmintic activities of Flacourtia sepiaria Roxb leaves. Methods The dried powdered leaves of Flacourtia sepiaria were extracted using petroleum ether, chloroform, ethyl acetate and methanol by a soxhlet extractor and preliminary phytochemical screening was performed using standard protocols. All the extract was evaluated for their potential antioxidant activities using test such as DPPH, superoxide anion radical, hydroxyl radical, nitric oxide radical scavenging abilities, ferrous chelating ability and total phenolic and flavanoid content. Anthelmintic activity of extract was screened in adult Indian earthworm model. Results Preliminary screening revealed the presence of bioactive compounds especially phenolics, tannins and terpenoids in all extracts. The phenolic and flavanoid content was highest in methanolic extract and lowest in petroleum ether extract. The paralytic (9.46±0.212) and death time (31.43±0.148) of methanolic extract was found to be significant (P<0.05) when compared with paralytic (7.33±0.206) and death time (18.60±0.229) of standard piperazine citrate at 100 mg/mL concentration. Conclusions The results of the present study indicate that the leaf extracts of Flacourtia sepiaria exhibited strong antioxidant activity and possess significant anthelmintic activity and thus it is a good source of antioxidant and anthelmintic constituents. PMID:24093785

  12. Bamboo leaf extract improves spatial learning ability in a rat model with senile dementia*

    PubMed Central

    Liu, Jian-xiang; Zhu, Min-ying; Feng, Ci-yuan; Ding, Hai-bin; Zhan, Ying; Zhao, Zhan; Ding, Yue-min

    2015-01-01

    Senile dementia (SD) is a syndrome characterized by progressive neurological deterioration. Treatment for the disease is still under investigation. Bamboo leaf extract (B-extract) has been known for its biological efficacy in anti-oxidant and anti-cancer activities. However, study on B-extract for its protection against dementia is very limited. The effect of B-extract on a rat model with SD was examined. B-extract improved spatial learning ability of the dementia rats. The hippocampus of dementia model rats showed reduced levels of acetylcholine (ACh), epinephrine (E), norepinephrine (NE), and dopamine (DA), and increased activities of acetylcholine esterase (AChE) and monoamine oxidase (MAO). Treatment with B-extract 20 mg/(kg·d) for 7 weeks significantly inhibited the enzyme activity compared with untreated dementia rats, and raised the levels of ACh, E, and DA in the hippocampus. In addition, treatment with B-extract elevated the level of γ-aminobutyric acid (GABA), but reduced the level of glutamate (Glu) in the brain. These data suggest that B-extract might be a potential drug in treating impairment of spatial memory in dementia rats by regulating the central neurotransmitter function. PMID:26160717

  13. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    PubMed

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  14. The possible presence of natural β-D-glucosidase inhibitors in jujube leaf extract.

    PubMed

    Jo, Youngje; Lim, Seokwon; Chang, Pahn-Shick; Choi, Young Jin

    2016-03-01

    Isoquercitrin is a phenolic compound well-known for having greater health benefits than quercitin, its aglycone derivative, and other related glycosides. However, isoquercitrin is rarely found in nature. Here, we optimized the conditions for the enzymatic transformation of isoquercitrin from rutin that was extracted from jujube leaf using the hesperidinase, enzyme complex containing β-D-glucosidase and α-L-rhamnosidase. The maximum productivity (2.57±0.16mg/mL) was experimentally found under the following conditions: 47.3°C, 52.16h, and pH 5.31, which agreed well with the predicted value (2.65mg/mL). However, the achievement of this maximum yield was due to the absence of β-D-glucosidase activity. Further investigations using a β-D-glucosidase assay and reaction measurements under various conditions revealed that the β-D-glucosidase activity was not blocked by denaturation or known inhibitory factors. Currently, there are no recognized β-D-glucosidase inhibitors present in the jujube leaf; however, our observations strongly suggest that an unidentified β-D-glucosidase inhibitor exists in jujube leaf extract.

  15. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    NASA Astrophysics Data System (ADS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  16. Olive Leaf Extracts Are a Natural Source of Advanced Glycation End Product Inhibitors

    PubMed Central

    Charisiadis, Pantelis; Margianni, Evangelia; Lamari, Fotini N.; Gerothanassis, Ioannis P.

    2013-01-01

    Abstract Advanced glycation end products (AGEs), which are readily formed and accumulated with sustained hyperglycemia, contribute to the development of diabetic complications. As a consequence, inhibition of AGE formation constitutes an attractive therapeutic/preventive target. In the current study, we explored the phytochemical composition and the in vitro effect of two different olive leaf extracts (an aqueous and a methanolic) on AGE formation. The methanolic olive leaf extract inhibited fluorescent AGE formation in a bovine serum albumin (BSA)-ribose system, whereas the aqueous extract had no effect in both BSA-fructose and BSA-ribose systems. The phytochemical profile was investigated with liquid chromatography-ultraviolet-visible (UV-Vis) diode array coupled to electrospray ionization multistage mass spectrometry (LC/DAD/ESI-MSn). Quantification of the major phenolic compounds was performed with high performance liquid chromatography with UV-Vis diode array detection and nuclear magnetic resonance spectroscopy. Among the major phenolic components (luteolin, hydroxytyrosol, luteolin-4′-O-β-D-glucopyranoside, luteolin-7-O-β-D-glucopyranoside, and oleuropein), luteolin and luteolin-4′-O-β-D-glucopyranoside were assigned as potent inhibitors of AGE formation. The extraction procedure greatly affects the composition and therefore the anti-glycation potential of olive leaves. PMID:24044491

  17. Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts.

    PubMed

    Avci, H; Monticello, R; Kotek, R

    2013-01-01

    Concerns about health issues and environmental pollution stimulate research to find new health and hygiene related products with healing properties and minimum negative effect on the environment. Development of new, natural antibacterial agents has become one of the most important research areas to combat some pathogens such as Gram- positive and Gram-negative bacteria, fungi, algae, yeast, and some microorganisms which cause serious human infections. Lawsonia Inermis (henna) leaf extracts for preparation of antibacterial poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) nanofibers via electrospinning technique were investigated. PEO and PVA based electrospun fibers containing henna extract were verified by the appearance of FTIR peaks corresponding to the pure extract. Our study demonstrates that 2.793 wt.% Li in PVA and PEO based solutions showed bactericidal effects against Staphylococcus aureus and bacteriostatic action to Escherichia coli. Concentrations of henna leaf extract strongly impacted antibacterial activities against both bacteria. Henna leaves have a great potential to be used as a source of a potent eco-friendly antimicrobial agent.

  18. Olive leaf extracts are a natural source of advanced glycation end product inhibitors.

    PubMed

    Kontogianni, Vassiliki G; Charisiadis, Pantelis; Margianni, Evangelia; Lamari, Fotini N; Gerothanassis, Ioannis P; Tzakos, Andreas G

    2013-09-01

    Advanced glycation end products (AGEs), which are readily formed and accumulated with sustained hyperglycemia, contribute to the development of diabetic complications. As a consequence, inhibition of AGE formation constitutes an attractive therapeutic/preventive target. In the current study, we explored the phytochemical composition and the in vitro effect of two different olive leaf extracts (an aqueous and a methanolic) on AGE formation. The methanolic olive leaf extract inhibited fluorescent AGE formation in a bovine serum albumin (BSA)-ribose system, whereas the aqueous extract had no effect in both BSA-fructose and BSA-ribose systems. The phytochemical profile was investigated with liquid chromatography-ultraviolet-visible (UV-Vis) diode array coupled to electrospray ionization multistage mass spectrometry (LC/DAD/ESI-MS(n)). Quantification of the major phenolic compounds was performed with high performance liquid chromatography with UV-Vis diode array detection and nuclear magnetic resonance spectroscopy. Among the major phenolic components (luteolin, hydroxytyrosol, luteolin-4'-O-β-D-glucopyranoside, luteolin-7-O-β-D-glucopyranoside, and oleuropein), luteolin and luteolin-4'-O-β-D-glucopyranoside were assigned as potent inhibitors of AGE formation. The extraction procedure greatly affects the composition and therefore the anti-glycation potential of olive leaves.

  19. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    PubMed Central

    Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.

    2014-01-01

    Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275

  20. Phytotherapy of experimental depression: Kalanchoe integra Var. Crenata (Andr.) Cuf Leaf Extract

    PubMed Central

    Kukuia, Kennedy K. E.; Asiedu-Gyekye, Isaac J.; Woode, Eric; Biney, Robert P.; Addae, Emmanuel

    2015-01-01

    Context: Kalanchoe sp. have been used since 1921 for central nervous system (CNS) disorders such as psychosis and depression. It is known to possess CNS depressant effects. Aims: To investigate the antidepressant properties of the aqueous leaf extract of Kalanchoe integra. Settings and Design: The study was carried out at the Kwame Nkrumah University of Science and Technology between 6 a.m. and 3 p.m. Materials and Methods: ICR mice were subjected to the forced swimming test (FST) and tail suspension test (TST) after they had received extract (30-300 mg/kg), fluoxetine (3-30 mg/kg), desipramine (3-30 mg/kg) orally, or water (as vehicle). In a separate experiment, mice were pre-treated with reserpine (1 mg/kg), α-methyl paratyrosine (AMPT; 400 mg/kg), both reserpine (1 mg/kg) and AMPT (200 mg/kg) concomitantly, or p-chlorophenylalanine (pCPA; 200 mg/kg) to ascertain the role of the noradrenergic and serotoninergic systems in the mode of action of the extract. Statistical analysis used: Means were analyzed by analysis of variance (ANOVA) followed by Newman-Keuls’ post hoc test. P < 0.05 was considered significant. Results: In both FST and TST, the extract induced a decline in immobility, indicative of antidepressant-like effect. This diminution in immobility was reversed by pCPA, but not by reserpine and/or AMPT. The extract increased the swimming and climbing scores in the FST, suggestive of possible interaction with serotoninergic and noradrenergic systems. In the TST, the extract produced increases in both curling and swinging scores, suggestive of opioidergic monoaminergic activity, respectively. Conclusions: The present study has demonstrated the antidepressant potential of the aqueous leaf extract of K. integra is mediated possibly by a complex interplay between serotoninergic, opioidergic, and noradrenergic systems. PMID:25709333

  1. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line.

    PubMed

    Barrajón-Catalán, Enrique; Taamalli, Amani; Quirantes-Piné, Rosa; Roldan-Segura, Cristina; Arráez-Román, David; Segura-Carretero, Antonio; Micol, Vicente; Zarrouk, Mokhtar

    2015-02-01

    A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures.

  2. Allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala on three selected weed species

    NASA Astrophysics Data System (ADS)

    Ishak, Muhamad Safwan; Sahid, Ismail

    2014-09-01

    A laboratory experiment was conducted to study the allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala. The aqueous extracts were individually tested on three selected weed species, namely goatweed (Ageratum conyzoides), coat buttons (Tridax procumbens) and lilac tasselflower (Emilia sonchifolia). The allelopathic effects of the leaf and seed extracts on germination, shoot length, root length and fresh weight of each of the selected weed species were determined. Germination of goatweed, coat buttons and lilac tasselflower were inhibited by the aqueous extracts of both the leaf and seed of L. leucocephala and was concentration dependent. Different concentrations of the aqueous extracts showed various germination patterns on the selected weeds species. Seedling length and fresh weight of goatweed, coat buttons and lilac tasselflower were reduced in response to respective increasing concentrations of the seed extracts. Maximum inhibition by the aqueous seed extract was observed more on the root rather than the shoot growth. The aqueous seed extract at T3 concentration reduced root length of goatweed, coat buttons and lilac tasselflower by 95%, 86% and 91% (of the control) respectively. The aqueous seed extract showed greater inhibitory effects than that of the aqueous leaf extract.

  3. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    PubMed

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  4. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    PubMed Central

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  5. Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin-induced diabetic rats

    PubMed Central

    Chikhi, Ilyas; Allali, Hocine; Dib, Mohamed El Amine; Medjdoub, Houria; Tabti, Boufeldja

    2014-01-01

    Objective To investigate the antidiabetic effect of A. halimus leaf in streptozotocin-induced diabetic rats. Methods The aqueous extract of the plant leaf was tested for its efficacy in streptozotocin-induced diabetic rats. The extract was evaluated for its acute and short term general toxicity in male mice and for its antihyperglycemic activity using glucose tolerance test in rats. The aqueous extract was subjected to phytochemical screening and determination of total phenolic contents. Results The statistical data indicated the significant increase in the body weight and decrease in the blood glucose and hepatic levels. The total protein level was significantly increased when treated with the extract. Conclusions These results suggest that the aqueous leaf extract of A. halimus has beneficial effects in reducing the elevated blood glucose level and hepatic levels in streptozotocin-induced diabetic rats.

  6. Antioxidant and Antiproliferative Activities of Leaf Extracts from Plukenetia volubilis Linneo (Euphorbiaceae)

    PubMed Central

    Nascimento, Ana Karina Lima; Melo-Silveira, Raniere Fagundes; Dantas-Santos, Nednaldo; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Rocha, Hugo Alexandre Oliveira; Scortecci, Katia Castanho

    2013-01-01

    Plukenetia volubilis Linneo, or Sacha inca, is an oleaginous plant from the Euphorbiaceae family. The aim of this work was to perform a chemical and biological analysis of different leaf extracts from P. volubilis such as aqueous extract (AEL), methanol (MEL), ethanol (EEL), chloroform (CEL), and hexane (HEL). Thin layer chromatography analysis revealed the presence of phenolic compounds, steroids, and/or terpenoídes. Furthermore, the antioxidant activities were analyzed by in vitro assays and their effects on cell lineages by in vivo assays. The Total Antioxidant Capacity (TCA) was expressed as equivalent ascorbic acid (EEA/g) and it was observed that the extracts showed values ranging from 59.31 to 97.76 EAA/g. Furthermore, the DPPH assay values ranged from 62.8% to 88.3%. The cell viability assay showed that the extracts were able to reduce viability from cancer cells such as HeLa and A549 cells. The extracts MEL and HEL (250 µg/mL) were able to reduce the proliferation of HeLa cells up to 54.3% and 48.5%, respectively. The flow cytometer results showed that these extracts induce cell death via the apoptosis pathway. On the other hand, the extracts HEL and AEL were able to induce cell proliferation of normal fibroblast 3T3 cells. PMID:24159355

  7. Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models

    PubMed Central

    Hajhashemi, Valiollah; Klooshani, Vahid

    2013-01-01

    Objective: This study was aimed to examine the antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Materials and Methods: Hydroalcoholic extract of the plant leaves was prepared by percolation method. Male Swiss mice (25-35 g) and male Wistar rats (180-200 g) were randomly distributed in control, standard drug, and three experimental groups (n=6 in each group). Acetic acid-induced writhing, formalin test, and carrageenan-induced paw edema were used to assess the antinociceptive and anti-inflammatory effects. Results: The extract dose-dependently reduced acetic acid-induced abdominal twitches. In formalin test, the extract at any of applied doses (100, 200, and 400 mg/kg) could not suppress the licking behavior of first phase while doses of 200 and 400 mg/kg significantly inhibited the second phase of formalin test. In carrageenan test, the extract at a dose of 400 mg/kg significantly inhibited the paw edema by 26%. Conclusion: The results confirm the folkloric use of the plant extract in painful and inflammatory conditions. Further studies are needed to characterize the active constituents and the mechanism of action of the plant extract. PMID:25050274

  8. Antioxidant and Antiproliferative Activities of Leaf Extracts from Plukenetia volubilis Linneo (Euphorbiaceae).

    PubMed

    Nascimento, Ana Karina Lima; Melo-Silveira, Raniere Fagundes; Dantas-Santos, Nednaldo; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Rocha, Hugo Alexandre Oliveira; Scortecci, Katia Castanho

    2013-01-01

    Plukenetia volubilis Linneo, or Sacha inca, is an oleaginous plant from the Euphorbiaceae family. The aim of this work was to perform a chemical and biological analysis of different leaf extracts from P. volubilis such as aqueous extract (AEL), methanol (MEL), ethanol (EEL), chloroform (CEL), and hexane (HEL). Thin layer chromatography analysis revealed the presence of phenolic compounds, steroids, and/or terpenoídes. Furthermore, the antioxidant activities were analyzed by in vitro assays and their effects on cell lineages by in vivo assays. The Total Antioxidant Capacity (TCA) was expressed as equivalent ascorbic acid (EEA/g) and it was observed that the extracts showed values ranging from 59.31 to 97.76 EAA/g. Furthermore, the DPPH assay values ranged from 62.8% to 88.3%. The cell viability assay showed that the extracts were able to reduce viability from cancer cells such as HeLa and A549 cells. The extracts MEL and HEL (250 µg/mL) were able to reduce the proliferation of HeLa cells up to 54.3% and 48.5%, respectively. The flow cytometer results showed that these extracts induce cell death via the apoptosis pathway. On the other hand, the extracts HEL and AEL were able to induce cell proliferation of normal fibroblast 3T3 cells.

  9. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf.

    PubMed

    Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad

    2015-03-01

    The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals.

  10. Irradiation effects on color and functional properties of persimmon ( Diospyros kaki L. folium) leaf extract and licorice ( Glycyrrhiza Uralensis Fischer) root extract during storage

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Son, Jun Ho; Shin, Myung Gon; Byun, Myung Woo

    2003-06-01

    Irradiation effects on color and functional properties of persimmon ( Diospyros kaki L. folium) leaf extract and licorice ( Glycyrrhiza Uralensis Fischer) root extract were studied. Persimmon leaf and licorice root extracts were irradiated using 60Co gamma irradiator at 0 and 20 kGy absorbed dose and stored at 4°C or -20°C for 2 weeks. Tyrosinase inhibition effect (TIE) of both extracts was not different by 20 kGy-irradiation but reduced during storage. Electron donating ability (EDA) of the persimmon leaf extract was generally consistent, but that of licorice root extract was reduced by irradiation except for 1 week of storage. Both TIE and EDA of persimmon leaf extract were higher than that of licorice root. Hunter color L*-, a*-, and b*-values were changed, resulting in a desirable brighter color by irradiation. During storage, the bright yellow color of irradiated sample changed to brown gradually, and especially the changes in the refrigeration condition (4°C) was faster than frozen (-20°C). Results indicate that irradiation can be a useful method to produce value-added natural ingredients with functions such as persimmon leaf or licorice root for food or cosmetic industry in addition to elimination of microbial load.

  11. Effects of Jasminum multiflorum leaf extract on rodent models of epilepsy, motor coordination and anxiety.

    PubMed

    Addae, Jonas I; Pingal, Ramish; Walkins, Kheston; Cruickshank, Renee; Youssef, Farid F; Nayak, Shivananda B

    2017-03-01

    Jasmine flowers and leaves are used extensively in folk medicine in different parts of the world to treat a variety of diseases. However, there are very few published reports on the neuropsychiatric effects of Jasmine extracts. Hence, the objectives of the present study were to examine the effects of an alcohol extract of Jasminum multiflorum leaves on topically-applied bicuculline (a model of acute simple partial epilepsy) and maximal electroshock (MES, a model of generalized tonic-clonic seizure) in male Sprague-Dawley rats. The objectives also included an examination of the anxiolytic properties of the extract using an elevated plus maze and the effect of the extract on motor coordination using a rotarod treadmill. Phytochemical analysis of the extract showed the presence of three flavonoids and four additional compounds belonging to the steroid, terpenoid, phenol or sugar classes of compounds. The Jasmine alcohol extract, diluted with water and given orally or intraperitoneally, reduced the number of bicuculline-induced epileptiform discharges in a dose-dependent manner. The extract did not cause a significant increase in the current needed to induce hind limb extension in MES experiments. The extract significantly affected motor coordination when injected at 500mg/kg but not at 200mg/kg. At the latter dose, the extract increased open-arm entries and duration in the elevated plus maze to a level comparable to that of diazepam at 2mg/kg. We conclude that Jasmine leaf extract has a beneficial effect against an animal model of acute partial complex epilepsy, and significant anxiolytic effect at a dose that does not affect motor co-ordination.

  12. Annona squamosa Linn: cytotoxic activity found in leaf extract against human tumor cell lines.

    PubMed

    Wang, De-Shen; Rizwani, Ghazala H; Guo, Huiqin; Ahmed, Mansoor; Ahmed, Maryam; Hassan, Syed Zeeshan; Hassan, Amir; Chen, Zhe-Sheng; Xu, Rui-Hua

    2014-09-01

    Cancer is a common cause of death in human populations. Surgery, chemotherapy and radiotherapy still remain the corner stone of treatment. However, herbal medicines are gaining popularity on account of their lesser harmful side effects on non-targeted human cells and biological environment. Annona squamosa Linn is a common delicious edible fruit and its leaf have been used for the treatment in various types of diseases. The objective of present study is to determine the anticancer potential of the organic and aqueous extracts of leaf of Annona squamosa L. MTT (3-(4, 5-dimethylthiazole-2yl)-2, 5-biphenyl tetrazolium bromide) assay against hepatocellular carcinoma cell line BEL-7404, lung cancer line H460, human epidermoid carcinoma cell line KB-3-1, prostatic cancer cell line DU145, breast carcinoma cell line MDA-MB-435, and colon cancer cell line HCT-116 Human primary embryonic kidney cell line HEK293 as control were used for the study. The crude extract (Zcd) and Ethyl acetate extract (ZE) were found significant anticancer activity only on human epidermoid carcinoma cell line KB-3-1 and colon cancer cell line HCT-116.

  13. Phytotoxic effects and chemical analysis of leaf extracts from three Phytolaccaceae species in South Korea.

    PubMed

    Kim, Yong Ok; Johnson, Jon D; Lee, Eun Ju

    2005-05-01

    We analyzed phenolic compounds and other elements in leaf extracts and compared morphology of three species of the Phytolaccaceae family found in South Korea. To test allelochemical effects of the three Phytolacca species, we also examined seed germination and dry weight of seedlings of Lactuca indica and Sonchus oleraceus treated with leaf extracts. The concentrations of total phenolic compounds were exotic Phytolacca esculenta (3.9 mg/l), native Phytolacca insularis (4.4 mg/l), and exotic Phytolacca americana (10.2 mg/l). There was no significant difference in concentrations between P. esculenta and P. insularis, but the concentration of total phenolics in P. americana was two times higher than either P. esculenta or P. insularis. Analysis of aqueous extracts by HPLC showed seven phenolic compounds (gallic acid, protocatechuic acid, chlorogenic acid, caffeic acid, m-hydroxybenzoic acid, p-coumaric acid, and cinnamic acid). Total phenolics in P. americana were eight to 16 times higher than either P. esculenta or P. insularis, respectively. P. americana inhibited seed germination and dry weight of the two assay species. The phytotoxic effects of the two Phytolacca species were different, despite the fact that P. esculenta and P. insularis had similar levels of total phenolic compounds. We also found that P. americana had invaded Ullung Island, which suggested that P. americana had excellent adaptability to the environment. The three species of Phytolaccaceae in South Korea can be distinguished by their different allelopathic potentials and morphologies.

  14. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  15. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase.

    PubMed

    Flemmig, Jörg; Rusch, Dorothea; Czerwińska, Monika Ewa; Rauwald, Hans-Wilhelm; Arnhold, Jürgen

    2014-05-01

    We investigated in vitro the ability of a standardised olive leaf dry extract (Ph. Eur.) (OLE) as well as of its single components to circumvent the hydrogen peroxide-induced inhibition of the hypothiocyanite-producing activity of lactoperoxidase (LPO). The rate of hypothiocyanite (⁻OSCN) formation by LPO was quantified by spectrophotometric detection of the oxidation of 5-thio-2-nitrobenzoic acid (TNB). By using excess hydrogen peroxide, we forced the accumulation of inactive enzymatic intermediates which are unable to promote the two-electronic oxidation of thiocyanate. Both OLE and certain extract components showed a strong LPO-reactivating effect. Thereby an o-hydroxyphenolic moiety emerged to be essential for a good reactivity with the inactive LPO redox states. This basic moiety is found in the main OLE components oleuropein, oleacein, hydroxytyrosol, caffeic acid as well as in different other constituents including the OLE flavone luteolin. As LPO is a key player in the humoral immune response, these results propose a new mode of action regarding the well-known bacteriostatic and anti-inflammatory properties of the leaf extract of Olea europaea L.

  16. Is a Combine Therapy of Aqueous Extract of Azadirachta Indica Leaf (Neem Leaf) and Chloroquine Sulphate Toxic to the Histology of the Rabbit Cerebellum?

    PubMed Central

    Ucheya, RE; Ochei, UM; Amiegheme, FE

    2011-01-01

    Background: Herbal medication is commonly employed in treatment of diseases. Aqueous extract of Azadirachta indica leaf (A. indica) is commonly used in treatment of malaria by Nigerians. Most often, aqueous extract of A. indica leaf is taken in combination with chloroquine in order to cure malaria infection without knowledge of the side effect especially by the rural dwellers in Nigeria. Objectives: This study is designed to investigate the effects of aqueous extract of A. indica leaf, and concomitant administration of chloroquine phosphate + aqueous extract of A. indica leaf on the Brain tissue (cerebellum) of rabbit. Methods: Eight adult male Rabbits with average weight range between 1.29kg – 1.52kg obtained from Department of Zoology University of Ekpoma, Edo state were used for this study. They were weighed at intervals of five days before and after the experiment. They were randomly divided into four groups (A– D) of two rabbits each. The chloroquine and aqueous extract of A. indica leaf was administered to the animals orally via a cannula inserted through the oral cavity. They were treated as follows; group A received (100mg ml-1 dry extract solution of aqueous extract of A. indica), group B received (15mg kg-1 of chloroquine sulphate), group C received (100mg ml-1 dry extract solution of aqueous extract of A. indica + 15mg kg-1 of chloroquine sulphate and the control animals (group D) were given normal saline. Both the treatment and control animals were sacrificed at the end of the experiment. The cerebellum was carefully dissected out and immediately fixed in Bouin's fluid for histological studies. Results: Groups A-C animals showed normal Cerebellar histoarchitecture and average weight gain of 2.1% (group A), 1.4% (group B), 0.7% (group C) and 1.4% (group D) respectively. When the average weight gain by the treated animals was compared to the average weight gain by the control animals, it was statistically not significant (P>0.06). Conclusion: Our

  17. Computational study of bindings of olive leaf extract (OLE) to HIV-1 fusion protein gp41.

    PubMed

    Bao, J; Zhang, D W; Zhang, J Z H; Huang, P Lee; Huang, P Lin; Lee-Huang, S

    2007-06-12

    Recent experimental study found that OLE (olive leaf extract) has anti-HIV activity by blocking the HIV virus entry to host cells [Lee-Huang, S., Zhang, L., Huang, P.L., Chang, Y. and Huang, P.L. (2003) Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun. 307, 1029; Lee-Huang, S., Huang, P.L., Zhang, D., Lee, J.W., Bao, J., Sun, Y., Chang, Y.-Tae, Zhang, J.Z.H. and Huang, P.L. (2007) Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol. Biochem. Biophys. Res. Commun. 354, 872-878, 879-884]. As part of a joint experimental and theoretical effort, we report here computational study to help identify and characterize the binding complexes of several main compounds of OLE (olive leaf extract) to HIV-1 envelop protein gp41. A number of possible binding modes are found by docking oleuropein and its metabolites, aglycone, elenolic acid and hydroxytyrosol, onto the hydrophobic pocket on gp41. Detailed OLE-gp41 binding interactions and free energies of binding are obtained through molecular dynamics simulation and MM-PBSA calculation. Specific molecular interactions in our predicted OLE/gp41 complexes are identified and hydroxytyrosol is identified to be the main moiety for binding to gp41. This computational study complements the corresponding experimental investigation and helps establish a good starting point for further refinement of OLE-based gp41 inhibitors.

  18. Do leaf total antioxidant capacities (TAC) reflect specific antioxidant potentials? - A comparison of TAC and reactive oxygen scavenging in tobacco leaf extracts.

    PubMed

    Majer, Petra; Stoyanova, Silviya; Hideg, Eva

    2010-07-02

    Two traditional methods of total antioxidant capacity (TAC) assessment, Trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP) were applied to water extracts from tobacco leaves at various stages of senescence. Physiological status of the leaves was characterized by the effective photochemical quantum yield of photosynthesis (Y(II)). TAC values were compared to amounts of total phenolics, carotenoid contents and also to reactive oxygen scavenging capacities of the leaf extracts. To this end a new, simple fluorimetric assay was introduced for testing hydroxyl radical neutralizing capacity in leaf extracts. We found that while both TAC values increased with declining photosynthesis and decreasing pigment content, they were not characteristic to specific superoxide or hydroxyl radical scavenging and had limited connection to leaf antioxidant content. Good linear correlations were only found between the following pairs of parameters: Y(II) - total carotenoid, TEAC - total carotenoid, FRAP - total phenolics. Our data show that TEAC and FRAP are not interchangeable in leaf studies and do not represent antioxidant action on ROS.

  19. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract

    NASA Astrophysics Data System (ADS)

    Mankamna Kumari, R.; Thapa, Nikita; Gupta, Nidhi; Kumar, Ajeet; Nimesh, Surendra

    2016-12-01

    The present study focuses on the biosynthesis of silver nanoparticles (AgNPs) along with its antibacterial and photocatalytic activity. The AgNPs were synthesized using Cordia dichotoma leaf extract and were characterized using UV-vis spectroscopy to determine the formation of AgNPs. FTIR was done to discern biomolecules responsible for reduction and capping of the synthesized nanoparticles. Further, DLS technique was performed to examine its hydrodynamic diameter, followed by SEM, TEM and XRD to determine its size, morphology and crystalline structure. Later, these AgNPs were studied for their potential role in antibacterial activity and photocatalytic degradation of azo dyes such as methylene blue and Congo red.

  20. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril.

    PubMed

    Susalit, Endang; Agus, Nafrialdi; Effendi, Imam; Tjandrawinata, Raymond R; Nofiarny, Dwi; Perrinjaquet-Moccetti, Tania; Verbruggen, Marian

    2011-02-15

    A double-blind, randomized, parallel and active-controlled clinical study was conducted to evaluate the anti-hypertensive effect as well as the tolerability of Olive leaf extract in comparison with Captopril in patients with stage-1 hypertension. Additionally, this study also investigated the hypolipidemic effects of Olive leaf extract in such patients. It consisted of a run-in period of 4 weeks continued subsequently by an 8-week treatment period. Olive (Olea europaea L.) leaf extract (EFLA(®)943) was given orally at the dose of 500 mg twice daily in a flat-dose manner throughout the 8 weeks. Captopril was given at the dosage regimen of 12.5 mg twice daily at start. After 2 weeks, if necessary, the dose of Captopril would be titrated to 25 mg twice daily, based on subject's response to treatment. The primary efficacy endpoint was reduction in systolic blood pressure (SBP) from baseline to week-8 of treatment. The secondary efficacy endpoints were SBP as well as diastolic blood pressure (DBP) changes at every time-point evaluation and lipid profile improvement. Evaluation of BP was performed every week for 8 weeks of treatment; while of lipid profile at a 4-week interval. Mean SBP at baseline was 149.3±5.58 mmHg in Olive group and 148.4±5.56 mmHg in Captopril group; and mean DBPs were 93.9±4.51 and 93.8±4.88 mmHg, respectively. After 8 weeks of treatment, both groups experienced a significant reduction of SBP as well as DBP from baseline; while such reductions were not significantly different between groups. Means of SBP reduction from baseline to the end of study were -11.5±8.5 and -13.7±7.6 mmHg in Olive and Captopril groups, respectively; and those of DBP were -4.8±5.5 and -6.4±5.2 mmHg, respectively. A significant reduction of triglyceride level was observed in Olive group, but not in Captopril group. In conclusion, Olive (Olea europaea) leaf extract, at the dosage regimen of 500 mg twice daily, was similarly effective in lowering systolic and

  1. Hepatoprotective effect of Ginkgo biloba leaf extract on lantadenes-induced hepatotoxicity in guinea pigs.

    PubMed

    Parimoo, Haroon A; Sharma, Rinku; Patil, Rajendra D; Sharma, Om P; Kumar, Pawan; Kumar, Neeraj

    2014-04-01

    The hepatoprotective effect of freeze-dried methanolic leaf extract of Ginkgo biloba was evaluated against lantadenes-induced hepatic damage in guinea pigs. The reversed-phase HPLC analysis of lantadenes confirmed the presence of 72.82% of lantadene A. UPLC-ESI-MS analysis showed the presence of ginkgolide B, C, bilobalide and traces of ginkgolide A and J in G. biloba extract. The concentration of ginkgolide B in the sample was found as 0.29%. The elevated levels of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase due to lantadenes were significantly restored towards normal values by G. biloba extract in a dose-dependent manner. The effects of lantadenes and G. biloba extract on lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase were assayed in liver homogenates to evaluate the antioxidant activity. G. biloba extract in a dose-dependent manner produced significant decrease in lantadenes-induced increased levels of LPO. The lantadene-induced decreased levels of SOD, GSH and catalase were elevated by G. biloba extract. The findings of biochemical and antioxidant enzyme levels were supported by gross and histopathological observations. Moreover, liver sections of G. biloba group also showed a marked decrease in apoptosis in comparison to lantadenes group. This study suggested that G. biloba could be used as a promising hepatoprotectant against lantadenes-induced hepatic damage. Future studies are needed to elucidate the precise mechanism of hepatoprotection for practical application.

  2. Repellent properties of Cardiospermum halicacabum Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes

    PubMed Central

    Govindarajan, M; Sivakumar, R

    2012-01-01

    Objective To determine repellent activity of hexane, ethyl acetate, benzene, chloroform and methanol extract of Cardiospermum halicacabum (C. halicacabum) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods Evaluation was carried out in a net cage (45 cm×30 cm×25 cm) containing 100 blood starved female mosquitoes of three mosquito species and were assayed in the laboratory condition by using the protocol of WHO 2005; The plant leaf crude extracts of C. halicacabum was applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed area of the fore arm. Only ethanol served as control. Results In this observation, the plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity was dependent on the strength of the plant extracts. The tested plant crude extracts had exerted promising repellent against all the three mosquitoes. Conclusions From the results it can be concluded the crude extract of C. halicacabum was potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569979

  3. Antimicrobial Activity and Phytochemical Constituents of Leaf Extracts of Cassia auriculata.

    PubMed

    Murugan, T; Wins, J Albino; Murugan, M

    2013-01-01

    Plants produce a wide variety of phytochemical constituents, which are secondary metabolites and are used either directly or indirectly in the pharmaceutical industry. 'For centuries, man has effectively used various components of plants or their extracts for the treatment of many diseases, including bacterial infections. In the present study methanol, chloroform and aqueous extracts of Cassia auriculata leaf were subjected for antimicrobial activity by well-diffusion method against six bacterial strains namely Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis. The results revealed that the methanol and chloroform extracts exhibited strong inhibitory activity against all the tested organisms (zone of inhibition of 12-20 mm), except Pseudomonas aeruginosa (zone of inhibition 10 mm or nil). The aqueous extracts showed moderate activity by 'Zone of inhibition ≤12 or nil). The extracts were screened for their phytochemical constituents by standard protocols' and were shown to contain carbohydrates, proteins, alkaloids, flavonoids, steroids, saponins and tannins. The antibacterial activity of these extracts is possibly linked to the presence of flavonoids, steroid, saponins and/or tannins. Further studies are needed to determine the precise active principles from Cassia auriculata.

  4. Antimicrobial Activity and Phytochemical Constituents of Leaf Extracts of Cassia auriculata

    PubMed Central

    Murugan, T.; Wins, J. Albino; Murugan, M.

    2013-01-01

    Plants produce a wide variety of phytochemical constituents, which are secondary metabolites and are used either directly or indirectly in the pharmaceutical industry. ‘For centuries, man has effectively used various components of plants or their extracts for the treatment of many diseases, including bacterial infections. In the present study methanol, chloroform and aqueous extracts of Cassia auriculata leaf were subjected for antimicrobial activity by well-diffusion method against six bacterial strains namely Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis. The results revealed that the methanol and chloroform extracts exhibited strong inhibitory activity against all the tested organisms (zone of inhibition of 12-20 mm), except Pseudomonas aeruginosa (zone of inhibition 10 mm or nil). The aqueous extracts showed moderate activity by ‘Zone of inhibition ≤12 or nil). The extracts were screened for their phytochemical constituents by standard protocols’ and were shown to contain carbohydrates, proteins, alkaloids, flavonoids, steroids, saponins and tannins. The antibacterial activity of these extracts is possibly linked to the presence of flavonoids, steroid, saponins and/or tannins. Further studies are needed to determine the precise active principles from Cassia auriculata. PMID:23901174

  5. Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus.

    PubMed

    Winkaler, Elissandra U; Santos, Thiago R M; Machado-Neto, Joaquim G; Martinez, Cláudia B R

    2007-03-01

    The aim of this study was to determine the toxicity of the aqueous extract of neem leaves, a product extensively used in fish-farms as alternative for the control of fish parasites and fish fry predators, for the neotropical fish Prochilodus lineatus. The 24 h LC(50) of neem leaf extract for juveniles P. lineatus was estimated as 4.8 g L(-1); the fish were then exposed for 24 h to 2.5, 5.0 and 7.5 g L(-1) or only clean water (control). Plasma glucose levels were higher in fish exposed to 2.5 g L(-1) and 5.0 g L(-1) neem extract, relative to control, indicating a typical stress response. Neem extract did not interfere with the osmoregulating capacity of the fish, as their plasma sodium, chloride, total protein and osmolarity did not change. The presence of the biopesticide interfered with the antioxidant defense system of P. lineatus, as there was a decrease in liver catalase activity at all neem concentrations and the detoxifying enzyme glutathione-S-transferase was activated in fish exposed to 5.0 g L(-1). Fish exposed to all neem extract concentrations exhibited damaged gill and kidney tissue. These results indicate that although neem extract is less toxic to P. lineatus than other synthetic insecticides used in fish-farming it does cause functional and morphological changes in this fish species.

  6. Anti-proliferative and antioxidative activities of Thai noni/Yor (Morinda citrifolia Linn.) leaf extract.

    PubMed

    Thani, Wasina; Vallisuta, Omboon; Siripong, Pongpan; Ruangwises, Nongluck

    2010-03-01

    In this study the leaves of the Thai noni/Yor, (Morinda citrifolia Linn.) were extracted by several methods and evaluated against human cancer cell lines: KB (human epidermoid carcinoma), HeLa (human cervical carcinoma), MCF-7 (human breast carcinoma) and HepG2 (human hepatocellular carcinoma) cell lines as well as a Vero (African green monkey kidney) cell line, employing the MTT colorimetric method, comparing it to damnacanthal, rutin, and scopoletin. The dichloromethane extract of the fresh leaf showed a better inhibitory effect against KB and HeLa cells with IC50 values of 21.67 and 68.50 microg/ml, respectively. The dichloromethane extract of dried leaves revealed cytotoxicity against the KB cell line with an IC50 value of 39.00 microg/ml. Other extracts, as well as rutin and scopoletin, showed reduced anti-proliferative effects on all cancer cell lines (IC50 103 to over 600 microg/ml). Interestingly, the damnacanthal had potent cytotoxicity against all cancer cell lines and Vero cell lines. These results suggest Thai noni extracts may be safer than the pure compounds, due to their higher safety ratios, which is a good indicator for possible cancer treatment. Several non-aqueous extracts from the leaves showed antioxidant properties, giving IC50 values of 0.20-0.35 mg/ml. It can be concluded the leaves of M. citrifolia may have benefit as a food supplement for chemoprevention against epidermoid and cervical cancers.

  7. Antimicrobial activities of the leaf extracts of two Moroccan Cistus L. species.

    PubMed

    Bouamama, H; Noël, T; Villard, J; Benharref, A; Jana, M

    2006-03-08

    We used the standard M27-T technique to study organic and aqueous leaf extracts of two Moroccan Cistus L. species: Cistus villosus L. and Cistus monspeliensis L. (Cistaceae L.) used in traditional medicine, for their antimicrobial properties against microorganisms, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida krusei, Candida glabrata and Aspergillus fumigatus. The broth dilution method M27-T, standardized by the National Committee for Clinical Laboratory Standards (NCCLS) allowed to determine the minimum inhibitory concentrations (MICs) of different extracts. Results showed that the different extracts differed clearly in their antimicrobial activities. Cistus villosus extracts exhibited more interesting activity than Cistus monspeliensis extracts when used on Staphylococcus aureus (MIC=0.78 mg/ml) and Candida glabrata (MIC=0.19 mg/ml), which are the most susceptible microorganisms. On the other hand, Candida krusei and Aspergillus fumigatus were the least susceptible microorganisms to all Cistus extracts. Comparison results were carried out using chloramphenicol, amoxicillin and amphotericin B as standard antibiotics.

  8. In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert.

    PubMed

    Shukla, Shruti; Mehta, Archana; Bajpai, Vivek K; Shukla, Savita

    2009-09-01

    The aim of this study was to assess the in vitro potential of ethanolic leaf extract of Stevia rebaudiana as a natural antioxidant. The DPPH activity of the extract (20, 40, 50, 100 and 200 microg/ml) was increased in a dose dependent manner, which was found in the range of 36.93-68.76% as compared to ascorbic acid 64.26-82.58%. The IC(50) values of ethanolic extract and ascorbic acid in DPPH radical scavenging assay were obtained to be 93.46 and 26.75 microg/ml, respectively. The ethanolic extract was also found to scavenge the superoxide generated by EDTA/NBT system. Measurement of total phenolic content of the ethanolic extract of S. rebaudiana was achieved using Folin-Ciocalteau reagent containing 61.50 mg/g of phenolic content, which was found significantly higher when compared to reference standard gallic acid. The ethanolic extract also inhibited the hydroxyl radical, nitric oxide, superoxide anions with IC(50) values of 93.46, 132.05 and 81.08 microg/ml, respectively. However, the IC(50) values for the standard ascorbic acid were noted to be 26.75, 66.01 and 71.41 microg/ml respectively. The results obtained in this study clearly indicate that S. rebaudiana has a significant potential to use as a natural antioxidant agent.

  9. Antinociceptive and Anti-Inflammatory Activities of Telfairia occidentalis Hydroethanolic Leaf Extract (Cucurbitaceae)

    PubMed Central

    Oladimeji-Salami, Joy Awulika; Usuwah, Blessing Amarachi

    2015-01-01

    Abstract Telfairia occidentalis (Cucurbitaceae) is a tropical vine grown in West Africa as a leaf vegetable and for its edible seeds. The plant is noted to have healing properties. It is used as a blood tonic to revive weak/ill individuals and its use by sickle cell patients has been documented. In this study, the antinociceptive activity of the hydroethanolic leaf extract of Telfairia occidentalis (TO) was evaluated using the acetic acid-induced writhing, formalin, tail clip, and hot plate tests in mice. The carrageenan- and egg albumin-induced rat paw edema tests were used to evaluate the anti-inflammatory action. The extract (50–400 mg/kg, p.o.) produced significant (P<.05) dose-dependent inhibition of pain response elicited by acetic acid and formalin while also increasing the nociceptive reaction latency in the tail clip and hot plate tests. In respect of anti-inflammatory activity, the extract elicited significant (P<.05) time and dose-dependent inhibition of edema development in the carrageenan and egg albumin tests. Peak effects of TO in the models were generally comparable with the effects of the standard drugs (acetylsalicylic acid, morphine, indomethacin, and chlorpheniramine) used. Phytochemical screening of the extract revealed the presence of tannins, saponins, phlobatannins, and anthraquinones. The extract did not produce any mortality and visible signs of delayed toxicity when administered orally up to 2000 mg/kg. The LD50 (i.p.) was estimated to be 4073.80 mg/kg. The results obtained in this study suggest that TO possesses antinociceptive and anti-inflammatory activities possibly mediated through peripheral and central mechanisms involving inhibition of release and/or actions of vasoactive substances and prostaglandins. PMID:25961368

  10. Antinociceptive and Anti-Inflammatory Activities of Telfairia occidentalis Hydroethanolic Leaf Extract (Cucurbitaceae).

    PubMed

    Akindele, Abidemi James; Oladimeji-Salami, Joy Awulika; Usuwah, Blessing Amarachi

    2015-10-01

    Telfairia occidentalis (Cucurbitaceae) is a tropical vine grown in West Africa as a leaf vegetable and for its edible seeds. The plant is noted to have healing properties. It is used as a blood tonic to revive weak/ill individuals and its use by sickle cell patients has been documented. In this study, the antinociceptive activity of the hydroethanolic leaf extract of Telfairia occidentalis (TO) was evaluated using the acetic acid-induced writhing, formalin, tail clip, and hot plate tests in mice. The carrageenan- and egg albumin-induced rat paw edema tests were used to evaluate the anti-inflammatory action. The extract (50-400 mg/kg, p.o.) produced significant (P<.05) dose-dependent inhibition of pain response elicited by acetic acid and formalin while also increasing the nociceptive reaction latency in the tail clip and hot plate tests. In respect of anti-inflammatory activity, the extract elicited significant (P<.05) time and dose-dependent inhibition of edema development in the carrageenan and egg albumin tests. Peak effects of TO in the models were generally comparable with the effects of the standard drugs (acetylsalicylic acid, morphine, indomethacin, and chlorpheniramine) used. Phytochemical screening of the extract revealed the presence of tannins, saponins, phlobatannins, and anthraquinones. The extract did not produce any mortality and visible signs of delayed toxicity when administered orally up to 2000 mg/kg. The LD50 (i.p.) was estimated to be 4073.80 mg/kg. The results obtained in this study suggest that TO possesses antinociceptive and anti-inflammatory activities possibly mediated through peripheral and central mechanisms involving inhibition of release and/or actions of vasoactive substances and prostaglandins.

  11. Cardiovascular effects of Persea americana Mill (Lauraceae) (avocado) aqueous leaf extract in experimental animals.

    PubMed

    Ojewole, J A O; Kamadyaapa, D R; Gondwe, M M; Moodley, K; Musabayane, C T

    2007-01-01

    The cardiovascular effects of Persea americana Mill (Lauraceae) aqueous leaf extract (PAE) have been investigated in some experimental animal paradigms. The effects of PAE on myocardial contractile performance was evaluated on guinea pig isolated atrial muscle strips, while the vasodilatory effects of the plant extract were examined on isolated portal veins and thoracic aortic rings of healthy normal Wistar rats in vitro. The hypotensive (antihypertensive) effect of the plant extract was examined in healthy normotensive and hypertensive Dahl salt-sensitive rats in vivo. P americana aqueous leaf extract (25-800 mg/ml) produced concentration-dependent, significant (p < 0.05-0.001), negative inotropic and negative chronotropic effects on guinea pig isolated electrically driven left and spontaneously beating right atrial muscle preparations, respectively. Moreover, PAE reduced or abolished, in a concentration-dependent manner, the positive inotropic and chronotropic responses of guinea pig isolated atrial muscle strips induced by noradrenaline (NA, 10(-10)-10(-5) M), and calcium (Ca(2+), 5-40 mM). PAE (50-800 mg/ml) also significantly reduced (p < 0.05-0.001) or abolished, in a concentration-dependent manner, the rhythmic, spontaneous, myogenic contractions of portal veins isolated from healthy normal Wistar rats. Like acetylcholine (ACh, 10(-8)-10(-5) M), the plant extract (25- 800 mg/ml) produced concentration-related relaxations of isolated endothelium-containing thoracic aortic rings pre-contracted with noradrenaline. The vasorelaxant effects of PAE in the isolated, endothelium-intact aortic rings were markedly inhibited or annulled by N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-5) M), a nitric oxide synthase inhibitor. Furthermore, PAE (25-400 mg/kg iv) caused dose-related, transient but significant reductions (p < 0.05-0.001) in the systemic arterial blood pressure and heart rates of the anaesthetised normotensive and hypertensive rats used. The results of

  12. Extract of lotus leaf ( Nelumbo nucifera ) and its active constituent catechin with insulin secretagogue activity.

    PubMed

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Lin, Hui Yi; Way, Tzong Der; Chiang, Wenchang; Liu, Shing Hwa

    2011-02-23

    The effect of lotus leaf ( Nelumbo nucifera Gaertn.) on diabetes is unclear. We hypothesized that lotus leaf can regulate insulin secretion and blood glucose levels. The in vitro and in vivo effects of lotus leaf methanolic extract (NNE) on insulin secretion and hyperglycemia were investigated. NNE increased insulin secretion from β cells (HIT-T15) and human islets. NNE enhanced the intracellular calcium levels in β cells. NNE could also enhance phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2 and protein kinase C (PKC), which could be reversed by a PKC inhibitor. The in vivo studies showed that NNE possesses the ability to regulate blood glucose levels in fasted normal mice and high-fat-diet-induced diabetic mice. Furthermore, the in vitro and in vivo effects of the active constituents of NNE, quercetin, and catechin, on glucose-induced insulin secretion and blood glucose regulation were evaluated. Quercetin did not affect insulin secretion, but catechin significantly and dose-dependently enhanced insulin secretion. Orally administered catechin significantly reversed the glucose intolerance in high-fat-diet-induced diabetic mice. These findings suggest that NNE and its active constituent catechin are useful in the control of hyperglycemia in non-insulin-dependent diabetes mellitus through their action as insulin secretagogues.

  13. Rapid biological synthesis of silver nanoparticles using Leucas martinicensis leaf extract for catalytic and antibacterial activity.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-10-01

    A novel green approach for the synthesis and stabilization of silver nanoparticles (AgNPs) using water extract of Leucas martinicensis leaf has been developed. As obtained, the nanoparticles are characterized by UV-visible (UV-Vis), transmission electron microscope (TEM), and X-ray diffraction (XRD). The crystalline nature of the AgNPs is confirmed by the prominent peaks in the XRD pattern. FTIR spectra suggest that the possible biomolecules are responsible for the efficient stabilization of the sample. The effects of leaf quantity on the biosynthesis of AgNPs are investigated by UV-Vis spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by L. martinicensis leaf. This is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time through UV-Vis spectrophotometer. Moreover, the antibacterial activity of synthesized AgNPs against Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Escherichia coli are screened.

  14. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  15. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells.

    PubMed

    Jung, Il Lae; Lee, Ju Hye; Kang, Se Chan

    2015-09-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44-52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers.

  16. Induction of systemic resistance in rice by leaf extracts of Zizyphus jujuba and Ipomoea carnea against Rhizoctonia solani

    PubMed Central

    Marimuthu, Thambiayya; Kagale, Jayashree; Thayumanavan, Balsamy; Samiyappan, Ramasamy

    2011-01-01

    Plants accumulate a great diversity of natural products, many of which confer protective effects against phytopathogenic attack. Earlier we had demonstrated that the leaf extracts of Zizyphus jujuba and Ipomoea carnea inhibit the in vitro mycelial growth of Rhizoctonia solani, and effectively reduce the incidence of sheath blight disease in rice.7 Here we demonstrate that foliar application of the aqueous leaf extracts of Z. jujuba and I. carnea followed by challenge inoculation with R. solani induces systemic resistance in rice as evident from significantly increased accumulation of pathogenesis-related proteins such as chitinase, β-1,3-glucanase and peroxidase, as well as defense-related compounds such as phenylalanine ammonia-lyase and phenolic substances. Thin layer chromatographic separation of secondary metabolites revealed presence of alkaloid and terpenoid compounds in the leaf extracts of Z. jujuba that exhibited toxicity against R. solani under in vitro condition. Thus, the enhanced sheath blight resistance in rice seedlings treated with leaf extracts of Z. jujuba or I. carnea can be attributed to the direct inhibitory effects of these leaf extracts as well as their ability to elicit systemic resistance against R. solani. PMID:21593600

  17. Larvicidal and Histopathological Effects of Cassia siamea Leaf Extract against Culex quinquefasciatus

    PubMed Central

    Jiraungkoorskul, Kanitta; Jiraungkoorskul, Wannee

    2015-01-01

    A traditional Thai medicinal extract from Cassia siamea was evaluated with respect to its larvicidal properties by determining the median lethal concentration (LC50) at 24, 48, 72 and 96 h against the fourth instar larvae of Culex quinquefasciatus, which is a carrier of mosquito-borne diseases, by studying the histopathological alterations. The 24, 48, 72 and 96 h LC50 values were 394.29, 350.24, 319.17 and 272.42 ppm, respectively. The histopathological lesions after exposure to 25% of the 24-h LC50 were observed primarily in the midgut of the larva. Lesions with edema, swelling, and deformation or elongation of the epithelial cells were observed. Moreover, cells protruding into the lumen and absent microvilli were also found in some areas. The present study reveals that aqueous C. siamea leaf extracts have natural biopesticide properties. PMID:26868707

  18. Green Synthesis of Silver Nanoparticles from Fresh Leaf Extract of Centella asiatica and Their Applications

    NASA Astrophysics Data System (ADS)

    Vuong, Le Dai; Luan, Nguyen Dinh Tung; Ngoc, Dao Duy Hong; Anh, Phan Tuan; Bao, Vo-Van Quoc

    The synthesis, characterization and application of biologically synthesized nanomaterials have become an important branch of nanotechnology. In the present study, we report the synthesis of silver nanoparticles from fresh leaf extract of Centella asiatica (LEC). UV-Vis spectrum for silver colloids contains a strong plasmon band near 425nm, which confirms the formation of nanoparticles. The experimental results show that the silver nanoparticles are formed easily in the extract at ambient temperature. The resulting silver nanoparticles (AgNPs) were in the spherical form and the average size of the nanoparticles was in the range from 3nm to 30nm. From the above silver nanoparticles, we were taken up to investigate the effects of various concentrations of AgNPs on growth, development and yield of peanut plants. The results of the present experiment showed that the optimized concentration of AgNPs of the good germination, growth and pod yield of peanut plant is 5ppm.

  19. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  20. Antifertility activity of Cryptolepis sanguinolenta leaf ethanolic extract in male rats

    PubMed Central

    Ajayi, Ayodeji F; Akhigbe, Roland E

    2012-01-01

    BACKGROUND: Complementary medicine has grown over time with more botanicals emerging and remaining integral parts of medicare. Such botanicals include Cryptolepis sanguinolenta. AIM: This study investigated the effect of Cryptolepis sanguinolenta leaf ethanolic extract on male reproductive system using rat model. MATERIALS AND METHODS: Control and treated rats were maintained on control diet. Treated rats also received graded doses of the extract. RESULTS: When compared with the controls, Cryptolepis sanguinolenta treatment led to significant testosterone suppression associated with consequent significant rise in luteinizing hormone (LH) and decrease in sperm count. Treatment with Cryptolepis sanguinolenta did not result in significant attenuation of follicular stimulating hormone (FSH) levels and testicular morphometry. Sperm viability, motility, and morphology were also comparable in all groups. CONCLUSION: These results suggest that Cryptolepis sanguinolenta possesses anti-androgenic and anti-spermatogenic properties with potential anti-aphrodisiac activity. PMID:22870014

  1. Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract: An alternative approach for the treatment of staphylococcal bovine mastitis.

    PubMed

    Mordmuang, Auemphon; Voravuthikunchai, Supayang Piyawan

    2015-10-01

    Antibiotic residues in dairy products as well as emergence of antimicrobial resistance in foodborne pathogens have been recognized as global public health concerns. The present work was aimed to study a potent antibacterial extract from natural product as an alternative treatment for staphylococcal bovine mastitis. Staphylococcal isolates (n=44) were isolated from milk samples freshly squeezed from individual cows. All staphylococcal isolates were resistant to ampicillin, ciprofloxacin, erythromycin, gentamicin, penicillin, except vancomycin. Rhodomyrtus tomentosa leaf ethanolic extract was accessed for its antibacterial activity and anti-inflammatory potential. The extract exhibited profound antibacterial activity against all of staphylococcal isolates with MIC and MBC values ranged from 16-64 μg/ml and 64->128 μg/ml, respectively. Moreover, the extract also exerted anti-protein denaturation and human red blood cell membrane stabilizing activity. The results support the use of R. tomentosa extract that could be applied to cure bovine mastitis and to reduce inflammatory injury caused by the bacterial infections.

  2. Laxative activities of Mareya micrantha (Benth.) Müll. Arg. (Euphorbiaceae) leaf aqueous extract in rats

    PubMed Central

    2010-01-01

    Background Mareya micrantha (Benth.) Müll. Arg. (Euphorbiaceae) is a shrub that is commonly used in Côte d'Ivoire (West Africa) for the treatment of constipation and as an ocytocic drug. The present study was carried out to investigate the laxative activity of Mareya micrantha in albino's Wistar rats. Methods Rats were divided in 5 groups of 5 animals each, first group as control, second group served as standard (sodium picosulfate) while group 3, 4 and 5 were treated with leaf aqueous extract of Mareya micrantha at doses of 100, 200 and 400 mg/kg body weight (b.w.), per os respectively. The laxative activity was determined based on the weight of the faeces matter. The effects of the leaves aqueous extract of Mareya micrantha and castor oil were also evaluated on intestinal transit, intestinal fluid accumulation and ions secretion. Results Phytochemicals screening of the extract revealed the presence of flavonoids, alkaloids, tannins, polyphenols, sterols and polyterpenes. The aqueous extract of Mareya micrantha applied orally (100, 200 and 400 mg/kg; p.o.), produced significant laxative activity and reduced loperamide induced constipation in dose dependant manner. The effect of the extract at 200 and 400 mg/kg (p.o.) was similar to that of reference drug sodium picosulfate (5 mg/kg, p.o). The same doses of the extract (200 and 400 mg/kg, p.o.) produced a significant increase (p < 0.01) of intestinal transit in comparison with castor oil (2 mL) (p < 0.01). Moreover, the extract induced a significant enteropooling and excretion of Cl-, Na+, K+ and Ca2+ in the intestinal fluid (p < 0.01). Conclusions The results showed that the aqueous extract of Mareya micrantha has a significant laxative activity and supports its traditional use in herbal medicine. PMID:20158903

  3. In-vitro Studies on Calotropis procera Leaf Extracts as Inhibitors of Key Enzymes Linked to Diabetes Mellitus

    PubMed Central

    Kazeem, Mutiu Idowu; Mayaki, Ayuva Mercy; Ogungbe, Bimpe Folashade; Ojekale, Anthony Babajide

    2016-01-01

    The side effects associated with the usage of synthetic antidiabetic drugs make it imperative to search for alternative drugs from medicinal plants. Therefore, this study was aimed at evaluating the α-amylase and α-glucosidase inhibitory potential of Calotropis procera leaf, as well as its possible mode of inhibiting these enzymes. Acetone, aqueous and ethanolic extracts of C. procera leaf was subjected to standard enzymes’ inhibitory assay in-vitro using porcine pancreatic α-amylase and rat intestinal α-glucosidase. Results obtained showed that out of all the extracts tested, ethanolic and aqueous extracts possessed the best inhibition of α-amylase (IC50 7.80 mg/mL) and α-glucosidase (3.25 mg/mL) respectively. The kinetic analysis of the mode of inhibition of these enzymes by the leaf extracts of C. procera, revealed that these extracts inhibited both enzymes in a non-competitive manner. It is speculated that the α-amylase and α-glucosidase inhibitory properties of leaf extracts of C. procera may be due to the presence of some phytochemicals such as flavonoids, tannins and saponins in the plant. It can be concluded from this study that the Calotropis procera extracts could serve as source of antidiabetic agents which may act through the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidase. PMID:28228802

  4. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity.

    PubMed

    Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P

    2014-07-15

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

  5. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract.

    PubMed

    Aderogba, M A; McGaw, L J; Bezabih, M; Abegaz, B M

    2011-08-01

    A 1,1-diphenyl-2-picrylhydrazyl (DPPH)-activity-directed fractionation was used to target antioxidant constituents of the ethyl acetate fraction obtained from a 20% aqueous methanol crude extract of Croton zambesicus leaf. Repeated column chromatography of the fraction on silica gel and Sephadex LH-20 led to the isolation of a new natural product, identified as quercetin-3-O-β-6″(p-coumaroyl) glucopyranoside-3'-methyl ether, helichrysoside-3'-methyl ether (1), along with kaempferol-3-O-β-6″(p-coumaroyl) glucopyranoside, tiliroside (2) and apigenin-6-C-glucoside, isovitexin (3) as the antioxidant constituents. The structures of the isolated compounds were elucidated using spectroscopic techniques, namely NMR (1D and 2D) and mass spectrometry. Compounds 1 and 2 are reported from this species for the first time. In the qualitative antioxidant assay, the three isolated compounds instantly bleached the DPPH (0.2% MeOH) purple colour indicating antioxidant activity. In the quantitative antioxidant assay, all the isolated compounds demonstrated weak antioxidant activity compared to quercetin and rutin used as positive control antioxidant agents. The compounds displayed little to no cytotoxicity against Vero cells in an in vitro assay. The presence of these antioxidant compounds in the leaf extract of C. zambesicus could provide a rationale for the ethnomedicinal use of the plant in the management of oxidative-stress-related diseases in folk medicine.

  6. Antioxidant activity of methanolic leaf extract of Moringa peregrina (Forssk.) Fiori.

    PubMed Central

    Dehshahri, S.; Wink, M.; Afsharypuor, S.; Asghari, G.; Mohagheghzadeh, A.

    2012-01-01

    Natural antioxidants have an important role in the prevention of many age-related diseases and promotion of health. Among natural antioxidants from plants, flavonoids and other phenolic compounds are potent antioxidants and chelating agents. Moringa peregrina (Forssk.) Fiori (Moringaceae) is a small desert tree distributed from tropical Africa to east India. Moringa tree is also growing in south-east of Iran. The antioxidant activity of M. peregrina methanolic leaf extract on 2,2-diphenyl-1-pycrylhydrazyl and superoxide anion radicals was determined in in vitro experiments. It exhibited the scavenging activity on DPPH and superoxide anion radicals with IC50 of 8.06 ± 0.29 μg/ml and 47.93 ± 1.33 μg/mL, respectively. Moreover, total phenolic content of the leaf extract was determined and using 1HNMR, mass and spectroscopic methods, the structure of the isolated flavonoid glycoside, rutin, as one of the compounds responsible for reported antioxidant activities was identified. PMID:23181088

  7. Phytochemical Screening and Acute Oral Toxicity Study of Java Tea Leaf Extracts

    PubMed Central

    Safinar Ismail, Intan; Azam, Amalina Ahmad; Abas, Faridah; Shaari, Khozirah; Sulaiman, Mohd Roslan

    2015-01-01

    The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight. PMID:26819955

  8. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats

    PubMed Central

    Adewale, Osonuga Odusoga; Oduyemi, Osonuga Ifabunmi; Ayokunle, Osonuga

    2014-01-01

    Objective To determine the effect of graded doses of aqueous leaf extracts of Momordica charantia on fertility hormones of female albino rats. Methods Twenty adult, healthy, female Wistar rats were divided into four groups: low dose (LD), moderate dose (MD) and high dose (HD) groups which received 12.5 g, 25.0 g, 50.0 g of the leaf extract respectively and control group that was given with water ad libatum. Result Estrogen levels reduced by 6.40 nmol/L, 10.80 nmol/L and 28.00 nmol/L in the LD, MD and HD groups respectively while plasma progesterone of rats in the LD, MD and HD groups reduced by 24.20 nmol/L, 40.8 nmol/L and 59.20 nmol/L respectively. Conclusion Our study has shown that the antifertility effect of Momordica charantia is achieved in a dose dependent manner. Hence, cautious use of such medication should be advocated especially when managing couples for infertility. PMID:25183143

  9. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting.

    PubMed

    Sathyavathi, R; Krishna, M Bala Murali; Rao, D Narayana

    2011-03-01

    The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.

  10. Synthesis of gold and silver nanoparticles using leaf extract of Perilla frutescens--a biogenic approach.

    PubMed

    Basavegowda, Nagaraj; Lee, Yong Rok

    2014-06-01

    The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.

  11. Reduction of behavioural disturbances in elderly dogs supplemented with a standardised Ginkgo leaf extract.

    PubMed

    Reichling, J; Frater-Schröder, M; Herzog, K; Bucher, S; Saller, R

    2006-05-01

    In this open clinical trial conducted in 10 veterinary practices, Ginkgo leaf extract was administered as a dietary supplement to 42 elderly dogs (mean age 11.4 years) at a daily dose of 40 mg/ 10 kg body weight for 8 weeks. The "severity of the geriatric condition" in dogs with a history of geriatric behavioural disturbances (mean duration 12 months), was significantly reduced after 8 weeks of treatment (P = 0.0002). The positive effect was already apparent after 4 weeks. Thirty-six % of the dogs were completely free of clinical signs at study end. Overall efficacy of treatment as judged by the investigator was good or very good in 79% of the dogs. Five of six clinical sign scores (disorientation, sleep/activity changes, behavioural changes, general behaviour and general physical condition/vitality) also showed a significant decrease over the treatment period. In conclusion, these findings provide promising results that could increase the quality of life in the elderly dog and, as a consequence, that of the pet owner. The Ginkgo leaf extract appears to be an efficacious agent that provides a safe dietary supplement for the elderly dog with age-related behavioural disturbances.

  12. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity.

    PubMed

    Ajitha, B; Reddy, Y Ashok Kumar; Reddy, P Sreedhara

    2014-01-01

    In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.

  13. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Vasaka (Justicia adhatoda L.) Leaf Extract.

    PubMed

    Bose, Debadin; Chatterjee, Someswar

    2015-06-01

    There is an increasing demand for silver nanoparticles due to its wide applicability in various area of biological science such as in field of antimicrobial and therapeutics, biosensing, drug delivery etc. To use in bioprocess the silver nanoparticles should be biocompatible and free from toxic chemicals. In the present study we report a cost effective and environment friendly route for green synthesis of silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties and it is easily available. The biosynthesized silver nanoparticles are characterized by UV-Vis spectroscopy and TEM analysis. It is observed the nanoparticles are well shaped and the average particle size is 20 nm in the range of 5-50 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show green synthesized silver nanoparticles, using Vasaka leaf extract, have a potential to inhibit the growth of bacteria.

  14. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2014-07-01

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

  15. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Reddy, P. Sreedhara

    2014-03-01

    In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.

  16. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract

    NASA Astrophysics Data System (ADS)

    Rao, Bo; Tang, Ren-Cheng

    2017-03-01

    An eco-friendly approach for the preparation of silver nanoparticles (AgNPs) from silver nitrate solution using aqueous Eriobotrya japonica leaf extract was investigated. The reduction of silver ions in solution was monitored using UV–visible absorption spectroscopy, and the surface plasmon resonance of AgNPs at 435 nm was observed. The proper condition to biosynthesize AgNPs using E. japonica leaf extract was optimized by UV–visible absorption spectroscopy and dynamic light scattering measurement (DLS). The biosynthesised nanoparticles were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), DLS, x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD and EDX analyses confirmed the crystalline character of AgNPs and the presence of elemental silver. The prepared AgNPs were spherical in shape, and their average particle size determined by TEM was about 20 nm. Furthermore the AgNPs were found to exhibit effective antibacterial activities against Escherichia coli and Staphylococcus aureus.

  17. Active spermatogenesis induced by a reiterated administration of Globularia alypum L. aqueous leaf extract

    PubMed Central

    Fehri, Badreddine; Aiache, Jean-Marc; Ahmed, KK Mueen

    2012-01-01

    Background: Globularia alypum L. (Globulariaceae) is a shrub growing in the Mediterranean basin and known to be used as a popular medicine for its several pharmacological properties against rheumatism, gout, typhoid, intermittent fever, and diabetes. Materials and Methods: The acute and chronic toxicities of a G. alypum L. aqueous leaf extract were studied in animals. Acute toxicity was performed in male and female mice whereas chronic toxicity was realized in male and female rats that orally received the drug at the doses of 300 and 600 mg/kg/24 h for 30 days. Results: Acute toxicity showed that the extract, administered by the oral route, does not induce any mortality even for a dose of 10,000 mg/kg. Administered by the intra-peritoneal route to female and male mice, the LD50 of the extract was found to be of 2750 and 2550 mg/kg, respectively. A chronic toxicity study showed that, compared to the control groups that only received the vehicle (water), the drugs affects weight growth (effects more pronounced in female than in male rats), some organs weight after autopsy, hematological and biochemical parameters and histology of some principal organs (lungs: histological grades I to II pulmonary hypertension (PHT), respiratory distress syndrome (ARDS), and lymphoid hyperplasia; esophagus: thinning down of esophageal wall, atrophic muscular coat). The most important finding of the study was the recorded active spermatogenesis induced by the reiterated administrations of the drug that was confirmed by reducing the administered dose and the period of treatment (100 mg/kg/24 h for 15 days). Conclusion: It is suggested that the G. alypum L. leaf extract contains active substances with androgenic properties that could be used in human therapy. PMID:22923951

  18. The effect of Smallanthus sonchifolius leaf extracts on rat hepatic metabolism.

    PubMed

    Valentová, K; Moncion, A; de Waziers, I; Ulrichová, J

    2004-03-01

    Smallanthus sonchifolius (yacon), originating from South America, has become popular in Japan and in New Zealand for its tubers which contain beta-1,2-oligofructans as the main saccharides. The plant is also successfully cultivated in Central Europe in the Czech Republic in particular. Its aerial part is used in Japan and in Brazil as a component in medicinal teas; while aqueous leaf extracts have been studied for their hypoglycemic activity in normal and diabetic rats. We have already demonstrated the high content of phenolic compounds in yacon leaf extracts and their in vitro antioxidant activity. In this paper, we present the effects of two organic fractions and two aqueous extracts from the leaves of S. sonchifolius on rat hepatocyte viability, on oxidative damage induced by tert-butyl hydroperoxide (t-BH) and allyl alcohol (AA), and on glucose metabolism and their insulin-like effect on the expression of cytochrome P450 (CYP) mRNA. All the extracts tested exhibited strong protective effect against oxidative damage to rat hepatocyte primary cultures in concentrations ranging from 1 to 1000 microg/ml, reduced hepatic glucose production via gluconeogenesis and glycogenolysis at 1000 microg/ml. Moreover, the effects of the organic fractions (200 and 250 microg/ml) and to a lesser extent, the tea infusion (500 microg/ml) on rat CYP2B and CYP2E mRNA expression, were comparable to those observed with insulin. The combination of radical scavenging, cytoprotective and anti-hyperglycemic activity predetermine S. sonchifolius leaves for use in prevention and treatment of chronic diseases involving oxidative stress, particularly diabetes.

  19. Antihyperglycemic Effect of Methanol Extract of Syzygium polyanthum (Wight.) Leaf in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Widyawati, Tri; Yusoff, Nor Adlin; Asmawi, Mohd Zaini; Ahmad, Mariam

    2015-09-14

    Syzygium polyanthum (S. polyanthum), a plant belonging to Myrtaceae, is widely used in Indonesian and Malaysian cuisines. Diabetic patients in Indonesia also commonly use it as a traditional medicine. Hence, this study was conducted to investigate the antihyperglycemic effect of the methanol extract (ME) of S. polyanthum leaf and its possible mechanisms of action. To test for hypoglycemic activity, ME was administered orally to normal male Sprague Dawley rats after a 12-h fast. To further test for antihyperglycemic activity, the same treatment was administered to glucose-loaded (intraperitoneal glucose tolerance test, IPGTT) and streptozotocin (STZ)-induced diabetic rats, respectively. Hypoglycemic test in normal rats did not show significant reduction in blood glucose levels (BGLs) by the extract. Furthermore, IPGTT conducted on glucose-loaded normal rats also did not show significant reduction of BGLs. However, repeated administration of metformin and three doses of ME (250, 500 and 1000 mg/kg) for six days caused significant reduction of fasting BGLs in STZ-induced diabetic rats. The possible mechanisms of action of S. polyanthum antihyperglycemic activity were assessed by measurement of intestinal glucose absorption and glucose uptake by isolated rat abdominal muscle. It was found that the extract not only inhibited glucose absorption from the intestine but also significantly increased glucose uptake in muscle tissue. A preliminary phytochemical qualitative analysis of ME indicated the presence of tannins, glycosides, flavonoids, alkaloids and saponins. Additionally, Gas Chromatography-Mass Spectrometry (GC-MS) analysis detected squalene. In conclusion, S. polyanthum methanol leaf extract exerts its antihyperglycemic effect possibly by inhibiting glucose absorption from the intestine and promoting glucose uptake by the muscles.

  20. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-03-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis

  1. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM

  2. Comparison of the effects of fresh leaf and peel extracts of walnut (Juglans regia L.) on blood glucose and β-cells of streptozotocin-induced diabetic rats

    PubMed Central

    Javidanpour, Somaye; Fatemi Tabtabaei, Seyed Reza; Siahpoosh, Amir; Morovati, Hasan; Shahriari, Ali

    2012-01-01

    There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intra peritoneally. Thirty male Wistar rats divided into five groups, to evaluate the hypoglycemic and pancreas β-cells regenerative effects of oral methanolic extracts of leaf and fruit peel of walnut. Rats were made diabetic by intravenous (IV) injection of 50 mg kg-1 streptozotocin (STZ). Negative control group did not get STZ and any treatment. Positive control, leaf extract, peel extract and insulin groups were treated orally by extract solvent, 200 mg kg-1 leaf extract, 200 mg kg-1 peel extract and 5 IU kg-1 of subcutaneous neutral protamine Hagedorn (NPH) insulin, respectively. Four weeks later, blood was collected for biochemical analysis and pancreases were removed for β-cells counts in histological sections. Diabetes leads to increase of fast blood sugar (FBS) and HbA1c, and decrease of β-cell number and insulin. FBS decreased only in leaf extract group. HbA1c decreased in leaf extract and insulin groups. The β-cells number increased in leaf and peel extract groups. Insulin increased moderately in all treatment groups. We showed the proliferative properties of leaves and peel of Juglans regia L. methanolic extract in STZ- induced diabetic rats, which was accompanied by hypoglycemic effect of leaf extract. PMID:25653767

  3. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  4. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  5. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita

    2013-09-01

    The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.

  6. Optimization of DNA extraction from seeds and leaf tissues of Chrysanthemum (Chrysanthemum indicum) for polymerase chain reaction.

    PubMed

    Hasan, Saba; Prakash, Jyoti; Vashishtha, Abhinav; Sharma, Agnivesh; Srivastava, Kuldeep; Sagar, Faizuddin; Khan, Nausheen; Dwivedi, Keshav; Jain, Payal; Shukla, Saransh; Gupta, Swati Prakash; Mishra, Saumya

    2012-01-01

    Chrysanthemums constitute approximately 30 species of perennial flowering plants, belonging to the family Asteraceae, native to Asia and Northeastern Europe. Chrysanthemum is a natural cosmetic additive extracted from Chinese herb by modern biochemical technology. It has the properties of anti-bacterial, anti-viral, reducing (detoxification) and anti-inflammation. It possesses antioxidant characteristics, which could assist in minimizing free-radical induced damage. Therefore, it is widely used in skin and hair care products. Chemical composition of this herbal remedy includes kikkanols, sesquiterpenes, flavonoids, various essential oils containing camphor, cineole, sabinol, borneole and other elements that interfere with DNA, causing erroneous or no PCR products. In the present study, testing and modification of various standard protocols for isolation of high-quality DNA from leaf tissues and seeds of C. indicum was done. It was observed that the DNA obtained from seeds and leaf tissues with a modified cetyltrimethylammonium bromide buffer protocol was of good quality, with no colored pigments and contaminants. Also, DNA could be extracted from leaf tissues without using liquid nitrogen. Quality of DNA extracted from seeds was much better as compared to that extracted from leaf tissues. The extracted DNA was successfully amplified by PCR using arbitrary RAPD primers. The same protocol will probably be useful for extraction of high-molecular weight DNA from other plant materials containing large amounts of secondary metabolites and essential oils.

  7. Phytochemical and in vitro antimicrobial assay of the leaf extract of Newbouldia laevis.

    PubMed

    Usman, H; Osuji, J C

    2007-06-10

    The methanolic leaf extract of Newbouldia laevis was subjected to preliminary phytochemical screening and in-vitro antimicrobial tests. The extract revealed the presence of flavonoids, tannins, terpenes, steroidal and cardiac glycosides. The antimicrobial activity of the plant extract was assayed by the agar plate disc diffusion and nutrient broth dilution techniques. Test microorganisms were Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhi, Klebsiella spp. and Candida albicans; all the organisms were laboratory isolates. The extract inhibited the growth of all the test organisms especially against Klebsiella spp. and S. aureus which had mean inhibition zone of 42.3+/-1.5 and 32.3+/-1.5 mm respectively. The results showed minimum inhibitory concentration (MIC) of 1.563 mg/ml against Escherichia coli and Klebsiella spp. and 3.125 mg/ml against Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhi. The minimal bactericidal concentration (MBC) against Escherichia coli and Staphylococcus aureus was 0.39 mg/ml. This study has justified the traditional use of this plant for the treatment of stomach discomfort, diarrhea, dysentery and as a remedy for wound healing whose causative agents are some of the organisms used in this study.

  8. Antiproliferative and Apoptosis Induction Potential of the Methanolic Leaf Extract of Holarrhena floribunda (G. Don)

    PubMed Central

    Badmus, J. A.; Ekpo, O. E.; Hussein, A. A.; Meyer, M.; Hiss, D. C.

    2015-01-01

    Natural plant products with potent growth inhibition and apoptosis induction properties are extensively being investigated for their cancer chemopreventive potential. Holarrhena floribunda (HF) is used in a wide range of traditional medicine practices. The present study investigated the antiproliferative and apoptosis induction potential of methanolic leaf extracts of HF against breast (MCF-7), colorectal (HT-29), and cervical (HeLa) cancer cells relative to normal KMST-6 fibroblasts. The MTT assay in conjunction with the trypan blue dye exclusion and clonogenic assays were used to determine the effects of the extracts on the cells. Caspase activities were assayed with Caspase-Glo 3/7 and Caspase-9 kits. Apoptosis induction was monitored by flow cytometry using the APOPercentage and Annexin V-FITC kits. Reactive oxygen species (ROS) was measured using the fluorogenic molecular probe 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein diacetate acetyl ester and cell cycle arrest was detected with propidium iodide. Dose-response analyses of the extract showed greater sensitivity in cancer cell lines than in fibroblast controls. Induction of apoptosis, ROS, and cell cycle arrest were time- and dose-dependent for the cancer cell lines studied. These findings provide a basis for further studies on the isolation, characterization, and mechanistic evaluation of the bioactive compounds responsible for the antiproliferative activity of the plant extract. PMID:25861368

  9. Toxicological assessment of the hydroethanolic leaf extract of clerodendrum capitatum in Wistar rats

    PubMed Central

    Idoh, Kokou; Agbonon, Amegnona; Potchoo, Yao; Gbeassor, Messanvi

    2016-01-01

    Introduction Clerodendrum capitatum (Willd) Schumach. & Thonn (Lamiaceae) is used in African traditional medicine for the treatment of malaria, hypertension, obesity, jaundice and diabetes however there is lack of experimental data on its possible toxicity. This study investigated the acute and 28 days sub-chronic toxicity of C. capitatum in Wistar rats. Methods In acute toxicity tests, a single administration of the hydroethanolic C. capitatum leaf extract (5 g/kg) was given orally to 5 female rats. The general behavior, adverse effects and mortality were recorded for up to 14 days post treatment. On the 15th day, the rats were weighed and euthanized for necropsy. In sub-chronic toxicity tests, the extract (4, 8 and 16 g/kg/day) was given orally to both male and female rats for 28 days. The animal body weight was recorded throughout the experiment, while hematological and biochemical parameters of blood and relative organs weights were evaluated on the 29th day. Results Clerodendrum Capitatum did not cause any death or any hazardous symptoms of acute toxicity, showing an LD50 higher than 5 g/kg. Sub-chronic administration of C. capitatum resulted in no noticeable changes in weight gain and water or food consumption. White blood cells and hemoglobin increased while urea concentration, liver enzymes, total cholesterol and glucose concentrations significantly decreased in treated animals. No changes in macroscopical aspect of organs were observed in the animals. Conclusion These results showed that acute or sub-chronic oral administration of the hydroethanolic leaf extract of Clerodendrum capitatum may be considered as relatively free of toxicity. PMID:27642406

  10. Antioxidative, antimicrobial and cytotoxic effects of the phenolics of Leea indica leaf extract

    PubMed Central

    Rahman, Md. Atiar; Imran, Talha bin; Islam, Shahidul

    2012-01-01

    This study investigated the phytochemical, antioxidative, antimicrobial and cytotoxic effects of Leea indica leaf ethanol extract. Phytochemical values namely total phenolic and flavonoid contents, total antioxidant capacity, DPPH radical scavenging effect, FeCl3 reducing power, DMSO superoxide scavenging effect and Iron chelating effects were studied by established methods. Antibacterial, antifungal and cytotoxic effects were screened by disk diffusion technique, food poison technique and brine shrimp bioassay, respectively. Results showed the total phenolic content 24.00 ± 0.81 g GAE/100 g, total flavonoid content 194.68 ± 2.43 g quercetin/100 g and total antioxidant capacity 106.61 ± 1.84 g AA/100 g dry extract. Significant (P < 0.05) IC50 values compared to respective standards were recorded in DPPH radical scavenging (139.83 ± 1.40 μg/ml), FeCl3 reduction (16.48 ± 0.64 μg/ml), DMSO superoxide scavenging (676.08 ± 5.80 μg/ml) and Iron chelating (519.33 ± 16.96 μg/ml) methods. In antibacterial screening, the extract showed significant (P < 0.05) zone of inhibitions compared to positive controls Ampicillin and Tetracycline against Gram positive Bacillus subtilis, Bacillus cereus, Bacillus megaterium, and Staphylococcus aureus and Gram negative Salmonella typhi, Salmonella paratyphi, Pseudomonas aeroginosa, Shigella dysenteriae, Vibrio cholerae, and Escherichia coli. Significant minimum inhibitory concentrations compared to tetracycline were obtained against the above organisms. In antifungal assay, the extract inhibited the growth of Aspergillus flavus, Candida albicans and Fusarium equisetii by 38.09 ± 0.59, 22.58 ± 2.22, and 22.58 ± 2.22%, respectively. The extract showed a significant LC50 value compared to vincristine sulfate in cytotoxic assay. The results evidenced the potential antioxidative, antimicrobial and cytotoxic capacities of Leea inidica leaf extract to be processed for pharmaceutical use. PMID

  11. Flavonoid content in leaf extracts of the fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.).

    PubMed

    Vaya, Jacob; Mahmood, Saeed

    2006-01-01

    The total flavonoid content of leaf extracts (70% ethanol) from fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.) plants were determined by using reverse phase high-performance liquid chromatography (HPLC)-and analyzed by UV/VIS array and electrospray ionization (ESI)-mass spectrometry (MS) detectors. As a base for comparison, flavonoid type and level were also determined in extracts from soybeans and grape seeds. It was found that the major flavonoids in Ficus are quercetin and luteolin, with a total of 631 and 681 mg/kg extract, respectively. In Ceratonia leaves, nine different flavonoids were detected. The major one was myricetin (1486 mg/kg extract), with a similar level in Pistacia (1331 mg/kg extract, myricetin). The present study is the first to report the presence of the isoflavone genistein in the Pistacia leaf, which was discovered to consist of about a third of the genistein level detected in soybean.

  12. Effect of methanol leaf extract of Dalbergia saxatilis Hook.f (fabaceae) on renal function

    PubMed Central

    Hassan, Fatima Ismail; Abdulkadir Umar, Zezi; Umar Habib, Danmalam; Abdullahi Hamza, Yaro

    2016-01-01

    Objective: Dalbegia saxatilis (D.saxatilis) is used as a decoction in traditional medicine for ailments such as cough, small pox, skin lesions, bronchial ailments and toothache. This study is aimed at evaluating the toxic effect of methanol leaf extract of D.saxatilis on renal function. Materials and Methods: Wistar rats of both sexes were divided into four groups of five: control animals (group 1) received distilled water 1 ml/kg while groups 2, 3 and 4 were given graded doses of the extract (250, 500 and 1000 mg/kg body weight, respectively) daily for 28 days. Body weight changes were estimated by weighing the rats twice weekly using digital weighing balance. After 28 days, blood samples were obtained for evaluation of renal indices and the kidney was used for histopathology. Data were analysed using one–way and repeated measures ANOVA using SPSS version 20. Results: Significant weight increase in all groups were observed (p<0.05). Significant reduction in electrolytes concentration was observed following treatment with extract (250 and 500 mg/kg) (p<0.05). Histopathological findings of the kidney revealed massive necrosis of the glomerulus with tubular distortion and lymphocyte hyperplasia at 250 and 500 mg/kg while intense glomerular and tubular necrosis was observed at 1000 mg/kg of the extract. Conclusion: Since different doses of the extract caused reduction in electrolyte concentration and damage to the kidney it is suggested that prolonged administration of the extract is associated with increased risk of kidney toxicity. PMID:28078240

  13. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall

    PubMed Central

    2013-01-01

    Background Aquilaria crassna Pierre ex Lecomte has been traditionally used in Thailand for treatment of infectious diseases such as diarrhoea and skin diseases for a long time. The main objectives of this study were to examine antibacterial activity of the Aquilaria crassna leaf extract against Staphylococcus epidermidis and its underlying mechanism. The antioxidant activity and acute toxicity were studied as well. Methods Antioxidant activities were examined by FRAP, ABTS and DPPH scavenging methods. Antibacterial activity was conducted using disc diffusion assay and the minimum inhibitory concentration (MIC) was determined by dilution method. The minimum bactericidal concentration (MBC) was reported as the lowest concentration producing no growth of microbes in the subcultures. Morphological changes of the microbe were observed by scanning electron microscopy, while an inhibitory effect on biofilm formation was evaluated by phase contrast microscopic analysis. Bacterial cell wall integrity was assessed by transmission electron microscopy. Acute toxicity was conducted in accordance with the OECD for Testing of Chemicals (2001) guidelines. Results The extract exhibited considerable antioxidant activity. Staphylococcus epidermidis was susceptible to the extract with the MIC and MBC of 6 and 12 mg/ml, respectively. The extract caused swelling and distortion of bacterial cells and inhibited bacterial biofilm formation. Rupture of bacterial cell wall occurred after treated with the extract for 24 h. Acute toxicity test in mice showed no sign of toxicity or death at the doses of 2,000 and 15,000 mg/kg body weight. Conclusion The aqueous extract of Aquilaria crassna leaves possesses an in vitro antibacterial activity against Staphylococcus epidermidis, with no sign of acute oral toxicity in mice, probably by interfering with bacterial cell wall synthesis and inhibiting biofilm formation. PMID:23962360

  14. Antioxidant Capacity of the Leaf Extract Obtained from Arrabidaea chica Cultivated in Southern Brazil

    PubMed Central

    Siraichi, Jackeline Tiemy Guinoza; Felipe, Daniele Fernanda; Brambilla, Lara Zampar Serra; Gatto, Melissa Junqueira; Terra, Vânia Aparecida; Cecchini, Alessandra Lourenco; Cortez, Lucia Elaine Ranieri; Rodrigues-Filho, Edson; Cortez, Diógenes Aparício Garcia

    2013-01-01

    Arrabidaea chica leaf extract has been used by people as an anti-inflammatory and astringent agent as well as a remedy for intestinal colic, diarrhea, leucorrhea, anemia, and leukemia. A. chica is known to be a good producer of phenolics. Therefore, in the present study, we investigated its antioxidant activity. The phenolic composition of A. chica leaves was studied by liquid chromatography coupled to diode array detection (LC–DAD) and liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS), and isoscutellarein, 6-hydroxyluteolin, hispidulin, scutellarein, luteolin, and apigenin were identified. The extract from leaves of A. chica was tested for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, β-carotene bleaching test, and total reactive antioxidant potential (TRAP) method. The crude extract quenched DPPH free radicals in a dose-dependent manner, and the IC50 of the extract was 13.51 µg/mL. The β-carotene bleaching test showed that the addition of the A. chica extract in different concentrations (200 and 500 µg/mL) prevented the bleaching of β-carotene at different degrees (51.2% ±3.38% and 94% ±4.61%, respectively). The TRAP test showed dose-dependent correlation between the increasing concentrations of A. chica extract (0.1, 0.5, and 1.0 µg/mL) and the TRAP values obtained by trolox (hydro-soluble vitamin E) 0.4738±0.0466, 1.981±0.1603, and 6.877±1.445 µM, respectively. The 2 main flavonoids, scutellarein and apigenin, were separated, and their antioxidant activity was found to be the same as that of the plant extract. These 2 flavonoids were quantified in the plant extract by using a validated HPLC-UV method. The results of these tests showed that the extract of A. chica had a significant antioxidant activity, which could be attributed to the presence of the mixture of flavonoids in the plant extract, with the main contribution of scutellarein and apigenin. PMID:24009700

  15. Morinda citrifolia L. leaf extract as antibacterial Salmonella typhimurium to increase productivity of quail (Coturnix coturnix japonica).

    PubMed

    Retnani, Y; Dan, T M Wardiny; Taryati

    2014-04-01

    The objective of this study was to apply effect of Morinda citrifolia L. citrifolia L. leaf extract as antibacterial of Salmonella typhimurium on mortality of Day Old Quail (DOQ), egg production and Hen day, hatchability of layer quail. This research was conducted at Laboratory of microbiology and laboratory of poultry nutrition, faculty of animal science, bogor agricultural university and slamet quail farms cilangkap, sukabumi, west java, Indonesia on March-July 2012. Two hundred and forty heads of quail were randomly assigned to four dietary treatments (sixty heads of quail/treatment). Experimental design used was Completely Randomized Design (CRD). The treatments consist of level of biscuit Morinda citrifolia L. Citrifolia L. leaf extract i.e R1 = 0%, R2 = 5%, R3 = 10%, R4 = 15%. The results indicated the treatments had significant effect (p < 0.05) on mortality of Day Old Quail (DOQ). The average mortality of Day Old Quail (DOQ) was given extract Morinda citrifolia L. leaf were R1 (4.00%), R2 (1.00%), R3 (1.33%), R4 (0.67%). The average mortality of Day Old Quail (DOQ) was given 15% extract Morinda citrifolia L. leaf (R4) was lowest than control treatment (R1). The results of the analysis indicated that Morinda citrifolia L. leaf of quail drink had not significant effect (p > 0.05) on egg production, hen day and hatchability. It was concluded that the Morinda citrifolia L. leaf extract 15% can reduce mortality of Day Old Quail (DOQ) and can increase its egg production, hen day and hatchability.

  16. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  17. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds.

    PubMed

    Wang, Wei; Scali, Monica; Vignani, Rita; Spadafora, Antonia; Sensi, Elisabetta; Mazzuca, Silvia; Cresti, Mauro

    2003-07-01

    The purpose of this research is to establish a routine procedure for the application of proteomic analysis to olive tree. Olive leaf tissue is notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds. We developed a protocol for isolating proteins suitable for two-dimensional electrophoresis (2-DE) from olive leaf. The remarkable characteristics of the protocol include: (i) additional grinding dry acetone powder of leaf tissue to a finer extent, (ii) after extensive organic solvent washes to remove pigments, lipids etc., using aqueous tricholoroacetic acid washes to remove water-soluble contaminants, and (iii) phenol extraction of proteins in the presence of sodium dodecyl sulfate. The final protein preparation is free of interfering compounds based on its well-resolved 2-DE patterns. The protocol can be completed within 3 h, and protein yield is approximately 2.49 mg.g(-1) of aged leaf. We also evaluated the protocol by immunoblotting with anti-tyrosinate alpha-tubulin antibody. To our knowledge, this is the first time that a protocol for protein extraction from olive leaf appears to give satisfactory and reproducible results. The protocol is expected to be applicable to other recalcitrant plant tissues and could be of interest to laboratories involved in plant proteomics.

  18. Chemical composition of lucerne leaf extract (EFL) and its applications as a phytobiotic in human nutrition.

    PubMed

    Gaweł, Eliza

    2012-01-01

    Lucerne, a valuable plant grown mainly for animal feed, is rich in protein, minerals (Ca, Cu, Fe, Mg, Mn, P, Zn, Si), vitamins (A, B, C, D, E, K, U), phytochemical substances (carotene, chlorophyll, coumarins, isoflavones, alkaloids, saponins), contains secondary metabolites of plants (phytoestrogens: isoflavones and coumestrol), and antinutritional components (phytates, L-canavanine, saponins). It may be used as a dietary supplement in human nutrition. The proteins found in lucerne are comprised of numerous exogenous and semi-exogenous amino acids which are desirable for human body. Extract from the leaves of alfalfa (EFL - l'Extrait Foliaire de Luzerne) practically does not contain mycotoxins and pesticide pollutants. It is a completely natural product, safe even in a long-term supplementation. Extract from the leaves of alfalfa has a positive, multidirectional impact on the human body. It increases the level of estrogen, prevents atherosclerosis, helps blood circulation and strenghtens immunity, protects against the development of dangerous diseases of the digestive tract, combats anemia and many other health ailments. The results of preclinical studies indicate that alfalfa leaf extract enriched with vitamin C (EFL) can be a dietary supplement supporting the human body in fighting malnutrition, ischemic diseases, and various disorders of digestive tract. It also strengthens and enhances immunity.

  19. Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin.

    PubMed

    Rajasekaran, S; Sivagnanam, K; Subramanian, S

    2005-02-01

    Oxidative stress is currently suggested as a mechanism underlying diabetes and diabetic-related complications. Oxidative stress results from an imbalance between radical-generating and radical-scavenging systems. Many secondary plant metabolites have been reported to possess antioxidant activity. This study was designed to evaluate the potential antioxidative activity of the ethanolic extract from Aloe vera leaf gel in the plasma and pancreas of streptozotocin (STZ)-induced diabetic rats. Glibenclamide was used as a standard reference drug. Oral administration of ethanolic extract at a concentration of 300 mg kg(-1) body weight for 21 days resulted in a significant reduction in fasting blood glucose, thiobarbituric acid reactive substances, hydroperoxides and alpha-tocopherol and significant improvement in ascorbic acid, reduced glutathione and insulin in the plasma of diabetic rats. Similarly, the treatment also resulted in a significant reduction in thiobarbituric acid reactive substances, hydroperoxides, superoxide dismutase, catalase and glutathione peroxidase and significant improvement in reduced glutathione in the pancreas of STZ-induced diabetic rats when compared with untreated diabetic rats. The ethanolic extract appeared to be more effective than glibenclamide in controlling oxidative stress. Thus, this study confirms the ethnopharmacological use of Aloe vera in ameliorating the oxidative stress found in diabetes.

  20. Effect of Toona microcarpa Harms Leaf Extract on the Coagulation System

    PubMed Central

    Chen, Hao; Jin, Min; Wang, Yi-Fen; Wang, Yong-Qing; Meng, Ling; Li, Rong; Wang, Jia-Ping; Gao, Li; Kong, Yi

    2014-01-01

    Toona microcarpa Harms is a tonic, antiperiodic, antirheumatic, and antithrombotic agent in China and India and an astringent and tonic for treating diarrhea, dysentery, and other intestinal infections in Indonesia. In this study, we prepared ethyl-acetate extract from the air-dried leaves of Toona microcarpa Harms and investigated the anticoagulant activities in vitro by performing activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) assays. Antiplatelet aggregation activity of the extract was examined using adenosine diphosphate (ADP), collagen, and thrombin as agonists, and the inhibitions of factor Xa and thrombin were also investigated. Bleeding and clotting times in mice were used to determine its anticoagulant activities in vivo. It is found that Toona microcarpa Harms leaf extract (TMHE) prolonged APTT, PT, and TT clotting times in a dose-dependent manner and significantly inhibited platelet aggregation induced by thrombin, but not ADP or collagen. Clotting time and bleeding time assays showed that TMHE significantly prolonged clotting and bleeding times in vivo. In addition, at the concentration of 1 mg/mL, TMHE inhibited human thrombin activity by 73.98 ± 2.78%. This is the first report to demonstrate that THME exhibits potent anticoagulant effects, possibly via inhibition of thrombin activity. PMID:24818147

  1. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  2. Detection of tomato yellow leaf curl Thailand virus by PCR without DNA extraction.

    PubMed

    Ieamkhang, Supaporn; Riangwong, Lumpueng; Chatchawankanphanich, Orawan

    2005-11-01

    We report the simple and rapid method for detection of tomato yellow leaf curl Thailand virus (TYLCTHV) based on the direct capture of virus particles to the surface of a polymerase chain reaction (PCR) tube. This method allowed PCR without the time-consuming procedures of DNA extraction from infected plant tissue. A small amount of tomato tissue (approximately 10 mg) was ground in extraction buffer to release viruses from plant tissues. The constituents of the plant extract that might inhibit PCR activity were discarded by washing the tube with PBST buffer before adding the PCR mixture to the tube. This method was used for detection of TYLCTHV with plant sap solution diluted up to 1:20,000 and was more sensitive than an enzyme-linked immunosorbent assay (ELISA) method. In addition, this method can be used for detection of TYLCTHV in viruliferous whiteflies. The PCR tubes with captured TYLCTHV could be used for PCR, after storage at 4 degrees C for 4 wk. The method presented here was used for detection of begomoviruses in cucurbit and pepper. In addition, this method was effectively used to detect papaya ringspot virus in papaya and zucchini yellow mosaic virus in cucumber by reverse transcriptase (RT)-PCR.

  3. Antioxidant properties of Urtica pilulifera root, seed, flower, and leaf extract.

    PubMed

    Ozen, Tevfik; Cöllü, Zeynep; Korkmaz, Halil

    2010-10-01

    This study was conducted to evaluate the antioxidative properties of hydroalcoholic (80%) extracts from different parts of Urtica pilulifera L. (Family Urticaceae), including leaf (UPL), flower (UPF), seed (UPS), and root (UPR). Antioxidative activity of the extracts was measured using the ferric thiocyanate method, thiobarbituric acid method, reductive potential, metal chelating, free radical, superoxide anion radical, and hydrogen peroxide scavenging activity. In addition, the results were compared with antioxidants such as tert-butylated hydroxyanisole (BHA), tert-butylated hydroxytoluene (BHT), and α-tocopherol. Total antioxidant activities of UPS, UPF, UPL, UPR, BHA, BHT, and α-tocopherol were 88.79%, 85.13%, 86.72%, 78.46%, 81.31%, 76.12%, and 46.28%, respectively. Like the antioxidant activity, the reducing power and the superoxide anion radical and free radical scavenging activities of UPL, UPF, UPS, and UPR are concentration dependent. A correlation between higher antioxidant activity and the amount of total phenolics was found in the extracts.

  4. Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1.

    PubMed

    Datta, Siraj; Jana, Debanjan; Maity, Tilak Raj; Samanta, Aveek; Banerjee, Rajarshi

    2016-06-01

    Quorum sensing (QS) plays an important role in virulence of Pseudomonas aeruginosa, blocking of QS ability are viewed as viable antimicrobial chemotherapy and which may prove to be a safe anti-virulent drug. Bioactive components from Piper betle have been reported to possess antimicrobial ability. This study envisages on the anti-QS properties of ethanolic extract of P. betle leaf (PbLE) using P. aeruginosa PAO1 as a model organism. A marked reduction in swarming, swimming, and twitching ability of the bacteria is demonstrated in presence of PbLE. The biofilm and pyocyanin production also shows a marked reduction in presence of PbLE, though it does not affect the bacterial growth. Thus, the studies hint on the possible effect of the bioactive components of PbLE on reducing the virulent ability of the bacteria; identification of bioactive compounds should be investigated further.

  5. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens

    PubMed Central

    Liu, Yanhong; McKeever, Lindsay C.; Malik, Nasir S. A.

    2017-01-01

    Olive leaf extract (OLE) has been used traditionally as a herbal supplement since it contains polyphenolic compounds with beneficial properties ranging from increasing energy levels, lowering blood pressure, and supporting the cardiovascular and immune systems. In addition to the beneficial effects on human health, OLE also has antimicrobial properties. The aim of this work was to investigate the antimicrobial effect of OLE against major foodborne pathogens, including Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Enteritidis. Our results demonstrated that at a concentration of 62.5 mg/ml, OLE almost completely inhibited the growth of these three pathogens. In addition, OLE also reduced cell motility in L. monocytogenes, which correlated with the absence of flagella as shown by scanning electron microscopy. Moreover, OLE inhibited biofilm formation in L. monocytogenes and S. Enteritidis. Taken together, OLE, as a natural product, has the potential to be used as an antimicrobial to control foodborne pathogens. PMID:28210244

  6. RETRACTED: Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S.; Ravi, S.; Kathiravan, V.; Velmurugan, S.

    2015-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor. The article contains an image (Fig. 7D) which originates from an image previously published in the article "Rapid biological synthesis of silver nanoparticles using Leucas martinicensis leaf extract for catalytic and antibacterial activity" by S. Ashokkumar et al. in Environ Sci Pollut Res (2014) 21:11439-11446, DOI 10.1007/s11356-014-3012-7 (Fig. 7D), despite being attributed to different samples. Furthermore, Figures 8A and 8B show identical images despite the claim of different samples. Finally, Figure 3 displays duplicated data despite being described as different samples. The scientific community takes a very strong view on this scientific misbehavior and apologies are offered to readers of the journal that this was not detected during the submission process.

  7. Green Synthesis of Silver Nanoparticles Using Neem Leaf (Azadirachta indica) Extract

    NASA Astrophysics Data System (ADS)

    Shukla, Vineet Kumar; Pandey, Shipra; Pandey, Avinash C.

    2010-10-01

    Silver nanoparticles were successfully synthesized using crude neem leaf (Azadirachta indica) extract at room temperature. The formation and crystallinity of synthesized silver nanoparticles was confirmed by X-Ray diffraction (XRD) pattern. The average size of these silver nanoparticles is about 20-50 nm as observed by Transmission electron microscopy (TEM) images. Optical absorption measurements were performed to determine band-edge energy gap of these silver nanoparticles. Photoluminescence (PL) studies were performed to emphasize its emission properties. The synthesized silver nanoparticles could have major applications in the area of nanoscale optoelectronics devices and biomedical engineering. Our synthesis method has advantage over other conventional chemical routes because it is cost effective & environmental compatibility.

  8. Tissue distribution comparison between healthy and fatty liver rats after oral administration of hawthorn leaf extract.

    PubMed

    Yin, Jingjing; Qu, Jianguo; Zhang, Wenjie; Lu, Dongrui; Gao, Yucong; Ying, Xixiang; Kang, Tingguo

    2014-05-01

    Hawthorn leaves, a well-known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin-4''-O-glucoside, vitexin-2''-O-rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter- and intragroup comparisons (healthy and/or fatty liver group).

  9. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity

    NASA Astrophysics Data System (ADS)

    Vanaja, Mahendran; Annadurai, Gurusamy

    2013-06-01

    The utilization of various plant resources for the biosynthesis of metallic nanoparticles is called green nanotechnology, and it does not utilize any harmful chemical protocols. The present study reports the plant-mediated synthesis of silver nanoparticles using the plant leaf extract of Coleus aromaticus, which acts as a reducing and capping agent. The silver nanoparticles were characterized by ultraviolet visible spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and the size of the silver nanoparticles is 44 nm. The bactericidal activity of the silver nanoparticles was carried out by disc diffusion method that showed high toxicity against Bacillus subtilis and Klebsiella planticola. Biosynthesis of silver nanoparticles by using plant resources is an eco-friendly, reliable process and suitable for large-scale production. Moreover, it is easy to handle and a rapid process when compared to chemical, physical, and microbe-mediated synthesis process.

  10. Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns.

    PubMed

    Lai, How Yee; Lim, Yau Yan; Tan, Shiau Pin

    2009-06-01

    Leaf extracts of five medicinal ferns, Acrostichum aureum L. (Pteridaceae), Asplenium nidus L. (Aspleniaceae), Blechnum orientale L. (Blechnaceae), Cibotium barometz (L.) J. Sm. (Cyatheaceae) and Dicranopteris linearis (Burm.) underwood var. linearis (Gleicheniaceae), were investigated for their total phenolic content (TPC), and antioxidative, tyrosinase inhibiting and antibacterial activities. The antioxidative activity was measured by assays for radical scavenging against 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric ion reducing power (FRP), beta-carotene bleaching (BCB) and ferrous ion chelating (FIC). The results revealed B. orientale to possess the highest amount of total polyphenols and strongest potential as a natural antioxidative, tyrosinase inhibiting and antibacterial agent as demonstrated by its strong activities in all related bioassays. The other ferns with antioxidative potential were C. barometz and D. linearis. Except for A. aureum, all ferns showed antibacterial activity which may justify their usage in traditional medicines.

  11. Optical and photocatalytic properties of Corymbia citriodora leaf extract synthesized ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Hu, Binjie; Zhi, Jinhu

    2016-05-01

    ZnS nanoparticles were biosynthesized via a green and simple method using Corymbia citriodora leaf extract as reducing and stabilizing agent. The biosynthesized ZnS nanoparticles were in the size range of 45 nm with a surface plasmon resonance band at 325 nm. XRD analysis revealed that the nanoparticles were in the sphalerite phase. Quantum confinement effects of biosynthesized ZnS nanoparticles were observed using photoluminescence spectroscopy. The photocatalytic activity of the ZnS nanoparticles has been investigated by degradation methylene blue under UV light irradiation. Due to the smaller size and excellent dispersicity, the biosynthesized ZnS nanoparticles showed a superior photocatalytic performance compared with that of chemical synthesize ZnS nanoparticles.

  12. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata.

    PubMed

    Kumar, V Ganesh; Gokavarapu, S Dinesh; Rajeswari, A; Dhas, T Stalin; Karthick, V; Kapadia, Zainab; Shrestha, Tripti; Barathy, I A; Roy, Anindita; Sinha, Sweta

    2011-10-01

    A simple biological method for the synthesis of gold nanoparticles (AuNPs) using Cassia auriculata aqueous leaf extract has been carried out in the present study. The reduction of auric chloride led to the formation of AuNPs within 10 min at room temperature (28°C), suggesting a higher reaction rate than chemical methods involved in the synthesis. The size, shape and elemental analysis were carried out using X-ray diffraction, TEM, SEM-EDAX, FT-IR and visible absorption spectroscopy. Stable, triangular and spherical crystalline AuNPs with well-defined dimensions of average size of 15-25 nm were synthesized using C. auriculata. Effect of pH was also studied to check the stability of AuNPs. The main aim of the investigation is to synthesize AuNPs using antidiabetic potent medicinal plant. The stabilizing and reducing molecules of nanoparticles may promote anti-hyperglycemic if tested further.

  13. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Patil, Rupali S.; Kokate, Mangesh R.; Kolekar, Sanjay S.

    2012-06-01

    Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ˜450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

  14. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity.

    PubMed

    Patil, Rupali S; Kokate, Mangesh R; Kolekar, Sanjay S

    2012-06-01

    Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ∼450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

  15. Mechanisms of olive leaf extract-ameliorated rat arthritis caused by kaolin and carrageenan.

    PubMed

    Gong, Dezheng; Geng, Chengyan; Jiang, Liping; Wang, Lihui; Yoshimura, Hiroyuki; Zhong, Laifu

    2012-03-01

    Olive leaf extract (OLE) has antioxidant and antiinflammatory actions. However, the role of OLE in mechanical inflammatory arthritis (osteoarthritis, OA) is unclear. This study investigated the effect of OLE on the development of kaolin and carrageenan-induced arthritis, a murine model of OA. Administration of OLE significantly ameliorated paw swelling, the paw Evans blue content and the histopathological scores. In the human monocyte cell line, THP-1, the OLE reduced the LPS-induced TNF-α production and was dose dependent. Croton oil-induced ear edema in mice also revealed that treatment with OLE suppressed ear edema, myeloperoxidase (MPO) production and was dose dependent. These results indicated that OLE is an effective antiarthritis agent through an antiinflammation mechanism. Also OLE may be beneficial for the treatment of OA in humans.

  16. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Esfanjani, Afshin Faridi; Akhavan, Sahar

    2016-01-01

    Our objective was to evaluate the antioxidant activity of olive leave extract (OLE) encapsulated by nano-emulsions in soybean oil. The average droplet size one day after production was 6.16 nm for primary W/O nano-emulsion and, 675 nm and 1443 nm for multiple emulsions stabilized by WPC alone and complex of WPC-pectin, respectively. The antioxidant activity of these emulsions containing three concentrations of 100, 200 and 300 mg OLE during storage was evaluated in soybean oil by peroxide value, TBA value and rancimat thermal stability test and was compared with blank (non-encapsulated) OLE and synthetic TBHQ antioxidant. Nano-encapsulated OLE was capable of controlling peroxide value better than unencapsulated OLE. But because of blocking phenolic compounds within dispersed emulsions droplets, thermal stability of encapsulated OLE was lower. To summarize, with increased solubility and controlled release of olive leaf phenolic compounds through their nano-encapsulation, a higher antioxidant activity was achieved.

  17. CNS Depressant and Antinociceptive Effects of Different Fractions of Pandanus Foetidus Roxb. Leaf Extract in Mice

    PubMed Central

    RAHMAN, Md Mominur; UDDIN, Muhammad Erfan; ISLAM, Abu Mohammed Taufiqual; CHOWDHURY, Md Ashraf Uddin; RAHMAN, Md Atiar

    2015-01-01

    Background: Various parts of Pandanus foetidus Roxb. are used as traditional medicines. However, scientific reports concerning the effect of this plant on central nervous system (CNS) depression and analgesia are unavailable. This study investigated the CNS depressant and antinociceptive effects of Pandanus foetidus leaf extracts in a rodent model. Methods: The sedative and anxiolytic activities of Pandanus foetidus extract (500 g) were tested using behavioural models of Swiss albino mice, and the analgesic activity was assessed by formalin-induced pain and tail immersion tests at 200 mg/kg body weight of the mice. The data were analysed by a one-way ANOVA, a repeated measure of ANOVA and a non-parametric test (Kruskal-Wallis test) using the SPSS software. Acute toxicity was tested using an established method. Results: Compared with the aqueous fraction, the methanol, petroleum ether and chloroform fractions of the extract exhibited a more significant (P < 0.001) reduction of locomotor activity in the mice in the open field, hole-cross, and elevated plus maze (EPM). The methanol fraction maximized the duration of sleeping time caused by the thiopental sodium induction. The extract produced a significant step-down in pain, as shown by the paw licking time in the early and late phases of the formalin test. In the tail immersion test, the chloroform fraction maximally reduced the heat-induced analgesia. The extract was found to be non toxic. Conclusion: The methanol, petroleum ether, and chloroform fractions of P. foetidus have strong CNS depressant and antinociceptive effects and thus merit further pharmaceutical studies. PMID:26715894

  18. Comparison of the antibacterial efficiency of neem leaf extracts, grape seed extracts and 3% sodium hypochlorite against E. feacalis – An in vitro study

    PubMed Central

    Ghonmode, Wasudeo Namdeo; Balsaraf, Omkar D; Tambe, Varsha H; Saujanya, K P; Patil, Ashishkumar K; Kakde, Deepak D

    2013-01-01

    Background: E. faecalis is the predominant micro-organism recovered from root canal of the teeth where previous endodontic treatment has failed. Thorough debridement and complete elimination of micro-organisms are objectives of an effective endodontic treatment. For many years, intracanal irrigants have been used as an adjunct to enhance antimicrobial effect of cleaning and shaping in endodontics. The constant increase in antibiotic-resistant strains and side-effects of synthetic drugs has promoted researchers to look for herbal alternatives. For thousands of years humans have sought to fortify their health and cure various illnesses with herbal remedies, but only few have been tried and tested to withstand modern scientific scrutiny. The present study was aimed to evaluate alternative, inexpensive simple and effective means of sanitization of the root canal systems. The antimicrobial efficacy of herbal alternatives as endodontic irrigants is evaluated and compared with the standard irrigant sodium hypochlorite. Materials & Methods: Neem leaf extracts, grape seed extracts, 3% Sodium hypochlorite, absolute ethanol, Enterococcus faecalis (ATCC 29212) cultures, Brain heart infusion media. The agar diffusion test was performed in brain heart infusion media and broth. The agar diffusion test was used to measure the zone of inhibition. Results: Neem leaf extracts and grape seed extracts showed zones of inhibition suggesting that they had anti-microbial properties. Neem leaf extracts showed significantly greater zones of inhibition than 3% sodium hypochlorite. Also interestingly grape seed extracts showed zones of inhibition but were not as significant as of neem extracts. Conclusion: Under the limitations of this study, it was concluded that neem leaf extract has a significant antimicrobial effect against E. faecalis. Microbial inhibition potential of neem leaf extract observed in this study opens perspectives for its use as an intracanal medication. How to cite this

  19. Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts - an in vitro study

    PubMed Central

    2013-01-01

    Background The use of traditional medicine at the primary health care level is widespread and plant-based treatments are being recommended for curing various diseases by traditional medical practitioners all over the world. The phytochemicals present in the fruits, vegetables and medicinal plants are getting attention day-by-day for their active role in the prevention of several human diseases. Abrus precatorius is a widely distributed tropical medicinal plant with several therapeutic properties. Therefore in the present study, A. precatorius leaf extracts were examined for their antioxidant and cytotoxic properties in vitro in order to discover resources for new lead structures or to improve the traditional medicine. Methods In this study, antioxidant and antiproliferative properties of the different leaf extracts (hexane, ethyl acetate, ethanol and water) from A. precatorius were investigated along with the quantification of the polyphenol and flavonoid contents. The ability of deactivating free radicals was extensively investigated with in vitro biochemical methods like DPPH•, •OH, NO, SO2- scavenging assays and inhibition capability of Fe(II)-induced lipid peroxidation. Furthermore, antiproliferative activities using different human cancer cell lines and primary cell line was carried out by MTT method. Results Total phenolic content and total flavonoid content of the extracts were found in the range of 1.65 ± 0.22 to 25.48 ± 0.62 GAE mg/g dw and 6.20 ± 0.41 to 17.16 ± 1.04 QE mg/g dw respectively. The experimental results further revealed that A. precatorius extracts showed strong antiradical properties, capable to chelate Fe2+ and possess good inhibition ability of lipid peroxidation. In addition, as a first step towards the identification of phytoconstituents endowed with potent chemopreventive activities, we evaluated the inhibitory effects of A. precatorius extracts on the proliferation of four different human tumour cell lines such

  20. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower.

    PubMed

    Aidi Wannes, Wissem; Mhamdi, Baya; Sriti, Jazia; Ben Jemia, Mariem; Ouchikh, Olfa; Hamdaoui, Ghaith; Kchouk, Mohamed Elyes; Marzouk, Brahim

    2010-05-01

    This study was designed to examine the chemical composition and antioxidant activity of the essential oils and methanol extracts of Myrtus communis var. italica L. leaf, stem and flower. Myrtle leaf and flower were the valuable organs for the essential oil production representing a yield of 0.61% and 0.30% (w/w), respectively. The essential oil composition of myrtle leaf and flower was characterized by high proportions of alpha-pinene, the main compound of monoterpene hydrocarbon class, with 58.05% for leaf and 17.53% for flower. Stem was rich in oxygenated monoterpenes, largely due to 1,8-cineole with 32.84%. The total phenol contents varied between different myrtle parts; leaf extract had higher total phenol content (33.67 mg GAE/g) than flower (15.70 mg GAE/g) and stem (11.11 mg GAE/g) extracts. Significant differences were also found in total tannin contents among different myrtle parts, representing 26.55 mg GAE/g in leaf, 11.95 mg GAE/g in flower, 3.33 mg GAE/g in stem. The highest contents of total flavonoids and condensed tannins were observed in stem (5.17 and 1.99 mg CE/g, respectively) and leaf (3 and 1.22 mg CE/g, respectively) extracts. The HPLC analysis indicated that the main phenolic class was hydrolysable tannins (gallotannins) in leaf (79.39%, 8.90 mg/g) and flower (60.00%, 3.50mg/g) while the stem was characterized by the predominance of flavonoid class (61.38%, 1.86 mg/g) due to the high presence of catechin (36.91%, 1.12 mg/g). Antioxidant activities of the essential oil and the methanolic extract from different myrtle parts were evaluated by using DPPH radical scavenging, beta-carotene-linoleic acid bleaching, reducing power and metal chelating activity assays. In all tests, methanolic extracts of different myrtle parts showed better antioxidant activity than essential oils.

  1. Larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and the microbial insecticide Metarhizium anisopliae (Metsch.) against lymphatic filarial vector, Culex quinquefasciatus..

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the mosquitocidal properties of Acalypha alnifolia leaf extract combined with the use of Metarizhium anisopliae spores for control of the lymphatic filariasis vector Culex quinquefasciatus. The methanolic leaf extract showed larvicidal and pupicidal effects after 24...

  2. Larvicidal and pupicidal properties of Acalypha alnifolia Klein ex willd.(Euphorbiaceae) leaf extract and the microbial insecticide Metarhizium anisopliae (Metsch.) against lymphatic filarial vector, Culex quinquefasciatus Sa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the mosquitocidal properties of Acalypha alnifolia leaf extract combined with the use of Metarizhium anisopliae spores for control of the lymphatic filariasis vector Culex quinquefasciatus. The methanolic leaf extract showed larvicidal and pupicidal effects after 24...

  3. Aqueous leaf extracts display endocrine activities in vitro and disrupt sexual differentiation of male Xenopus laevis tadpoles in vivo.

    PubMed

    Hermelink, Björn; Urbatzka, Ralph; Wiegand, Claudia; Pflugmacher, Stephan; Lutz, Ilka; Kloas, Werner

    2010-09-01

    The occurrence of natural substances acting as endocrine disrupting compounds (EDC) in the environment is to date poorly understood. Therefore, (anti)androgenic and (anti)estrogenic activities of three different aqueous leaf extracts (beech, reed and oak) were analyzed in vitro using yeast androgen and estrogen screen. The most potent extract was selected for in vivo exposure of Xenopus laevis tadpoles to analyze the potential effects on development and reproductive biology of amphibians. Tadpoles were exposed from stage 48 to stage 66 (end of metamorphosis) to aqueous oak leaf extracts covering natural occurring environmental concentrations of dissolved organic carbon. Gene expression analyses of selected genes of the hypothalamus-pituitary-gonad and of the hypothalamus-pituitary-thyroid axis as well as histological investigation of gonads and thyroid glands were used to evaluate endocrine disrupting effects on the reproductive biology and development. Female tadpoles remained unaffected by the exposure whereas males showed severe significant histological alterations of testes at the two highest oak leaf extract concentrations demonstrated by the occurrence of lacunae and oogonia. In addition, a significant elevation of luteinizing hormone beta mRNA expression with increasing extract concentration in male tadpoles indicates an involvement of hypothalamus-pituitary-gonad axis mainly via antiandrogenic activity. These results suggest that antiandrogenic EDC of oak leaf extract are responsible for inducing the observed effects in male tadpoles. The present study demonstrates for the first time that in surface waters, natural occurring oak leaf compounds at environmentally relevant concentrations display antiandrogenic activities and have considerable effects on the endocrine system of anurans affecting sexual differentiation of male tadpoles.

  4. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes.

    PubMed

    Ibrahim, Doaa S

    2017-02-01

    The central nervous system is one of the most vulnerable organs affected by the oxidative stress associated with diabetes mellitus. Healthy food provides an important source for antioxidants. Therefore, the protective effect of Cucumis melo var. flexuosus (C. melo var. flexuosus) leaf extract on the brains of diabetic rats was investigated. Adult male albino rats divided into 5 groups of 6 rats each were assigned into a normal control group and four diabetic groups. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg bw). One of the four diabetic groups was left untreated and was considered as a diabetic control group while the three other groups were treated with C. melo var. flexuosus leaf extract at the doses of 30, 60 and 120 mg/kg bw for a period of 30 days. After completion of experimental duration plasma and brains were used for evaluating biochemical changes. The obtained data showed that C. melo var. flexuosus leaf extract treatment lowered blood glucose, glycated hemoglobin, brain tumor necrosis factor-alpha, interleukin levels, brain malondialdehyde content and caspase-3 activity. Furthermore, the treatment resulted in a marked increase in plasma dopamine, melatonin, brain vascular endothelial growth factor-A levels, brain catalase and superoxide dismutase activities. From the present study, it can be concluded that the C. melo var. flexuosus leaf extract exerts a neuroprotective effect against oxidative damage associated with diabetes.

  5. Oreochromis mossambicus diet supplementation with Psidium guajava leaf extracts enhance growth, immune, antioxidant response and resistance to Aeromonas hydrophila.

    PubMed

    Gobi, Narayanan; Ramya, Chinnu; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Murugan, Kadarkarai; Benelli, Giovanni

    2016-11-01

    In this research, we focused on the efficacy of aqueous and ethanol leaf extracts of Psidium guajava L. (guava) based experimental diets on the growth, immune, antioxidant and disease resistance of tilapia, Oreochromis mossambicus following challenge with Aeromonas hydrophila. The experimental diets were prepared by mixing powdered (1, 5 and 10 mg/g) aqueous and ethanol extract of guava leaf with commercial diet. The growth (FW, FCR and SGR), non-specific cellular immune (myeloperoxidase activity, reactive oxygen activity and reactive nitrogen activity) humoral immune (complement activity, antiprotease, alkaline phosphatase activity and lysozyme activity) and antioxidant enzyme responses (SOD, GPX, and CAT) were examined after 30 days of post-feeding. A significant enhancement in the biochemical and immunological parameters of fish were observed fed with experimental diets compared to control. The dietary supplementation of P. guajava leaf extract powder for 30 days significantly reduced the mortality and increased the disease resistance of O. mossambicus following challenge with A. hydrophila at 50 μl (1 × 10(7) cells ml(-1)) compared to control after post-infection. The results suggest that the guava leaf extract could be used as a promising feed additive in aquaculture.

  6. In vitro evaluation of genotoxicity of avocado (Persea americana) fruit and leaf extracts in human peripheral lymphocytes.

    PubMed

    Kulkarni, Paresh; Paul, Rajkumar; Ganesh, N

    2010-07-01

    Persea americana is much sought after both for the nutritional value of its fruit and the medicinal values of its various plant parts. A chromosomal aberration assay was undertaken to evaluate the potential genotoxicity of crude extracts from avocado fruits and leaves. Chromosomal aberrations were observed in cultured human peripheral lymphocytes exposed to separately increasing concentrations of 50% methanolic extracts of Persea americana fruit and leaves. The groups exposed to leaf and fruit extracts, respectively, showed a concentration-dependent increase in chromosomal aberrations as compared to that in a control group. The mean percentage total aberrant metaphases at 100 mg/kg, 200 mg/kg, and 300 mg/kg concentrations of leaf extract were found respectively to be 58 ± 7.05, 72 ± 6.41, and 78 ± 5.98, which were significantly higher (p < 0.0001 each) than that in the control group (6 ± 3.39). The mean percentage total aberrant metaphases at 100 mg/kg, 200 mg/kg, and 300 mg/kg concentrations of fruit extract were found to be 18 ± 5.49, 40 ± 10.00, and 52 ± 10.20, respectively, which were significantly higher (p = 0.033, p < 0.0001, and p < 0.0001, respectively) than that for control (6 ± 3.39). Acrocentric associations and premature centromeric separation were the two most common abnormalities observed in both the exposed groups. The group exposed to leaf extracts also showed a significant number of a variety of other structural aberrations, including breaks, fragments, dicentrics, terminal deletion, minutes, and Robertsonian translocations. The group exposed to leaf extract showed higher frequency of all types of aberrations at equal concentrations as compared to the group exposed to fruit extract.

  7. Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model.

    PubMed

    Singh, Vineet Kumar; Dwivedi, Padmanabh; Chaudhary, B R; Singh, Ramesh

    2015-01-01

    Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1-200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68 μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function

  8. Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model

    PubMed Central

    Dwivedi, Padmanabh; Chaudhary, B. R.

    2015-01-01

    Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1–200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function

  9. Anticoccidial effects of Aloe secundiflora leaf extract against Eimeria tenella in broiler chicken.

    PubMed

    Kaingu, Fredrick; Liu, Dandan; Wang, Lele; Tao, Jianping; Waihenya, Rebecca; Kutima, Helen

    2017-04-01

    Anticoccidial effects of Aloe secundiflora crude leaf extract was tested in broiler chickens following oral infection with Eimeria tenella. Sixty 22-day-old birds were divided into six groups of ten birds each. Three treatment groups A, B, and C were fed with the extract (100, 250, and 500 mg/day, respectively) mixed in feed for 10 days, and three control groups: group D (drug control) administered 300 mg/l of sulfachloropyrazine sodium soluble powder in drinking water for 5 days, group E (infected/non-medicated positive control), and group F (uninfected/non-medicated negative control). Except for group F, all groups were orally inoculated with 75,000 sporulated oocysts of E. tenella. The effects of the extract on E. tenella infection were evaluated by severity of bloody diarrhea, body weight (BW) gain, oocyst output, and lesion score. No bird in the treated groups died of coccidiosis, and severity of bloody diarrhea was milder than in the positive control group. BW gains in the treated groups were significantly higher than in group E (p < 0.05). The lesion scores of the treated groups were significantly lower than that of group E. Oocyst output in groups A, B, and C were 11.23, 8.24, and 6.82 × 10(6), respectively. As compared with the negative control group (12.84 × 10(6)), the reductions in oocyst production were 12.54, 35.83, and 46.88%, respectively. Oocyst output significantly reduced with an increase in Aloe dosage. The findings of this study suggest that Aloe secundiflora extract presents an alternative anticoccidial agent for the control of avian coccidiosis.

  10. Anti-photoaging capability of antioxidant extract from Camellia japonica leaf.

    PubMed

    Mizutani, Taeko; Masaki, Hitoshi

    2014-10-01

    It is well known that the Camellia japonica leaf exhibits antioxidant activity because of its high content of polyphenolic compounds. Thus, the extract prepared from mature leaves of C. japonica (CJML) has been widely used as an anti-ageing material in foods and cosmetics. Concerning the process of growing C. japonica, it is expected that the extract from green leaves (CJGL) has superior effects compared with that from mature leaves. However, there are few reports that discuss the difference between green and mature leaves. In this study, both CJML and CJGL were extracted with 50% 1,3-butylene glycol (1,3-BG) and used for investigations. In a chemical examination, we compared both extracts in terms of scavenging activities against hydrogen peroxide (H2 O2 ) and hydroxyl radicals. CJGL exhibited higher scavenging activities against both types of ROSs compared with CJML. In addition, CJGL reduced the carbonylation of tape-stripped stratum corneum (SC) after UVB irradiation. In a biological study, the intra-cellular ROS level of HaCaT keratinocytes precultured with CJGL for 24 h was significantly lower than that of the control cells. Furthermore, cell damage induced by H2 O2 exposure was attenuated by 24 h precultivation with CJGL but not by 2 h precultivation. The results of examinations indicate that CJGL possess properties that reduce oxidative stress. In addition, the result of 2 h precultivation with CJGL suggests that CJGL might affect the status of intra-cellular antioxidants.

  11. Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: involvement of nitrergic and opioidergic systems.

    PubMed

    Fakhraei, Nahid; Abdolghaffari, Amir Hossein; Delfan, Bahram; Abbasi, Ata; Rahimi, Nastaran; Khansari, Azadeh; Rahimian, Reza; Dehpour, Ahmad Reza

    2014-09-01

    The aim of the present study is to investigate the possible protective effect of dry olive leaf extract (OLE) against acetic acid-induced ulcerative colitis in rats, as well as the probable modulatory effect of nitrergic and opioidergic systems on this protective impact. Olive leaf extract was administered (250, 500 and 750 mg/kg) orally for two successive days, starting from the colitis induction. To assess the involvement of nitrergic and opioidergic systems in the possible protective effect of OLE, L-NG-Nitroarginine Methyl Ester (10 mg/kg) and naltrexone (5 mg/kg) intraperitoneal (i.p.) were applied 30 min before administration of the extract for two successive days, respectively. Colonic status was investigated 48 h following induction through macroscopic, histological and biochemical analyses. Olive leaf extract dose-dependently attenuated acetic acid-provoked chronic intestinal inflammation. The extract significantly reduces the severity of the ulcerative lesions and ameliorated macroscopic and microscopic scores. These observations were accompanied by a significant reduction in the elevated amounts of TNF-α and interlukin-2 markers. Moreover, both systems blockage reversed protective effects of OLE in the rat inflammatory bowel disease model. These finding demonstrated, for the first time, a possible role for nitrergic and opioidergic systems in the aforementioned protective effect, and the extract probably exerted its impact increasing nitric oxide and opioid tones.

  12. Extract of Azadirachta indica (Neem) Leaf Induces Apoptosis in 4T1 Breast Cancer BALB/c Mice

    PubMed Central

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Fakurazi, Sharida; Pei Pei, Chong

    2011-01-01

    Objective: Azadirachta indica (Neem) has been used traditionally for many centuries. Some impressive therapeutic qualities have been discovered. However, the therapeutic effect of neem leaf extract in 4T1 breast cancer has not been documented. The purpose of the present study is to investigate the therapeutic effect of ethanolic Neem leaf extract in an in vivo 4T1 breast cancer model in mice. Materials and Methods: A total of 84 female BALB/c mice were divided randomly into 7 groups (3 non-cancerous groups and 4 cancerous groups) consisting of 12 mice per group. The 3 non-cancerous groups were normal mice treated with 0.5% of Tween 20 in phosphate buffer saline (PBS) (NC), 250 mg/kg Neem (N250) or 500 mg/kg Neem (N500). The 4 cancerous groups were; cancer controls treated with 0.5% of Tween 20 in PBS (CC), and cancerous mice treated with 0.5 µg/mL tamoxifen citrate (CT), 250 mg/kg Neem leaf extract (CN 250) or 500 mg/kg Neem leaf extract (CN 500). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used to evaluate apoptosis (cell death) in the breast cancer tissues. SPSS software, version 14 was used for statistical analysis. Statistical significance was defined as p≤0.05. Non parametric analysis of variance (ANOVA) was performed with the Kruskal Wallis test for the TUNEL assays. Parametric data among the groups was compared using ANOVA. Results: TUNEL assays showed that the CN 250 and CN 500 groups had a higher incidence of apoptosis compared with the cancer controls. Conclusion: The findings showed that neem leaf extract induces apoptosis in 4T1 breast cancer BALB/c mice. PMID:23507990

  13. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf.

    PubMed

    Oboh, G; Raddatz, H; Henle, T

    2009-01-01

    Corchorus olitorius (jute) is a native plant of tropical Africa and Asia, and has since spread to Australia, South America and some parts of Europe. Its leafy vegetable is popularly used in soup preparation and folk medicine for the treatment of fever, chronic cystitis, cold and tumours. A comparative study of the antioxidant properties of hydrophilic extract (HE) and lipophilic extract (LE) constituents of the leafy vegetable has been assessed. HE and LE of the leaf were prepared using water and hexane, respectively and their antioxidant properties were determined. HE had a significantly higher (P<0.05) 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability (aqueous, 9.6-84.4%; hexane, 2.0-20.4%), reducing power (aqueous, 0.67 mmol ascorbic acid equivalent/g; hexane, 0.49 mmol ascorbic acid equivalent/g) and trolox equivalent antioxidant capacity (aqueous, 2.3 mmol/g; hexane, 1.1 mmol/g) than LE; conversely, LE had a significantly higher (P<0.05) OH. scavenging activity (44.5-46.2%) than HE (11.6-32.3%), while there was no significant difference (P>0.05) in their Fe(II) chelating ability (HE, 57.7-66.7%; LE, 56.4-61.1%). The higher 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, reducing power and trolox equivalent antioxidant capacity of the hydrophilic extract may be due to its significantly higher (P<0.05) total phenol (630.8 mg/100 g), total flavonoid (227.8 mg/100 g) and non-flavonoid polyphenols (403.0 mg/100 g), and its high ascorbic acid content (32.6 mg/100 g). While the higher OH. scavenging ability of LE may be due to its high total carotenoid content (42.5 mg/100 g). Therefore, the additive/synergistic antioxidant activities of the hydrophilic and lipophilic constituents may contribute to the medicinal properties of C. olitorius leaf.

  14. Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats

    PubMed Central

    Nfambi, Joshua; Bbosa, Godfrey S.; Sembajwe, Lawrence Fred; Gakunga, James; Kasolo, Josephine N.

    2015-01-01

    Background Globally, Moringa oleifera is used by different communities to treat various ailments including modulation of the immune system though with limited scientific evidence. Aim To study the immunomodulatory activity of M. oleifera methanolic leaf extract in Wistar albino rats. Methods An experimental laboratory-based study was done following standard methods and procedures. Nine experimental groups (I, II, III, IV, V, VI, VII, VIII, IX) each comprising of six animals were used. Group I received normal saline. Groups II to IX received 200 mg/kg bwt cyclophosphamide at the beginning of the study. Group III received 50 mg/kg bwt of an immunostimulatory drug levamisole. Groups IV to IX were dosed daily for 14 days with extract at doses of 250, 500, and 1000 mg/kg bwt, respectively, using an intragastric tube. Complete blood count (CBC), delayed-type hypersensitivity reaction (DTH), neutrophil adhesion test, and hemagglutination antibody titer were determined using standard methods and procedures. Statistical analysis was performed using GraphPad prism 5.0a Software. Results There was an increment in WBC, lymphocyte, and neutrophil counts at a dose of 1000 mg/kg bwt similar to the levamisole-positive control group. The neutrophil adhesion was statistically significant (p ≤ 0.05) for treatment groups that received 1000 mg/kg bwt (29.94%) and 500 mg/kg bwt at 17.28%. The mean percentage increment in footpad thickness was highest (26.9%) after 8 h of injection of antigen in the footpad of rats dosed 500 mg/kg bwt and this later reduced to 25.6% after 24 h. There was a dose-dependent increment in the mean hemagglutination antibody titer to sheep red blood cells (SRBC) from 10.73±0.57 HA units/μL for the 250 mg/kg bwt to 26.22±1.70 HA units/μL for the 1000 mg/kg bwt. Conclusions Methanolic leaf extract of M. oleifera caused a significant immunostimulatory effect on both the cell-mediated and humoral immune systems in the Wistar albino rats. PMID:26103628

  15. Morinda citrifolia Linn leaf extract possesses antioxidant activities and reduces nociceptive behavior and leukocyte migration.

    PubMed

    Serafini, Mairim Russo; Santos, Rodrigo Correia; Guimarães, Adriana Gibara; Dos Santos, João Paulo Almeida; da Conceicão Santos, Alan Diego; Alves, Izabel Almeida; Gelain, Daniel Pens; de Lima Nogueira, Paulo Cesar; Quintans-Júnior, Lucindo José; Bonjardim, Leonardo Rigoldi; de Souza Araújo, Adriano Antunes

    2011-10-01

    Herbal drugs have been used since ancient times to treat a wide range of diseases. Morinda citrifolia Linn (popularly known as "Noni") has been used in folk medicine by Polynesians for over 2,000 years. It is reported to have a broad range of therapeutic effects, including effects against headache, fever, arthritis, gingivitis, respiratory disorders, infections, tuberculosis, and diabetes. The aim of this study was to investigate the antioxidant, anti-inflammatory, antinociceptive, and antibacterial properties of the aqueous extract from M. citrifolia leaves (AEMC). Antioxidant activity was observed against lipid peroxidation, nitric oxide, and hydroxyl radicals. The antinociceptive effect of AEMC was observed in the acetic acid-induced writhing test at the higher dose. Moreover, AEMC significantly reduced the leukocyte migration in doses of 200 and 400 mg/kg and showed mild antibacterial activity. Together, the results suggest that properties of M. citrifolia leaf extract should be explored further in order to achieve newer tools for managing painful and inflammation conditions, including those related to oxidant states.

  16. Repellent, antifeedant, and toxic activities of Lantana camara leaf extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae).

    PubMed

    Yuan, Zhonglin; Hu, Xing Ping

    2012-12-01

    This study investigated biological activity of chloroform extract of dry Lantana camara 'Mozelle' leaves against the eastern subterranean termite, Reticulitermes flavipes (Kollar), an important structural pest. Repellent activity was assessed using a paper-disc choice test and a sand arena choice test. Antifeedant and toxic properties were assessed using a no-choice paper test and a topical application method. In the choice tests, significantly fewer termites made contact with treated paper-discs at test concentrations > or = 0.016 mg/cm2 (equivalent to 0.0023 wt:wt) or tunneled into treated sand at test concentrations > or = 0.125 mg/g, compared with control. In the no-choice tests, termite feeding activity was significantly reduced and termite mortality was greatly increased in treatments than control. Exposure to filter paper treated at 0.212 and 0.106 mg/cm2 (equivalent to 0.03 and 0.015 wt:wt) resulted in > 90% mortality and 78% reduction in feeding, and approximately 52% mortality and 40% reduction in feeding, respectively. Top-dorsal application led to > 60% mortality at 4 microg/termite. This study showed that the chloroform leaf extract of L. camara had excellent repellent and moderate toxic and antifeedant activities.

  17. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    PubMed

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent.

  18. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats.

    PubMed

    Chaturvedi, Adya P; Kumar, Mohan; Tripathi, Yamini B

    2013-12-01

    Wound healing is a fundamental response to tissue injury and natural products accelerate the healing process. Here, we have explored the efficacy of topical administration of an ointment, prepared by methanolic extract of Jasminum grandiflorum L. (Oleaceae) leaves, on cutaneous wound healing in rats. The topical application of the Jasminum ointment on full thickness excision wounds accelerated the healing process. Tissue growth and collagen synthesis were significantly higher determined by total hydroxyl proline, hexosamine, protein and DNA content. The response was concentration- and time-dependent, when observed on days 4, 8 and 12 after wound creation. The rate of wound healing was faster as determined by wound contraction, tensile strength and other histopathological changes. In addition, this ointment also raised the activity of superoxide dismutase (SOD) and catalase (CAT) with high GSH content and low lipid peroxidation products in wound tissue. Thus, it could be suggested that the ointment from the methanolic extract of J. grandiflorum leaf improves the rate of wound healing by enhancing the rate of collagen synthesis and also by improving the antioxidant status in the newly synthesised healing wound tissue.

  19. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.)

    PubMed Central

    Mohanta, Yugal K.; Panda, Sujogya K.; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K.; Mohanta, Tapan K.

    2017-01-01

    In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent. PMID:28367437

  20. Olive (Olea europaea L.) leaf extract counteracts genotoxicity and oxidative stress of permethrin in human lymphocytes.

    PubMed

    Türkez, Hasan; Toğar, Başak

    2011-10-01

    The aim of this study was to investigate the protective effects of olive leaf extract (OLE) on genotoxicity and oxidative damage in cultured human blood cells treated with permethrin (PM) in the presence of a rat liver S9 mix containing cytochrome P 450 enzymes. Anti-genotoxic activities of OLE were studied using sister chromatid exchange (SCE) and chromosome aberration (CA) tests and furthermore total antioxidant capacity (TAC) and total oxidative status (TOS) were examined to determine the oxidative damage. Our results clearly revealed that treatment with PM (200 mg/l) alone increased SCE and CA rates and TOS level, decreased TAC level in cultured human blood cells. The OLE alone at the all tested doses did not induce any significant changes in the genotoxicity endpoint. However OLE leads to increases of plasma TAC level in vitro. OLE starts showing this positive effect at 100 mg/l. The combined treatment showed significant improvements in cytogenetic and biochemical parameters tested. Moreover, this improvement was more pronounced in the group received the high dose of the OLE. It could be concluded that the ethanol extract of OLE induced its genoprotective effect via the increase in the antioxidant capacity, inhibition of oxidative stress and scavenging of free radicals.

  1. Hypoglycemic effects of aqueous persimmon leaf extract in a murine model of diabetes.

    PubMed

    Bae, Ui-Jin; Park, Soo-Hyun; Jung, Su-Young; Park, Byung-Hyun; Chae, Soo-Wan

    2015-08-01

    Previously, powdered persimmon leaves have been reported to have glucose- and lipid-lowering effects in diabetic (db/db) mice. As persimmon leaf is commonly consumed as tea, an aqueous extract of persimmon leaves (PLE) was prepared and its anti-diabetic efficacy was investigated. In the present study, PLE was tested for its inhibitory activity on α-glucosidase in vitro. An oral maltose tolerance test was performed in diabetic mice. Next, the acute effect of PLE was examined in streptozotocin-induced diabetic mice. Last, the long-term effect of PLE supplementation was assessed in db/db after eight weeks. An oral glucose tolerance test, biochemical parameters, as well as histological analyses of liver and pancreas were evaluated at the end of the study. PLE inhibited α-glucosidase activity and increased antioxidant capacity. Streptozotocin-induced diabetic mice pre-treated with PLE displayed hypoglycemic activity. Daily oral supplementation with PLE for eight weeks reduced body weight gain without affecting food intake, enhanced the glucose tolerance during the oral glucose tolerance test (OGTT), improved blood lipid parameters, suppressed fat accumulation in the liver and maintained islet structure in db/db mice. Further mechanistic study showed that PLE protected pancreatic islets from glucotoxicity. In conclusion, the results of the present study indicated that PLE exhibits considerable anti-diabetic effects through α-glucosidase inhibition and through the maintenance of functional β-cells. These results provided a rationale for the use of persimmon leaf tea for the maintenance of normal blood glucose levels in diabetic patients.

  2. Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats

    PubMed Central

    Hassanpour Fard, Mohammad; Naseh, Ghodratollah; Lotfi, Nassim; Hosseini, Seyed Mahmoud; Hosseini, Mehran

    2015-01-01

    Objectives: Turnip leaf has been used in folk medicine of Iran for the treatment of diabetes. However,so far no scientific study has been done to support its use in traditional medicine. The present study was carried out to evaluate the possible hypoglycemic efficacy of aqueous extract of turnip leaf (AETL) in diabetic rats. Materials and Methods: Alloxan-induced diabetic rats were orally treated with AETL at doses of 200 and 400 mg/kg body weight (bw) per day for 28 days. In order to evaluate the anti-diabetic activity, fasting blood glucose concentrations were determined on the 1st, 14th and 29th days. Moreover,at the end of the study, plasma concentrations of total cholesterol, triglyceride (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), aspartate amino transfarase (AST), and alanine amino transferase (ALT) were measured by the use of standard kits and auto-analyzer. Results: Both doses of AETL significantly decreased (p<0.001) blood glucose and ALT levels in diabetic rats after 28 days of administration. AETL at both doses decreased (p<0.05) plasma total cholesterol and LDL-c in diabetic rats, but they significantly decreased (p<0.05) HDL-c and increased triglycerideand AST levels in a-dose dependent manner. Conclusion: The results showed that AETL has a dose- dependent decrease in the blood glucose in diabetic rats. However,we should not be unaware of adverse effects of AETL on lipid profiles and liver enzymes activity, especially decrease of HDL and increase of TG and AST. PMID:25949956

  3. Fractions of an antimalarial neem-leaf extract have activities superior to chloroquine, and are gametocytocidal.

    PubMed

    Udeinya, I J; Brown, N; Shu, E N; Udeinya, F I; Quakeyie, I

    2006-01-01

    The antimalarial activities of two fractions (IRDN-A and IRDN-B) of an extract from the leaves of the neem tree (Azadirachta indica) were compared with those of chloroquine, in in-vitro assays against Plasmodium falciparum. The asexual stages of a chloroquine-sensitive clone (ITG2F6) and a chloroquine-resistant isolate (W2) and the gametocytes of the NF 54 (BD-7) isolate of P. falciparum were used as the drug targets. Activity against the asexual stages was generally evaluated as the concentrations inhibiting the parasitaemias recorded in the control cultures, after an incubation of 48-72 h, by 50% (IC50) or 100% (IC100). For the ITG2F6 strain, the IC50 and IC100 (in microg/ml) were, respectively, 10(-5) and 10(-4) for IRDN-A, 10(-3) and 10(-2) for IRDN-B, and 10(-2) and 1.0 for chloroquine. The corresponding values for the W2 strain were 10(-5) and 1.0 for IRDN-A, and 10.0 and >100 for chloroquine (even at 100 microg/ml, chloroquine only inhibited the parasitaemia by 85%). Each of the two neem-leaf fractions lysed 50% and 100% of developing gametocytes, at 10(-3) and 1.0 microg/ml, respectively; and 50% and 100% of mature gametocytes at 10(-3) and 10(2) microg/ml, respectively. If they are found safe and effective in vivo, the neem-leaf fractions may form the basis of new antimalarial drugs that not only cure chloroquine-sensitive and chloroquine-resistant malaria but also markedly reduce transmission.

  4. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.

    PubMed

    Tounekti, Taïeb; Hernández, Iker; Müller, Maren; Khemira, Habib; Munné-Bosch, Sergi

    2011-10-01

    A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems.

  5. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata leaf extract obtained by subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Susanti, R. F.; Natalia, Desy

    2016-11-01

    In traditional medicine, Physalis angulata which is well known as ceplukan in Indonesia, has been utilized to cure several diseases by conventional extraction in hot water. The investigation of the Swietenia mahagoni extract activity in modern medicine typically utilized organic solvents such as ethanol, methanol, chloroform and hexane in extraction. In this research, subcritical water was used as a solvent instead of organic solvent to extract the Pysalis angulata leaf part. The focus of this research was the investigation of extract drying condition in the presence of filler to preserve the quality of antioxidant in Swietenia mahagoni extract. Filler, which is inert, was added to the extract during drying to help absorb the water while protect the extract from exposure in heat during drying. The effects of filler types, concentrations and oven drying temperatures were investigated to the antioxidant quality covering total phenol and antioxidant activity. Aerosil and microcrystalline cellulose (MCC) were utilized as fillers with concentration was varied from 0-30 wt% for MCC and 0-15 wt% for aerosil. The oven drying temperature was varied from 40-60 oC. The results showed that compare to extract dried without filler, total phenol and antioxidant activity were improved upon addition of filler. The higher the concentration of filler, the better the antioxidant; however it was limited by the homogeneity of filler in the extract. Both of the variables (oven temperature and concentration) played an important role in the improvement of extract quality of Swietenia mahagoni leaf. It was related to the drying time which can be minimized to protect the deterioration of extract from heat. In addition, filler help to provide the powder form of extract instead of the typical extract form which is sticky and oily.

  6. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    SciTech Connect

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok; Srikanth, Rapole; Kumar, Ameeta Ravi; Gosavi, Suresh; Zinjarde, Smita

    2013-03-15

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphous layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.

  7. Inhibitive Effects of Mulberry Leaf-Related Extracts on Cell Adhesion and Inflammatory Response in Human Aortic Endothelial Cells

    PubMed Central

    Chao, P.-Y.; Lin, K.-H.; Chiu, C.-C.; Yang, Y.-Y.; Huang, M.-Y.; Yang, C.-M.

    2013-01-01

    Effects of mulberry leaf-related extracts (MLREs) on hydrogen peroxide-induced DNA damage in human lymphocytes and on inflammatory signaling pathways in human aortic endothelial cells (HAECs) were studied. The tested MLREs were rich in flavonols, especially bombyx faces tea (BT) in quercetin and kaempferol. Polyphenols, flavonoids, and anthocyanidin also abounded in BT. The best trolox equivalent antioxidant capacity (TEAC) was generated from the acidic methanolic extracts of BT. Acidic methanolic and water extracts of mulberry leaf tea (MT), mulberry leaf (M), and BT significantly inhibited DNA oxidative damage to lymphocytes based on the comet assay as compared to the H2O2-treated group. TNF-α-induced monocyte-endothelial cell adhesion was significantly suppressed by MLREs. Additionally, nuclear factor kappa B (NF-κB) expression was significantly reduced by BT and MT. Significant reductions were also observed in both NF-κB and activator protein (AP)-1 DNA binding by MLREs. Significant increases in peroxisome proliferator-activated receptor (PPAR) α and γ DNA binding by MLREs were also detected in M and MT extracts, but no evidence for PPAR α DNA binding in 50 μg/mL MT extract was found. Apparently, MLREs can provide distinct cytoprotective mechanisms that may contribute to its putative beneficial effects on suppressing endothelial responses to cytokines during inflammation. PMID:24371453

  8. Neuroprotective effect of Moringa oleifera leaf extract on aluminium-induced temporal cortical degeneration.

    PubMed

    Ekong, Moses B; Ekpo, Mfon M; Akpanyung, Edet O; Nwaokonko, Dennis U

    2017-04-11

    Aluminium (Al), one of the metals implicated in neurodegeneration easily gain access to the nervous system through its presence in many manufactured foods, medicines and drinking water, and causes neurotoxicity utilizing the reactive oxygen specie pathway. The need to curtail these effects on the nervous system motivated the use of the plant Moringa oleifera (MO). This study thus, investigated the neuroprotective effects of MO leaf extract on aluminium-induced temporal cortical degeneration in rats. 24 male albino Wistar rats were grouped (n = 6) into control (1 ml/kg distilled water), l00 mg/kg aluminium chloride (AlCl3), 300 mg/kg MO, and 100 mg/kg AlCl3 and 300 mg/kg MO groups. The administration lasted for 28 days and the rats were sacrificed on day 29 by perfusion-fixation after blood was obtained for serum Al estimation. The brain tissues were then routinely processed for some histological and immunnolabelling studies. There was no significant difference in serum Al in the test groups. Histological results showed atrophied and karyorrhetic cells with loss of Nissl substance in the temporal cortex of the AlCl3 group, while no adverse effect was observed in the cytoarchitecture of the temporal cortex and Nissl substance of the MO group. However, groups which were administered AlCl3 simultaneously with MO extract showed less degenerative features in the cyto-architecture of the temporal cortex with normal Nissl substance staining. There was increased neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expressions in the AlCl3 group, while the MO group also showed increased NSE but decreased GFAP expression. However, the group which were administered AlCl3 simultaneously with MO extract showed less expression of NSE and GFAP. In conclusion, MO protects against Al-induced neurotoxicity of the temporal cortex of rats.

  9. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    PubMed

    Lee, Jong Suk; Shukla, Shruti; Kim, Jung-Ae; Kim, Myunghee

    2015-01-01

    Nelumbo nucifera Gaertn (Nymphaeaceae) has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs) by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS) in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1), and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1) and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1), respectively. N. nucifera leaf extracts (10-100 μg ml(-1)) exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs, confirming

  10. Anti-Angiogenic Effect of Nelumbo nucifera Leaf Extracts in Human Umbilical Vein Endothelial Cells with Antioxidant Potential

    PubMed Central

    Kim, Jung-Ae; Kim, Myunghee

    2015-01-01

    Nelumbo nucifera Gaertn (Nymphaeaceae) has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs) by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS) in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml−1, and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass−1 and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass−1, respectively. N. nucifera leaf extracts (10–100 μg ml−1) exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs, confirming

  11. Antitussive activity of Abies webbiana Lindl. leaf extract against sulphur dioxide-induced cough reflex in mice.

    PubMed

    Nayak, S S; Ghosh, A K; Srikanth, K; Debnath, B; Jha, T

    2003-09-01

    The methanol extract of A. webbiana Lindl was evaluated for its effect on a cough model induced by sulphur dioxide gas in mice. When administered orally it exhibited significant antitussive activity compared with the control in a dose dependent manner. The antitussive activity of the extract was compared with that of codeine phosphate, a prototype antitussive agent. The A. webbiana leaf extract (400 and 600 mg/kg) showed maximum inhibition of cough frequency by 71.69% and 78.67%, respectively, when compared with the control group and was comparable in effect to codeine phosphate.

  12. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells

    PubMed Central

    2013-01-01

    Background The incidence of lung cancer is expected to increase due to increases in exposure to airborne pollutants and cigarette smoke. Moringa oleifera (MO), a medicinal plant found mainly in Asia and South Africa is used in the traditional treatment of various ailments including cancer. This study investigated the antiproliferative effect of MO leaf extract (MOE) in cancerous A549 lung cells. Methods A crude aqueous leaf extract was prepared and the cells were treated with 166.7 μg/ml MOE (IC50) for 24 h and assayed for oxidative stress (TBARS and Glutathione assays), DNA fragmentation (comet assay) and caspase (3/7 and 9) activity. In addition, the expression of Nrf2, p53, Smac/DIABLO and PARP-1 was determined by Western blotting. The mRNA expression of Nrf2 and p53 was assessed using qPCR. Results A significant increase in reactive oxygen species with a concomitant decrease in intracellular glutathione levels (p < 0.001) in MOE treated A549 cells was observed. MOE showed a significant reduction in Nrf2 protein expression (1.89-fold, p < 0.05) and mRNA expression (1.44-fold). A higher level of DNA fragmentation (p < 0.0001) was seen in the MOE treated cells. MOE’s pro-apoptotic action was confirmed by the significant increase in p53 protein expression (1.02-fold, p < 0.05), p53 mRNA expression (1.59-fold), caspase-9 (1.28-fold, p < 0.05), caspase-3/7 (1.52-fold) activities and an enhanced expression of Smac/DIABLO. MOE also caused the cleavage and activation of PARP-1 into 89 KDa and 24 KDa fragments (p < 0.0001). Conclusion MOE exerts antiproliferative effects in A549 lung cells by increasing oxidative stress, DNA fragmentation and inducing apoptosis. PMID:24041017

  13. Lipoma Arborescens of the Knee: Report of Three Cases and Review of the Literature

    PubMed Central

    Kapoutsis, Dimitrios; Tzavellas, Anastasios-Nektarios; Kalaitzoglou, Ioannis; Tsikes, Apostolos; Gkouvas, George

    2017-01-01

    Lipoma arborescens is a chronic, slow-growing, intra-articular lesion of benign nature, which is characterized by villous proliferation of the synovium, with replacement of the subsynovial connective tissue by mature fat cells. It usually involves the suprapatellar pouch of the knee joint. It is not a neoplasm but is rather considered a nonspecific reactive response to chronic synovial irritation, due to either mechanical or inflammatory insults. We report three cases of lipoma arborescens affecting the knee, the first in a young male without previous history of arthritis or trauma, the second in a 58-year-old male associated with osteoarthritis, and the final in a 44-year-old male diagnosed with psoriatic arthritis, which cover the entire pathologic spectrum of this unusual entity. We highlight the clinical findings and imaging features, by emphasizing especially the role of MRI, in the differential diagnosis of other, more complex intra-articular masses. PMID:28243256

  14. Lipoma Arborescens: Review of an Uncommon Cause for Swelling of the Knee

    PubMed Central

    De Vleeschhouwer, M.; Van Den Steen, E.; Vanderstraeten, G.; Huysse, W.; De Neve, J.; Vanden Bossche, L.

    2016-01-01

    Lipoma arborescens is a rare cause of chronic monoarticular arthritis, with only a few cases reported in the literature. It is most commonly seen in the knee, but cases in other joints such as the wrist, shoulder, and elbow have also been described. It is a benign condition, in which the subsynovial tissue is replaced diffusely by mature fat cells. We describe a case involving the knee and discuss the symptoms, diagnosis, and treatment. PMID:27293937

  15. Protective effects of Artemisia arborescens essential oil on oestroprogestative treatment induced hepatotoxicity

    PubMed Central

    Ettaya, Amani; Elfeki, Abdelfettah; Hfaiedh, Najla

    2015-01-01

    BACKGROUND Currently, natural products have been shown to exhibit interesting biological and pharmacological activities and are used as chemotherapeutic agents. The purpose of this study, conducted on Wistar rats, was to evaluate the beneficial effects of Artemisia arborescens oil on oestroprogestative treatment induced damage on liver. MATERIALS/METHODS A total of 36 Wistar rats were divided into 4 groups; a control group (n = 9), a group of rats who received oestroprogestative treatment by intraperitoneal injection (n = 9), a group pre-treated with Artemisia arborescens then injected with oestroprogestative treatment (n = 9), and a group pre-treated with Artemisia arborescens (n = 9). To minimize the handling stress, animals from each group were sacrificed rapidly by decapitation. Blood serum was obtained by centrifugation and the livers were removed, cleaned of fat, and stored at -80℃ until use. RESULTS In the current study, oestroprogestative poisoning resulted in oxidative stress, which was demonstrated by 1) a significant increase of lipid peroxidation level in hepatic tissue 2) increased levels of serum transaminases (aspartate amino transferase and serum alanine amino transferase), alkaline phosphatase, glycemia and triglycerides and a decrease in the level of cholesterol 3) alteration of hepatic architecture. Pre-administration of Artemisia arborescens oil was found to alleviate oestroprogestative treatment induced damage by lowering lipid peroxidation level and by increasing activity of catalase, superoxide-dismutase, and glutathione-peroxidase in liver and by reducing disruption of biochemical parameters. CONCLUSION Therefore, the results obtained in this study confirmed that Artemisia essential oil protects against oestroprogestative administration induced hepatotoxicity by restoration of liver activities. PMID:26425275

  16. Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats.

    PubMed

    Afzan, Adlin; Abdullah, Noor Rain; Halim, Siti Zaleha; Rashid, Badrul Amini; Semail, Raja Hazlini Raja; Abdullah, Noordini; Jantan, Ibrahim; Muhammad, Hussin; Ismail, Zakiah

    2012-04-10

    Carica papaya L. leaves have been used in ethnomedicine for the treatment of fevers and cancers. Despite its benefits, very few studies on their potential toxicity have been described. The aim of the present study was to characterize the chemical composition of the leaf extract from 'Sekaki' C. papaya cultivar by UPLC-TripleTOF-ESI-MS and to investigate the sub-acute oral toxicity in Sprague Dawley rats at doses of 0.01, 0.14 and 2 g/kg by examining the general behavior, clinical signs, hematological parameters, serum biochemistry and histopathology changes. A total of twelve compounds consisting of one piperidine alkaloid, two organic acids, six malic acid derivatives, and four flavonol glycosides were characterized or tentatively identified in the C. papaya leaf extract. In the sub-acute study, the C. papaya extract did not cause mortality nor were treatment-related changes in body weight, food intake, water level, and hematological parameters observed between treatment and control groups. Some biochemical parameters such as the total protein, HDL-cholesterol, AST, ALT and ALP were elevated in a non-dose dependent manner. Histopathological examination of all organs including liver did not reveal morphological alteration. Other parameters showed non-significant differences between treatment and control groups. The present results suggest that C. papaya leaf extract at a dose up to fourteen times the levels employed in practical use in traditional medicine in Malaysia could be considered safe as a medicinal agent.

  17. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus.

    PubMed

    Kumar, K Ramesh; Nattuthurai, N; Gopinath, Ponraj; Mariappan, Tirupathi

    2015-02-01

    Mosquitoes are the major vector for the transmission of malaria, dengue fever, yellow fever, filariasis, chikungunya and Japanese encephalitis, and they accounted for global mortality and morbidity with increased resistance to common insecticides. The aim of this study was to investigate the larvicidal potential of the acetone leaf extracts of Morinda tinctoria and synthesized silver nanoparticles against third instar larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The synthesized silver nanoparticles have also been tested against the third instar larvae of C. quinquefasciatus. The leaf extract and the AgNPs high mortality values were 50 % lethal concentration (LC50) = 8.088 and 1.442 ppm against C. quinquefasciatus, respectively. The results recorded from ultraviolet-visible spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy support the biosynthesis and characterization of silver nanoparticles. These results suggest that the leaf extract of M. tinctoria and synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of C. quinquefasciatus. By this approach, it is suggestive that this rapid synthesis of nanoparticles would be proper for developing a biological process for mosquito control.

  18. Water activity and temperature effects on growth of Alternaria arborescens on tomato medium.

    PubMed

    Vaquera, Sandra; Patriarca, Andrea; Fernández Pinto, Virginia

    2014-08-18

    Alternaria arborescens is the causal agent of tomato stem canker, a disease frequently responsible of substantial economic losses. A. arborescens can produce several mycotoxins, such as alternariol, alternariol monomethyl ether and tenuazonic acid and phytotoxins such as the AAL toxins. The objective of this study was to determine the effect of water activity (aw, 0.950, 0.975, 0.995) and temperature (6, 15, 20, 25 and 30°C) on the germination and radial growth rate of A. arborescens on a synthetic tomato medium. Germination followed by growth was observed at all temperatures and aw levels analyzed. The shortest germination time (0.5 days) was observed at 0.995 aw, both at 25°C and at 30°C. The germination time increased with a reduction of aw and temperature. The highest growth rate was registered at 0.995 aw and 30°C (7.21 mm/day) while the lowest occurred at 0.950 aw and 6°C (0.52 mm/day), conditions at which the longest lag phase was observed (8 days). Growth rates increased with aw and temperature. Knowledge of the ecophysiology of the fungus in this substrate is necessary to formulate future strategies to prevent its development and evaluate the consumer health risk posed by potential exposure to the toxins.

  19. Radioprotective effects of Aloe vera leaf extract on Swiss albino mice against whole-body gamma irradiation.

    PubMed

    Goyal, Pradeep Kumar; Gehlot, Prashasnika

    2009-01-01

    The skin, being a cell-renewal system, is one of the first organs to be affected in total-body irradiation during radiotherapy. An attempt has been made in the present study to explore radiation-induced biochemical alterations caused by whole-body gamma irradiation and their modulation in Swiss albino mice by Aloe vera leaf extract (AVE). Mice were selected for this study from an inbreed colony and divided into four different groups: I (double-distilled water-treated group): considered as normal; II (Aloe vera-treated group): the animals were administered 1 g/kg body-wt/day Aloe vera leaf extract; III (radiation-treated group): the animals were exposed to 6 Gy gamma radiation at the dose rate of 0.96 Gy/min; and IV (combination group): animals were administered Aloe vera leaf extract continuously for 15 consecutive days, and on the 15th day they were irradiated to 6 Gy gamma radiation after 30 minutes of extract administration. The animals from the above groups were autopsied after 6 hours, 24 hours, and at 3, 7, 14, and 21 days of radiation. Biochemical estimations of DNA, lipid peroxidation, glutathione, catalase, and superoxide-dismutase were made. Total DNA, catalase, superoxide dismutase (SOD) activity in the skin, and glutathione (GSH) in the liver and blood significantly decreased compared to normal, but lipid peroxidation (LPO) in the liver and blood increased in the irradiated control group. In contrast, in experimental animals, DNA, catalase, and SOD in the skin and GSH in the liver and blood increased significantly, whereas LPO in the liver and blood decreased in comparison to irradiated control animals. Thus, Aloe vera leaf extract is found to have damage-resistant properties against radiation-induced biochemical alterations in Swiss albino mice.

  20. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract

    PubMed Central

    Khalil, Md. Ibrahim; Ahmmed, Istiyak; Ahmed, Romana; Tanvir, E. M.; Afroz, Rizwana; Paul, Sudip; Gan, Siew Hua; Alam, Nadia

    2015-01-01

    We investigated the protective role of Withania somnifera leaf extract (WSLEt) on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. Subcutaneous injection of ISO (85 mg/kg body weight (b.w.)) administered to rats for two consecutive days caused a significant increase in cardiac troponin I (cTnI) levels and serum lipid profiles, as well as the activities of some marker enzymes. In addition to these diagnostic markers, there were increased levels of lipid peroxidation (LPO) and decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx), and glutathione-S-transferase (GST)) in the myocardium. However, oral pretreatment (100 mg/kg b.w.) with WSLEt for 4 weeks elicited a significant cardioprotective activity by lowering the levels of cTnI, lipid profiles, and marker enzymes. The levels of LPO products were also significantly decreased. Elevated activities of antioxidant enzymes were also observed in rats pretreated with WSLEt. As further confirmed histopathologically, our findings strongly suggest that the cardioprotective effect of WSLEt on myocardium experiencing ISO-induced oxidative damage may be due to an augmentation of the endogenous antioxidant system and an inhibition of LPO in the myocardial membrane. We conclude that WSLEt confers some protection against oxidative damage in ISO-induced MI in rats. PMID:26539517

  1. In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes.

    PubMed

    Olmedo-Juárez, Agustín; Rojo-Rubio, Rolando; Zamilpa, Alejandro; Mendoza de Gives, Pedro; Arece-García, Javier; López-Arellano, María Eugenia; von Son-de Fernex, Elke

    2017-04-08

    The aim of this study was to evaluate the in vitro lethal effect of a hydroalcoholic extract (HAE) from Acacia cochliacantha leaf against three gastrointestinal nematodes species (Haemonchus contortus, H. placei and Cooperia punctata) of domestic ruminants. The HAE was assessed using five concentrations: 100, 125, 175, 150 and 200 mg/ml; 0.5% Ivermectin was used as a positive control and distilled water, as negative control. The data were normalized using the square root and analysed with a completely randomized design through ANOVA analysis using the general lineal model (GLM) of the SAS program. The HAE tannin content was determined through spectrophotometry (UV-visible) and the other major phenols, were identified by chromatographic processes. The results showed an in vitro larvicidal activity of the HAE against the three assessed nematode species with all assessed concentrations. A clear HAE increased concentration dependence effect was observed. The highest activity of the HAE was obtained at the highest concentration (close to 100%, P < 0.05). This result was similar to the one obtained with Ivermectin. On the other hand, the chemical analysis of HAE showed the presence of tannins, caffeoyls and coumaroyl derivates and quercetin as the main compounds. The results suggest that the HAE from this plant species possess in vitro anthelmintic properties. The identified compounds in this study would good candidates for further in vivo researches.

  2. Effect of Persimmon Leaf Extract on Phthalic Anhydride-induced Allergic Response in Mice

    PubMed Central

    Mok, Ji Ye; Jeon, In Hwa; Cho, Jung-Keun; Park, Ji Min; Kim, Hyeon Soo; Kang, Hyun Ju; Kim, Hyung Soon; Jang, Seon Il

    2012-01-01

    The purpose of this study was to investigate the anti-allergy activities of persimmon leaf extract (PLE) on a phthalic anhydride (PA)-induced allergic mouse model. A human leukemic mast cell line (HMC-1) was used to examine the inhibitory activity of PLE on the histamine release by human leukemic mast cells. PLE inhibited histamine release from HMC-1 cells in response to cross-linkage of high-affinity IgE receptor-α (FcεRIα). Additionally, a PA-induced allergic mouse model was used to investigate the effects of PLE in vivo. Mice were orally administrated with or without PLE of single dose (250 mg/kg/day) for 31 days. Oral intake of PLE significantly inhibited passive cutaneous reactions. Oral administration of PLE to PA-induced allergic mice also led to a striking suppression of the development of contact dermatitis, ear swelling and lymph node weight. In addition, PA-specific IL-4 production of draining lymph node cells was markedly diminished by PLE oral administration, but not IFN-γ. Furthermore, PLE treatment suppressed PA-induced thymus and activation-regulated chemokine (CCL17) and cutaneous T cell-attracting chemokine (CCL27) expressions in ear tissues. Based on these results, we suggest that PLE may have therapeutic potential as an effective material for management of irritant contact dermatitis or related inflammatory diseases. PMID:24471058

  3. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes

    PubMed Central

    Yang, Soo Jin; Park, Na-Young

    2014-01-01

    BACKGROUND/OBJECTIVES Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS The 3T3-L1 adipocytes were treated with different doses of MLEE for 8 days starting 2 days post-confluence. Cell viability, fat accumulation, and adipogenesis-related factors including CCAAT-enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator 1 alpha (PGC-1α), fatty acid synthase (FAS), and adiponectin were analyzed. RESULTS Results showed that MLEE treatments at 10, 25, 50, and 100 µg/ml had no effect on cell morphology and viability. Without evident toxicity, all MLEE treated cells had lower fat accumulation compared with control as shown by lower absorbances of Oil Red O stain. MLEE at 50 and 100 µg/ml significantly reduced protein levels of PPARγ, PGC-1α, FAS, and adiponectin in differentiated adipocytes. Furthermore, protein level of C/EBPα was significantly decreased by the treatment of 100 µg/ml MLEE. CONCLUSION These results demonstrate that MLEE treatment has an anti-adipogenic effect in differentiated adipocytes without toxicity, suggesting its potential as an anti-obesity therapeutic. PMID:25489399

  4. Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract.

    PubMed

    Agarwal, Meenakshi; Singh Bhadwal, Akhshay; Kumar, Nishant; Shrivastav, Archana; Raj Shrivastav, Braj; Pratap Singh, Manoj; Zafar, Fahmina; Mani Tripathi, Ravi

    2016-10-01

    This study reports the unprecedented, novel and eco-friendly method for the synthesis of three-dimensional (3D) copper nanostructure having flower like morphology using leaf extract of Ficus benghalensis. The catalytic activity of copper nanoflowers (CuNFs) was investigated against methylene blue (MB) used as a modal dye pollutant. Scanning electron micrograph evidently designated 3D appearance of nanoflowers within a size range from 250 nm to 2.5 μm. Energy-dispersive X-ray spectra showed the presence of copper elements in the nanoflowers. Fourier-transform infrared spectra clearly demonstrated the presence of biomolecules which is responsible for the synthesis of CuNFs. The catalytic activity of the synthesised CuNFs was monitored by ultraviolet-visible spectroscopy. The MB was degraded by 72% in 85 min on addition of CuNFs and the rate constant (k) was found to be 0.77 × 10(-3) s(-1). This method adapted for synthesis of CuNFs offers a valuable contribution in the area of nanomaterial synthesis and in water research by suggesting a sustainable and an alternative route for removal of toxic solvents and waste materials.

  5. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    NASA Astrophysics Data System (ADS)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  6. Influence of the green tea leaf extract on neurotoxicity of aluminium chloride in rats.

    PubMed

    Jelenković, Ankica; Jovanović, Marina D; Stevanović, Ivana; Petronijević, Nataša; Bokonjić, Dubravko; Zivković, Jelena; Igić, Rajko

    2014-01-01

    Aluminium may have an important role in the aetiology/pathogenesis/precipitation of Alzheimer's disease. Because green tea (Camellia sinensis L.) reportedly has health-promoting effects in the central nervous system, we evaluated the effects of green tea leaf extract (GTLE) on aluminium chloride (AlCl3 ) neurotoxicity in rats. All solutions were injected into the cornu ammonis region 1 hippocampal region. We measured the performance of active avoidance (AA) tasks, various enzyme activities and total glutathione content (TGC) in the forebrain cortex (FbC), striatum, basal forebrain (BFb), hippocampus, brain stem and cerebellum. AlCl3 markedly reduced AA performance and activities of cytochrome c oxidase (COX) and acetylcholinesterase (AChE) in all regions. It decreased TGC in the FbC, striatum, BFb, hippocampus, brain stem and cerebellum, and increased superoxide dismutase activity in the FbC, cerebellum and BFb. GTLE pretreatment completely reversed the damaging effects of AlCl3 on AA and superoxide dismutase activity, markedly corrected COX and AChE activities, and moderately improved TGC. GTLE alone increased COX and AChE activities in almost all regions. GTLE reduces AlCl3 neurotoxicity probably via antioxidative effects and improves mitochondrial and cholinergic synaptic functions through the actions of (-)-epigallocatechin gallate and (-)-epicatechin, compounds most abundantly found in GTLE. Our results suggest that green tea might be beneficial in Alzheimer's disease.

  7. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight.

    PubMed

    Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Hirata, Tetsuya; Kawamura, Naomi; Wada, Atsunori; Nagai, Katsuya

    2010-08-02

    Eucommia ulmoides Oliver leaf extracts (ELE) have been shown to exert a hypolipidemic effect in hamsters. Therefore, it was hypothesized that ELE might affect lipid metabolism via changes in autonomic nerve activities and causes changes in thermogenesis and body weight. We examined this hypothesis, and found that intraduodenal (ID) injection of ELE elevated epididymal white adipose tissue sympathetic nerve activity (WAT-SNA) and interscapular brown adipose tissue sympathetic nerve activity (BAT-SNA) in urethane-anesthetized rats and elevated the plasma concentration of free fatty acids (FFA) (a marker of lipolysis) and body temperature (BT) (a marker of thermogenesis) in conscious rats. Furthermore, it was observed that ID administration of ELE decreased gastric vagal nerve activity (GVNA) in urethane-anesthetized rats, and that ELE given as food reduced food intake, body and abdominal adipose tissue weights and decreased plasma triglyceride level. These findings suggest that ELE stimulates lipolysis and thermogenesis through elevations in WAT-SNA and BAT-SNA, respectively, suppresses appetite by inhibiting the activities of the parasympathetic nerves innervating the gastrointestinal tract, including GVNA, and decreases the amount of abdominal fat and body weight via these changes.

  8. Delonix regia Leaf Extract (DRLE): A Potential Therapeutic Agent for Cardioprotection

    PubMed Central

    Su, Wei-Lieh; Huang, Shih-Che; Wang, Shu-Chi

    2016-01-01

    Delonix regia (Boj. Ex. Hook) is a flowering plant in the pea family found in tropical areas and its leaves are used informally to treat diseases in folk medicine. However, the cardioprotective effects in this plant are still unclear. In this study, we found that the Delonix regia leaf extract (DRLE) (400 mg/kg/d) can reduce the mortality rate in an isoproterenol (ISO)-induced heart injury and hypertrophy mouse model. Decreased serum levels of creatine phosphokinase, LDH, GOT, TNF-alpha and increased nitric oxide levels were found in DRLE-treated ISO-injured mice. In the in vitro study, the porcine coronary artery exhibited vasodilation effect induced by DRLE in a dose-dependent manner. In the DRLE toxic test, overdose of DRLE showed the high safety in normal mice and may have the ability to remove the metabolic wastes in blood. In conclusion, we demonstrated for the first time that DRLE has the cardioprotective effects by activating the vasodilation through NO pathway and preventing the myocyte injury via inhibition of TNF-alpha pathway. We suggest that DRLE may act as a promising novel herbal medicine for cardioprotection. PMID:27936072

  9. Hibiscus rosa- sinensis leaf extract as coagulant aid in leachate treatment

    NASA Astrophysics Data System (ADS)

    Awang, Nik Azimatolakma; Aziz, Hamidi Abdul

    2012-12-01

    Hibiscus rosa- sinensis is a biodegradable material that has remained untested for flocculating properties. The objective of this study is to examine the efficiency of coagulation-flocculation processes for the removal of color, iron (Fe3+), suspended solids, turbidity and ammonia nitrogen(NH3-N), from landfill leachate using 4,000 mg/L alum in conjunction with H. rosa- sinensis leaf extract (HBaqs). Hydroxyl (O-H) and (carboxyl) C=O functional groups along the HBaqs chain help to indulge flocculating efficiency of HBaqs via bridging. The experiments confirm the positive coagulation properties of HBaqs. The Fe3+ removal rate using 4,000 mg/L alum as sole coagulant was approximately 60 %, and increased to 100 % when 4,000 mg/L alum was mixed with 500 mg/L HBaqs. By mixing, 4,000 mg/L alum with 100-500 mg/L HBaqs, 72 % of SS was removed as compared with only 45 % reduction using 4,000 mg/L alum as sole coagulant.

  10. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats.

    PubMed

    Hfaiedh, Mbarka; Brahmi, Dalel; Zourgui, Lazhar

    2016-03-01

    Taraxacum officinale (L.) Weber, commonly known as Dandelion, has been widely used as a folkloric medicine for the treatment of liver and kidney disorders and some women diseases such as breast and uterus cancers. The main objective of the present study was to assess the efficiency of T. officinale leaf extract (TOE) in treating sodium dichromate hazards; it is a major environmental pollutant known for its wide toxic manifestations witch induced liver injury. TOE at a dose of 500 mg/kg b.w was orally administered once per day for 30 days consecutively, followed by 10 mg/kg b.w sodium dichromate was injected (intraperitoneal) for 10 days. Our results using Wistar rats showed that sodium dichromate significantly increased serum biochemical parameters. In the liver, it was found to induce an oxidative stress, evidenced from increase in lipid peroxidation and changes in antioxidative activities. In addition, histopathological observation revealed that sodium dichromate causes acute liver damage, necrosis of hepatocytes, as well as DNA fragmentation. Interestingly, animals that were pretreated with TOE, prior to sodium dichromate administration, showed a significant hepatoprotection, revealed by a significant reduction of sodium dichromate-induced oxidative damage for all tested markers. These finding powerfully supports that TOE was effective in the protection against sodium dichromate-induced hepatotoxicity and genotoxicity and, therefore, suggest a potential therapeutic use of this plant as an alternative medicine for patients with acute liver diseases.

  11. Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies.

    PubMed

    Li, Wanwen; Yi, Shaoling; Wang, Zhouhua; Chen, Si; Xin, Shuang; Xie, Jingwen; Zhao, Chunshun

    2011-11-25

    In current study, a self-nanoemulsifying drug delivery system (SNEDDS) of persimmon (Diospyros kaki) leaf extract (PLE) was developed and characterized to compare its in vitro dissolution and relative bioavailability with commercially available tablets (Naoxinqing tablets). Pseudo-ternary phase diagrams were constructed by phase diagram by micro plate dilution (PDMPD) method, of which the evaluation method was improved to use Multiskan Ascent for identifying turbidity. The formulation of PLE-loaded SNEDDS was optimized by an extreme vertices experimental design. The optimized nanoemulsion formulation, loading with 44.48 mg/g PLE total flavonoids, consisted of Cremophor EL, Transcutol P, Labrafil M 1944 CS (56:34:10, w/w), and it remained stable after storing at 40°C, 25°C, 4°C for at least 6 months. When diluted with water, the SNEDDS droplet size was 34.85 nm and the zeta potential was -6.18 mV. Compared with the commercial tablets, the AUC of both quercetin and kaempferol, which are representative active flavonoids of PLE, was increased by 1.5-fold and 1.6-fold respectively following oral administration of PLE-loaded SNEDDS in fasting beagle dogs. These results indicate that SNEDDS is a promising drug delivery system for increasing the oral bioavailability of PLE.

  12. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis

    PubMed Central

    Palmeri, Rosa; Monteleone, Julieta I.; Spagna, Giovanni; Restuccia, Cristina; Raffaele, Marco; Vanella, Luca; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis. PMID:27303302

  13. Neuroprotective potential of Indigofera oblongifolia leaf methanolic extract against lead acetate-induced neurotoxicity

    PubMed Central

    Al-Quraishy, Saleh; Dkhil, Mohamed A.; Ibrahim, Shaimaa R.; Abdel Moneim, Ahmed E.

    2016-01-01

    Lead (Pb) is one of the most common environmental toxicants, exposure to which can cause significant neurotoxicity and an associated decline in brain function. This study investigated the possible neuroprotective role of Indigofera oblongifolia leaf methanolic extract (IOLME) against lead-induced neurotoxicity. Rats were intraperitoneally injected with lead acetate, with or without IOLME (intragastric administration for 5 days), and the neuroprotective effect of IOLME was assessed by measuring the lead concentration, redox status (lipid peroxidation, nitric oxide and glutathione), enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione peroxidase and reductase), PCR assays of apoptosis markers (Bax and Bcl-2) and histopathology of the brain. The increases in the lipid peroxidation, nitric oxide, and apoptosis, the decreases in the glutathione level and the activity of antioxidant enzymes, and the altered histology of the brain induced by lead acetate were mitigated in the brain of rats pre-treated with IOLME. These findings indicate that IOLME has beneficial effects and it mitigates lead acetate-induced neurotoxicity via its antioxidant and anti-apoptotic activities. PMID:28123424

  14. Bioactive derivatives from oleuropein by a biotransformation on Olea europaea leaf extracts.

    PubMed

    Briante, Raffaella; La Cara, Francesco; Febbraio, Ferdinando; Patumi, Maurizio; Nucci, Roberto

    2002-02-14

    A very simple method is proposed to produce, using non-homogeneous hyperthermophilic beta-glycosidase immobilised on chitosan, 3,4-dihydroxy-phenylethanol (hydroxytyrosol), a commercially unavailable compound with well known biological properties which justify a potential commercial application. Leaf extracts from Olea europaea with high oleuropein content are selected as substrate for biotransformation. Under the biotransformation conditions, high amounts of hydroxytyrosol are collected within a short space of time after being preliminarily purified by a non-treated chitosan column. This is possible due to the capacity of amino groups on the chitosan to bind aldehydic groups of molecules present at the end of the reaction. We have produced a natural and non-toxic product from vegetal source, as opposed to the molecule obtainable through chemical synthesis, as a candidate to test in vivo its biological properties. The proposed process may prove useful for a further application for recycling Olea europaea leaves. The radical-scavenging properties of the bioreactor eluates and their capacity to inhibit fatty acid peroxidation rates are characterized in order to make them candidates as substitutes for synthetic antioxidants commonly used to increase the shelf-life of food products as well as for their possible protective effect in human cells.

  15. Timber industry waste-teak ( Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Devadiga, Aishwarya; Shetty, K. Vidya; Saidutta, M. B.

    2015-08-01

    The current research article emphasizes efficacious use of teak leaves, an agro -biowaste from world's premier hardwood timber industry, for "green" synthesis of silver nanoparticles (AgNPs). Bioactive compounds of the leaves act as prolific reducing and stabilizing agents in AgNP synthesis. The characterization of the AgNPs synthesized using teak leaves revealed that the particles are spherical with an average size of 28 nm and the presence of bioactive compounds present in teak leaf extract as capping agents on the nanoparticles. A prominent decrease in the content of bioactive compounds such as polyphenols, antioxidants and flavonoids after the biosynthesis of AgNPs signifies that these class of compounds act as reductants and stabilizers during biosynthesis. The biosynthesized silver nanoparticles were also successfully evaluated for their antibacterial characteristics against waterborne pathogens, E. coli and S. aureus, with minimum inhibitory concentration of 25.6 μg/mL. Exploitation of agrowaste resources for synthesis of AgNPs curtails indiscriminate usage of food and commercial plant materials, rather contributing a sustainable way for effective plant waste biomass utilization and management. The biosynthesized AgNps have potential application in water purifiers, antibacterial fabrics, sports wear and in cosmetics as antibacterial agent and the process used for its synthesis being greener is highly beneficial from environmental, energy consumption and economic perspectives.

  16. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of Cymbopogon citratus Stapf. in rats.

    PubMed

    Adeneye, Adejuwon Adewale; Agbaje, Esther Oluwatoyin

    2007-07-25

    The present study was designed to investigate the hypoglycemic and hypolipidemic effects of the single, daily oral dosing of 125-500 mg/kg of fresh leaf aqueous extract of Cymbopogon citratus Stapf. (CCi) in normal, male Wistar rats for 42 days. The average weights of rats per group were taken at 2 weeks interval for 42 days. On day 43, blood samples from the rats were collected for fasting plasma glucose (FPG), total cholesterol, triglycerides, low-density lipoproteins (LDL-c), very low-density lipoprotein (VLDL-c) and high-density lipoprotein (HDL-c) assays through cardiac puncture under halothane anesthesia. Acute oral dose toxicity study of CCi was also conducted using limit dose test of the Up and Down Procedure statistical program (AOT425StatPgm, Version 1.0) at a dose of 5000 mg/kg body weight/oral route. Our results showed CCi to lower FPG and lipid parameters dose dependently (p<0.05) while raising the plasma HDL-c level (p<0.05) in same dose-related fashion but with no effect on plasma triglycerides level (p>0.05). Results of acute oral toxicity showed CCi to be of low toxicity and as such could be considered relatively safe on acute exposure. Thus, confirming its folkloric use and safety in suspected Type 2 diabetic patients.

  17. Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats.

    PubMed

    Romero, M; Toral, M; Gómez-Guzmán, M; Jiménez, R; Galindo, P; Sánchez, M; Olivares, M; Gálvez, J; Duarte, J

    2016-01-01

    The effects of chronic consumption of oleuropein-enriched (15% w/w) olive leaf extract (OLE) on blood pressure, endothelial function, and vascular oxidative and inflammatory status in spontaneously hypertensive rats (SHR) were evaluated. Ten Wistar Kyoto rats (WKY) and twenty SHR were randomly assigned to three groups: a control WKY group, a control SHR group and a SHR group treated with OLE (30 mg kg(-1)) for 5 weeks. Long-term administration of OLE reduced systolic blood pressure, heart rate, and cardiac and renal hypertrophy. OLE treatment reversed the impaired aortic endothelium-dependent relaxation to acetylcholine observed in SHR. OLE restored aortic eNOS phosphorylation at Ser-1177 and Thr-495 and increased eNOS activity. OLE eliminated the increased aortic superoxide levels, and reduced the elevated NADPH oxidase activity, as a result of reduced NOX-1 and NOX-2 mRNA levels in SHR. OLE reduced the enhanced vascular TLR4 expression by inhibition of mitogen-activated protein kinase (MAPK) signaling with the subsequent reduction of proinflammatory cytokines. In conclusion, OLE exerts antihypertensive effects on genetic hypertension related to the improvement of vascular function as a result of reduced pro-oxidative and pro-inflammatory status.

  18. High doses of olive leaf extract induce liver changes in mice.

    PubMed

    Arantes-Rodrigues, R; Henriques, A; Pires, M J; Colaço, B; Calado, A M; Rema, P; Colaço, A; Fernandes, T; De la Cruz, P L F; Lopes, C; Fidalgo-Gonçalves, L; Vilela, S; Pedrosa, T; Peixoto, F; Oliveira, P A

    2011-09-01

    Virtually ever since it was first commercialized in 1995, there have been several studies focusing on the use of olive leaf extract (OLE) as a natural therapy and its medical properties. The aim of this study was to investigate the effects of three different concentrations of OLE on the function of mice livers over the course of 14 weeks. Female ICR mice were divided into four groups, depending on OLE concentration used: 0%, 0.25%, 0.5%, and 0.75%. Alanine aminotransferase, alkaline phosphatase, total bilirubin and albumin serum concentrations were all measured. Histopathological changes of the liver were observed after haematoxylin and eosin, reticulin, and Masson's trichrome staining was carried out while liver mitochondrial bioenergetics were also evaluated. Alanine aminotransferase and alkaline phosphatase serum enzyme activities increased significantly in the groups in which 0.5% and 0.75% OLE concentrations were used. Histologically, all the groups exposed to OLE exhibited hyperplasia of the bile ducts, cholestasis, hepatocyte necrosis and inflammatory infiltrated. Hepatic fibrosis was observed in the groups featuring 0.5% and 0.75% OLE concentrations. The mitochondrial membrane potential, respiratory control ratio and ADP/O of samples from animals fed the higher OLE concentration was significantly decreased when compared to the control group.

  19. Olive leaf extract facilitates healing of experimental cartilaginous injuries in rabbits.

    PubMed

    Gong, Dezheng; Geng, Chengyan; Jiang, Liping; Wang, Lihui; Yoshimuram, Hiroyuki; Zhong, Laifu

    2011-03-01

    We investigated the restorative effect of orally administered olive leaf extract (OLE) on experimentally produced cartilaginous injuries in rabbits. In total, three holes in the left stifle joint, including one in the medial trochlear ridge and two in the trochlear sulcus (proximal and distal) of articular cartilage, were prepared surgically using a drill. For the control group only tap water alone was administered daily, and for the OLE group a water-based solution of OLE (500 mg/kg/day) was administered daily. The injured areas were observed macroscopically and histologically at 3 weeks after the operation. The results indicate that OLE facilitated healing of the three holes and increased the weight of the biceps femoris muscle. Histological examination revealed that in the OLE group, matured cartilage tissues and connective tissues were mixed with regenerated or maturing cartilage tissues with massive proliferation in the injured parts, around which the proliferation of undifferentiated blast cells and the tissue with cartilage substrates were observed. The histological score of the OLE group was significantly lower than that of the control group. The percentage of proliferating cell nuclear antigen-positive cartilage cells in the OLE group was higher than in the control group. Mean density of the restored area observed with Safranin O staining was higher in the OLE group than in the control group. Therefore, OLE is effective for enhancing the healing of cartilaginous injuries. OLE may also have a beneficial effect of slowing and reducing the pathogenesis of degenerative joint diseases in humans.

  20. Effect of grape (Vitis vinifera L.) leaf extract on alcohol induced oxidative stress in rats.

    PubMed

    Pari, Leelavinothan; Suresh, Arumugam

    2008-05-01

    Alcoholic liver disease is a major medical complication of drinking alcohol. Oxidative stress plays an important role in the development of alcohol liver disease. The present study was carried to evaluate the effect of grape leaf extract (GLEt) on antioxidant and lipid peroxidation states in liver and kidney alcohol induced toxicity. In vitro studies with DPPH* and ABTS*(+) (cation radical) showed that GLEt possesses antioxidant activity. In vivo administration of ethanol (7.9 g/kg bw/day) for 45 days resulted an activity of liver marker enzymes (AST, ALT, ALP and GGT), lipid peroxidation markers (TBARS, lipid hydroperoxides) in liver and kidney with significantly lower activity of SOD, CAT, GPx, GST and non-enzymatic antioxidants (vitamin E, vitamin C and GSH) in liver and kidney as compared with control rats. Administration of ethanol along with GLEt significantly decreased the activities of liver markers enzyme in serum towards near normal level. GLEt at a dose of 100 mg/kg was highly effective than 25 and 50 mg/kg body weight. In addition GLEt also significantly reduced the levels of lipid peroxidation and addition, significantly restored the enzymic and non-enzymatic antioxidants level in liver and kidney of alcohol administration rats. This observation was supplemented by histopathological examination in liver and kidney. Our data suggest that GLEt exerts its protective effect by decreased the lipid peroxidation and improving antioxidants status, thus proving itself as an effective antioxidant in alcohol induced oxidative damage in rats.

  1. Protective effects of phyllanthus emblica leaf extract on sodium arsenite-mediated adverse effects in mice.

    PubMed

    Sayed, Sadia; Ahsan, Nazmul; Kato, Masashi; Ohgami, Nobutaka; Rashid, Abdur; Akhand, Anwarul Azim

    2015-02-01

    Groundwater contamination of arsenic is the major cause of a serious health hazard in Bangladesh. No specific treatment is yet available to manage the large number of individuals exposed to arsenic. In this study, we evaluated the protective effects of Phyllanthus emblica (Indian gooseberry or Amla) leaf extract (PLE) on arsenic-mediated toxicity in experimental mice. Male Swiss albino mice were divided into three different groups (n=6/group). 'Control' mice received arsenic free water together with normal feed. Mice in the remaining two groups designated 'SA' and 'SA+PLE' were exposed to sodium arsenite (SA, 10 µg/g body weight/day) through drinking water in addition to receiving normal feed and PLE-supplemented feed, respectively. The weight gain of SA-exposed mice was decreased compared with the controls; however, this decrease in body weight gain was prevented when the feed was supplemented with PLE. A secondary effect of arsenic was enlargement of the liver, kidney and spleen of SA-group mice. Deposition of arsenic in those organs was demonstrated by ICP-MS. When PLE was supplemented in the feed the enlargement of the organs was minimized; however, the deposition of arsenic was not significantly reduced. These results indicated that PLE may not block arsenic deposition in tissue directly but rather may play a protective role to reduce arsenic-induced toxicity. Therefore, co-administration of PLE in arsenic-exposed animals might have a future therapeutic application for protecting against arsenic-mediated toxicity.

  2. Leaf extract of Moringa oleifera prevents ionizing radiation-induced oxidative stress in mice.

    PubMed

    Sinha, Mahuya; Das, Dipesh K; Bhattacharjee, Surajit; Majumdar, Subrata; Dey, Sanjit

    2011-10-01

    The present study evaluated the hepatoprotective effect of aqueous ethanolic Moringa oleifera leaf extract (MoLE) against radiation-induced oxidative stress, which is assessed in terms of inflammation and lipid peroxidation. Swiss albino mice were administered MoLE (300 mg/kg of body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of ⁶⁰Co γ-irradiation. Mice were sacrificed at 4 hours after irradiation. Liver was collected for immunoblotting and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were augmented, whereas the superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and ferric reducing antioxidant power (FRAP) values were decreased by radiation exposure. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited, whereas increases in SOD, CAT, GSH, and FRAP were observed in the mice treated with MoLE prior to irradiation. Therefore pretreatment with MoLE protected against γ-radiation-induced liver damage. The protection may be attributed to the free radical scavenging activity of MoLE, through which it can ameliorate radiation-induced oxidative stress.

  3. In vitro and In vivo Anti-Helicobacter pylori Activities of Centella asiatica Leaf Extract

    PubMed Central

    Zheng, Hong-Mei; Choi, Myung-Joo; Kim, Jae Min; Lee, Kye Wan; Park, Yu Hwa; Lee, Don Haeng

    2016-01-01

    Helicobacter pylori infection is associated with an increased risk of developing upper gastrointestinal tract diseases. However, treatment failure is a major cause of concern mainly due to possible recurrence of infection, the side effects, and resistance to antibiotics. The aim of this study was to investigate the activities of Centella asiatica leaf extract (CAE) against H. pylori both in vitro and in vivo. The minimum inhibitory concentrations (MICs) against 55 clinically isolated strains of H. pylori were tested using an agar dilution method. The MICs of CAE ranged from 0.125 mg/mL to 8 mg/mL, effectiveness in inhibiting H. pylori growth was 2 mg/mL. The anti-H. pylori effects of CAE in vivo were also examined in H. pylori-infected C57BL/6 mice. CAE was orally administrated once daily for 3 weeks at doses of 50 mg/kg and 250 mg/kg. CAE at the 50 mg/kg dose significantly reduced H. pylori colonization in mice gastric mucosa. Our study provides novel insights into the therapeutic effects of CAE against H. pylori infection, and it suggests that CAE may be useful as an alternative therapy. PMID:27752495

  4. Alcoholic leaf extract of Plectranthus amboinicus regulates carbohydrate metabolism in alloxan-induced diabetic rats

    PubMed Central

    Koti, B. C.; Gore, Aparna; Thippeswamy, A. H. M.; Swamy, A. H. M. Viswanatha; Kulkarni, Rucha

    2011-01-01

    Objective: The present investigation was undertaken to explore the possible mechanisms of Plectranthus amboinicus leaf extract in alloxan-induced diabetic rats. Materials and Methods: Control and alloxan-induced diabetic albino rats received different treatments; orally control (vehicle), 200 mg/kg and 400 mg/kg of ethanol extract of Plectranthus amboinicus (PAEE) and 600 μg/kg of glibenclamide (standard) for 15 days. At the end of the experiment, the animals were sacrificed and enzyme activities of carbohydrate metabolism were measured in the liver. Results: Diabetic control rats showed a significant elevation (P < 0.001) in fasting blood glucose on successive days of the experiment as compared with their basal values, which was maintained over a period of 2 weeks. Daily oral treatment with PAEE showed a significant reduction (P < 0.001) in the blood glucose levels on successive days of the experiment as compared with their basal values. The most pronounced antihyperglycemic effect was obtained with the dose of 400 mg/kg. PAEE shows a dose-dependent reduction in gluconeogenic enzymes like glucose-6-phosphatase and fructose-1,6-disphosphatase. After 15 days of treatment with PAEE, glycolytic enzymes like phosphoglucoisomerase resulted in a significant increase with a concomitant significant decrease in the activities of aldolase. On the other hand, glucose-6-phosphate dehydrogenase was significantly improved in diabetic rats on administration of PAEE; the 400 mg/kg dose of PAEE elicited a more potent effect compared with the 200 mg/kg dose. Conclusion: The results obtained in this study provide evidence of the antidiabetic activity of PAEE, mediated through the regulation of carbohydrate metabolic enzyme activities. PMID:21713092

  5. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats

    PubMed Central

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (—); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  6. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats.

    PubMed

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats.

  7. Bioactive profiles, antioxidant activities, nitrite scavenging capacities and protective effects on H2O2-injured PC12 cells of Glycyrrhiza glabra L. leaf and root extracts.

    PubMed

    Dong, Yi; Zhao, Mouming; Zhao, Tiantian; Feng, Mengying; Chen, Huiping; Zhuang, Mingzhu; Lin, Lianzhu

    2014-06-30

    This study compared the total flavonoid content of Glycyrrhiza glabra L. leaf and root extracts. Results suggested that the total flavonoid content in the leaf extract was obviously higher than that in the root extract. Pinocembrin, the main compound in the leaf extract after purification by column chromatography, showed good antioxidant activity and nitrite scavenging capacity, but moderate inhibitory effect on mushroom tyrosinase. Liquiritin was the main compound in root extract and possessed strong inhibitory effect on mushroom tyrosinase. Both compounds exhibited significant protection effect on H2O2-injured PC12 cells at a low concentration. These results indicate that Glycyrrhiza glabra L. leaf is potential as an important raw material for functional food.

  8. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors.

    PubMed

    Santhoshkumar, Thirunavukkarasu; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Marimuthu, Sampath; Bagavan, Asokan; Jayaseelan, Chidambaram; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-03-01

    The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV-vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC(50) = 8.89, 11.82, and 0.69 ppm; LC(90) = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC(50) = 9.51, 13.65, and 1.10 ppm; LC(90) = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

  9. Mutagenic and antimutagenic assessment of methanol leaf extract of Myristica fragrans (Houtt.) using in vitro and in vivo genetic assays.

    PubMed

    Akinboro, Akeem; Mohamed, Kamaruzaman Bin; Asmawi, Mohd Zaini; Othman, Ahmad Sofiman; Ying, Tang Hui; Maidin, Siti Marina

    2012-10-01

    The role of diets in causing cancers necessitates the ongoing search for natural antimutagens of promising anticancer therapeutics. This study determined the potential anticancer efficacy of the leaf extract of Myristica fragrans (Houtt.). Methanol leaf extract of M. fragrans (Houtt.) alone was screened for mutagenicity in the bacterial reverse mutation (Ames) test, using the Salmonella typhimurium TA100 strain, the Allium cepa, and the mouse in vivo bone marrow micronucleus tests. The antimutagenicity of this extract against benzo[a]pyrene- and cyclophosphamide-induced mutations was evaluated. An antioxidant test on the extract was performed with 2,2-diphenyl-1-picrylhydrazyl, using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as the standards, whereas its phytochemicals were elucidated by following the gas chromatography/mass spectrometry protocol. In S. typhimurium (TA100), the mutagenicity ratio at 200,500 and 1,000 µg/well was >2. Cell division in the A. cepa root tips and mouse bone marrow was significantly (P ≤ 0.05) inhibited at 2,000 and 4,000 mg/kg, whereas the observed chromosomal aberrations and micronucleated polychromatic erythrocytes were non-dose-related and were insignificantly (P ≥ 0.05) different from the negative control. Inhibition of benzo[a]pyrene- and cyclophosphamide-induced mutagenicity by this extract was above 40%. Half-maximal inhibitory concentration of the extract in the antioxidant test was lower than that of BHA and BHT. Phytochemical compounds, possessing antioxidant activity, may be responsible for the observed effects, suggesting a strong antimutagenic activity of the MeOH leaf extract of M. fragrans, a necessary characteristic of a promising anticancer agent.

  10. Antimutagenicity and antigenotoxicity of Aloe arborescens Miller and Aloe barbadensis Miller in Aspergillus nidulans and Wistar rats.

    PubMed

    Berti, A P; Palioto, G F; Rocha, C L M S C

    2016-09-02

    Medicinal plants such as Aloe arborescens Miller and Aloe barbadensis Miller are used by the general population to treat various diseases. Therefore, the aim of this study was to evaluate the antimutagenicity of these two species using a methG1 system in Aspergillus nidulans and the comet assay in rats. The animals were treated with the plants at concentrations of 360 and 720 mg/kg body weight (1 and 2, respectively) by gavage for 14 days, followed by the administration of etoposide on treatment day 8. Blood samples were prepared for analysis of DNA damage. For the test in A. nidulans, the biA1methG1 lineage conidia were treated for 4 h with both plant species at concentrations of 4 and 8% (w/v). Then, they were washed and plated on a selective medium for frequency analysis of survival and mutation. The results of the comet assay showed that both plants were antigenotoxic compared to etoposide, which was not a typical response of methG1 systems, where only the highest concentration of plant extracts usually exhibit beneficial effects. This study demonstrates the potential antigenotoxicity and antimutagenicity of the Aloe plants tested and, therefore, supports their use as a form of preventive therapy and for health maintenance by the population.

  11. Evaluation and comparison of radical scavenging properties of solvent extracts from Justicia adhatoda leaf using DPPH assay.

    PubMed

    Jha, Deepak Kumar; Panda, Likun; Ramaiah, Sudha; Anbarasu, Anand

    2014-12-01

    2,2-Diphenyl-1-picrylhydrazyl (DPPH) method is routinely practiced for the assessment of antioxidant activity of compounds and their mixtures. The method is based on the spectrophotometric measurement of DPPH(·) concentration that changes resulting from the DPPH radical reaction with an antioxidant. The amount of remaining DPPH(·) in the examined system is a measure of the antioxidant activity of compounds. Our study aims at exploring the antioxidant properties of Justicia adhatoda leaf extract and comparing the results in terms of effective concentration which scavenges 50 % radical (EC50). The correlation of the activities for both cold and Soxhlet methanolic extracts is reported with DPPH assay. The antioxidant capacity of the methanolic extract derived by two different methods is positively correlated. Correlation between antioxidant capacity and phenolic content of methanolic extract in both the cases indicates the efficiency of the extraction procedure. Positive correlation and p value <0.05 validate the efficiency of the procedures and results.

  12. Experimental Evaluation of Ethanolic Extract of Carapa guianensis L. Leaf for Its Wound Healing Activity Using Three Wound Models

    PubMed Central

    Nayak, B. Shivananda; Kanhai, Joel; Milne, David Malcolm; Pereira, Lexley Pinto; Swanston, William H.

    2011-01-01

    The leaves of Carapa guianensis have been used to treat ulcers, skin parasites, and skin problems. The ethanolic extract of C. guianensis leaf was evaluated for its antibacterial and wound healing activity using excision, incision and dead space wound models in rats. The animals were randomly divided into two groups (n = 6) in all the models. In the excision wound model test group animals were treated topically with the leaf extract (250 mg kg−1 body weight) whereas, control animals were treated with petroleum jelly. In the incision and dead space wound models, the test group animals were treated with extract (250 mg kg−1 day−1) orally by mixing in drinking water and the control group animals were maintained with plain drinking water. Healing was assessed by the rate of wound contraction, period of epithelialization, skin breaking strength, granulation tissue weight and hydoxyproline content. On Day 15 extract-treated animals exhibited 100% reduction in the wound area when compared to controls (95%) with significant decrease in the epithelialization period. The extract failed to demonstrate antibacterial activity. Skin breaking strength (P < .001), wet (P < .002) and dry (P < .02) granulation tissue and hydroxyproline content (P < .03) were significantly higher in extract treated animals. The increased rate of wound contraction, skin breaking strength and hydroxyproline content supports potential application of C. guianensis in wound healing. PMID:19825872

  13. Antioxidant and antiulcer potential of aqueous leaf extract of Kigelia africana against ethanol-induced ulcer in rats

    PubMed Central

    dos Santos, Matheus M; Olaleye, Mary T; Ineu, Rafael P; Boligon, Aline A; Athayde, Margareth L; Barbosa, Nilda BV; Rocha, João Batista Teixeira

    2014-01-01

    Ethnobotanical claims regarding Kigelia africana reported antiulcer properties as part of its medicinal application. In this work, aqueous leaf extract from K. africana was investigated for its phytochemical constituents and antiulcer potential against ethanol-induced ulcer in rats. The participation of oxidative stress on ethanol-induced ulcer and the potential protective antioxidant activity of K. africana extracts were investigated by determining vitamin C and thiobarbituric acid reactive species (TBARS) contents in the gastric mucosa of rats. The HPLC analysis showed the presence of gallic acid, chlorogenic acid, caffeic acid and also the flavonoids rutin, quercetin and kaempferol in the aqueous plant extract. Oral treatment with K. africana extract (1.75; 3.5; 7 and 14 mg/kg) one hour after ulcer induction with ethanol decreased in a dose dependent manner the ulcer index. Ethanol increased significantly stomachal TBARS levels and decreased vitamin C content when compared to the control animals. K. africana blunted the ethanol-induced oxidative stress and restored vitamin C content to the control levels. The present results indicate that the aqueous leaf extract from K. africana possesses antiulcer potential. The presence of flavonoids in plant extract suggests that its antiulcerogenic potential is associated with antioxidant activity. Of particular therapeutic potential, K. africana was effective against ethanol even after the induction of ulcer, indicating that it can have protective and curative effects against gastric lesion. PMID:26417263

  14. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    PubMed

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  15. Hydrothermal preparation of reduced graphene oxide-silver nanocomposite using Plectranthus amboinicus leaf extract and its electrochemical performance.

    PubMed

    Zheng, Yuhong; Wang, Aiwu; Cai, Wen; Wang, Zhong; Peng, Feng; Liu, Zhong; Fu, Li

    2016-12-01

    Graphene based nanocomposites are receiving increasing attention in many fields such as material chemistry, environmental science and pharmaceutical science. In this study, a facial synthesis of a reduced graphene oxide-silver nanocomposite (RGO-Ag) was carried out from Plectranthus amboinicus leaf extract. The synthesized nanocomposite was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscope and UV-vis spectroscopy for structural confirmation. The reduction of graphene oxide and silver ions was achieved simultaneously due to the reducibility of the Plectranthus amboinicus leaf extract. We further investigated the electrochemical properties of the biosynthesized RGO-Ag nanocomposite. A nonenzymatic H2O2 electrochemical sensor was shown to be successfully fabricated by using biosynthesized RGO-Ag nanocomposite. Moreover, the fabricated electrochemical sensor also showed good selectivity.

  16. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora

    NASA Astrophysics Data System (ADS)

    Groiss, Silvia; Selvaraj, Raja; Varadavenkatesan, Thivaharan; Vinayagam, Ramesh

    2017-01-01

    In the present investigation, the leaf extract of Cynometra ramiflora was used to synthesize iron oxide nanoparticles. Within minutes of adding iron sulphate to the leaf extract, iron oxide nanoparticles were formed and thus, the method is very simple and fast. UV-VIS spectra showed the strong absorption band in the visible region. SEM images showed discrete spherical shaped particles and EDS spectra confirmed the iron and oxygen presence. The XRD results depicted the crystalline structure of iron oxide nanoparticles. FT-IR spectra portrayed the existence of functional groups of phytochemicals which are probably involved in the formation and stabilization of nanoparticles. The iron oxide nanoparticles exhibited effective inhibition against E. coli and S. epidermidis which may find its applications in the antibacterial drug development. Furthermore, the catalytic activity of the nanoparticles as Fenton-like catalyst was successfully investigated for the degradation of Rhodamine-B dye. This outcome could play a prominent role in the wastewater treatment.

  17. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  18. Evaluation of antipyretic activity of leaf extracts of Mallotus peltatus (Geist) Muell. arg. var acuminatus: a folk medicine.

    PubMed

    Chattopadhyay, D; Arunachalam, G; Mandal, A B; Mandal, S C

    2002-12-01

    A study was carried out to evaluate the anti-pyretic potential of the methanol extract of Mallotus peltatus (Geist) Muell. Arg. var acuminatus leaf, a folk medicine of Onge tribes of Bay Islands, on normal body temperature and yeast-induced pyrexia in Wister albino rats. The leaf extract at oral doses of 100, 200 and 300 mg kg(-1), p.o., showed significant reduction in normal body temperature and yeast-provoked elevated temperature in a dose-dependent manner and the anti-pyretic effect was comparable to that of standard anti-pyretic agent paracetamol (150 mg kg(-1), p.o.). The effect also extended up to 5 hours after the drug administration.

  19. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay

    NASA Astrophysics Data System (ADS)

    Parveen, Mehtab; Ahmad, Faheem; Malla, Ali Mohammed; Azaz, Shaista

    2016-02-01

    The biosynthesis of nanoparticles has been proposed as a cost effective and environmentally benevolent alternative to chemical and physical methods. In the present study, microwave assisted synthesis of silver nanoparticles (AgNPs) has been demonstrated using leaf extract of Fraxinus excelsior reducing aqueous AgNO3 solution. The synthesized nanoparticles have been characterized on the basis of fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The presence of a characteristic surface plasmon resonance (SPR) absorption band at 425 nm in UV-Vis reveals the reduction of silver metal ions into silver nanoparticles. FT-IR analysis was carried out to probe the possible functional group involved in the synthesis of AgNPs. Further leaf extracts and AgNPs were evaluated for antiradical scavenging activity by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay.

  20. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  1. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    PubMed Central

    2013-01-01

    of active component(s) from the leaf extract could lead to the development of anti-cancer agents which could be useful in the treatment of different types of cancers. PMID:23302496

  2. Chemopreventive potential of Azadirachta indica (Neem) leaf extract in murine carcinogenesis model systems.

    PubMed

    Dasgupta, Trisha; Banerjee, S; Yadava, P K; Rao, A R

    2004-05-01

    Numerous laboratory studies reveal that various naturally occurring dietary substances can modify the patho-physiological process of various metabolic disorders and can be an effective preventive strategy for various diseases, including cancer. Indian Neem tree, Azadirachta indica A. Juss. (family: Meliaceae), contains at least 35 biologically active principles and is widely grown all over the tropics. The effect of two different doses (250 and 500 mg per kilogram body weight) of 80% ethanolic extract of the leaves of Azadirachta indica were examined on drug metabolizing Phase-I and Phase-II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase, and lipid peroxidation in the liver of 7-week-old Swiss albino mice. Also anticarcinogenic potential of Azadirachta indica leaf extract was studied adopting protocol of benzo(a)pyrene-induced fore-stomach and 7,12-dimethyl benz(a)anthracene (DMBA)-induced skin papillomagenesis. Our primary findings reveal its potential to induce only the Phase-II enzyme activity associated mainly with carcinogen detoxification in liver of mice. The hepatic glutathione S-transferase (P < 0.005) and DT-diaphorase specific activities (P < 0.01) were elevated above basal level. With reference to antioxidant enzymes the investigated doses were effective in increasing the hepatic glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) activities significantly (from P < 0.005 to P < 0.001). Reduced glutathione measured as non-protein sulphydryl was found to be significantly elevated in liver (P < 0.005) and in extrahepatic organs (from P < 0.005 to P < 0.001) examined in our study. Glutathione S-transferase (GST) and DT-diaphorase (DTD) showed a dose-dependent increase in extrahepatic organs. Chemopreventive response was measured by the average number of papillomas per mouse, as well as percentage of tumor-bearing animals. There was a significant inhibition of tumor burden, in both

  3. Antimicrobial Efficacy of Punica granatum mesocarp, Nelumbo nucifera Leaf, Psidium guajava Leaf and Coffea Canephora Extract on Common Oral Pathogens: An In-vitro Study

    PubMed Central

    Mehta, Viral V.; Rao, Ashwini; Shenoy, Ramya; B.H, Mithun Pai

    2014-01-01

    Background and Objectives: Alternative therapies are increasingly being explored as extensive use of synthetic chemicals has led to the emergence of substantial side effects. Phytomedicine has been well practiced as traditional medicine in various cultures for treatment of oral diseases. It has gained importance of late as an alternative to the conventional therapy. Various plant and fruit extracts have been monitored recently to assess their potential against the common oral pathogens. Aim of this study was to assess in-vitro efficacy of pomegranate peel, lotus leaf, guava leaf and coffee extracts on oral microorganisms. Materials and Methods: Concentrations of 1%, 5%, 10%, 15% and 20% were prepared for each, followed by efficacy testing using disc diffusion method against Streptococcus mutans, Streptococcus mitis, Porphyromonas gingivalis, Prevotella intermedia and Candida albicans. Results: All the four extracts were found to be effective against S.mutans and S.mitis, with maximum efficacy against S.mutans and S.mitis displayed by pomegranate and lotus. Antifungal efficacy was demonstrated by coffee and pomegranate. Guava, lotus and coffee were effective against P.intermedia, while only coffee was found to be effective against P. gingivalis. All the results were found to be statistically significant (p < 0.05). Interpretation & Conclusion: Pomegranate, guava, lotus and coffee displayed significant anticariogenic effect while coffee was found to be most effective against periodontal pathogens as well as Candida albicans. Results revealed that natural products may be used as economical and suitable adjuvant to synthetic medicines and compounds and their judicious use might not only help to inhibit the side effects of synthetic chemicals but also prove to be cost effective in developing economies. PMID:25177642

  4. In Vitro Assessment of Cytotoxicity, Antioxidant, and Anti-Inflammatory Activities of Ricinus communis (Euphorbiaceae) Leaf Extracts

    PubMed Central

    2014-01-01

    Ricinus communis has been utilized traditionally as medicine to treat inflammatory related diseases including wounds, sores, and boils. The leaves of R. communis were sequentially extracted with n-hexane, dichloromethane, acetone, and methanol using serial exhaustive extraction method. Antioxidant activity of all crude extracts was quantitatively measured against 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) free radical molecules using ABTS+ assay. Cytotoxic effect and anti-inflammatory activity of R. communis leaves extracts were evaluated on Human Caucasian skin fibroblast and Raw 264.7 macrophage cell lines, respectively. Methanol extract had the highest percentage free radical (ABTS+) scavenging activity of 95% at 2.50 mg/mL, acetone 91%, dichloromethane 62%, and hexane the least (50%). Percentage scavenging activity of ABTS+ free radical molecules increases with increase in concentrations of the plant extracts. Hexane and dichloromethane extracts had more than 90% cell viability at 100 µg/mL after 24 and 48 hours of exposure. Methanol extract had LC50 of 784 µg/mL after 24-hour exposure, hexane had 629.3 µg/mL and dichloromethane 573.6 µg/mL, and 544.6 µg/mL was the lowest with acetone extract. The study present the first report on the scavenging activity of R. communis leaf extracts against ABTS+ radicals and cytotoxic effects on human Caucasian skin fibroblast cell lines. PMID:25477994

  5. Effect of leaf extracts of Taraxacum officinale on CCl4 induced hepatotoxicity in rats, in vivo study.

    PubMed

    Gulfraz, Muhammad; Ahamd, Dawood; Ahmad, Muhammad Sheeraz; Qureshi, Rehmatullah; Mahmood, Raja Tahir; Jabeen, Nyla; Abbasi, Kashif Sarfraz

    2014-07-01

    Taraxacum officinale L is a medicinal plant, which has enormous medicinal values against various types of liver disorders and it has traditionally been used for the treatment of liver problems by people from the South East Asia. Previously we have screened the crude methanolic extract of T. officinale against cytotoxicity induced by CCl4. Present study was designed to compare the protective effect of ethanolic and n-hexane extract of leaves in carbon tetrachloride (CCl4) induced liver toxicity in rats. The extract (200 mg/kg and 400mg/kg body weight) along with silymarin (100 mg/kg) a standard drug was administered to experimental animals. It was observed that ethanolic plant extract has significantly reduced the negative effect of CCl4 as compared to n-hexane extract and effect of extract was increased with increasing dose level. Although both leaf extracts decreased the concentration of TBARS, H2O2 and nitrite contents which enhance due to CCl4 toxicity but effect was higher in ethanolic extract. The results clearly indicated that Taraxacum officinale ethanolic leaves extract has better protective effect against CCl4 induced liver tissues toxicity. This claim was also supported by histopathological results obtained during this study and this might be due to presence of various polar phytochemicals that might be more prevent in this extract.

  6. Antimicrobial fish gelatin films with olive leaf extract for inactivation of Listeria monocytogenes on ready-to-eat smoked salmon (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive leaf is a sizable by-product from the olive industry. Its use as antimicrobial/antioxidant ingredient in edible films for fish preservation was evaluated. Olive leaf powder (OLP) and its water/ethanol extract (OLPE) were tested against three foodborne pathogens: Listeria monocytogenes, Escheri...

  7. Evaluation of amygdaloid neuronal dendritic arborization enhancing effect of Centella asiatica (Linn) fresh leaf extract in adult rats.

    PubMed

    Mohandas Rao, K G; Rao, Muddanna S; Rao, Gurumadhva S

    2012-12-03

    OBJECTIVE: Centella asiatica (CeA), a creeper, growing in moist places in India and other Asian countries. Leaves of CeA are used for memory enhancement in Ayurvedic system of medicine, an alternative system of medicine originated from India. In the present study, we have investigated the role of CeA fresh leaf extract treatment on adult rats on dendritic morphology of amygdaloid neurons, one of the regions concerned with learning and memory. METHODS: Adult rats (2.5-month old) were fed with 2, 4 and 6 mL/(day kg) of fresh leaf extract of CeA for 2, 4 and 6 weeks. After the treatment period the rats were killed, brains were removed and amygdaloid neurons were impregnated with silver nitrate (Golgi staining). Such silver impregnated amygdaloid neurons were traced using camera lucida and dendritic branching points (a measure of dendritic arborization) and intersections (a measure of dendritic length) were quantified. These data were compared with those of age matched control rats. RESULTS: The results showed a significant increase in the dendritic length (intersections) and dendritic branching points in amygdaloid neurons of the rats treated with higher dose [6 mL/(day·kg)] of CeA for longer period of time (i.e. 6 weeks). CONCLUSIONS: Constituents/active principles present CeA fresh leaf extract has neuronal dendritic growth stimulating property; hence it can be used for enhancing neuronal dendrites in stress and other neurodegenerative and memory disorders.

  8. Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles.

    PubMed

    Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri

    2014-01-01

    The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles.

  9. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity.

    PubMed

    Soman, Soumya; Ray, J G

    2016-10-01

    Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane.

  10. Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis.

    PubMed

    Shahzadi, I; Ahmed, R; Hassan, A; Shah, M M

    2010-03-09

    Tagetes, a genus of flowering marigolds in the family Asteraceae (Compositeae), is reported to be a medicinal plant with hypotensive, spasmolytic, anti-inflammatory, antimicrobial, and antifungal properties. Tagetes minuta characteristically contains high concentrations of essential oils, flavonoids, polyphenols, and polysaccharides that interfere with DNA, causing erroneous or no PCR products. We tested and modified various standard protocols in an effort to isolate high-quality DNA from different plant tissues of T. minuta. We used sun-dried, shade-dried and fresh-leaf tissues, as well as seeds for DNA analysis. The DNA obtained from seeds and fresh-leaf tissues with a modified cetyltrimethylammonium bromide buffer protocol was of good quality, with no colored pigments and contaminants. We were able to obtain good quality DNA from fresh leaf tissues without using liquid nitrogen. A relatively large amount of DNA was also extracted from the sun- and shade-dried tissues, but its quality was not as good as that from seeds. The DNA extracted from seeds and fresh leaves was successfully amplified by PCR using arbitrary RAPD primers. The same protocol will probably be useful for extracting high-molecular weight DNA from other plant materials containing large amounts of secondary metabolites and essential oils.

  11. Efficacy and safety of Carica papaya leaf extract in the dengue: A systematic review and meta-analysis

    PubMed Central

    Charan, Jaykaran; Saxena, Deepak; Goyal, Jagdish Prasad; Yasobant, Sandul

    2016-01-01

    Background: Dengue is an infectious disease associated with high mortality and morbidity. Being a viral disease, there is no specific drug available for treatment. There are some reports that Carica papaya leaf extract may improve the clinical condition of dengue patients; however, to support this, at present, there is no systematically searched and synthesized evidence available. Objectives: This systematic review and meta-analysis was designed to search the available evidence related to the efficacy and safety of C. papaya leaf extract in dengue and to synthesize the evidence in meaningful form through meta-analysis so that inference can be drawn. Materials and Methods: Randomized controlled trials related to the efficacy and safety of C. papaya leaf extract in dengue were searched from PubMed, Cochrane Clinical Trial Registry and Google Scholar. The primary endpoint was mortality, and secondary endpoints were increase in platelet count, hospitalization days, and Grade 3 and 4 adverse events. Data related to primary and secondary endpoints were pooled together and analyzed by review manager (Review Manager (RevMan) Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Denmark) software. The random effect model was used. The bias was analyzed by the Cochrane risk of bias tool. Results: Total four trials enrolling 439 subjects were included in the analysis. Of 439 subjects, data of 377 subjects were available for analysis. C. papaya leaf extract was found to be associated with increase in platelet count in the overall analysis (mean difference [MD] =20.27 [95% confidence interval (CI) 6.21–34.73; P = 0.005]) and analysis after 4th day (MD = 28.25 [95% CI 14.14–42.37; P < 0.0001]). After 48 h, there was no significant difference between C. papaya and control group (MD = 13.38 [95% CI − 7.71–34.51; P = 0.21]). There was significant decrease in hospitalization days in the C. papaya group (MD = 1.90 [95% CI 1.62–2.18; P < 0.00001]). Because of

  12. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    PubMed

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  13. Evaluation of antibacterial activity of the bark and leaf extracts of Brosimum gaudichaudii Trécul against multidrug resistant strains.

    PubMed

    Borges, Joelma da Costa; Perim, Michele Cezimbra; de Castro, Rodrigo Orlandini; Araújo, Thiago Antônio de Sousa; Peixoto Sobrinho, Tadeu José da Silva; da Silva, Ana Carolina Oliveira; Mariano, Sandra Maria Botelho; Carreiro, Solange Cristina; Pranchevicius, Maria Cristina da Silva

    2017-03-22

    Brosimum gaudichaudii Trécul., a plant that belongs to Moraceae family, is found throughout the Brazilian Cerrado. The antimicrobial activities of ethanolic bark and leaf extracts of B. gaudichaudii were tested against multiresistant bacteria isolated from diabetic foot infections (DFIs). Antimicrobial activity of the extracts was evaluated by agar disc diffusion (DD) and broth dilution (BD) methods. By BD method, bark (53.85, 45.83%) and leaf (42.31, 50.00%) extracts contained antimicrobial activity against both gram-negative and gram-positive bacteria. Increased antimicrobial activity was observed when bark and leaf extracts were tested against Staphylococcus aureus (63.64%) and Pseudomonas aeruginosa (66.67%). Statistical analyses of bark and leaf extract demonstrated antimicrobial activity against both gram-positive (p = 0.000) and gram-negative bacteria (p = 0.012). Extract of bark (p = 0.075) or leaf (p = 0.005) associated with ACA antibiotic showed antimicrobial activity against gram-positive bacteria. Our study suggests that the bark and leaf extracts contain bioactive compounds with antimicrobial activity against multidrug resistant strains.

  14. Repellent and mosquitocidal effects of leaf extracts of Clausena anisata against the Aedes aegypti mosquito (Diptera: Culicidae).

    PubMed

    Mukandiwa, Lillian; Eloff, Jacobus Nicolaas; Naidoo, Vinny

    2016-06-01

    Mosquitoes are rapidly developing resistance to insecticides that millions of people relied on to protect themselves from the diseases they carry, thereby creating a need to develop new insecticides. Clausena anisata is used traditionally as an insect repellent by various communities in Africa and Asia. For this study, the repellency and adulticidal activities of leaf extracts and compounds isolated from this plant species were evaluated against the yellow fever mosquito, Aedes aegypti. In the topical application assays, using total bites as an indicator, repellency was dose dependent, with the acetone crude extract (15 %) having 93 % repellence and the hexane fraction (7.5 %) 67 % repellence after 3 h. Fractionation resulted in a loss of total repellence. As mosquito-net treating agents, the acetone and hexane extracts of C. anisata, both at 15 %, had average repellences of 46.89 ± 2.95 and 50.13 ± 2.02 %, respectively, 3 h after exposure. The C. anisata acetone extract and its hexane fraction caused mosquito knockdown and eventually death when nebulised into the testing chamber, with an EC50 of 78.9 mg/ml (7.89 %) and 71.6 mg/ml (7.16 %) in the first 15 min after spraying. C. anisata leaf extracts have potential to be included in protection products against mosquitoes due to the repellent and cidal compounds contained therein.

  15. Antioxidant and non-toxic properties of Piper betle leaf extract: in vitro and in vivo studies.

    PubMed

    Choudhary, Dharamainder; Kale, Raosaheb K

    2002-08-01

    Piper betle leaves are used in folk medicine for the treatment of various disorders and is commonly chewed among Asians. The present study investigates the protective efficacy of P. betle leaf extract. The presence of the extract inhibited the radiation induced lipid peroxidation process effectively. This could be attributed to its ability to scavenge free radicals involved in initiation and propagation steps. Oral supplementation with extract (1, 5 and 10 mg/kg) was administered daily for 2 weeks to Swiss albino mice and the hepatic antioxidant status was analysed. The GSH content was enhanced and no appreciable change was found in the levels of oxidative damage in terms of lipid peroxidation. Also, the specific activity of SOD increased in a dose dependent manner. These factors indicate the elevation of antioxidant status in the animals. The effect on the glyoxalase system which is considered to be activated under stress conditions was also investigated. Our findings did not observe any significant change in gly I and gly II activities, implying a non-stress condition after oral treatment of the extract. The present study indicates the antioxidant activity of P. betle leaf extract and its potential to elevate the antioxidant status.

  16. Optimization of Total Flavonoid Compound Extraction from Gynura medica Leaf Using Response Surface Methodology and Chemical Composition Analysis

    PubMed Central

    Liu, Wei; Yu, Yanying; Yang, Ruzhen; Wan, Chunpeng; Xu, Binbin; Cao, Shuwen

    2010-01-01

    Optimization of total flavonoid compound (TFC) extraction from Gynura medica leaf was investigated using response surface methodology (RSM) in this paper. The conditions investigated were 30–60% (v/v) ethanol concentration (X1), 85–95 °C extraction temperature (X2) and 30–50 (v/w) liquid-to-solid ratio (X3). Statistical analysis of the experiments indicated that temperature and liquid-to-solid ratio significantly affected TFC extraction (p < 0.01). The Box-Behnken experiment design showed that polynomial regression models were in good agreement with the experimental results, with the coefficients of determination of 0.9325 for TFC yield. The optimal conditions for maximum TFC yield were 55% ethanol, 92 °C and 50 (v/w) liquid-to-solid ratio with a 30 min extraction time. Extracts from these conditions showed a moderate antioxidant value of 54.78 μmol quercetin/g dry material (DM), 137.3 μmol trolox/g DM for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 108.21 μmol quercetin/g DM, 242.31 μmol trolox/g DM for 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS+), respectively. HPLC-DAD-MS analysis showed that kaempferol-3-O-glucoside was the principal flavonoid compound in Gynura medica leaf. PMID:21151469

  17. Activity of olive leaf extracts against the promastigote stage of Leishmania species and their correlation with the antioxidant activity.

    PubMed

    Sifaoui, Ines; López-Arencibia, Atteneri; Martín-Navarro, Carmen Ma; Chammem, Nadia; Reyes-Batlle, María; Mejri, Mondher; Lorenzo-Morales, Jacob; Abderabba, Manef; Piñero, José E

    2014-06-01

    Leishmaniasis is one of the neglected tropical diseases in terms of drug discovery and development. Furthermore, the chemotherapy used to treat this disease has been proved to be highly toxic and to present resistance issues. As consequent, the need for novel leishmanicidal molecules has notably increased in the recent years. In the present work an attempt was made to evaluate the antioxidant and leishmanicidal activities besides presence of compounds in leaf extracts of 5 different Tunisian olive tree varieties, used as traditional medicine in this country. The concentration of extracts needed to inhibit 50% of the parasitic growth (IC50) was estimated using different Leishmania strains. All tested extracts showed an inhibitory effect on the parasite growth with IC50 ranging from 2.130±0.023 to 71.570±4.324μg/ml, respectively for the methanolic extracts of Limouni and Zarrazi against Leishmania donovani. In fact, this activity was significantly affected by the olive cultivar and the tested Leishmania strain. Furthermore, the activities against both Leishmania tropica and major species were correlated to the total phenolic compounds. These results could suggest that olive leaf extract could carry potential new compounds for the development of novel drugs against Leishmaniasis.

  18. Protective effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats

    PubMed Central

    Mannasaheb, Basheerahmed A.A.; Kulkarni, Preeti V.; Sangreskopp, Mashood Ahmed; Savant, Chetan; Mohan, Anjana

    2015-01-01

    Introduction: Natural plants always provide core compounds for new drug development. In the present life and food style, inflammatory bowel disease has become common and needs a lead compound for its drug development. Aim: To evaluate the effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats based on its traditional anti-inflammatory use. Materials and Methods: Male Wistar rats were pretreated with A. americana leaf extract in the dose of 200 and 400 mg/kg p.o. daily for 7 days. On 8th day, 2 ml of 4% v/v acetic acid in saline was instilled into rats’ rectum. Prednisolone was used as standard drug and it was administered on the day of acetic acid instillation and continued for 3 days. Extract treatment was continued till 11th day. Body weight, ulcer score, colonic muscle contraction, antioxidant activity and histopathology were studied. Statistical analysis was performed using Parametric one-way analysis of variance followed by Tukey's posttest. Results: A. americana have retained total body weight significantly (P < 0.01) and decreased colon weight/length ratio. Extract have shown a significant decrease (P < 0.001) in ulcer scores, myeloperoxidase, lipid peroxidase activity. Further, extract have shown significant improvement in colonic muscle contraction, histopathology of colon etc., which is comparable with standard drug. Conclusion: A. americana possess protective effect against acetic acid-induced colitis in rats. PMID:26730148

  19. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro.

    PubMed

    Kubola, Jittawan; Siriamornpun, Sirithon

    2008-10-15

    Bitter gourd (Momordica charantia L.) has long been regarded as a food and medicinal plant. We investigated the antioxidant activity of the water extract of leaf, stem and fruit fractions by several in vitro systems of assay, namely DPPH radical-scavenging activity, hydroxyl radical-scavenging activity, β-carotene-linoleate bleaching assay, ferric reducing/antioxidant power (FRAP) assay and total antioxidant capacity. Total phenolic content was measured by Folin-Ciocalteu reagent. Identification of phenolic compounds was achieved using HPLC with the UV-diode array detection. The extracts of different fractions were found to have different levels of antioxidant activity in the systems tested. The leaf extract showed the highest value of antioxidant activity, based on DPPH radical-scavenging activity and ferric reducing power, while the green fruit extract showed the highest value of antioxidant activity, based on hydroxyl radical-scavenging activity, β-carotene-linoleate bleaching assay and total antioxidant capacity. The predominant phenolic compounds were gallic acid, followed by caffeic acid and catechin. The present study demonstrated that the water extract fractions of bitter gourd have different responses with different antioxidant methods. Total phenol content was shown to provide the highest association with FRAP assay in this present study (R(2)=0.948).

  20. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate β-cells regeneration and anti-diabetic activity in Wistar rats.

    PubMed

    Ahmed, A Bakrudeen Ali; Rao, A S; Rao, M V

    2010-11-01

    A methanol extract of Gymnema sylvestre leaf and callus showed anti-diabetic activities through regenerating β-cells. Optimum callus was developed under stress conditions of blue light with 2,4-D (1.5 mg/l) and KN (0.5 mg/l), which induced maximum biomass of green compact callus at 45 days, as determined by growth curve analysis. Leaf and optimum callus extracts contains gymnemic acid, which was analyzed using TLC, HPTLC and HPLC methods. The research reported here deals with leaf and callus extracts of G. sylvestre, which significantly increase the weight of the whole body, liver, pancreas and liver glycogen content in alloxan-induced diabetic rats (Wistar rats). The gymnemic acid of leaf and callus extracts significantly increases the regeneration of β-cells in treated rats, when compared with the standard diabetic rats. It could have potential as a pharmaceutical drug for insulin-dependent diabetes mellitus (IDDM).

  1. Perception of aspen and sun/shade sugar maple leaf soluble extracts by larvae of Malacosoma disstria.

    PubMed

    Panzuto, M; Lorenzetti, F; Mauffette, Y; Albert, P J

    2001-10-01

    We investigated the behavioral feeding preference and the chemoreception of leaf polar extracts from trembling aspen, Populus tremuloides, and from sun and shade sugar maple, Acer saccharum, by larvae of the polyphagous forest tent caterpillar, Malacosoma disstria, a defoliator of deciduous forests in the Northern Hemisphere. Three polar extracts were obtained from each tree species: a total extract, a water fraction, and a methanol fraction. M. disstria larvae were allowed ad libitum access to an artificial diet from eclosion to the fifth instar. Two-choice cafeteria tests were performed comparing the mean (+/-SE) surface area eaten of the total extracts, and the following order of preference was obtained: aspen > sun maple > shade maple. Tests with the other fractions showed that M. disstria larvae preferred the total aspen extract to its water fraction, and the latter to its methanol fraction. The response to sun maple was similar to aspen. However, for the shade maple experiment, there was no difference between the total extract and its water fraction. Electrophysiological recordings for aspen showed that the sugar-sensitive cell elicited more spikes to the water fraction, followed by the total extract, and finally the methanol fraction. Spike activity to stimulations of sun and shade maple extracts revealed a similar trend, where methanol fraction > water fraction > total extract. Our findings are discussed in light of previously known information about this insect's performance on these host plants.

  2. Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells

    PubMed Central

    Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei

    2016-01-01

    Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells. PMID:27379139

  3. Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells.

    PubMed

    Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei

    2016-01-01

    Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.

  4. Aluminum phosphide-induced genetic and oxidative damages in rats: attenuation by Laurus nobilis leaf extract.

    PubMed

    Türkez, Hasan; Toğar, Başak

    2013-08-01

    Aluminum phosphide (AlP) is a colorless, flammable, liquefied pesticide that is commonly used to control insects, nematodes, weeds, and pathogens in crops, forests, ornamental nurseries, and wood products. Early investigations of AlP-poisoned mammalian cells led to the proposed involvement of oxidative damage in its toxicity mechanism. Therefore, this study was aimed to evaluate the effect of Laurus nobilis (L) leaf extract (LNE) against AlP-induced genetic and oxidative damages in rats. Selected animals were assigned to four groups (n = 6), namely, group A: control (only distilled water is injected); group B: AlP (4 mg kg(-1) injected intraperitoneally (i.p.)); group C: LNE (200 mg kg(-1) injected i.p.), and group D: AlP plus LNE, respectively. The experimental period lasted for 14 successive days. Chromosomal aberrations (CAs) and micronucleus (MN) assay were used for monitoring genotoxic damage. In addition, biochemical parameters such as total antioxidant capacity (TAC) and total oxidative status (TOS) were examined in serum samples to determine oxidative damage. Our results indicated that AlP caused increase in CA and MN assay rates and alterations in TAC and TOS levels when compared with control group. On the contrary, LNE did not change the rates of both the analyzed cytogenetic end points and led to increase in TAC level. Moreover, we observed that LNE suppressed the genetic damage by AlP to bone marrow cells in vivo. Interestingly AlP-induced oxidative stress was also strongly reduced by LNE. The results of the present study indicated that the protective effect of LNE might be ascribable to its antioxidant and free radical scavenging properties.

  5. Lipid Profile and Electrolyte Composition in Diabetic Rats Treated With Leaf Extract of Musa sapientum.

    PubMed

    Adewoye, E O; Ige, A O

    2016-01-01

    Diabetes mellitus affects lipid levels resulting in diabetic dyslipidemia as well as electrolyte loss from the body. Musa sapientum has been reported to possess antidiabetic properties. This study assessed the lipid profile and electrolyte composition in alloxan-induced diabetic rats treated with methanol leaf extract of M. sapientum (cMEMSL). Diabetes was induced with alloxan (120 mg/kg i.p.). Seventy-five male albino rats were divided into 5 groups of 15 rats each. Group 1 was control; groups 2-5 were made diabetic and treated with 0.2 ml 0.9% NaCl, cMEMSL (250 mg/kg and 500 mg/kg), and glibenclamide (5 mg/kg), respectively, for 14 days. Blood samples were obtained from the retro orbital sinus after light anesthesia from 5 animals in each group on days 2, 7, and 14 for lipids and electrolyte analysis. Lipid profile of diabetic treated (cMEMSL and glibenclamide) animals showed significant reduction (p < .05) in total cholesterol, triglyceride, and low density lipoprotein (LDL) levels. The high density lipoprotein (HDL) level in the treatment groups increased significantly (p < .05) compared with diabetic untreated. Sodium, potassium, and phosphate ions significantly increased in all diabetic treatment groups while chloride ion significantly decreased compared with diabetic untreated. There was no significant difference in calcium and bicarbonate ion concentration in all the groups. This study has showed additional properties of Musa sapientum to include its ability to restore electrolyte balance, reduce cholesterol, triglyceride, LDL, and increase the HDL levels in diabetic animals.

  6. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity.

    PubMed

    Ramesh, M; Anbuvannan, M; Viruthagiri, G

    2015-02-05

    In the present investigation, we have described the green biosynthesis of ZnO nanoparticles (NPs) by using Solanum nigrum as capping agent. The functionalization of ZnO particles through S. nigrum leaf extract mediated bioreduction of ZnO was investigated through UV-Vis DRS, photoluminescence (PL), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), thermal gravimetric-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS) and antibacterial activities. UV-Vis-DRS studies revealed that the indirect band gap 3.38 eV and photoluminescence study reveals the blue emission at 402, 447, 469 and 483 nm and the green emission at 529 nm respectively. In addition, the synthesized NPs are wurtzite hexagonal structure with an average grain size lies between 20 and 30 nm were found from XRD analysis. Further, FT-IR spectra revealed the functional groups and the presence of protein as the stabilizing agent for surrounding the ZnO NPs. The diameter of the NPs in the range of 20-30 nm was found from FE-SEM study. TEM analysis was investigated the ZnO NPs as a quasi-spherical in shape and their diameter at around 29.79 nm. Finally, the current study has clearly demonstrated that the particle size variations and surface area to volume ratios of ZnO NPs are responsible for significant higher antibacterial activities. Further, the present investigation suggests that ZnO NPs has the potential applications for various medical and industrial fields so, that the investigation is so useful and helpful to the scientific communities.

  7. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications.

    PubMed

    Vijayakumar, Sekar; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Shobiya, Malaikkarasu

    2016-12-01

    The present study reports the green synthesis of zinc oxide nanoparticles using the aqueous leaf extract of Laurus nobilis (Ln-ZnO NPs) by co-precipitation method. The synthesized Ln-ZnO NPs were characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, SEM and EDX. Ln-ZnO NPs were crystalline in nature, flower like and have hexagonal wurtzite structure with a mean particle size of 47.27nm. The antibacterial activity of Ln-ZnO NPs was greater against Gram positive (Staphylococcus aureus) bacteria than Gram negative (Pseudomonas aeruginosa) bacteria. The zone of inhibition against S. aureus was 11.4, 12.6 and 14.2mm at 25, 50 and 75μgmL(-1). The zone of inhibition against P. aeruginosa was 9.8, 10.2 and 11.3mm at 25, 50 and 75μgmL(-1). The light and confocal laser scanning microscopic images evidenced that Ln-ZnO NPs effectively inhibited the biofilm growth of S. aureus and P. aeruginosa at 75μgmL(-1). The cytotoxicity studies revealed that Ln-ZnO NPs showed no effect on normal murine RAW264.7 macrophage cells. On the other hand, Ln-ZnO NPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 80μgmL(-1). The morphological changes in the Ln-ZnO NPs treated A549 lung cancer cells were observed under phase contrast microscope.

  8. Origanum vulgare leaf extract protects mice bone marrow cells against ionizing radiation

    PubMed Central

    Ghasemnezhad Targhi, Reza; Changizi, Vahid; Haddad, Farhang; Homayoun, Mansour; Soleymanifard, Shokouhozaman

    2016-01-01

    Objective: Ionizing radiation produces free radicals which induce DNA damage and cell death. Origanum vulgare leaf extract (OVLE) is a natural compound and its capability of scavenging free radicals and its antioxidant activity have been demonstrated by many researchers. In this study, using micronucleus assay, radioprotective effect of OVLE against clastogenic and cytotoxic effect of gamma irradiation has been investigated in mice bone marrow cells. Materials and Methods: OVLE was injected intraperitoneally to the BALB/c mice 1hr prior to gamma irradiation (3Gy) at the doses of 100 and 200 mg/kg. Twenty four hours after irradiation or treatment, animals were killed and smears were prepared from the bone marrow cells. The slides were stained with May Grunwald–Giemsa method and analyzed microscopically. The frequency of micronucleated polychromatic erythrocytes (MnPCEs), micronucleated normochromatic erythrocyte (MnNCEs) and cell proliferation ratio PCE/PCE+NCE (polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte) were calculated. Results: The results showed that gamma irradiation (3Gy) increased the frequency of MnPCEs, MnNCEs and reduced the PCE/PCE+NCE ratio in mice bone marrow compared to the non-irradiated control group (p<0.0001). Injection of OVLE significantly reduced the frequency of MnPCEs (p<0.0001) and MnNCEs (p<0.05) and increased the PCE/PCE+NCE ratio as compared to the irradiated control group (p<0.05). Conclusion: It seems that OVLE with its antioxidant properties and its capability of scavenging free radicals and reactive oxygen species can reduce the cytotoxic effects of gamma irradiation in mice bone marrow cells. PMID:28078248

  9. Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine.

    PubMed

    Kalangi, Suresh K; Dayakar, A; Gangappa, D; Sathyavathi, R; Maurya, R S; Narayana Rao, D

    2016-11-01

    Despite the existence of chemotherapy, there is no effective cure for leishmaniasis. In the light of recommended therapeutic regimen is attributed for toxicity and development of clinical resistance, exploration of an efficient method of drug delivery could be one of the option in reducing the dosage and toxicity of drugs. This work is aimed in such fashion to study the enhanced antileishmanial activity of miltefosine with silver-nanoparticles (AgNPs) synthesized by using Anethum graveolens (dill) leaf extract as reducing agent. AgNPs were synthesized in a single step process and characterized by UV-visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR) to understand the crystal structure and functional groups on their surface. TEM analysis showed that the synthesized AgNPs are of an average size of 35 nm. By performing MTT assay, we found that, AgNPs (between 20 and 100 μM) are biocompatible in nature through pertaining >80% viability of macrophages. Furthermore, AgNPs alone (50 μM) have not shown antileishmanial effect on promastigote stage of Leishmania parasite but in combination with miltefosine (12.5 μM and 25 μM), it magnifies the leishmanicidal effect of miltefosine by ∼2-folds (i.e. AgNPs cut down the IC50 of miltefosine about to half). Scanning electron microscopic (SEM) observation for morphological aberration and genomic DNA fragmentation in promastigotes confirmed the enhanced effect of meltefosine in combination with AgNPs (50 μM AgNPs plus 12.5 μM miltefosine). Similarly, this combination has likely shown a slight augmentation (p = 0.057) of miltefosine (2.5 μM) leishmanicidal efficacy on amastigote stage of the parasite in infected human macrophages by reducing their intracellular growth.

  10. Ginkgo biloba leaf extract: review of biological actions and clinical applications.

    PubMed

    Yoshikawa, T; Naito, Y; Kondo, M

    1999-01-01

    The number of studies on Ginkgo biloba leaves is rapidly increasing. A variety of effects of Ginkgo biloba leaf extract (GBLE) have been identified. GBLE contains many different flavone glycosides and terpenoides. GBLE has an antioxidant action as a free radical scavenger, a relaxing effect on vascular walls, an antagonistic action on platelet-activating factor, an improving effect on blood flow or microcirculation, and a stimulating effect on neurotransmitters. Besides a direct scavenging action on active oxygen species, GBLE exerts an anti-inflammatory effect on inflammatory cells by suppressing the production of active oxygen and nitrogen species. GBLE inhibited the increase in the products of the oxidative decomposition low-density lipoprotein (LDL), reduced the cell death in various types of neuropathy, and prevented the oxidative damage to mitochondria, suggesting that GBLE exhibits beneficial effects on neuron degenerative diseases by preventing chronic oxidative damage. The study using a model of ischemia-reperfusion injury has also demonstrated the protective effect of GBLE on cardiac muscle and its antioxidative action in vivo. Favorable results have been obtained in double-blind, placebo-controlled, comparative trials of patients with memory disorders, obstructive arteriosclerosis, and dementia. We review the recent studies on GBLE with respect to its various pharmacological actions, such as a scavenging activity on free radicals and an inhibitory action on lipid peroxidation. GBLE shows a very strong scavenging action on free radicals, and is thus considered to be useful for the treatment of diseases related to the production of free radicals, such as ischemic heart disease, cerebral infarction, chronic inflammation, and aging.

  11. The Antiproliferative Effect of Moringa oleifera Crude Aqueous Leaf Extract on Human Esophageal Cancer Cells.

    PubMed

    Tiloke, Charlette; Phulukdaree, Alisa; Chuturgoon, Anil A

    2016-04-01

    Esophageal cancer (EC) is commonly diagnosed in South Africa (SA), with high incidences occurring in SA's black population. Moringa oleifera (MO), a multipurpose tree, is used traditionally for its nutritional and medicinal properties. It has been used for the treatment of a variety of ailments, including cancer. We investigated the antiproliferative effect of MO crude aqueous leaf extract (MOE) on a cancerous esophageal cell line (SNO). SNO cells were exposed to a range of MOE dilutions to evaluate cytotoxicity (MTT assay). Oxidative stress was determined using the TBARS assay. The comet assay was used to assess DNA damage. We then determined cell death mechanisms by measuring phosphatidylserine (PS) externalization (flow cytometry), caspase-3/7 and caspase-9 activities, and adenosine triphosphate (ATP) levels (luminometry). Protein expression of Smac/DIABLO and PARP-1 was determined by western blotting. SNO cells were treated with a range of MOE dilutions to obtain an IC50 value of 389.2 μg/mL MOE (24 h), which was used in all subsequent assays. MOE significantly increased lipid peroxidation (P < .05) and DNA fragmentation (P < .0001) in SNO cells. The induction of apoptosis was confirmed by the increase in PS externalization (P < .0001), caspase-9 (P < .05) and caspase-3/7 (P = .22) activities, and decreased ATP levels (P < .0001). MOE significantly increased both the expression of Smac/DIABLO protein and cleavage of PARP-1, resulting in an increase in the 24-kDa fragment (P < .001). MOE possesses antiproliferative effects on SNO EC cells by increasing lipid peroxidation, DNA fragmentation, and induction of apoptosis.

  12. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract.

    PubMed

    de Bock, Martin; Thorstensen, Eric B; Derraik, José G B; Henderson, Harold V; Hofman, Paul L; Cutfield, Wayne S

    2013-11-01

    Phenolic compounds derived from the olive plant (Olea europaea L.), particularly hydroxytyrosol and oleuropein, have many beneficial effects in vitro. Olive leaves are the richest source of olive phenolic compounds, and olive leaf extract (OLE) is now a popular nutraceutical taken either as liquid or capsules. To quantify the bioavailability and metabolism of oleuropein and hydroxytyrosol when taken as OLE, nine volunteers (five males) aged 42.8 ± 7.4 years were randomized to receive either capsulated or liquid OLE as a single lower (51.1 mg oleuropein, 9.7 mg hydroxytyrosol) or higher (76.6 mg oleuropein, 14.5 mg hydroxytyrosol) dose, and then the opposite strength (but same formulation) a week later. Plasma and urine samples were collected at fixed intervals for 24 h post-ingestion. Phenolic content was analyzed by LC-ESI-MS/MS. Conjugated metabolites of hydroxytyrosol were the primary metabolites recovered in plasma and urine after OLE ingestion. Peak oleuropein concentrations in plasma were greater following ingestion of liquid than capsule preparations (0.47 versus 2.74 ng/mL; p = 0.004), but no such effect was observed for peak concentrations of conjugated (sulfated and glucuronidated) hydroxytyrosol (p = 0.94). However, the latter peak was reached earlier with liquid preparation (93 versus 64 min; p = 0.031). There was a gender effect on the bioavailability of phenolic compounds, with males displaying greater plasma area under the curve for conjugated hydroxytyrosol (11,600 versus 2550 ng/mL; p = 0.048). All conjugated hydroxytyrosol metabolites were recovered in the urine within 8 h. There was wide inter-individual variation. OLE effectively delivers oleuropein and hydroxytrosol metabolites to plasma in humans.

  13. Papaya (Carica papaya) leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation.

    PubMed

    Jafari, Saeid; Goh, Yong M; Rajion, Mohamed A; Jahromi, Mohammad F; Ahmad, Yusof H; Ebrahimi, Mahdi

    2017-02-01

    Papaya leaf methanolic extract (PLE) at concentrations of 0 (CON), 5 (LLE), 10 (MLE) and 15 (HLE) mg/250 mg dry matter (DM) with 30 mL buffered rumen fluid were incubated for 24 h to identify its effect on in vitro ruminal methanogenesis and ruminal biohydrogenation (BH). Total gas production was not affected (P > 0.05) by addition of PLE compared to the CON at 24 h of incubation. Methane (CH4 ) production (mL/250 mg DM) decreased (P < 0.05) with increasing levels of PLE. Acetate to propionate ratio was lower (P <0.05) in MLE (2.02) and HLE (1.93) compared to the CON (2.28). Supplementation of the diet with PLE significantly (P <0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), C18:3n-3 (linolenic acid; LNA) and C18 polyunsaturated fatty acids (PUFA) compared to CON after 24 h incubation, which resulted in higher concentrations of BH intermediates such as C18:1 t11 (vaccenic acid; VA), c9t11 conjugated LA (CLA) (rumenic acid; RA) and t10c12 CLA. Real-time PCR analysis indicated that the total bacteria, total protozoa, Butyrivibrio fibrisolvens and methanogen population in HLE decreased (P <0.05) compared to CON, but the total bacteria and B. fibrisolvens population were higher (P < 0.05) in CON compared to the PLE treatment groups.

  14. Dried leaf extract of Olea europaea ameliorates islet-directed autoimmunity in mice.

    PubMed

    Cvjetićanin, Tamara; Miljković, Djordje; Stojanović, Ivana; Dekanski, Dragana; Stosić-Grujicić, Stanislava

    2010-05-01

    The health-promoting effects of various constituents of the olive tree (Olea europaea) are mainly associated with hypoglycaemic and insulin-sensitising activities and have been widely demonstrated in the metabolic syndrome and type 2 diabetes. However, their biological activity in autoimmune type 1 diabetes (T1D) is poorly characterised. Therefore, the influence of O. europaea-derived components present in dry olive leaf extract (DOLE) was examined in two established preclinical models of human T1D, which differ in some aspects of diabetogenesis: multiple low-dose streptozotocin-induced diabetes in susceptible C57BL/6 and CBA/H mouse strains; cyclophosphamide-accelerated diabetes in non-obese diabetic mice. In both T1D models, in vivo administration of DOLE significantly reduced clinical signs of diabetes (hyperglycaemia and body weight loss) and led to complete suppression of histopathological changes in pancreatic islets. In line with these, insulin expression and release were restored in DOLE-treated mice. Interestingly, inducible NO synthase expression and NO production were significantly elevated in peripheral tissues but were down-regulated within the local environment of the endocrine pancreas. This interference was reflected in NO-mediated suppression of T lymphocyte proliferation and lower production of the proinflammatory cytokines interferon-gamma, IL-17 and TNF-alpha in the spleen, with subsequent blockade of beta-cell destruction. The results suggest that DOLE interferes with development of autoimmune diabetes by down-regulating production of proinflammatory and cytotoxic mediators. Therefore, the potential use of a DOLE-enriched diet for prophylaxis/treatment of human T1D, and possibly other autoimmune diseases, is worthy of further investigation.

  15. Parents' and children's acceptance of skim chocolate milks sweetened by monk fruit and stevia leaf extracts.

    PubMed

    Li, X E; Lopetcharat, K; Drake, M A

    2015-05-01

    Chocolate milk increases milk consumption of children, but high sugar content raises health concerns. Interest in sugar reduction and parents' preference for natural sweeteners necessitates further research on natural nonnutritive sweeteners. However, it is important to maintain consumer acceptability, especially for children, while reducing sugar in chocolate milk. The objectives of this study were to identify the sweetness intensity perception of stevia leaf (STV) and monk fruit (MK) extracts in skim chocolate milk (SCM), to evaluate STV and MK as the sole or partial sweetener source for SCM for young adults (19 to 35 y) and children (5 to 13 y), and to determine if information on natural nonnutritive sweeteners impacted parents' acceptability of SCM. Power function and 2-alternative forced choice studies were used to determine the iso-sweetness of nonnutritive sweeteners to a sucrose control in SCM (51.4 g/L, SUC control). Young adults (n = 131) evaluated 9 different SCM (SUC control, STV, MK, STV:sucrose blends, or MK:sucrose blends) in a completely randomized 2-d test. Children (n = 167) evaluated SUC control SCM and SCM with 39.7 g/L sucrose and 46 mg/L MK (MK25) or 30 mg/L STV (STV25). Parents evaluated SUC control, MK25, and STV25 in a balanced crossover design with a 40-d wait time between primed or unprimed ballots. Chocolate milks solely sweetened by nonnutritive sweeteners were less acceptable compared with SUC control by young adults. MK25 and STV25 were acceptable by young adults and children. The presentation of chocolate milk label information had different effects on parental acceptance. Traditional parents preferred sucrose sweetened SCM, and label conscious parents preferred SCM with natural nonnutritive sweeteners.

  16. Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against the mosquito vectors.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Prasanna Kumar, Kanagarajan; Panneerselvam, Chellasamy; Mahesh Kumar, Palanisamy; Amerasan, Duraisamy; Subramaniam, Jayapal; Vincent, Savariar

    2012-08-01

    Calotropis gigantea leaf extract and Bacillus thuringiensis were tested first to fourth-instar larvae and pupae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. Calotropis gigantea leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder 500 g of the leaf was extracted with 1.5 L of organic solvents of methanol for 8 h using a Soxhlet apparatus and filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; no mortality was observed in the control group. For Calotropis gigantea, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species Anopheles stephensi I to IV larval instars and pupae were 73.77, 89.64, 121.69, 155.49, and 213.79 ppm; Aedes aegypti values were 92.27, 106.60, 136.48, 164.01, and 202.56 ppm; and Culex quinquefasciatus values were 104.66, 127.71, 173.75, 251.65, and 314.70 ppm, respectively. For B. thuringiensis, the LC(50) values of I to IV larval instars and pupae of Anopheles stephensi were 37.24, 45.41, 57.82, 80.09, and 98.34 ppm; Aedes aegypti values were 42.38, 51.90, 71.02, 96.17, and 121.59 ppm; and Culex quinquefasciatus values were 55.85, 68.07, 94.11, 113.35, and 133.87 ppm, respectively. The study proved that the methanol leaf extract of Calotropis gigantea and bacterial insecticide B. thuringiensis has mosquitocidal property and was evaluated as target species of mosquito vectors. This is an ideal ecofriendly approach for the control of vector control programs.

  17. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  18. Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice.

    PubMed

    Cavuşoğlu, Kültiğin; Yapar, Kürşad; Oruç, Ertan; Yalçın, Emine

    2011-10-01

    The aim of the present study was to investigate the protective role of Ginkgo biloba L. leaf extract against the active agent of Roundup® herbicide (Monsanto, Creve Coeur, MO, USA). The Swiss Albino mice were randomly divided into six groups, with each group consisting of six animals: Group I (control) received an intraperitoneal injection of dimethyl sulfoxide (0.2 mL, once only), Group II received glyphosate at a dose of 50 mg/kg of body weight, Group III received G. biloba at a dose of 50 mg/kg of body weight, Group IV received G. biloba at a dose of 150 mg/kg of body weight, Group V received G. biloba (50 mg/kg of body weight) and glyphosate (50 mg/kg of body weight), and Group VI received G. biloba (150 mg/kg of body weight) and glyphosate (50 mg/kg of body weight). The single dose of glyphosate was given intraperitoneally. Animals from all the groups were sacrificed at the end of 72 hours, and their blood, bone marrow, and liver and kidney tissues were analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), and glutathione (GSH) levels and the presence of micronucleus (MN), chromosomal aberrations (CAs), and pathological damages. The results indicated that serum AST, ALT, BUN, and creatinine levels significantly increased in mice treated with glyphosate alone compared with the other groups (P<.05). Besides, glyphosate-induced oxidative damage caused a significant decrease in GSH levels and a significant increase in MDA levels of the liver and kidney tissues. Moreover, glyphosate alone-treated mice presented higher frequencies of CAs, MNs, and abnormal metaphases compared with the controls (P<.05). These mice also displayed a lower mean mitotic index than the controls (P<.05). Treatment with G. biloba produced amelioration in indices of hepatotoxicity, nephrotoxicity, lipid peroxidation, and genotoxicity relative to Group II. Each dose of G. biloba provided significant

  19. Antidiabetic and gastric emptying inhibitory effect of herbal Melia azedarach leaf extract in rodent models of diabetes type 2 mellitus

    PubMed Central

    Seifu, Daniel; Gustafsson, Lars E; Chawla, Rajinder; Genet, Solomon; Debella, Asfaw; Holst, Mikael; Hellström, Per M

    2017-01-01

    Diabetes type 2 is associated with impaired insulin production and increased insulin resistance. Treatment with antidiabetic drugs and insulin strives for normalizing glucose homeostasis. In Ethiopian traditional medicine, plant extracts of Melia azedarach are used to control diabetes mellitus and various gastrointestinal disorders. The objective of this study was to clarify the antidiabetic effects of M. azedarach leaf extracts in diabetic type 2 experimental animals. In this study, mice were injected with Melia extract intraperitoneally. Plasma glucose was studied by using tail vein sampling in acute experiments over 4 h and chronic experiments over 21 days with concurrent insulin and body weight assessments. Glucose tolerance was studied by using intraperitoneal glucose (2 mg/g) tolerance test over 120 min. Gastric emptying of a metabolically inert meal was studied by the gastric retention of a radioactive marker over 20 min. Melia extracts displayed acute, dose-dependent antidiabetic effects in ob/ob mice similar to glibenclamide (p<0.05–0.001). Long-term administration of Melia extract reduced plasma glucose (p<0.001) and insulin (p<0.01–0.001) levels over 21 days, concurrent with body weight loss. Glucose tolerance test showed reduced basal glucose levels (p<0.05–0.01), but no difference was found in glucose disposal after long-term treatment with Melia extract. In addition, the Melia extract at 400 mg/kg slowed gastric emptying rate of normal Sprague-Dawley (p<0.001) and diabetic Goto-Kakizaki rats (p<0.001) compared with controls. It is concluded that the M. azedarach leaf extract elicits diabetic activity through a multitargeted action. Primarily an increased insulin-sensitizing effect is at hand, resulting in blood glucose reduction and improved peripheral glucose disposal, but also through reduced gastric emptying and decreased insulin demand. PMID:28360538

  20. Phylogenetic Analysis of Downy Mildew Pathogens of Opium Poppy and PCR-Based In Planta and Seed Detection of Peronospora arborescens.

    PubMed

    Landa, Blanca B; Montes-Borrego, Miguel; Muñoz-Ledesma, Francisco J; Jiménez-Díaz, Rafael M

    2007-11-01

    ABSTRACT Severe downy mildew diseases of opium poppy (Papaver somniferum) can be caused by Peronospora arborescens and P. cristata, but differentiating between the two pathogens is difficult because they share morphological features and a similar host range. In Spain, where severe epidemics of downy mildew of opium poppy have occurred recently, the pathogen was identified as P. arborescens on the basis of morphological traits. In this current study, sequence homology and phylogenetic analyses of the internal transcribed spacer regions (ITS) of the ribosomal DNA (rDNA) were carried out with DNA from P. arborescens and P. cristata from diverse geographic origins, which suggested that only P. arborescens occurs in cultivated Papaver somniferum in Spain. Moreover, analyses of the rDNA ITS region from 27 samples of downy-mildew-affected tissues from all opium-poppy-growing regions in Spain showed that genetic diversity exists within P. arborescens populations in Spain and that these are phylogenetically distinct from P. cristata. P. cristata instead shares a more recent, common ancestor with a range of Peronospora species that includes those found on host plants that are not members of the Papaveraceae. Species-specific primers and a PCR assay protocol were developed that differentiated P. arborescens and P. cristata and proved useful for the detection of P. arborescens in symptomatic and asymptomatic opium poppy plant parts. Use of these primers demonstrated that P. arborescens can be transmitted in seeds and that commercial seed stocks collected from crops with high incidence of the disease were frequently infected. Field experiments conducted in microplots free from P. arborescens using seed stocks harvested from infected capsules further demonstrated that transmission from seedborne P. arborescens to opium poppy plants can occur. Therefore, the specific-PCR detection protocol developed in this study can be of use for epidemiological studies and diagnosing the

  1. Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the African malaria vector Anopheles gambiae.

    PubMed

    Overgaard, Hans J; Sirisopa, Patcharawan; Mikolo, Bertin; Malterud, Karl E; Wangensteen, Helle; Zou, Yuan-Feng; Paulsen, Berit S; Massamba, Daniel; Duchon, Stephane; Corbel, Vincent; Chandre, Fabrice

    2014-12-17

    The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii) is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville) its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE) using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis]), a strain homozygous for the L1014F kdr mutation (kdrKis), and a strain homozygous for the G119S Ace1R allele (AcerKis). The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female), but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides.

  2. Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii.

    PubMed

    Aderogba, Mutalib A; Ndhlala, Ashwell R; Rengasamy, Kannan R R; Van Staden, Johannes

    2013-10-11

    Croton species are used in folk medicine in the management of infections, inflammation and oxidative stress-related diseases. In order to isolate, characterize and evaluate the bioactive constituents of Croton menyharthii Pax leaf extracts, repeated column fractionation of the ethyl acetate fraction from a 20% aqueous methanol crude extract afforded three flavonols identified by NMR (1D and 2D) spectroscopic methods as myricetrin-3-O-rhamnoside (myricetrin, 1), quercetin-3-O-rhamnoside (2) and quercetin (3) along with an indole alkaloid, (E)-N-(4-hydroxycinnamoyl)-5-hydroxytryptamine, [trans-N-(p-coumaroyl) serotonin, 4]. All the compounds are reported from the leaf extract of this plant for the first time. The crude extracts, four solvent fractions (hexane, DCM, ethyl acetate and butanol) and isolated compounds obtained from the leaves were evaluated for their inhibitory effects on selected bacteria, a fungus (Candida albicans), cyclooxygenase (COX-2), α-glucosidase and acetylcholinesterase (AChE). Amongst the compounds, quercetin (3) was the most active against Bacillus subtilis and Candida albicans while myricetrin-3-O-rhamnoside (1) and trans-N-(p-coumaroyl) serotonin (4) were the most active compounds against Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus. The inhibitory activity of myricetrin-3-O-rhamnoside (1) against COX-2 was insignificant while that of the other three compounds 2-4 was low. The AChE inhibitory activity of the alkaloid, trans-N-(p-coumaroyl) serotonin was high, with a percentage inhibitory activity of 72.6% and an IC50 value of 15.0 µg/mL. The rest of the compounds only had moderate activity. Croton menyharthii leaf extracts and isolated compounds inhibit α-glucosidase at very low IC50 values compared to the synthetic drug acarbose. Structure activity relationship of the isolated flavonols 1-3 is briefly outlined. Compounds 1-4 and the leaf extracts exhibited a broad spectrum of activities. This validates the

  3. In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L. (Annonaceae) against Haemonchus contortus from sheep.

    PubMed

    Ferreira, L E; Castro, P M N; Chagas, A C S; França, S C; Beleboni, R O

    2013-07-01

    Despite the overall progress of sheep farming in Brazil, infections with the gastrointestinal parasite Haemonchus contortus represent one the most important problems in sheep production, aggravated by the increasing resistance of nematodes to traditional anthelmintic drugs caused by inadequate sheep flock management by breeders. Ethnopharmacological data indicate Annona muricata as a promising alternative for the control of gastrointestinal nematodes because of its general anthelmintic properties. The aim of this work was to evaluate the in vitro anthelmintic effects of A. muricata aqueous leaf extract against eggs, infective larvae and adult forms of parasitic nematode H. contortus. At higher doses, A. muricata extract showed 84.91% and 89.08% of efficacy in egg hatch test (EHT) and larval motility test (LMT), respectively. In the adult worm motility test, worms were completely immobilized within the first 6-8h of nematode exposition to different dilutions of extract. Phytochemical analysis indicated the presence of phenolic compounds in A. muricata aqueous leaf extract that may be responsible for the anthelmintic effects observed. Moreover those results validate the traditional use of A. muricata as a natural anthelmintic and then the pharmacological potential of its compounds for future in vivo investigations.

  4. Synthesis of gold nanoparticles by Cacumen Platycladi leaf extract and its simulated solution: toward the plant-mediated biosynthetic mechanism

    NASA Astrophysics Data System (ADS)

    Zhan, Guowu; Huang, Jiale; Lin, Liqin; Lin, Wenshuang; Emmanuel, Kamana; Li, Qingbiao

    2011-10-01

    In this study, biogenic fabrication of gold nanoparticles (AuNPs), respectively, by Cacumen Platycladi leaf extract and the simulation of its active components were thoroughly investigated. The simulated solution was prepared based on components measurement and Fourier-transform infrared spectroscopy analysis of Cacumen Platycladi leaf extract before and after reaction. Several analytic methods such as UV-Vis spectrophotometry, X-ray diffraction, transmission electron microscopy, and thermogravimetric study were adopted to characterize the AuNPs. The results showed that flavonoid and reducing sugar were the main reductive and protective components in the extract vital in the biosynthesis of the AuNPs. In addition, pH of the reaction solution was proved to be the most significant factor upon the synthesis process. The bioreduction mechanism of chloroaurate ions and the formation mechanism of AuNPs were also discussed. To the best of our knowledge, this is the first report on plausible elucidation of the biosynthetic mechanism through comparative study between a plant extract and its simulated solution.

  5. Final report of the safety assessment of Acacia catechu gum, Acacia concinna fruit extract, Acacia dealbata leaf extract, Acacia dealbata leaf wax, Acacia decurrens extract, Acacia farnesiana extract, Acacia farnesiana flower wax, Acacia farnesiana gum, Acacia senegal extract, Acacia senegal gum, and Acacia senegal gum extract.

    PubMed

    2005-01-01

    These ingredients are derived from various species of the acacia plant. Only material derived from Acacia senegal are in current use according to industry data. The concentration at which these ingredients are reported to be used ranges from 9% in mascara to 0.0001% in tonics, dressings, and other hair-grooming aids. Gum arabic is a technical name for Acacia Senegal Gum. Gum arabic is comprised of various sugars and glucuronic acid residues in a long chain of galactosyl units with branched oligosaccharides. Gum arabic is generally recognized as safe as a direct food additive. Little information is available to characterize the extracts of other Acacia plant parts or material from other species. Acacia Concinna Fruit Extract was generally described as containing saponins, alkaloids, and malic acid with parabens and potassium sorbate added as preservatives. Cosmetic ingredient functions have been reported for Acacia Decurrens Extract (astringent; skin-conditioning agent--occlusive) and Acacia Farnesiana Extract (astringent), but not for the other Acacias included in this review. Toxicity data on gum arabic indicates little or no acute, short-term, or subchronic toxicity. Gum arabic is negative in several genotoxicity assays, is not a reproductive or developmental toxin, and is not carcinogenic when given intraperitoneally or orally. Clinical testing indicated some evidence of skin sensitization with gum arabic. The extensive safety test data on gum arabic supports the safety of Acacia Senegal Gum and Acacia Senegal Gum Extract, and it was concluded that these two ingredients are safe as used in cosmetic formulations. It was not possible, however, to relate the data on gum arabic to the crude Acacias and their extracts from species other than Acacia senegal. Therefore, the available data were considered insufficient to support the safety of Acacia Catechu Gum, Acacia Concinna Fruit Extract, Acacia Dealbata Leaf Extract, Acacia Dealbata Leaf Wax, Acacia Decurrens

  6. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress

    PubMed Central

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties. PMID:27668005

  7. Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract.

    PubMed

    Ulug, Bulent; Haluk Turkdemir, M; Cicek, Ahmet; Mete, Ahmet

    2015-01-25

    Biosynthesis of silver nanoparticles in an aqueous mixture of fig (Ficus carica) leaf extract and AgNO3 solution exposed to a set of irradiances at different wavelengths are studied. Nanoparticle formation for irradiances between 6.5 mW/cm(2) and 13.3 mW/cm(2) in the 330-550 nm wavelength range is investigated and the results are compared to those of the nanoparticles synthesized in the dark and under direct sunlight. Ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy, along with particle size analysis and transmission electron microscopy are employed for the characterization of samples and extracts. Irradiance is found to have profound influence on the reduction rates. However, size and spherical shape of the nanoparticles are persistent, irrespective of irradiance and wavelength. Irradiance is discussed to influence the particle formation and aggregation rates through the formation of free radicals in the fig extract.

  8. Effect of aloe vera leaf gel extract on membrane bound phosphatases and lysosomal hydrolases in rats with streptozotocin diabetes.

    PubMed

    Rajasekaran, S; Sriram, N; Arulselvan, P; Subramanian, S

    2007-03-01

    Diabetes mellitus is known to promote deterioration of membrane function and impair intra cellular metabolism in the organism. The aim of the present study was to examine the effect of the ethanolic extract from Aloe vera leaf gel on membrane bound phosphatases and lysosomal hydrolases in the liver and kidney of streptozotocin (STZ)-induced diabetic rats. The rats treated with STZ showed significant alterations in the activities of membrane bound phosphatases and lysosomal hydrolases in the liver and kidney. Oral administration of Aloe vera gel extract at a dose of 300 mg/kg body weight/day to STZ-induced diabetic rats for a period of 21 days significantly restored the alterations in enzymes activity to near normalcy. These results were compared with glibenclamide, a reference drug. Thus, the present study confirms that Aloe vera gel extract possesses a significant beneficial effect on membrane bound phosphatases and lysosomal hydrolases.

  9. Molluscicidal activity of Hammada scoparia (Pomel) Iljin leaf extracts and the principal alkaloids isolated from them against Galba truncatula.

    PubMed

    Mezghani-Jarraya, R; Hammami, H; Ayadi, A; Damak, M

    2009-11-01

    The molluscicidal activity of Hammada scoparia leaf extracts and the principal alkaloids isolated from them (carnegine and N-methylisosalsoline) were tested against the mollusc gastropod, Galba truncatula, the intermediate host of Fasciola hepatica in Tunisia. The results indicated that the molluscicidal activity was correlated with the presence of alkaloids. A significant molluscicidal value, according to the World Health Organization, was found with the methanol extract (LC50 = 28.93 ppm). Further fractionation of the methanolic extract led to the isolation of two principal alkaloids: carnegine and N-methylisosalsoline. These alkaloids are isoquinolines that have not previously been characterised for their molluscicidal activity. The N-methylisosalsoline possesses the highest molluscicidal activity (LC50 = 0.47 microM against G. truncatula).

  10. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

    2014-06-01

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

  11. Andrographis paniculata Leaf Extract Prevents Thioacetamide-Induced Liver Cirrhosis in Rats

    PubMed Central

    Bardi, Daleya Abdulaziz; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson’s Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result

  12. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    PubMed

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from

  13. Biochemical studies in experimentally Escherichia coli infected broiler chicken supplemented with neem (Azadirachta indica) leaf extract

    PubMed Central

    Sharma, Vikash; Jakhar, K. K.; Nehra, Vikas; Kumar, Sarvan

    2015-01-01

    Aim: An experimental study was conducted on 192-day-old broiler chicks for evaluating the effect of 10% neem leaf extract (NLE) supplementationon biochemical parameters in chickens experimentally infected with Escherichia coli O78 at 107 CFU/0.5 ml at 7 days of age. Materials and Methods: The 192-day-old broiler chicks were procured. These chicks were divided into two groups (A and B) containing 96 birds each on the 1st day. Diet of all the chicks of Group A was supplemented with 10%NLE in water, whereas chicks of Group B were given feed and water devoid of NLE supplementation throughout the experiment. After rearing for 1 week, chicks of both the groups (A and B) were again divided into two subgroups (Group A into A1 and A2 and Group B into B1 and B2) of 54 and 42 birds, respectively. At the age of 7 days all the chicks of groups A1 and B1 were injected with E. coli O78 at 107 CFU/0.5 ml intraperitoneally. Blood samples were collected from six chicks from each group at day 0, 2, 4, 7, 14, 21, 28 days post-infection and serum was separated for biochemical studies. Results: There was a significant increase in serum alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH) activities, globulin concentration and a decrease in total protein (TP), albumin concentrations, and alkaline phosphatase (ALP) activity in both the infected groups. However, the changes in biochemical values, i.e., ALT, AST, LDH, ALP, TP, albumin, and globulin wereof lower magnitude in NLE supplemented group suggesting hepatoprotective and cardioprotective effect of NLE. Conclusions: Fromthe present study, it is reasonable to conclude that significant increase in the value of ALT, AST, LDH, globulin, and significant decrease in the value of ALP, TP, and albumin was of lower magnitude in supplemented infected group (A1) as compared to non-supplemented infected group (B1) suggesting hepatoprotective and cardioprotective effect of NLE. PMID:27047040

  14. Effect of Syzygium cumini and Bauhinia forficata aqueous-leaf extracts on oxidative and mitochondrial parameters in vitro

    PubMed Central

    Ecker, Assis; Araujo Vieira, Francielli; de Souza Prestes, Alessandro; Mulling dos Santos, Matheus; Ramos, Angelica; Dias Ferreira, Rafael; Teixeira de Macedo, Gabriel; Vargas Klimaczewski, Claudia; Lopes Seeger, Rodrigo; Teixeira da Rocha, João Batista; de Vargas Barbosa, Nilda B.

    2015-01-01

    Aqueous-leaf extract of Syzygium cumini and Bauhinia forficata are traditionally used in the treatment of diabetes and cancer, especially in South America, Africa, and Asia. In this study, we analyzed the effects of these extracts on oxidative and mitochondrial parameters in vitro, as well as their protective activities against toxic agents. Phytochemical screenings of the extracts were carried out by HPLC analysis. The in vitro antioxidant capacities were compared by DPPH radical scavenging and Fe2+ chelating activities. Mitochondrial parameters observed were swelling, lipid peroxidation and dehydrogenase activity. The major chemical constituent of S. cumini was rutin. In B. forficata were predominant quercetin and gallic acid. S. cumini reduced DPPH radical more than B. forficata, and showed iron chelating activity at all tested concentrations, while B. forficata had not similar property. In mitochondria, high concentrations of B. forficata alone induced a decrease in mitochondrial dehydrogenase activity, but low concentrations of this extract prevented the effect induced by Fe2++H2O2. This was also observed with high concentrations of S. cumini. Both extracts partially prevented the lipid peroxidation induced by Fe2+/citrate. S. cumini was effective against mitochondrial swelling induced by Ca2+, while B. forficata alone induced swelling more than Ca2+. This study suggests that leaf extract of S. cumini might represent a useful therapeutic for the treatment of diseases related with mitochondrial dysfunctions. On the other hand, the consumption of B. forficata should be avoided because mitochondrial damages were observed, and this possibly may pose risk to human health. PMID:27152111

  15. Evaluation of anti-epileptic activity of leaf extracts of Punica granatum on experimental models of epilepsy in mice

    PubMed Central

    Viswanatha, Gollapalle L.; Venkataranganna, Marikunte V.; Prasad, Nunna Bheema Lingeswara; Ashok, Godavarthi

    2016-01-01

    Objectives: This study was aimed to examine the anti-epileptic activity of leaf extracts of Punica granatum in experimental models of epilepsy in Swiss albino mice. Materials and Methods: Petroleum ether leaf extract of P. granatum (PLPG), methanolic LPG (MLPG), and aqueous LPG (ALPG) extracts of P. granatum leaves was initially evaluated against 6-Hz-induced seizure model; the potent extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced convulsions. Further, the potent extract was evaluated for its influence on Gamma amino butyric acid (GABA) levels in brain, to explore the possible mechanism of action. In addition, the potent extract was subjected to actophotometer test to assess its possible locomotor activity deficit inducing action. Results: In 6-Hz seizure test, the MLPG has alleviated 6-Hz-induced seizures significantly and dose dependently at doses 50, 100, 200, and 400 mg/kg. In contrast, PLPG and ALPG did not show any protection, only high dose of ALPG (400 and 800 mg/kg, p.o.) showed very slight inhibition. Based on these observations, only MLPG was tested in MES and PTZ models. Interestingly, the MLPG (50, 100, 200 and 400 mg/kg) has offered significant and dose-dependent protection against MES (P < 0.01) and PTZ-induced (P < 0.01) seizures in mice. Further, MLPG showed a significant increase in brain GABA levels (P < 0.01) compared to control and showed insignificant change in locomotor activity in all tested doses (100, 200 and 400 mg/kg). Interestingly, higher dose of MLPG (400 mg/kg, p.o.) and Diazepam (5 mg/mg, p.o.) have completely abolished the convulsions in all the anticonvulsant tests. Conclusion: These findings suggest that MLPG possesses significant anticonvulsant property, and one of the possible mechanisms behind the anticonvulsant activity of MLPG may be through enhanced GABA levels in the brain. PMID:27757273

  16. Effect of Syzygium cumini and Bauhinia forficata aqueous-leaf extracts on oxidative and mitochondrial parameters in vitro.

    PubMed

    Ecker, Assis; Araujo Vieira, Francielli; de Souza Prestes, Alessandro; Mulling Dos Santos, Matheus; Ramos, Angelica; Dias Ferreira, Rafael; Teixeira de Macedo, Gabriel; Vargas Klimaczewski, Claudia; Lopes Seeger, Rodrigo; Teixeira da Rocha, João Batista; de Vargas Barbosa, Nilda B

    2015-01-01

    Aqueous-leaf extract of Syzygium cumini and Bauhinia forficata are traditionally used in the treatment of diabetes and cancer, especially in South America, Africa, and Asia. In this study, we analyzed the effects of these extracts on oxidative and mitochondrial parameters in vitro, as well as their protective activities against toxic agents. Phytochemical screenings of the extracts were carried out by HPLC analysis. The in vitro antioxidant capacities were compared by DPPH radical scavenging and Fe(2+) chelating activities. Mitochondrial parameters observed were swelling, lipid peroxidation and dehydrogenase activity. The major chemical constituent of S. cumini was rutin. In B. forficata were predominant quercetin and gallic acid. S. cumini reduced DPPH radical more than B. forficata, and showed iron chelating activity at all tested concentrations, while B. forficata had not similar property. In mitochondria, high concentrations of B. forficata alone induced a decrease in mitochondrial dehydrogenase activity, but low concentrations of this extract prevented the effect induced by Fe(2+)+H2O2. This was also observed with high concentrations of S. cumini. Both extracts partially prevented the lipid peroxidation induced by Fe(2+)/citrate. S. cumini was effective against mitochondrial swelling induced by Ca(2+), while B. forficata alone induced swelling more than Ca(2+). This study suggests that leaf extract of S. cumini might represent a useful therapeutic for the treatment of diseases related with mitochondrial dysfunctions. On the other hand, the consumption of B. forficata should be avoided because mitochondrial damages were observed, and this possibly may pose risk to human health.

  17. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease.

    PubMed

    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali

    2015-01-01

    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide.

  18. The Effects of Hydroalcoholic Extract of Apium graveolens Leaf on the Number of Sexual Cells and Testicular Structure in Rat

    PubMed Central

    Kooti, Wesam; Mansouri, Esrafil; Ghasemiboroon, Maryam; Harizi, Mahmoud; Ashtary-Larky, Damoon; Afrisham, Reza

    2014-01-01

    Background: Use of medicinal plants with high antioxidant properties could be effective to increase fertility and improvement of disorders such as hormonal imbalance, impotency, oligospermia and immotile sperm. Celery (Apium graveolens) is rich in antioxidant agents. The leaf and stems of celery contain phenols, furanocoumarin and luteolin. Apigenin is one of the main flavonoids of celery leaf. Objectives: This study aimed to investigate the effects of hydroalcoholic extract of celery on histological properties of testis and number of sexual cells in male rats. Materials and Methods: Thirty-two male Wistar rats were divided into four groups of eight rats each. Control, did not receive any medication; sham, received normal saline; and two groups received celery extract orally in dosages of 100 and 200 mg/kg/BW once every two days for 60 days. At the end, animals were anesthetized, and caudal part of the right epididymis was used for sperm counting. After fixation of testis, tissue sections were prepared and studied microscopically to evaluate morphometric (lumen diameter, number of primary spermatocyte and sertoli cell) and histological changes. Data was analyzed by one-way ANOVA test using SPSS15 software. P < 0.05 was considered as statistically significant. Results: There was a significant increase in the number of sperms, sertoli cells, and primary spermatocyte (P < 0.05) in groups receiving extract; however, structural changes were not observed in the groups. Conclusions: It seems that celery increases spermatogenesis in male rats, but has no destructive effects on testicular tissue. PMID:25625050

  19. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease

    PubMed Central

    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali

    2015-01-01

    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide. PMID:26417353

  20. Biogenic synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Bose, Debadin; Chatterjee, Someswar

    2016-08-01

    Among the various inorganic nanoparticles, silver nanoparticles have received substantial attention in the field of antimicrobial research. For safe and biocompatible use of silver nanoparticles in antimicrobial research, the different biogenic routes are developed to synthesize silver nanoparticles that do not use toxic chemicals. Among those, to synthesize silver nanoparticles, the use of plant part extract becomes an emerging field because plant part acts as reducing as well as capping agent. For large-scale production of antibacterial silver nanoparticles using plant part, the synthesis route should be very simple, rapid, cost-effective and environment friendly based on easy availability and non-toxic nature of plant, stability and antibacterial potential of biosynthesized nanoparticles. In the present study, we report a very simple, rapid, cost-effective and environment friendly route for green synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties, and it is easily available in all seasons and everywhere. The biosynthesized silver nanoparticles are characterized by UV-Vis and TEM analysis. The average particle size is 40 nm in the range of 10-90 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show that green synthesized silver nanoparticles, using guava ( Psidium guajava) leaf extract, have a potential to inhibit the growth of bacteria.

  1. Sensory quality of functional beverages: bitterness perception and bitter masking of olive leaf extract fortified fruit smoothies.

    PubMed

    Kranz, Peter; Braun, Nina; Schulze, Nadine; Kunz, Benno

    2010-08-01

    Olive leaf extract (OLE) contains high amounts of oleuropein and hydroxytyrosol. The antioxidant capacity of these polyphenols makes OLE a promising ingredient for functional food. OLE causes very strong bitterness perception and can therefore only be formulated in low concentrations. In this research, bitter detection and recognition thresholds of OLE-fortified fruit smoothies were determined by a trained sensory panel (n = 11). Masking of the OLE's bitter taste was investigated with addition of sodium cyclamate, sodium chloride, and sucrose by means of a standardized ranking method and a scale test. Detection (5.78 mg/100 g) and recognition thresholds (8.05 mg/100 g) of OLE polyphenols confirmed the low formulation limits when bitterness was not masked by other substances. At higher polyphenol levels of 20 mg/100 g, sodium cyclamate and sucrose were able to reduce bitter taste perception by 39.9% and 24.9%, respectively, whereas sodium chloride could not effectively mask bitterness. Practical Application: Development of functional food poses new challenges for the food industry. A major problem in this field is the high bitterness of natural polyphenol-containing extracts with potential health benefits. This research was conducted to understand the sensory impact of olive leaf extract (OLE), a novel food ingredient with very bitter taste. In product development, the data of this research can be considered for formulation limits and the general sensory quality of OLE-fortified food and beverages.

  2. Dry olive leaf extract counteracts L-thyroxine-induced genotoxicity in human peripheral blood leukocytes in vitro.

    PubMed

    Topalović, Dijana Žukovec; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.

  3. Dry Olive Leaf Extract Counteracts L-Thyroxine-Induced Genotoxicity in Human Peripheral Blood Leukocytes In Vitro

    PubMed Central

    Žukovec Topalović, Dijana; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081

  4. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent.

    PubMed

    Sivaranjana, P; Nagarajan, E R; Rajini, N; Jawaid, M; Rajulu, A Varada

    2017-06-01

    Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials.

  5. Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study

    NASA Astrophysics Data System (ADS)

    Perugu, Shyam; Nagati, Veerababu; Bhanoori, Manjula

    2016-06-01

    Eco-friendly silver nanoparticles (AgNPs) have various applications in modern biotechnology for better outcomes and benefits to the society. In the present study, we report an eco-friendly synthesis of silver nanoparticles using Saraca indica leaf extract. Characterization of S. indica silver nanoparticles (SAgNPs) was carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometry, Zeta potential, and transmission electron microscopy. SAgNPs showed antimicrobial activity against Gram-negative and Gram-positive bacteria.

  6. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation.

    PubMed

    Kalaiselvi, Aasaithambi; Roopan, Selvaraj Mohana; Madhumitha, Gunabalan; Ramalingam, C; Elango, Ganesh

    2015-01-25

    The potential effect of Catharanthus roseus leaf extract for the formation of palladium nanoparticles and its application on dye degradation was discussed. The efficiency of C.roseus leaves are used as a bio-material for the first time as reducing agent. Synthesized palladium nanoparticles were supported by UV-vis spectrometry, XRD, FT-IR and TEM analysis. The secondary metabolites which are responsible for the formation of nanoparticles were identified by GC-MS. The results showed that effect of time was directly related to synthesized nanoparticles and functional groups has a critical role in reducing the metal ions and stabilizing the palladium nanoparticles in an eco-friendly process.

  7. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, Aasaithambi; Roopan, Selvaraj Mohana; Madhumitha, Gunabalan; Ramalingam, C.; Elango, Ganesh

    2015-01-01

    The potential effect of Catharanthus roseus leaf extract for the formation of palladium nanoparticles and its application on dye degradation was discussed. The efficiency of C.roseus leaves are used as a bio-material for the first time as reducing agent. Synthesized palladium nanoparticles were supported by UV-vis spectrometry, XRD, FT-IR and TEM analysis. The secondary metabolites which are responsible for the formation of nanoparticles were identified by GC-MS. The results showed that effect of time was directly related to synthesized nanoparticles and functional groups has a critical role in reducing the metal ions and stabilizing the palladium nanoparticles in an eco-friendly process.

  8. Effect of immobile isolated enzymes from rumen liquid by using alginate matrices on the bay leaf extraction

    NASA Astrophysics Data System (ADS)

    Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin

    2015-12-01

    This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.

  9. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture.

  10. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster

    PubMed Central

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  11. Analgesic, anti-inflammatory and anti-diarrheal activities of ethanolic leaf extract of Typhonium trilobatum L. Schott

    PubMed Central

    Ali, Khadem; Ashraf, Ayesha; Nath Biswas, Nripendra

    2012-01-01

    Objective To explore the efficacy of ethanolic leaf extract of Typhonium trilobatum L. Schott in treating diarrhea, pain and inflammation using experimental models. Methods In the present study, acetic acid-induced writhing, xylene-induced ear edema and castor oil-induced diarrheal model were used to evaluate the analgesic, anti-inflammatory and anti-diarrheal activities, respectively. Acute toxicity test was carried out to fix the safe doses of the plant extract. Results The plant extract demonstrated a significant inhibition of writhing (P<0.01) compared with the control group in acetic acid-induced writhing test in mice. The extract also significantly inhibited the xylene induced ear edema formation (P<0.05). In anti-diarrheal test, the extract significantly decreased the frequency of defecation and increased the mean latent period (P<0.01) in castor oil-induced diarrheal model mice at the doses of 250 and 500 mg/kg body weight. Conclusions These results suggest that the extract possesses significant analgesic, anti-inflammatory and anti-diarrheal activities that support to the ethnopharmacological uses of this plant. PMID:23570002

  12. Aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) protect against sodium arsenite-induced hepatotoxicity in Wistar rats.

    PubMed

    Gbadegesin, M A; Odunola, O A

    2010-11-25

    We evaluated the effects of aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) on sodium arsenite-induced hepatotoxicity in Wistar rats. We observed that treatment of the animals with the extracts before or just after sodium arsenite administration significantly (p < 0.05) reduced mean liver and serum γ-Glutamyl transferase (γGT), and serum alkaline phosphatase (ALP) activities when compared with the group administered the toxin alone. In addition, treatments of the animals with aqueous or ethanolic extract of O. basilicum before the administration of sodium arsenite resulted in the attenuation of the sodium arsenite-induced aspartate and alanine aminotransferase activities: ALT (from 282.6% to 167.7% and 157.8%), AST (from 325.1% to 173.5% and 164.2%) for the group administered sodium arsenite alone, the aqueous extracts plus sodium arsenite, and ethanolic extracts plus sodium arsenite respectively, expressed as percentage of the negative control. These findings support the presence of hepatoprotective activity in the O.basilicum extracts.

  13. Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu.

    PubMed

    Bajpai, Vivek K; Al-Reza, Sharif M; Choi, Ung Kyu; Lee, Jong Hwi; Kang, Sun Chul

    2009-08-01

    The aims of this study were to analyze the chemical composition of leaf essential oil of Metasequioa glyptostroboides Miki, and to test the efficacy of oil and extracts (hexane, chloroform, ethyl acetate and methanol) against food spoilage and food-borne pathogenic bacteria and their antioxidant activity. The GC-MS analysis revealed 49 compounds representing 94.62% of the total oil containing 2-butaneone (30.6%), cyclopentane (15.1%), beta-myrcene (13.29%), cyclobutane (7.67%), furan (3%), valeramide (2.81%), borneol (1.2%), beta-farnesene (1.67%), thymol (1.44%) and alpha-pinene (1.46%) as major components. The oil (1000 microg/disc), and extracts (1500 microg/disc) exhibited promising antibacterial effect as a diameter of zones of inhibition (10-18 and 7-13 mm), respectively. MIC values of oil and the extracts were ranged 125-2000 and 250 to <2000 microg/ml, respectively. Also the oil had strong antibacterial effect on the viable counts. Scanning electron microscopic study demonstrated potential detrimental effect of the oil on the morphology of S. aureus KCTC1916. The free radical scavenging activities of the oil and ethyl acetate extract were found to be 11.32 and 19.12 microg/ml, respectively. Also the ethyl acetate extract revealed the highest phenolic contents (85.17 mg/g of dry wt) as compared to the other extracts.

  14. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Hwang, Jiang-Shiou

    2013-03-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and ecofriendly reducing and capping agents. The present study was carried out to establish the larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf extract of Nerium oleander (Apocynaceae) against the first to fourth instar larvae and pupae of malaria vector, Anopheles stephensi (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by the aqueous extract of the plant parts to generate extremely stable silver nanoparticles in water. The results were recorded from UV-Vis spectrum, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy analysis. The production of the AgNPs synthesized using leaf extract of N. oleander was evaluated through a UV-Vis spectrophotometer in a wavelength range of 200 to 700 nm. This revealed a peak at 440 nm in N. oleander leaf extracts, indicating the production of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 509.12 cm(-1) (C-H bend alkenes), 1,077.05 cm(-1) (C-O stretch alcohols), 1,600.63 cm(-1) (N-H bend amines), 2,736.49 and 2,479.04 cm(-1) (O-H stretch carboxylic acids), and 3,415.31 cm(-1) (N-H stretching due to amines group). An SEM micrograph showed 20-35-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. Larvicidal activity of aqueous leaf extract of N. oleander and synthesized AgNPs was carried out against Anopheles stephensi, and the results showed that the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC(50) of instar larvae 20.60, 24.90, 28.22, and 33.99 ppm; LC(90) of instar larvae 41.62, 50.33, 57.78, and 68.41

  15. Effect of olive leaf, Satureja khuzestanica, and Allium sativum extracts on Giardia lamblia cysts compared with metronidazole in vitro.

    PubMed

    Fallahi, Sh; Rostami, A; Delfan, B; Pournia, Y; Rashidipour, M

    2016-12-01

    Giardia lamblia is one of the common causes of worldwide diarrhea in children. Appropriate medicinal treatment for giardiasis is available but there are some evidences of drug resistance, insufficient efficacy, and unpleasant side effects. In order to reach a more natural drug with suitable efficacy and the lowest side effects, the effects of the hydroalcoholic extracts of olive leaf, Satureja khuzestanica, and Allium sativum on G. lamblia cysts were evaluated in vitro, as well as antigiardial effect of the extracts was compared with metronidazole as the drug of choice. 2 and 5 mg of the plants extracts and powder of metronidazole 250 mg pills were added to 1 ml of G. lamblia cysts suspension (containing 5,000 cyst/ml normal saline), and the percentages of bioavailability of G. lamblia cysts were examined at the 2nd and 4th h after exposure and in 4 and 37 °C temperatures using eosin 0.1 % and a haemocytometer. The data were analyzed by multiway ANOVA test, Tukey's test, and the SPSS software, version 18. The examinations demonstrated that olive leaf extract had the most fatality rate on G. lamblia cysts in vitro (37.90 ± 7.01 %), followed by the extract of S. khuzestanica (32.52 ± 9.07 %). Metronidazole 250 mg pills had relatively effective fatality rate on G. lamblia cysts in vitro (28.75 ± 10.30 %), whereas A. sativum (garlic) had the lowest fatality effect on G. lamblia cysts in vitro (22.65 ± 10.47 %). With respect to higher fatality effect of olive leaf and S. khuzestanica extracts compared with metronidazole in vitro, these plants can be used as suitable candidates to make new antigiardial drugs with low side effects and without drug resistance in the treatment of giardiasis in children.

  16. Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals.

    PubMed

    Chaube, Shail K; Shrivastav, Tulsidas G; Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ajai K

    2014-01-01

    Neem (Azadirachta indica L.) leaf has been widely used in ayurvedic system of medicine for fertility regulation for a long time. The molecular mechanism by which neem leaf regulates female fertility remains poorly understood. Animal studies suggest that aqueous neem leaf extract (NLE) induces reactive oxygen species (ROS) - mediated granulosa cell apoptosis. Granulosa cell apoptosis deprives oocytes from nutrients, survival factors and cell cycle proteins required for the achievement of meiotic competency of follicular oocytes prior to ovulation. Under this situation, follicular oocyte becomes more susceptible towards apoptosis after ovulation. The increased level of hydrogen peroxide (H2O2) inside the follicular fluid results in the transfer of H2O2 from follicular fluid to the oocyte. The increased level of H2O2 induces p53 activation and over expression of Bax protein that modulates mitochondrial membrane potential and trigger cytochrome c release. The increased cytosolic cytochrome c level induces caspase-9 and caspase-3 activities that trigger destruction of structural and specific proteins leading to DNA fragmentation and thereby oocyte apoptosis. Based on these animal studies, we propose that NLE induces generation of ROS and mitochondria-mediated apoptosis both in granulosa cells as well as in follicular oocyte. The induction of apoptosis deteriorates oocyte quality and thereby limits reproductive outcome in mammals.

  17. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time.

    PubMed

    Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D

    2016-05-13

    In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds.

  18. Efficacy of larvividal and pupicidal properties of Acalypha alnifolia Klen ex Willd. (Euphorbiaceae) leaf extract and Metarhisium anisopilae (Metsch.) against Culex quinquefasciatus Say. (Diptera: Cuclicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the lethal effects of Acalypha alnifolia leaf extract and the microbial insecticide Metarizhium anisopliae against larvae and pupae of the filariasis vector Culex quinquefasciatus. Methanol extracts of A. alnifolia were most effective in this regard with LC50 values...

  19. Anti-cholesterol activity test of tanjung (Mimusops elengi L.) leaf extract in the water using in vivo method in mice (Mus musculus L.) DDY-strain

    NASA Astrophysics Data System (ADS)

    Tristantini, Dewi; Pradana, Bhayangkara Tegar

    2017-02-01

    High cholesterol level in blood is one of deadly cardiovascular disease's causes which is triggered by accumulation of cholesterol patching in blood vessels through heart and using synthetic medicine has several side effect. However, tanjung (M. elengi) which abundant in Indonesia is believed that it can strengthen and clean plaque in blood vessels wall. In this study, anti-cholesterol activity of tanjung (M. elengi) leaf extract in the water will be tested by in vivo method to 6 group of mice (Mus musculus) DDY-strain. The result showed that tanjung (M. elengi) leaf extract has significant effect to decrease total cholesterol level of mice, more extract given to mice, it will give higher cholesterol decreasing. TE 3 can decrease cholesterol level as much as 36%. In this study, it can be concluded that tanjung (M. elengi) leaf extract can be used as cholesterol decreasing medicine.

  20. Anti-oxidative and cholinesterase inhibitory effects of leaf extracts and their isolated compounds from two closely related Croton species.

    PubMed

    Ndhlala, Ashwell R; Aderogba, Mutalib A; Ncube, Bhekumthetho; Van Staden, Johannes

    2013-02-01

    A comparative evaluation of the antioxidant and acetylcholinesterase inhibitory activity of the leaf extracts of Croton gratissimus and Croton zambesicus (subgratissimus) and compounds isolated from the extracts was carried out to determine their potential and suitability or otherwise as a substitute for each other in the management of oxidative and neurodegenerative conditions. Different antioxidant assays (DPPH, FRAP, β-carotene-linoleic and the lipid peroxidation models) and the microplate assay for acetylcholinesterase (AChE) inhibition were carried out separately to study the activities of the crude le