Science.gov

Sample records for arc ion plated

  1. Metal vapor arc ion plating

    SciTech Connect

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  2. Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.

    PubMed

    Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong

    2016-02-01

    In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment. PMID:27433658

  3. Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.

    PubMed

    Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong

    2016-02-01

    In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.

  4. Structure and Tribological Properties of CrTiAlN Coatings Deposited by Multi-Arc Ion Plating

    NASA Astrophysics Data System (ADS)

    Tian, Canxin; Yang, Bing; He, Jun; Wang, Hongjun; Wang, Zesong; Wang, Guangfu; Fu, Dejun

    2011-02-01

    CrTiAlN coatings were prepared by using a home-made industrial scale multi-arc ion plating system. The coatings were found to be composites of face-center-cubic CrN and TiN. The surface roughness, microhardness, and tribological properties of the films were significantly affected by the nitrogen pressure and dc-pulsed bias voltage applied to the substrate. The CrTiAlN coatings with the smoothest surfaces were obtained at optimum conditions of nitrogen pressure of 5.0 Pa and bias voltage of -200 V. The samples were found to exhibit a hardness of 2900 HV0.05 with an average friction coefficient of 0.16 and wear rate of 1.5×10-16 m3/N·m against cemented carbide.

  5. Influence of deposition parameters on hard Cr-Al-N coatings deposited by multi-arc ion plating

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Shihong; Chen, Zhong; Li, Jinlong; Li, Mingxi

    2012-02-01

    The Cr-Al-N coatings were synthesized at various substrate bias voltages and nitrogen partial pressures by multi-arc ion plating (M-AIP). The relationships between deposition parameters and coating properties were investigated. Morphologies, phase structures, hardness and adhesion strength of the coatings were analyzed by SEM, XRD, XPS, nano-indenter and scratch tester. The results indicated that with the increase of substrate bias voltages, the surface macroparticles and deposition rate reduced mainly for the resputtering phenomenon. The (Cr, Al)N solid-solution phase kept unchanged, but the Cr2N and AlN phases disappeared gradually. Due to the change of phase structures and residual compressive stress, the hardness values decreased and the adhesion strength decreased initially and then increased. Similarly, with the increase of nitrogen partial pressures, the phase structures of CrAlN coatings varied from Cr + Cr2N + (Cr,Al)N to Cr2N + (Cr,Al)N. The surface macroparticles increased due to the decreasing resputtering efficiency, and the deposition rate increased initially and then decreased due to the resputtering phenomenon. With increasing nitrogen partial pressures, adhesion strength decreased initially and then increased. The microhardness increased mainly due to the increase of Cr2N contents and decrease of metal macroparticles.

  6. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application

    PubMed Central

    Tsou, Hsi-Kai; Chi, Meng-Hui; Hung, Yi-Wen; Chung, Chi-Jen; He, Ju-Liang

    2015-01-01

    Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on a PEEK substrate. This PEEK with TiO2 coating (TiO2/PEEK) was implanted into the femurs of New Zealand white male rabbits to evaluate its in vivo performance by the push-out test and histological observation. Analytical results show that AIP can prepare TiO2 coatings on bullet-shaped PEEK substrates as implant materials. After prolonged implantation in rabbits, no signs of inflammation existed. Newly regenerated bone formed more prominently with the TiO2/PEEK implant by histological observation. The shear strength of the bone/implant interface increases as implantation period increases. Most importantly, bone bonding performance of the TiO2/PEEK implant was superior to that of bare PEEK. The rutile-TiO2 coatings achieved better osseointegration than the anatase-TiO2 coatings. Therefore, AIP-TiO2 can serve as a novel surface modification method on PEEK for spinal interbody fusion cages. PMID:26504800

  7. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application.

    PubMed

    Tsou, Hsi-Kai; Chi, Meng-Hui; Hung, Yi-Wen; Chung, Chi-Jen; He, Ju-Liang

    2015-01-01

    Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on a PEEK substrate. This PEEK with TiO2 coating (TiO2/PEEK) was implanted into the femurs of New Zealand white male rabbits to evaluate its in vivo performance by the push-out test and histological observation. Analytical results show that AIP can prepare TiO2 coatings on bullet-shaped PEEK substrates as implant materials. After prolonged implantation in rabbits, no signs of inflammation existed. Newly regenerated bone formed more prominently with the TiO2/PEEK implant by histological observation. The shear strength of the bone/implant interface increases as implantation period increases. Most importantly, bone bonding performance of the TiO2/PEEK implant was superior to that of bare PEEK. The rutile-TiO2 coatings achieved better osseointegration than the anatase-TiO2 coatings. Therefore, AIP-TiO2 can serve as a novel surface modification method on PEEK for spinal interbody fusion cages. PMID:26504800

  8. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  9. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  10. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  11. Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating

    NASA Astrophysics Data System (ADS)

    Shi, J.; Muders, C. M.; Kumar, A.; Jiang, X.; Pei, Z. L.; Gong, J.; Sun, C.

    2012-10-01

    In this study, nanocomposite Ti-Al-Si-Cu-N films were deposited on high speed steel substrates by the vacuum cathode arc ion plating (AIP) technique. By virtue of X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), the influence of silicon content on the film microstructure and characteristics was investigated systematically, including the chemical composition, crystalline structure as well as cross-section morphologies. With increasing the silicon content, a deterioration of the preferred orientation and a dense globular structure were detected. In the meanwhile, atomic force microscopy (AFM), nano-indentation, Rockwell indenter and reciprocating test were also utilized to analyze the hardness, elastic modulus, H3/E2, friction coefficient, adhesive strength and wear rate of the Ti-Al-Si-Cu-N films. The results showed that an optimal silicon content correlated with the best mechanical and tribological properties of the presented Ti-Al-Si-Cu-N films existed. With increasing the silicon content, the hardness, elastic modulus and the ratio H3/E2 first were improved gradually, and then were impaired sharply again. When the silicon content reached to 6 at.%, the film possessed the highest hardness, elastic modulus and ratio H3/E2 of approximately 24 GPa, 218 GPa and 0.31, respectively. Besides, films containing both 6 at.% and 10 at.% Si contents obtained a relatively low friction coefficient and a good adhesive strength. The wear rate decreased with an increase in hardness, with the highest hardness corresponding to a wear rate around 1.3 × 10-5 mm3/(N m) of the film with 6 at.% Si content. The correlations between hardness and tribological properties for the films were also examined. The essence of above phenomena was attributed to the variations of microstructure and morphologies in the films induced by the increasing silicon content.

  12. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating

    NASA Astrophysics Data System (ADS)

    Dang, Chaoqun; Li, Jinlong; Wang, Yue; Chen, Jianmin

    2016-11-01

    The TiSiN/Ag multilayer coatings deposited on Ti6Al4V alloy substrate using the multi-arc ion plating system. All multilayer coatings had a same total thickness of about 2.5 μm, and the TiSiN layer had a fixed thickness and the Ag layer had different thicknesses. Evidence concluded from X-ray diffraction, scanning electron microcopies, X-ray photoelectron spectroscopy revealed that nanocrystallites and amorphous microstructure of nc-TiN and amorphous Si3N4 for individual TiSiN layers, where amorphous Si3N4 around nanocrystallites TiN boundaries, and ductile nanocrystallites silver clusters and metallic silver for individual Ag layers which can limit continuous growth of single (200) preferential orientation coarse columnar TiN crystal. In addition, the TiN grain size presented a decreasing trend with the decrease of the thickness of Ag layers. The TiSiN/Ag multilayer coatings showed a significantly improved toughness compared with the TiSiN coating. The individual Ag layers of nano-multilayer coatings, not only as a self-lubricating but also as a barrier which inhibited micro cracks propagation, the formation of threading defects throughout all coatings, cause energy dissipation by passing through the interface zones without making the coating fail and at the same time prevented the aggressive seawater through the micro-pores. Moreover, improved toughness, excellent wear resistance together with high hardness, H/E and H3/E*2 values were found for the TiSiN/Ag multilayer coating with the individual Ag layers of 22.22 nm.

  13. Submerged arc welding of heavy plate

    NASA Technical Reports Server (NTRS)

    Wilson, R. A.

    1972-01-01

    The submerged arc process is particularly suitable for heavy plate welding because of its ability to combine very high deposit rates along with excellent quality. It does these things without the smoke and spatter often accompanying other processes. It is available today in several forms that are pointed to the fabricators of heavy sections with long, short or round about welds. Tandem arc full automatic equipment is particularly suitable for those long heavy welds where speed and deposit rate are of the first order. An attachment called long stick-out which makes use of the IR drop on long electrode extensions can be included on this equipment to increase deposition rates 50% or more.

  14. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media, and mode of transport. A distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. And on the industrial level, the performance and potential uses of ion plated films are discussed.

  15. ION PRODUCING MECHANISM (ARC EXTERNAL TO BLOCK)

    DOEpatents

    Brobeck, W.H.

    1958-09-01

    This patent pentains to an ion producing mechanism employed in a calutron which has the decided advantage of an increased amount of ionization effectuated by the arc, and a substantially uniform arc in poiat of time, i arc location and along the arc length. The unique features of the disclosed ion source lie in the specific structural arrangement of the source block, gas ionizing passage, filament shield and filament whereby the arc is established both within the ionizing passage and immediately outside the exit of the ionizing passage at the block face.

  16. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  17. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  18. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  19. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  20. Modify surfaces with ions and arcs

    SciTech Connect

    Banks, B.A. . Lewis Research Center)

    1993-12-01

    Ions, arcs, and atomic-oxygen techniques have been developed at NASA to texture metals, polymers, and biomaterials for a range of medical and industrial applications. NASA originally conducted research in the field of electron bombardment because the technology involves generation of high-velocity ions, which have the potential to produce much higher propellant exhaust velocities for spacecraft than chemical propulsion. As a consequence, considerable data were collected about the effects of ion beams on a wide range of materials. Based on this information, researchers designed specialized surface modification techniques such as ion beam sputter texturing, etching, and simultaneous deposition and etching. Arc-texturing technology was developed as a result of research on high-thermal-emittance radiators. In this process, an electric arc is formed between a carbon or silicon-carbide electrode and a moving metal surface, resulting in durable, microscopically rough surfaces that emit heat more efficiently than coated materials. Atomic-oxygen texturing is a by-product of studies about the effects of atomic oxygen on the surfaces of spacecraft. The purpose of the original research was to find coatings that could withstand atomic-oxygen attack, but it evolved into deliberate bombardment of polymeric materials to increase thermal emittance or reduce co-efficient of friction.

  1. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    PubMed

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region. PMID:17774792

  2. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  3. Ion source metal-arc fault current protection circuit

    SciTech Connect

    deVries, G.J.; Lietzke, A.F.; van Os, C.F.A.; Stearns, J.W. )

    1991-12-01

    Ion sources can be damaged by arcs between metallic components of the source if these arcs are permitted to last. The negative-biased low-work-function converter in a surface conversion negative ion source is especially susceptible to metal-arc breakdown damage. Here an electronic circuit for minimizing the damage caused by such an arc is described. The circuit uses a transistor switch and an inductor in series with the converter bias power supply to limit the damage during the metal-arc breakdown.

  4. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  5. Measurement of total ion current from vacuum arc plasmasources

    SciTech Connect

    Oks, Efim M.; Savkin, Konstantin P.; Yushkov, Georgiu Yu.; Nikolaev, Alexey G.; Anders, A.; Brown, Ian G.

    2005-07-01

    The total ion current generated by a vacuum arc plasma source was measured. The discharge system investigated allowed ion collection from the arc plasma streaming through a hemispherical mesh anode with geometric transparency of 72 percent. A range of different cathode materials was investigated, and the arc current was varied over the range 50-500 A. We find that the normalized ion current (Iion/Iarc) depends on the cathode material, with values in the range from 5 percent to 19 percent and generally greater for elements of low cohesive energy. The application of a strong axial magnetic field in the cathode and arc region leads to increased normalized ion current, but only by virtue of enhanced ion charge states formed in a strong magnetic field.

  6. Electric arc discharge damage to ion thruster grids

    NASA Technical Reports Server (NTRS)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  7. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  8. Role of plate kinematics and plate-slip-vector partitioning in continental magmatic arcs: Evidence from the Cordillera Blanca, Peru

    SciTech Connect

    McNulty, B.A.; Farber, D.L.; Wallace, G.S.; Lopez, R.; Palacios, O.

    1998-09-01

    New structural and geochronological data from the Cordillera Blanca batholith in the Peruvian Andes, coupled with Nazca-South American plate-slip-vector data, indicate that oblique convergence and associated strike-slip partitioning strongly influenced continental magmatic arc evolution. Both the strain field and mode of magmatism (plutonism vs. volcanism) in the late Miocene Peruvian Andes were controlled by the degree to which the arc-parallel component of the plate slip vector was partitioned into the arc. Strong strike-slip partitioning at ca. 8 Ma produced arc-parallel sinistral shear, strike-slip intercordilleran basins and east-west-oriented tension fractures that facilitated emplacement of the Cordillera Blanca batholith (ca. 8.2 {+-} 0.2 Ma). Periods during which the strike-slip component was not partitioned into the arc (ca. 10 and ca. 7 Ma) were associated with roughly arc-normal contraction and ignimbrite volcanism. The data thus support the contention that contraction within continental magmatic arcs favors volcanism, whereas transcurrent shear favors plutonism. The tie between oblique convergence and batholith emplacement in late Miocene Peruvian Andes provides a modern analogue for batholiths emplaced as the result of transcurrent shear in ancient arcs.

  9. Industrialization of the ion plating process

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    A new process referred to as ion plating by induction heating (IPIH) is described, which combines the advantages of both ion plating and induction heating. The IPIH apparatus consists of the specimen (cathode) to be coated and the evaporation heating source, which is a ceramic crucible containing the metal to be heated. The specimen is an internal part of the high-voltage ceramic-metal vacuum feedthrough and is connected to the negative terminal of the high-voltage power supply, the positive terminal of the power supply being grounded. The plating conditions are the same as those most commonly used in industrial ion plating. A number of metals - such as nickel, iron, platinum - which were practically impossible to deposit by resistance heating evaporation can now be effectively evaporated and deposited to any desired thickness. Excellent adherence is observed for many metals deposited on various metal surfaces in thicknesses from 0.15 to 50 microns, regardless of the materials selected for coating and substrate.

  10. Multi-cathode metal vapor arc ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  11. A tale of two arcs? Plate tectonics of the Izu-Bonin-Mariana (IBM) arc using subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.

    2014-12-01

    Published plate reconstructions typically show the Izu-Bonin Marianas arc (IBM) forming as a result of long-lived ~50 Ma Pacific subduction beneath the Philippine Sea. These reconstructions rely on the critical assumption that the Philippine Sea was continuously coupled to the Pacific during the lifetime of the IBM arc. Because of this assumption, significant (up to 1500 km) Pacific trench retreat is required to accommodate the 2000 km of Philippine Sea/IBM northward motion since the Eocene that is constrained by paleomagnetic data. In this study, we have mapped subducted slabs of mantle lithosphere from MITP08 global seismic tomography (Li et al., 2008) and restored them to a model Earth surface to constrain plate tectonic reconstructions. Here we present two subducted slab constraints that call into question current IBM arc reconstructions: 1) The northern and central Marianas slabs form a sub-vertical 'slab wall' down to maximum 1500 km depths in the lower mantle. This slab geometry is best explained by a near-stationary Marianas trench that has remained +/- 250 km E-W of its present-day position since ~45 Ma, and does not support any significant Pacific slab retreat. 2) A vanished ocean is revealed by an extensive swath of sub-horizontal slabs at 700 to 1000 km depths in the lower mantle below present-day Philippine Sea to Papua New Guinea. We call this vanished ocean the 'East Asian Sea'. When placed in an Eocene plate reconstruction, the East Asian Sea fits west of the reconstructed Marianas Pacific trench position and north of the Philippine Sea plate. This implies that the Philippine Sea and Pacific were not adjacent at IBM initiation, but were in fact separated by a lost ocean. Here we propose a new IBM arc reconstruction constrained by subducted slabs mapped under East Asia. At ~50 Ma, the present-day IBM arc initiated at equatorial latitudes from East Asian Sea subduction below the Philippine Sea. A separate arc was formed from Pacific subduction below

  12. One hundred anode microchannel plate ion detector

    SciTech Connect

    He Yi; Poehlman, John F.; Alexander, Andrew W.; Boraas, Kirk; Reilly, James P.

    2011-08-15

    A one-hundred-anode microchannel plate detector is constructed on a 10 cm x 15 cm printed circuit board and attached to a homebuilt matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer. Ringing and cross talk between anodes have been successfully eliminated and preliminary mass spectra of peptide ions recorded. With one hundred anodes on the printed circuit board, spatial information about the ion beam can also be readily determined with this detector. During operation, the detector anode assembly loses sensitivity after ions strike it for a considerable period of time due to charging of the non-conductive regions between anodes. However, this effect can be minimized by deflecting matrix ions away from the detector.

  13. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  14. A review of vacuum ARC ion source research at ANSTO

    SciTech Connect

    Evans, P.J.; Noorman, J.T.; Watt, G.C.

    1996-08-01

    The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 - 89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma which was subsequently rotated in an axial magnetic field. The high rotational speeds (10{sup 5} - 10{sup 6} rad sec{sup {minus}1}) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO`s Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930`s been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source.

  15. Fundamental structure model of island arcs and subducted plates in and around Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (<50-100 km). The obtained

  16. Lithium ion diffusion through glassy carbon plate

    SciTech Connect

    Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.

    1998-07-01

    The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.

  17. Vacuum ARC ion sources - activities & developments at LBL

    SciTech Connect

    Brown, I.

    1996-08-01

    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  18. Circular arc fuel plate stability experiments and analyses for the advanced neutron source

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin fuel plates planned for the Advanced Neutron Source are to be cooled by forcing heavy water at high velocity, 25 m/s, through thin cooling channels on each side of each plate. Because the potential for structural failure of the plates is a design concern, considerable effort has been expended in assessing this potential. As part of this effort, experimental flow tests and analyses to evaluate the structural response of circular arc plates have been conducted, and the results are given in this report.

  19. Vacuum arc ion source development at GSI

    SciTech Connect

    Spaedtke, P.; Emig, H.; Wolf, B.H.

    1996-08-01

    Ion beams produced by the Mevva ion source are well suited for the injection into a synchrotron accelerator due to the low repetition rate (0.2 ... 5 Hz, the higher repetition rate is for the optimization of the linear accelerator only) and the short pulse length (up to 0.5ms). From the beginning of the authors experience with the Mevva ion source at GSI they tried to improve the reliability of pulse-to-pulse reproducibility and to minimize the noise on the extracted ion beam. For accelerator application this is highly necessary, otherwise the accelerator tuning and optimization becomes very difficult or even impossible. Already the beam transport becomes difficult for a noisy beam, because space charge compensation can be destroyed (at least partially). Furthermore a noisy dc-beam results in some rf-buckets which might be even empty.

  20. Vacuum Arc Ion Sources: Recent Developments and Applications

    SciTech Connect

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  1. Arc plasma generator of atomic driver for steady-state negative ion source

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Belchenko, Yu. I.; Davydenko, V. I.; Ivanov, I. A.; Kolmogorov, V. V.; Listopad, A. A.; Mishagin, V. V.; Putvinsky, S. V.; Shulzhenko, G. I.; Smirnov, A.

    2014-02-01

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  2. Arc plasma generator of atomic driver for steady-state negative ion source

    SciTech Connect

    Ivanov, A. A.; Belchenko, Yu. I.; Davydenko, V. I.; Ivanov, I. A.; Kolmogorov, V. V.; Listopad, A. A. Mishagin, V. V.; Shulzhenko, G. I.; Putvinsky, S. V.; Smirnov, A.

    2014-02-15

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB{sub 6} cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  3. Arc plasma generator of atomic driver for steady-state negative ion source.

    PubMed

    Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A

    2014-02-01

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  4. Predicting ion charge state distributions of vacuum arc plasmas

    SciTech Connect

    Anders, A.; Schulke, T.

    1996-04-01

    Multiply charged ions are present in vacuum arc plasmas. The ions are produced at cathode spots, and their charge state distributions (CSDs) depend on the cathode material but only little on the arc current or other parameters as long as the current is relatively low and the anode is not actively involved in the plasma production. There are experimental data of ion CSDs available in the literature for 50 different cathode materials. The CSDs can be calculated based on the assumption that thermodynamic equilibrium is valid in the vicinity of the cathode spot, and the equilibrium CSDs `freeze` at a certain distance from the cathode spot (transition to a non-equilibrium plasma). Plasma temperatures and densities at the `freezing points` have been calculated, and, based on the existence of characteristic groups of elements in the Periodic Table, predictions of CSDs can be made for metallic elements which have not yet been used as cathode materials.

  5. Deformation of island-arc lithosphere due to steady plate subduction

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2016-02-01

    Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction

  6. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  7. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  8. Arc plasma simulation of the KAERI large ion sourcea)

    NASA Astrophysics Data System (ADS)

    In, S. R.; Jeong, S. H.; Kim, T. S.

    2008-02-01

    The KAERI large ion source, developed for the KSTAR NBI system, recently produced ion beams of 100keV, 50A levels in the first half campaign of 2007. These results seem to be the best performance of the present ion source at a maximum available input power of 145kW. A slight improvement in the ion source is certainly necessary to attain the final goal of an 8MW ion beam. Firstly, the experimental results were analyzed to differentiate the cause and effect for the insufficient beam currents. Secondly, a zero dimensional simulation was carried out on the ion source plasma to identify which factors control the arc plasma and to find out what improvements can be expected.

  9. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  10. Ion velocities in a micro-cathode arc thruster

    SciTech Connect

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-06-15

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2 Multiplication-Sign 10{sup 4} m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5 Multiplication-Sign 10{sup 4} m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  11. Ion velocities in a micro-cathode arc thruster

    NASA Astrophysics Data System (ADS)

    Zhuang, Taisen; Shashurin, Alexey; Beilis, Isak; Keidar, Michael

    2012-06-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×104 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×104 m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  12. Optical coatings deposited by reactive ion plating.

    PubMed

    Waldorf, A J; Dobrowolski, J A; Sullivan, B T; Plante, L M

    1993-10-01

    The effect of different reactive ion-plating process parameters on the transmittance and the reflectance of single layers of HfO(2), Ta(2)O(5), and SiO(2) are investigated. The optical constants obtained for these three as-deposited materials are presented. Laser-damage threshold trends are examined on single- and double-layer coatings at 1064 nm and on high-reflectance coatings for 248 nm. Single- and double-cavity filters are constructed for the UV (< 1-nm bandwidth) and near-infrared (50-nm bandwidth) regions, respectively. After the filters are postannealed in air at 375 °C for several hours, a shift in the peak wavelengths is observed along with a substantial increase in the peak transmittance. As expected, no significant wavelength shifts result from changes in the humidity of the ambient atmosphere.

  13. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  14. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  15. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  16. Operation and Applications of the Boron Cathodic Arc Ion Source

    SciTech Connect

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-11-03

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  17. Large-ion lithophile elements delivered by saline fluids to the sub-arc mantle

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko; Mibe, Kenji; Bureau, Hélène; Reguer, Solenn; Mocuta, Cristian; Kubsky, Stefan; Thiaudière, Dominique; Ono, Shigeaki; Kogiso, Tetsu

    2014-12-01

    Geochemical signatures of arc basalts can be explained by addition of aqueous fluids, melts, and/or supercritical fluids from the subducting slab to the sub-arc mantle. Partitioning of large-ion lithophile elements between aqueous fluids and melts is crucial as these two liquid phases are present in the sub-arc pressure-temperature conditions. Using a micro-focused synchrotron X-ray beam, in situ X-ray fluorescence (XRF) spectra were obtained from aqueous fluids and haplogranite or jadeite melts at 0.3 to 1.3 GPa and 730°C to 830°C under varied concentrations of (Na, K)Cl (0 to 25 wt.%). Partition coefficients between the aqueous fluids and melts were calculated for Pb, Rb, and Sr ([InlineEquation not available: see fulltext.]). There was a positive correlation between [InlineEquation not available: see fulltext.] values and pressure, as well as [InlineEquation not available: see fulltext.] values and salinity. As compared to the saline fluids with 25 wt.% (Na, K)Cl, the Cl-free aqueous fluids can only dissolve one tenth (Pb, Rb) to one fifth (Sr) of the amount of large-ion lithophile elements when they coexist with the melts. In the systems with 13 to 25 wt.% (Na, K)Cl, [InlineEquation not available: see fulltext.] values were greater than unity, which is indicative of the capacity of such highly saline fluids to effectively transfer Pb and Rb. Enrichment of large-ion lithophile elements such as Pb and Rb in arc basalts relative to mid-oceanic ridge basalts (MORB) has been attributed to mantle source fertilization by aqueous fluids from dehydrating oceanic plates. Such aqueous fluids are likely to contain Cl, although the amount remains to be quantified.

  18. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    NASA Astrophysics Data System (ADS)

    Hyndman, R. D.; McCrory, P. A.; Wech, A.; Kao, H.; Ague, J.

    2015-06-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  19. Obliquely convergent plate motion and its relation with forearc sliver movement, El Salvador volcanic arc

    NASA Astrophysics Data System (ADS)

    Tikoff, B.; DeMets, C.; Garibaldi, N.; Hernandez, W.; Hernandez, D.

    2012-12-01

    The magmatic arc in El Salvador is interpreted to result from the subduction of the Cocos plate underneath the Caribbean plate along the Middle America trench. In addition, El Salvador contains a fore-arc sliver that moves 11 mm/yr westward relative to the back-arc. Well-defined strike-slip faults along the magmatic arc accommodate forearc sliver motion, but are offset at several locations by en echelon pull-apart step-overs with abundant normal faults. All basaltic-andesitic magmatic centers (San Miguel, San Vincente, San Salvador, Santa Ana) are located within these step-overs, while the two major rhyolitic calderas (Ilopango, Coatepeque) occur directly along the strike-slip faults. There are two puzzling aspects about the strike-slip tectonism. First, a silicic, shallow magma body that intrudes the San Miguel fault zone (part of the El Salvador fault system) was emplaced syn-tectonically (sigmoidal field and magnetic foliations, subhorizontally plunging magnetic lineations and dextral shear at the microscale). Within the dextrally sheared portion of the intrusion, an obsidian band with a 40Ar/39Ar age of 7.46 Ma indicates that dextral strike-slip tectonism in the Salvadoran arc has been an ongoing process for ~7.5 Ma. This casts significant doubt on whether Cocos ridge subduction (that started ~1 Ma ago) is the cause of the ongoing forearc movement. The potentially more significant problem is that the fore-arc sliver in El Salvador moves 11 mm/yr westward relative to the back-arc despite a nearly orthogonal angle of convergence (with a convergence rate of ~77 mm/yr) near El Salvador and absence of significant frictional coupling along the subduction interface. Further, GPS indicates that the Nicaraguan and Salvadoran forearcs define a semi-rigid sliver moving at nearly the same trench-parallel rates despite along-trench changes in the subduction angle. Consequently, it is tempting to attribute the movement of both forearc slivers to Cocos ridge subduction

  20. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Qi, Niansheng; Schein, Jochen; Prasad, Rahul R.; Krishnan, Mahadevan; Anders, Andre; Kwan, Joe; Brown, Ian

    2001-05-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, ≈0.5 A current beams, ≈20 μs pulse widths and ˜10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modified an existing vacuum arc ion source at LBNL to produce a gadolinium ( A≈158) ion beam with >0.5 A beam current, 120 keV beam energy, ≈6 cm diameter extraction aperture and ≈20 μs pulse width. The average beam current density at the extraction grids was ≈17 mA/cm 2. We have measured that >85% Gd ions were in the 3+ charge state, the beam current fluctuation level (rms) was ≈3%, pulse-to-pulse variation of the beam (rms) was about 3%, the uniformity of the beam density over its 6 cm diameter was ⩾98% and the ion longitudinal energy spread was ⩽1%. Additional measurements were made to improve charge state purity by using other materials and employing an axial magnetic field close to the cathode. Yttrium ( A≈89), lead ( A≈207), and Ba ( A≈137) were tested at similar current parameters with Ba delivering nearly a pure charge state with >95% being in 2+ state. The results of the experiments indicate that the vacuum arc ion source is a good candidate for HIF

  1. Patterns of seismogenesis for giant plate-boundary earthquakes in island-arc-type subduction systems

    NASA Astrophysics Data System (ADS)

    Kirby, S. H.

    2006-12-01

    The global record of giant earthquake occurrence in subduction zones during the instrumental and historical eras is woefully short; only about 16 events with magnitudes above 8.4 are reasonably well documented since 1700. We find no examples of giant (M > 8.4) interplate thrust events and/or wide-ranging tsunamis sourced in the classic island arcs with fast backarc spreading (Bonin, Marianas, Tonga-Kermadec, Vanuatu, and South Scotia). The Sumatra-Andaman Earthquake of 2004 (SAE) ruptured a sector of the INDIA-BURMA subduction boundary and evidently had no known historical antecedents, suggesting that the return time may be many centuries to millennia and consistent with low convergence rates. Moreover, the persistence of rupture to the north in the weakly volcanic Nicobar/Andaman sector gives one pause to reflect on the assumption that island arcs, especially those with active back-arc spreading such as the Marianas, do not produce great interplate- thrust earthquakes. The Andaman/Nicobar subduction segment is an unusual island arc. Only two arc volcanoes occur between the convergent plate boundary west of the Andamans and the backarc ridge/transform system to the east. Backarc spreading in the Andaman/ Nicobar segment is unusual because the NNW spreading directions are nearly parallel to the trench/deformation-front as do the INDIA-BURMA plate motions across it. This geometry suggests that arc-normal extension, trench migration and associated slab normal motions may not mechanically decouple this subduction system. The Nicobar sector of the rupture for the 2004 event is roughly 200 km wide judging from the aftershock distribution; a distribution that persists to the east under the Nicobar Islands, suggesting that the plate-boundary dip is very shallow in that latitude range. If this is correct, then the down-dip limitation on seismogenic slip set by serpentinized forearc mantle (Hyndman et al., 2003) may not control rupture width as it apparently does for many

  2. Frictional and morphological characteristics of ion plated soft, metallic films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buzek, B.

    1981-01-01

    Ion plated metallic films in contrast to films applied by other deposition techniques offer a lower friction coefficient, longer endurance lives and exhibit a gradual increase in friction coefficient after the film has been worn off. The friction coefficients of metallic films are affected by the degree of adherence, thickness and nucleation and growth characteristics during ion plating lead to a fine, continuous crystalline structure, which contributes to a lower friction coefficient.

  3. Optical Films Deposited By A Reactive Ion Plating Process

    NASA Astrophysics Data System (ADS)

    Pulker, H. K.; BUhler, M.; Hora, R.

    1986-12-01

    Oxide films on glass substrates, both single and multilayers, were produced by a special reactive ion plating process in the new automatic plating system BALZERS BAP 800. Structure, optical and mechanical film properties have been examined as a function of the deposition parameters. Multilayer systems consisting of TiO2 and Si02 films were deposited, and tests were made concerning optical characteristics, reproducibility and stability. Because of the unique characteristics of the films ion plating promises to become the new technology for the production of optical coatings.

  4. Chromium plating pollution source reduction by plasma source ion implantation

    SciTech Connect

    Chen, A.; Sridharan, K.; Dodd, R.A.; Conrad, J.R.; Qiu, X.; Hamdi, A.H.; Elmoursi, A.A.; Malaczynski, G.W.; Horne, W.G.

    1995-12-31

    There is growing concern over the environmental toxicity and workers` health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case.

  5. Advances in sputtered and ion plated solid film lubrication

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.

  6. ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.

    1989-01-01

    Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.

  7. Ion plated gold films: Properties, tribological behavior and performance

    NASA Astrophysics Data System (ADS)

    Spalvins, Talivaldis

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  8. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  9. Growth defects in thick ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1975-01-01

    Industrial ion plating conditions were selected to deposit metallic coatings such as copper, gold, and chromium 2 micrometer thick on metal and glass substrates. The surface finishes of 304 stainless steel, copper, and brass were utilized with mechanically and electrolytically polished surfaces. Nodular growth occurred in these coatings during ion plating as revealed by scanning electron microscopy. Surface irregularities such as scratches, steps, ledges, and so forth are responsible for outward growth, the typical cone type, whereas surface contaminants and loosely settled foreign particles are responsible for lateral growth; namely, the extreme localized surface outgrowths. These defect crystallographic features create porosity in the coatings when subjected to stresses and strains.

  10. Chromium ion plating studies for enhancement of bearing lifetime

    NASA Technical Reports Server (NTRS)

    Davis, J. H.

    1982-01-01

    Six 440-C hardened stainless steel roller bearing test rods were ion plated with various chromium films of thicknesses from .2 microns to 7 microns. The thinner (approximately .2 microns) coating sample had 3 times the fatigue life of the unplated (standard) specimens. Contrastingly, the samples having thicker coatings (several microns) had short fatigue lives (about 3% of the unplated standard).

  11. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    SciTech Connect

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  12. Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates

    NASA Astrophysics Data System (ADS)

    Datta, R.; Mukerjee, D.; Jha, S.; Narasimhan, K.; Veeraraghavan, R.

    2002-02-01

    High strength, quench and tempered (Q&T) plates having yield strength of a minimum of 670 MPa and conforming to SA 517 Gr. F specification were successfully developed at Rourkela Steel Plant in plates up to 40 mm thickness. The plates are used extensively for the fabrication of impellers, penstocks, excavators, dumpers, and raw material handling devices, where welding is an important processing step. SA 517 Gr. F plates, characterized by a relatively high carbon equivalent (CE: ˜0.6) and alloyed with Ni, Cr, Mo, Cu, and V, are susceptible to a crack-sensitive microstructure and cold cracking during welding. In view of the above, the present study investigated the weldability properties of 20 mm thick plates using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were carried out to assess the cold cracking resistance of the weld joint under different welding conditions. Preheat of 100 °C, partial or full rebake, and a heat input of 14.9 to 15.4 KJ/cm resulted in static fatigue limit (SFL) values well in excess of the minimum specified yield strength (MSYS) of 670 MPa and a critical restraint intensity (K cr) value of 34,650 MPa, indicating adequate cold cracking resistance. Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 9.7 to 14.4 KJ/cm and weld restraint loads (WRL) of 510 to 685 MPa showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. The weld joint, based on optimized welding parameters, exhibited adequate tensile strength (812.4 MPa) and low temperature impact toughness 88.3 and 63.4 J (9.2 and 6.6 kg-m) at -40 °C for weld metal (WM), and heat-affected zone (HAZ) properties, respectively. The crack tip opening displacement (CTOD) values of WM and HAZ (0.40 and 0.36 mm, respectively) were superior to that of the parent metal (0.29 mm), indicating adequate resistance of weld joint to brittle fracture. It was concluded that

  13. Enhancement of Ion Line Intensity in the Analytical Zone of an Arc Dual-Jet Plasmatron

    NASA Astrophysics Data System (ADS)

    Smirnova, E. V.; Chumakova, N. L.

    2015-07-01

    We show that the effect of enhancement of the intensity (Ii) of ion lines, observed in atomic emission analysis when using an arc dual-jet plasmatron, is not an anomalous phenomenon compared with an arc plasma. For total ion energy <15 eV, it corresponds to a thermal mechanism for excitation of the spectra. At higher energy, we observe an increase in the intensity Ii relative to the equilibrium values that is due to the phenomenon of nonresonant charge exchange.

  14. Interplay of plate convergence and arc migration in the central Mediterranean (Sicily and Calabria)

    NASA Astrophysics Data System (ADS)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2016-04-01

    Key components in the current geodynamic setting of the central Mediterranean are continuous, slow Africa-Eurasia plate convergence (~5 mm/yr) and arc migration. This combination encompasses roll-back, tearing and detachment of slabs, and leads to back-arc opening and orogeny. Since ~30 Ma the Apennnines-Calabrian and Gibraltar subduction zones have shaped the western-central Mediterranean region. Lithospheric tearing near slab edges and the accompanying surface expressions (STEP faults) are key in explaining surface dynamics as observed in geologic, geophysical and geodetic data. In the central Mediterranean, both the narrow Calabrian subduction zone and the Sicily-Tyrrhenian offshore thrust front show convergence, with a transfer (shear) zone connecting the distinct SW edge of the former with the less distinct, eastern limit of the latter (similar, albeit on a smaller scale, to the situation in New Zealand with oppositely verging subduction zones and the Alpine fault as the transfer shear zone). The ~NNW-SSE oriented transfer zone (Aeolian-Sisifo-Tindari(-Ionian) fault system) shows transtensive-to-strike slip motion. Recent seismicity, geological data and GPS vectors in the central Mediterranean indicate that the region can be subdivided into several distinct domains, both on- and offshore, delineated by deformation zones and faults. However, there is discussion about the (relative) importance of some of these faults on the lithospheric scale. We focus on finding the best-fitting assembly of faults for the transfer zone connecting subduction beneath Calabria and convergence north of Sicily in the Sicily-Tyrrhenian offshore thrust front. This includes determining whether the Alfeo-Etna fault, Malta Escarpment and/or Ionian fault, which have all been suggested to represent the STEP fault of the Calabrian subduction zone, are key in describing the observed deformation patterns. We first focus on the present-day. We use geodynamic models to reproduce observed GPS

  15. A study of vacuum arc ion velocities using a linear set of probes

    SciTech Connect

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  16. Formation of Island Arc-Trench System due to Plate Subduction on the Basis of Elastic Dislocation Theory

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Matsu'ura, M.

    2015-12-01

    The most conspicuous cumulative deformation in subduction zones is the formation of island arc-trench system. A pair of anomalies in topography and free-air gravity, high in the arc and low around the trench, is observed without exceptions all over the world. Since the 1960s, elastic dislocation theory has been widely used to interpret coseismic crustal deformation. For the modeling of longer-term crustal deformation, it is necessary to consider viscoelastic properties of the asthenosphere. By simply applying elastic-viscoelastic dislocation theory to plate subduction, Matsu'ura and Sato (1989, GJI) have shown that some crustal deformation remains after the completion of one earthquake cycle, which means that crustal deformation accumulates with time in a long term due to plate subduction. In fact, by constructing a plate interface model in and around Japan, Hashimoto, Fukui and Matsu'ura (2004, PAGEOPH) have demonstrated that the computed vertical displacements due to steady plate subduction well explain the observed free-air gravity anomaly pattern. Recently, we got a lucid explanation of crustal deformation due to plate subduction. In subduction zones, oceanic plates bend and descend into the mantle. Because the bending of oceanic plates is usually not spontaneous, there exists kinematic interaction between the oceanic and overriding plates, which causes cumulative deformation of the overriding plate. This may be understood based on the law of action and reaction: one is bending of an oceanic plate and the other is deformation of the overriding plate. As a special case, it is useful to consider plate subduction along a part of true circle. In this case, crustal deformation due to steady subduction is solely caused by the effect of gravity, because dislocation along a circle does not cause any intrinsic internal deformation. When an oceanic plate is descending along an arcuate plate interface from the right-hand side, according to dislocation theory, the oceanic

  17. Bivergent thrust wedges surrounding island arcs: Insights from observations and sandbox models of the northeastern Caribbean plate

    NASA Astrophysics Data System (ADS)

    ten Brink, U. S.; Marshak, S.; Granja Bruna, J.

    2008-12-01

    Thrust belts develop on both sides of island arcs at several localities around the world, such as southern Indonesia, Vanuatu, Panama, and the northeastern Caribbean. In all cases, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, an inactive arc (Hispaniola and Puerto Rico) is bordered by a north-verging accretionary prism and the Puerto Rico trench on the north, and by the south-verging Muertos thrust belt and the Muertos trough on the south. There are three models to explain such bivergent thrusting: (1) Bivergent thrusting develops where a reversal of the polarity of subduction is underway and the backarc thrust system overlies an incipient subduction zone; (2) Compression of the backarc region due to trenchward traction, applied at the base of the overriding plate by the subduction process; and (3) The arc and both thrust systems constitute a bivergent thrust wedge, whose development is driven entirely by crustal-level forces applied at a single subduction zone. The third model implies that island arc bivergent thrusting is analogous to that which develops during continent-continent collisions. Observations of deformational features from the Muertos thrust belt together with inferences from regional geometry of island arcs and simple sandbox kinematic models, lead to the conclusion that such island arcs are best explained as crustal bivergent thrust wedges. Modeling suggests, in particular, that an imbricate thrust wedge in the backarc region develops only if the arc behaves as a relatively rigid block that can transmit compressive stresses to the backarc region. In such circumstances, the strike-slip component of oblique convergence is accommodated entirely in the forearc and arc, and the backarc is a frontal (dip-slip) thrust system. The rigid block behavior of the arc may be explained by its mafic composition.

  18. Upper plate absolute motion and slab-anchor force control on back-arc deformation

    NASA Astrophysics Data System (ADS)

    Heuret, A.; Lallemand, S.

    2003-04-01

    In order to test how the combined effects of overriding plate motion and trench migration can account for the variability of back-arc tectonic regimes, their "normal to the trench" absolute motion components and the strain regime of all oceanic subduction zones were compiled. Strain regime was estimated following Jarrard (1986), in a semiquantitative way. The upper plate absolute motion (Vup) is calculated in the hotspot HS3-NUVEL1A (Gripp and Gordon, 2002) reference frame and trench migration (Vt) from Vup, corrected from deformation rate of back-arc region, mainly given by GPS data. As slabs tend to sink because of their age-related-mass-excess relative to the surrounding mantle, it is generally assumed that most of the trenches have a spontaneous seaward motion (trench rollback). Ages at trench have thus also been compiled ( from Muller et al, 1997) to test a possible control of trench migration with slab age. Our values underline a high control of strain regime by Vup, but inconsistencies still remain with this single parameter. To account for all the observed deformations, trench migration is needed. There are more or less as much subduction zones with seaward Vt as landward ones, and, for 90% of subduction zones, Vt never reach 50 mm/y in the two directions. The expected relation between trench migration and slab age is far to be verified: landward trench migrations exist in many subduction zones, and, among them, many have old slabs. Several examples indicate that the slab tend to follow the trench migration and, so, to move transversely in the surrounding mantle. As a consequence, Vt is close to the "normal to the trench" slab migration and gives informations about the slab anchor force : slabs are not perfectly anchored but their possible motions appear to be limited. This 50 mm/y limitation of slab migration may provide new constraints on the poorly known slab-anchor force. No evidence of age related trench rollback have beeen found. It does not

  19. The electron cyclotron resonance ion source with arc-shaped coils concept (invited).

    PubMed

    Koivisto, H; Suominen, P; Tarvainen, O; Spädtke, P

    2012-02-01

    The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cost-driven compromises such as extraction mirror ratio of 1.05-1.2, microwave frequency of 6.4 GHz, and beam line with limited capacity, Ar(4+) beam intensity of up to 2 μA was measured. Subsequent design study has shown that the ARC-ECRIS operating at the microwave frequency above 40 GHz could be constructed. This specific design would be based on NbTi-wires and it fulfills the experimental magnetic field scaling laws. In this article, the ARC-ECRIS concept and its potential applications will be described. PMID:22380159

  20. The electron cyclotron resonance ion source with arc-shaped coils concept (invited).

    PubMed

    Koivisto, H; Suominen, P; Tarvainen, O; Spädtke, P

    2012-02-01

    The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cost-driven compromises such as extraction mirror ratio of 1.05-1.2, microwave frequency of 6.4 GHz, and beam line with limited capacity, Ar(4+) beam intensity of up to 2 μA was measured. Subsequent design study has shown that the ARC-ECRIS operating at the microwave frequency above 40 GHz could be constructed. This specific design would be based on NbTi-wires and it fulfills the experimental magnetic field scaling laws. In this article, the ARC-ECRIS concept and its potential applications will be described.

  1. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  2. Izu-Bonin Arc: Intra-oceanic from the beginning? Unraveling the crustal structure of the Mesozoic proto-Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Ueda, H.; Shukuno, H.; Hirahara, Y.; Nichols, A. R.; Dunkley, D. J.; Horie, K.; Ishikawa, A.; Morishita, T.; Tatsumi, Y.

    2012-12-01

    The Izu-Bonin Arc is widely regarded as a typical intra-oceanic arc, where the oceanic Pacific Plate is subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. It is dominated by oceanic crust forming three large back-arc basins; Shikoku, Parece Vela, and West Philippine Basins, making the present Philippine Sea Plate look like an "oceanic" plate. However, all of these back-arc basins were formed after the inception of subduction at Izu-Bonin Arc, which began at ~52 Ma (Ishizuka et al. 2011, EPSL). Little is known about the proto-Philippine Sea Plate, which existed as a counterpart to the Pacific Plate during subduction initiation and before the formation of back-arc basins. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible SHINKAI6500 and Deep-Tow camera surveys during the April 2010 cruise of the R/V YOKOSUKA cruise (YK10-04) at the Amami Plateau, Daito Ridge, and Okidaito Ridge (ADO) region. The ADO region comprises the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that ADO region exposes deep crustal sections of gabbroic, granitic, and metamorphic rocks, indicating that part of the proto-Philippine Sea Plate is composed of older, possibly continental, crust. Jurassic to Cretaceous magmatic zircon U-Pb ages have been obtained from the ADO plutonic rocks. These findings and tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR) suggests that subduction of the Izu-Bonin Arc initiated at the continental margin of the Southeast Asia, possibly correlating to the Mesozoic island-arc and ophiolite complexes exposed in the Philippine Islands and Borneo, and later acquired "intra-oceanic"-like setting through formation of the backarc basins. Furthermore, detrital zircon ages from volcaniclastic sandstones

  3. Noise factor of microchannel plate with ion barrier film

    NASA Astrophysics Data System (ADS)

    Liu, Shu-lin; Shi, Feng; Li, Zhou-kui; Zhu, Yu-feng; Zhang, Ni; Gu, Yan; Sun, Jian-ning; Cong, Xiao-qing; Zhao, Hui-min; Pan, Jing-sheng; Qian, Yun-sheng; Zheng, Shao-cheng; Chang, Ben-kang

    2012-10-01

    According to definition of noise factor of microchannel plate and the test principle, the authors set up a test installation, and measured the numerical values of MCPs which were made of different materials and channel pore including no / with ion barrier film in input of MCP. In order to seek the technical approach to reduce noise factor of MCP at the same time, we tested and analyzed the relation between noise factor and MCP voltage, combined relation between signal-to-noise ratio of GEN Ⅲ image intensifier and MCP voltage, open out relation between signal-to-noise ratio of GEN Ⅲ image intensifier and noise factor of MCP with ion barrier film.

  4. Arc modulator for the TFTR neutral-beam ion source--

    SciTech Connect

    Dawson, F.P.; Dewan, S.B. )

    1990-02-01

    Power-conditioning systems are being increasingly used to provide specialized protection capabilities. This paper discusses the protection of the tokomak fusion reactor neutral-beam ion source, located at the Princeton Plasma Physics Laboratory. The system design is based on thee operational protection requirements. The protection requirements include provisions for ion-source current pulse matching, ion-source fault current extinction, and metallic fault current extinction. A power circuit configuration satisfying these requirements is illustrated and briefly described. Simplified analytical expressions relating the protection requirements to the circuit parameters are developed. The circuit configuration is implemented using SCR's. Testing and operational verification of the circuit implementation has been conducted. The side effects observed include ion-source current overshoot and the existence of a negative ion source current. Modifications to counteract these side effects are briefly described.

  5. Influence of the ARC patterning method and annealing on the contact adhesion of Ni/Cu-plated solar cells

    NASA Astrophysics Data System (ADS)

    Baik, Jong Wook; Lee, Sang Hee; Lee, Doo Won; Lee, Soo Hong

    2016-05-01

    Ni/Cu two-step plating is a promising metallization technique because low contact resistance and improved contact adhesion can be achieved after the Ni annealing process. Also, narrow fingers, which are required for high-efficiency solar cells, can be formed by plating. However, the reliability of contact adhesion is still considered one obstacle to industrializing solar cells with plated metal contacts. In this experiment, the influence of ARC opening methods on plated contact adhesion was investigated because the roughnesses of the Si surfaces produced by using pico-second laser ablation and photolithography may be different. Also, the annealing process was conducted before and after plating Cu/Ag metal stacks. The sequence of the annealing can be significant for efficient production because plating is a wet process while annealing is a dry process. The contact adhesion was measured by using a peel-off test. The test was conducted on a 1.5-mm-wide by a 60 ~ 70- mm-long bus bar area. A 3.2-N/mm adhesion force was recorded as a highest average value along the bus bar.

  6. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  7. Measurements of the Ion Species of Cathodic Arc Plasma in an Axial Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-10-19

    Metal and gas ion species and their charge state distributions were measured for pulsed copper cathodic arcs in argon background gas in the presence of an axial magnetic field. It was found that changing the cathode position relative to anode and ion extraction system as well as increasing the gas pressure did not much affect the arc burning voltage and the related power dissipation. However, the burning voltage and power dissipation greatly increased as the magnetic field strength was increased. The fraction of metal ions and the mean ion charge state were reduced as the discharge length was increased. The observations can be explained by the combination of charge exchange collisions and electron impact ionization. They confirm that previously published data on characteristic material-dependent charge state distributions (e.g., Anders and Yushkov, J. Appl. Phys., Vol. 91, pp. 4824-4832, 2002) are not universal but valid for high vacuum conditions and the specifics of the applied magnetic fields.

  8. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  9. Earthquakes along the Ryukyu-Kyushu Arc: Strain segmentation, lateral compression, and the thermomechanical state of the plate interface

    NASA Astrophysics Data System (ADS)

    Kao, Honn; Chen, Wang-Ping

    1991-12-01

    We systematically determined the focal depths and mechanisms of 49 large to moderate-sized earthquakes (mb≥5.4) that occurred along the Ryukyu-Kyushu arc since 1963 by inverting the waveforms and amplitudes of P and SH wave trains at teleseismic distances. The results are sufficiently precise to delineate seismogenic structures near the plate interface in detail, revealing features not predicted by plate kinematics. In contrast to previous studies of this arc and those along other subduction zones, shallow seismicity along the plate interface is systematic, showing two distinct layers of activities. The second layer of seismicity is delineated by a few earthquakes that occurred at depths between 50 and 65 km, some 10-20 km directly beneath the seismogenic portion of the interplate thrust zone. These earthquakes indicate lateral compressional strain within the subducted slab as their P axes are subparallel to the local strike of the arc, not perpendicular to the arc as one would expect from the direction of plate convergence. The occurrence of these events cannot be accounted for by membrane stress due to the geometry of the subducted slab. To our knowledge, similar earthquakes occurred only beneath the northern Indoburman ranges and along the Banda arc where subducted slabs, as part of the Indian plate, are being dragged northward with their northern edges bumping into east-west trending collision zones nearby. By drawing an analogy between the tectonic settings of these three regions, we interpret events beneath the plate interface along the Ryukyu-Kyushu arc as a consequence of ongoing collision between the Philippine Sea plate and Eurasia near Taiwan. The interplate thrust zone is largely aseismic down to a depth of approximately 30 km. A large number of earthquakes showing low-angle thrust faulting commence at this depth and are accompanied by two events that show antithetic thrust faulting at a slightly shallower depth of 20-25 km. These observations suggest

  10. Ion-plating of solar cell arrays encapsulation task: LSA project 32

    NASA Technical Reports Server (NTRS)

    Volkers, J. C.

    1983-01-01

    An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.

  11. Upgrade of a vacuum arc ion source using a strong pulsed magnetic field

    SciTech Connect

    Oks, E.M. |; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-03-01

    A pulsed magnetic field of up to 10 kG was incorporated into a vacuum arc ion source. The field was established by a small coil surrounding the arc discharge region, powered by either an additional power supply (capacitor bank) or by the arc power supply (arc current and coil current in series). This addition has led to a number of improvements in source performance: The mean charge state of the metal ions produced was enhanced by a factor of up to 2, for 30 different cathode materials from carbon to bismuth; hybrid metal/gaseous ion beams could be generated when an additional gas (nitrogen, oxygen, or argon) was admitted into the source, with gaseous ion fraction as high as 50{percent}; triggering of the source could be done by a very long lifetime gaseous predischarge technique. We also report on the use of a wire mesh to stabilize the plasma emission surface at the extractor as a means for achieving a flat beam current characteristic as a function of extraction voltage. {copyright} {ital 1996 American Institute of Physics.}

  12. Comment on ``A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc'' by Charles DeMets

    NASA Astrophysics Data System (ADS)

    Guzmán-Speziale, Marco; Gómez, Juan Martín

    2002-10-01

    We comment on ``A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc'' by Charles DeMets. We find the following inconsistencies in his model: Components of relative motion along the arc are small and variable, not uniform. There is no single surface faulting and earthquakes occur on faults along and perpendicular to the arc. Earthquakes also stop in the middle of the arc. Geometrically, the model calls for buttressing, but there is no evidence for this.

  13. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  14. Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Kundu, Bhaskar; Gahalaut, V. K.

    2011-04-01

    Necking, tearing, slab detachment and subsequently slab loss complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, and causes along-strike variations in vertical motion and geochemically distinct subduction-related arc magmatism. We also propose a model for the geodynamic evolution of slab detachment.

  15. Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter P.; Duarte, João. C.

    2015-10-01

    In nature, subducting slabs and overriding plate segments bordering subduction zones are generally embedded within larger plates. Such large plates can impose far-field boundary conditions that influence the style of subduction and overriding plate deformation. Here we present dynamic laboratory models of progressive subduction in three-dimensional space, in which the far-field boundary conditions at the trailing edges of the subducting plate (SP) and overriding plate (OP) are varied. Four configurations are presented: Free (both plates free), SP-Fixed, OP-Fixed, and SP-OP-Fixed. We investigate their impact on the kinematics and dynamics of subduction, particularly focusing on overriding plate deformation. The results indicate that the variation in far-field boundary conditions has an influence on the slab geometry, subduction partitioning, and trench migration partitioning. Our models also indicate that in natural (narrow) subduction zones, assuming a homogeneous overriding plate, the formation of back-arc basins (e.g., Tyrrhenian Sea, Aegean Sea, and Scotia Sea) is generally expected to occur at a comparable location (250-700 km from the trench), irrespective of the boundary condition. In addition, our models indicate that the style of fore-arc deformation (shortening or extension) is influenced by the mobility of the overriding plate through controlling the force normal to the subduction zone interface (trench suction). Our geodynamic model that uses the SP-OP-Fixed setup is comparable to the Calabria subduction zone with respect to subduction kinematics, slab geometry, trench curvature, and accretionary configuration. Furthermore, the model can explain back-arc and fore-arc extension at the Calabria subduction zone since the latest middle Miocene as a consequence of subduction of the narrow Calabrian slab and the immobility of the subducting African plate and overriding Eurasian plate. This setting induced strong trench suction, driving fore-arc extension, and

  16. Morphology of gold and copper ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.

  17. Oligocene and Miocene arc volcanism in northeastern California: evidence for post-Eocene segmentation of the subducting Farallon plate

    USGS Publications Warehouse

    Colgan, J.P.; Egger, A.E.; John, D.A.; Cousens, B.; Fleck, R.J.; Henry, C.D.

    2011-01-01

    axis of the modern arc in northeastern California, suggesting that the Cascade arc south of modern Mount Shasta migrated west during the Late Miocene and Pliocene, while the arc north of Mount Shasta remained in essentially the same position. We interpret these patterns as evidence for an Eocene to Miocene tear in the subducting slab, with a more steeply dipping plate segment to the north, and an initially more gently dipping segment to the south that gradually steepened from the Middle Miocene to the present.

  18. Study on a negative hydrogen ion source with hot cathode arc discharge

    SciTech Connect

    Lin, S. H. Fang, X.; Zhang, H. J.; Qian, C.; Ma, B. H.; Wang, H.; Li, X. X.; Zhang, X. Z.; Sun, L. T.; Zhang, Z. M.; Yuan, P.; Zhao, H. W.

    2014-02-15

    A negative hydrogen (H{sup −}) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H{sup −} beam with ε {sub N,} {sub RMS} = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I{sub e{sup −}}/I{sub H{sup −}} were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  19. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  20. Ion velocities in direct current arc plasma generated from compound cathodes

    SciTech Connect

    Zhirkov, I.; Rosen, J.; Eriksson, A. O.

    2013-12-07

    Arc plasma from Ti-C, Ti-Al, and Ti-Si cathodes was characterized with respect to charge-state-resolved ion energy. The evaluated peak velocities of different ion species in plasma generated from a compound cathode were found to be equal and independent on ion mass. Therefore, measured difference in kinetic energies can be inferred from the difference in ion mass, with no dependence on ion charge state. The latter is consistent with previous work. These findings can be explained by plasma quasineutrality, ion acceleration by pressure gradients, and electron-ion coupling. Increasing the C concentration in Ti-C cathodes resulted in increasing average and peak ion energies for all ion species. This effect can be explained by the “cohesive energy rule,” where material and phases of higher cohesive energy generally result in increasing energies (velocities). This is also consistent with the here obtained peak velocities around 1.37, 1.42, and 1.55 (10{sup 4} m/s) for ions from Ti{sub 0.84}Al{sub 0.16}, Ti{sub 0.90}Si{sub 0.10}, and Ti{sub 0.90}C{sub 0.10} cathodes, respectively.

  1. The alpine paleo-arcs in the Adriatic plate margin (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Martin, Silvana; Vigano', Alfio; Macera, Patrizia

    2010-05-01

    The North-eastern Italy (Adriatic paleo-margin) is a laboratory to study past orogenetic processes. The paleo-margin was involved in the subduction of the Mesozoic Tethys lithosphere with development of (a) an early magmatic belt, (b) a typical fore-arc crust, (c) a back-arc crust and (d) a collisional paleo-arc. Early alpine magmatic belt. This is represented by the Re di Castello, Central Adamello, Mt. Marser and Corno Alto plutons of ultrabasic to intermediate composition, the Mt. Ospedale diorite dykes, and other ultrabasic to andesitic dykes distributed in the Southern Alps basement and cover. The ages of these magmatic rocks span between Upper Cretaceous (Northern Calcareous Alps and Dolomites), Paleocene (Val Camonica and Valtellina) and Middle Eocene (Adamello). Volcanics of Middle Eocene age are widespread in the Western Trentino and in the Southern Lombardy sedimentary sequences. In Trentino they crop out in a very restricted zone because of the transpressive deformation and shortening of the Giudicarie fault zone. Adriatic fore-arc crust. This is represented by the high-grade Austroalpine Tonale nappe and the Lombardian Edolo/Morbegno basements which show evidence of a pervasive crustal deformation. These basements show swarms of pseudotachylytes often associated to mylonites, testifying crustal deformation at a critical depth in the Adriatic paleo-margin during the alpine subduction/collision. Adriatic back-arc crust. This is testified by Paleocene to Oligocene ultrabasic to basic dykes and volcanics in the Venetian region. These volcanic rocks show HIMU-DM-OIB geochemical features, ascribed to deep mantle upwelling after a possible failure of the slab. Collisional paleo-arc. Subduction was followed by a collisional to post-collisional magmatism at Oligocene, characterized by intrusion of large tonalite to quartz-diorite plutons (e.g., Western Adamello, Presanella, Ries, Rensen), apophyses, dykes and volcanics, very common in the Southern Alps and in

  2. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  3. Measurement of electron temperature and density in the DIII-D neutral beam ion source arc chamber

    SciTech Connect

    Kellman, D.H.; Busath, J.; Hong, R.

    1993-10-01

    A swept-bias Langmuir probe diagnostic was employed with the DIII-D neutral beam ion source in an effort to study the effects of filament temperature, arc power, and backstreaming energetic electrons on the electron temperature and density of the arc discharge inside the ion source arc chamber. The arc chamber contains six Langmuir probes biased with a negative dc voltage. These probes provide a feedback signal for regulation of the arc power supply, and give a relative indication of plasma uniformity within the arc chamber. For this study, one probe was reconnected to a voltage-sweeping power supply, and probe current versus voltage characteristics were generated. These characteristics provided the information necessary to calculate electron temperature and density. With arc discharge only, the results demonstrated that an filament temperature increases, so does electron density. Electron temperature decreases at a faster rate, however, as required to maintain constant ion maturation current (regulated by the arc power supply). The results also demonstrated that increasing arc power (through control of the arc power supply) results in higher electron temperature and density. Experiments were also performed with probe voltage sweeps during beam extraction, at various accelerator voltage levels and at different delay times after beam turn-on with a fixed acceleration voltage. These results indicated an increase in electron temperature and density as acceleration voltage is increased. However, nearly identical trends result when arc discharges are produced at the same parameter settings as during these beams, but without beam extraction. This indicates minimal influence of backstreaming energetic electrons on electron temperature and density in the arc chamber. Temperature and density also remain fairly constant over time during a long beam pulse.

  4. Variations of upper plate mechanics, seismicity, and arc volcanism along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Ruh, J.; Sallares, V.; Ranero, C. R.; van Dinther, Y.

    2015-12-01

    The Middle America Trench (MAT) extends from the Riviera Fracture Zone offshore Mexico down to the Panama Fracture Zone. Along the MAT, the oceanic Cocos plate changes in character from the older, deeper and relatively smooth plate offshore Guatemala-Nicaragua to the ~20 km thick crust of Cocos Ridge off Costa Rica. These changes occur because the northern part of the the Cocos plate has been formed at the East Pacific Rise, while the southern part is formed at the Cocos-Nazca spreading center, which is in turn influenced by the Galapagos Hotspot, originating prominent submarine structures such as the Cocos Ridge. In contrast, the terrane forming the overriding plate in the Pacific convergent margin, which is mainly made by the Caribbean Igneous Province rocks, is relatively homogeneous. Thus, this region is an excellent natural example to study the effect of changes in the incoming plate on the tectonics and deformation of the overriding plate. The Nicaragua lake in the north is a result of upper plate extension related to rollback of the subducting slab, whereas in the south, the Talamanca Cordillera indicates compression of the Caribbean crust probably related with the subduction of the Cocos Ridge. We present numerical models that help to understand the long-term effects of variable subducting oceanic crust age and thickness on upper plate deformation and magmatism. Furthermore, we investigate the seismic behavior of these different convergent systems. The applied numerical model consists of a 2D seismo-thermo-mechanical finite difference scheme with visco-elasto-plastic rheology and a stick-slip frictional formulation to simulate spontaneous nucleation, propagation and arrest of earthquake-like ruptures on physically consistent faults.

  5. Transition from ring to beam arc distributions of water ions near the space shuttle orbiter

    SciTech Connect

    Cairns, I.H. )

    1990-09-01

    The distribution function of water ions produced near the space shuttle by charge exchange between ionospheric oxygen ions and outgassed water molecules is investigated using solutions of Liouville's equation with a source term modeling the charge exchange process. A transition from ring distributions to beamlike distributions termed beam arc distributions is found with decreasing distance upstream from the orbiter. This beam arc distribution corresponds to a finite section of a ring distribution and not to a conventional beam distribution. The ratio of water ion number density to oxygen ion number density is calculated; typical values within 50 m of the shuttle are in excess of 2% with a maximum value of the order of 20% for nominal parameters, suggsting that these ions must be considered with interpreting particle data from near the space shuttle. An argument for a plasma density enhancement of the order of 10% very close to the shuttle, due to kinematic effects (corresponding to pileup of plasma) and not to plasma creation, is also presented. This kinetmatic density enhancement is insufficient, by an order of magnitude, to explain the plasma density enhancements inferred from Spacelab 2 data.

  6. Analysis of structure and bonding strength of AlTiN coatings by cathodic ion plating

    NASA Astrophysics Data System (ADS)

    Dejun, Kong; Haoyuan, Guo

    2015-04-01

    AlTiN coating was prepared on the surface of YT14 hard alloy cutter by cathodic arc ion plating, and the surface-interface morphologies, line scans of the interface elements and valence state of chemical elements were analyzed with field emission scanning electron microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy, respectively, and bonding strength of the coating was measured with scratching tester. The results show that the elements of Al and N mainly exist in the AlTiN coating with an AlN and AlTiN hard phase, and (the) Ti element mainly exists in the coating with a TiN hard phase, which improve wear resistance of AlTiN coating. The elements of Al, Ti and N are diffused at the coating interface, in which part of Ti atoms are replaced by Al atoms at the TiN lattice, still keep face-centered cubic structure of TiN coating to form metallurgical bonding, and bonding strength of the coating interface measured by scratching tester is 78.75 N, which is beneficial to improving service life of AlTiN coating prepared on the surface of carbide tool cutter.

  7. Rolling contact fatigue life of chromium ion plated 440C bearing steel

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Davis, J. H.

    1985-01-01

    Rolling contact fatigue (RCF) test specimens of heat treated 440C bearing steel were chromium ion plated in thicknesses from 0.1 to 8.0 micron and tested in RCF tester using 700 ksi maximum Hertzian stress. Heavy coatings, greater than about 5 micron in thickness, peeled off or spalled readily, whereas thin coatings, less than 3 micron thick, were tenacious and did not come off. Furthermore, significant improvement in RCF life was obtained with thin chromium ion plated test specimens. The average increase in B10 life was 75% compared with unplated 440C. These preliminary results indicate that ion plating is a promising way to improve bearing life.

  8. Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.

    PubMed

    Penescu, L; Catherall, R; Lettry, J; Stora, T

    2010-02-01

    We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.

  9. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Nishizawa, Azusa; Kaneda, Kentaro; Oikawa, Mitsuhiro

    2016-02-01

    We acquired 27 wide-angle seismic profiles to investigate variation in crustal structure along the Kyushu-Palau Ridge (KPR), a 2600-km-long remnant island arc in the center of the Philippine Sea plate; 26 lines were shot across the strike of the KPR at 13°-31°N, and one was shot along the northernmost KPR. The derived P-wave velocity (Vp) models show that the KPR has a crustal thickness of 8-23 km, which is thicker than the neighboring backarc basin oceanic crusts of the West Philippine Basin to the west and the Shikoku and Parece Vela Basins to the east. While the KPR crust consists mainly of lower crusts with a Vp of 6.8-7.2 km/s, the thicker crust contains a thick middle crust with Vp of 6.0-6.8 km/s. In general, the KPR crust is thicker in the north than in the south. The uppermost mantle velocities just below the KPR bathymetric highs are lower than 8.0 km/s and are commonly associated with a slightly high Vp of 7.2 km/s at the base of the crust. Large amplitude reflection signals are sometimes observed at far offsets on several lines suggesting the existence of several reflectors at depths of 23-40 km in the mantle beneath the KPR. The characteristics of these reflections are similar to these observed beneath the Izu-Ogasawara (Bonin) island arc, the tectonically conjugate arc of the KPR before backarc basin spreading. Very thin crust and high Pn velocities characterize the transition between the KPR and the eastern basins, which is probably a relic of the initial stage of the rifting. West of the KPR, the crust varies in structure from north to south as a result of the different tectonic settings in which it evolved.

  10. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.

    PubMed

    Hai, K; Sawase, T; Matsumura, H; Atsuta, M; Baba, K; Hatada, R

    2000-04-01

    This in vitro study evaluated the corrosion resistance of a titanium nitride (TiN) ion-plated magnetic stainless steel (447J1) for the purpose of applying a magnetic attachment system to implant-supported prostheses made of titanium. The surface hardness of the TiN ion-plated 447J1 alloy with varying TiN thickness was determined prior to the corrosion testing, and 2 micrometers thickness was confirmed to be appropriate. Ions released from the 447J1 alloy, TiN ion-plated 447J1 alloy, and titanium into a 2% lactic acid aqueous solution and 0.1 mol/L phosphate buffered saline (PBS) were determined by means of an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Long-term corrosion behaviour was evaluated using a multisweep cyclic voltammetry. The ICP-AES results revealed that the 447J1 alloy released ferric ions into both media, and that the amount of released ions increased when the alloy was coupled with titanium. Although both titanium and the TiN-plated 447J1 alloy released titanium ions into lactic acid solution, ferric and chromium ions were not released from the alloy specimen for all conditions. Cyclic voltamograms indicated that the long-term corrosion resistance of the 447J1 alloy was considerably improved by ion-plating with TiN.

  11. The plasma wave environment of an auroral arc - Electrostatic ion cyclotron waves in the diffuse aurora

    NASA Technical Reports Server (NTRS)

    Bering, E. A.

    1984-01-01

    Electric field plasma wave observations were made with a sounding rocket payload in and near a quiet auroral arc. This payload was launched on March 9, 1978 from Poker Flat, Alaska. The payload trajectory was close to the magnetic meridian and passed over a 40 kR auroral arc. The present investigation is concerned with ac electric field observations in the ELF and lower VLF covering a frequency range from 2.5 Hz to 8 kHz. Attention is given to aspects of instrumentation, the general situation, a data analysis, and the obtained results. Waves were observed at low altitude in a region of downward parallel current and diffuse aurora. These waves had properties consistent with those expected for hydrogen and oxygen electrostatic ion cyclotron (EIC) waves.

  12. The ancestral cascades arc: Cenozoic evolution of the central Sierra Nevada (California) and the birth of the new plate boundary

    USGS Publications Warehouse

    Busby, C.J.; Hagan, J.C.; Putirka, K.; Pluhar, C.J.; Gans, P.B.; Wagner, D.L.; Rood, D.; DeOreo, S.B.; Skilling, I.

    2008-01-01

    We integrate new stratigraphic, structural, geochemical, geochronological, and magnetostratigraphic data on Cenozoic volcanic rocks in the central Sierra Nevada to arrive at closely inter-related new models for: (1) the paleogeography of the ancestral Cascades arc, (2) the stratigraphic record of uplift events in the Sierra Nevada, (3) the tectonic controls on volcanic styles and compositions in the arc, and (4) the birth of a new plate margin. Previous workers have assumed that the ancestral Cascades arc consisted of stratovolcanoes, similar to the modern Cascades arc, but we suggest that the arc was composed largely of numerous, very small centers, where magmas frequently leaked up strands of the Sierran frontal fault zone. These small centers erupted to produce andesite lava domes that collapsed to produce block-and-ash flows, which were reworked into paleocanyons as volcanic debris flows and streamflow deposits. Where intrusions rose up through water-saturated paleocanyon fill, they formed peperite complexes that were commonly destabilized to form debris flows. Paleocanyons that were cut into Cretaceous bedrock and filled with Oligocene to late Miocene strata not only provide a stratigraphic record of the ancestral Cascades arc volcanism, but also deep unconformities within them record tectonic events. Preliminary correlation of newly mapped unconformities and new geochronological, magnetostratigraphic, and structural data allow us to propose three episodes of Cenozoic uplift that may correspond to (1) early Miocene onset of arc magmatism (ca. 15 Ma), (2) middle Miocene onset of Basin and Range faulting (ca. 10 Ma), and (3) late Miocene arrival of the triple junction (ca. 6 Ma), perhaps coinciding with a second episode of rapid extension on the range front. Oligocene ignimbrites, which erupted from calderas in central Nevada and filled Sierran paleocanyons, were deeply eroded during the early Miocene uplift event. The middle Miocene event is recorded by growth

  13. Ion distribution effects of turbulence on a kinetic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Chiu, Y. T.

    1982-01-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  14. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    SciTech Connect

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  15. Ion distribution effects of turbulence on a kinetic auroral arc model

    NASA Astrophysics Data System (ADS)

    Cornwall, J. M.; Chiu, Y. T.

    1982-03-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  16. Boron Ion Implantation into Silicon by Use of the Boron Vacuum-Arc Plasma Generator

    SciTech Connect

    Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Moschella, J. J.; Keitz, M. D.

    2006-11-13

    This paper continues with presentation of experimental work pertaining to use of the boron vacuum arc (a.k.a. cathodic arc) plasma generator for boron doping in semiconductor silicon, particularly with a view to the problems associated with shallow junction doping. Progress includes development of an excellent and novel macroparticle filter and subsequent ion implantations. An important perceived issue for vacuum arc generators is the production of copious macroparticles from cathode material. This issue is more important for cathodes of materials such as carbon or boron, for which the particles are not molten or plastic, but instead are elastic, and tend to recoil from baffles used in particle filters. The present design starts with two vanes of special orientation, so as to back reflect the particles, while steering the plasma between the vanes by use of high countercurrents in the vanes. Secondly, behind and surrounding the vanes is a complex system of baffles that has been designed by a computer-based strategy to ultimately trap the particles for multiple bounces. The statistical transmittance of particles is less than 5 per coulomb of boron ions transmitted at a position just a few centimeters outside the filter. This value appears adequate for the silicon wafer application, but improvement is easily visualized as wafers will be situated much further away when they are treated in systems. A total of 11 silicon samples, comprising an area of 250 cm2, have been implanted. Particles were not detected. Sample biases ranged from 60 to 500 V. Boron doses ranged from 5 x 1014 to 5 x 1015/cm2. Exposure times ranged from 20 to 200 ms for average transmitted boron current values of about 125 mA. SIMS concentration profiles from crystalline material are presented. The results appear broadly favorable in relation to competitive techniques and will be discussed. It is concluded that doubly charged boron ions are not present in the plume.

  17. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  18. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    PubMed

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  19. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    USGS Publications Warehouse

    ten Brink, U.S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  20. Seismic structure of subducted Philippine Sea plate beneath the southern Ryukyu arc by receiver function and local earthquakes tomography

    NASA Astrophysics Data System (ADS)

    Nakamura, M.

    2012-12-01

    Seismic coupling of the Ryukyu subduction zone is assumed to be weak from the lack of historical interplate large earthquakes. However, recent investigation of repeating slow slip events (Heki & Kataoka, 2008), shallow low frequency earthquakes (Ando et al., 2012), and source of 1771 Yaeyama mega-tsunami (Nakamura, 2009), showed that the interplate coupling is not weak in the south of Ryukyu Trench. The biannually repeating SSEs (Mw=6.5) occur at the depth of 20-40 km on the upper interface of the subducted Philippine Sea plate beneath Yaeyama region, where earthquake swarm occurred on 1991 and 1992. To reveal the relation among the crustal structure, earthquake swarms, and occurrence of slow slip events (SSE), local earthquake tomography and receiver function (RF) analysis was computed in the southwestern Ryukyu arc. A tomographic inversion was used to determine P and S wave structures beneath Iriomote Island in the southwestern Ryukyu region for comparison with the locations of the SSE. The seismic tomography (Thurber & Eberhart-Phillips, 1999) was employed. The P- and S- wave arrival time data picked manually by Japan Meteorological Agency (JMA) are used. The 6750 earthquakes from January 2000 to July 2012 were used. For the calculation of the receiver function, the 212 earthquakes whose magnitudes are over 6.0 and epicentral distances are between 30 and 90 degrees were selected. The teleseicmic waveforms observed at two short-period seismometers of the JMA, and one broadband seismometer of F-net of National Research Institute for Earth Science and Disaster Prevention were used. The water level method (the water level is 0.01) is applied to original waveforms. Assuming that each later phase in a RF is the wave converted from P to S at a depth, I transformed the time domain RF into the depth domain one along each ray path in a reference velocity model. The JMA2001 velocity model is used in this study. The results of tomography show that the low Vp and high Vp

  1. Industrial potential, uses, and performance of sputtered and ion plated films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    The sputtering and ion plating technology is reviewed in terms of their potential, uses and performance. It offers the greatest flexibility in coating preparation, since coatings can be tailored in any preferred chemical combination, and graded type interfaces (ceramic to metal seals) can be formed. Sputtered and ion plated film characteristics such as the degree of adherence, coherence and morphological growth which contribute to film performance and reliability are described and illustrated as used in practice. It is concluded that the potential future of sputtered and ion plated films for industrial applications will depend primarily upon greater comprehension of materials selection, possible elimination of restrictions for coating/substrate combinations and the awareness of utilizing the proper deposition parameters.

  2. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    PubMed

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation.

  3. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    PubMed

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation. PMID:27153003

  4. Experimental ion mobility measurements in Ar-C2H6 mixtures

    NASA Astrophysics Data System (ADS)

    Cortez, A. F. V.; Garcia, A. N. C.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Barata, J. A. S.; Conde, C. A. N.

    2013-12-01

    In this paper we present the experimental results for the mobility of ions in argon-ethane gaseous mixtures (Ar-C2H6) for pressures ranging from 6 to 10 Torr and for reduced electric fields in the 10 Td to 25 Td range, at room temperature. For Ar concentrations below 80% two peaks were observed in the time of arrival spectra which were attributed to ion species with 3-carbons (C3H7+, C3H8+ and C3H9+) and with 4-carbons (which includes C4H7+, C4H9+, C4H10+ and C4H12+ ions). For Ar concentrations above 80% a third peak appears, which may belong to C5H11+. The time of arrival spectra for Ar concentrations of 80%, 85%, 90% and 95% are displayed in the present paper as well as the reduced mobilities determined from the peaks observed for a typical reduced electric field used in gaseous detectors (E/N = 15 Td).

  5. Effects of filament geometry on the arc efficiency of a high-intensity He{sup +} ion source

    SciTech Connect

    Kobuchi, T.; Kisaki, M.; Okamoto, A.; Kitajima, S.; Sasao, M.; Shinto, K.; Tsumori, K.; Kaneko, O.; Sakakita, H.; Kiyama, S.; Hirano, Y.; Wada, M.

    2008-10-15

    A strongly focusing high-intensity He{sup +} ion source equipped with three concave electrodes has been designed and constructed as the beam source for a high-energy He{sup 0} neutral beam probe system to diagnose fusion-produced alpha particles in thermonuclear fusion plasmas. The reduction of heat load onto the concave extraction electrodes is particularly important for a long pulse operation, as the heat load deforms the electrodes and thus the beam focal length. The effects on the arc efficiency (beam current/arc power) of the ion source due to the discharge filament structure (straight-type and L-shape-type filaments), size (filament diameters of 2 and 1.5 mm), number, and the locations have been studied. Choice of the appropriate filament structure improved the arc efficiency by 17%.

  6. Electroless nickel and ion-plated protective coatings for silvered glass mirrors

    SciTech Connect

    Lind, M.A.; Chaudiere, D.A.; Stewart, T.L.

    1982-01-01

    Two methods of protecting second surface silvered glass mirrors from environmental degradation have been evaluated. One method employed silver mirrors overcoated with Al, Ni, 304 stainless steel, Cr, and an Al/Cu alloy prepared by ion-plating. The other method used conventional wet process silver mirrors protected with a thin electroless nickel coating. These mirrors were compared with conventional paint backed silver/copper mirrors after exposure to elevated temperatures and water vapor. The electroless nickel mirrors showed consistently more resistance to these stresses than either the conventional or ion-plated mirrors suggesting that they may provide more durable field service.

  7. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  8. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Montes, C.; Ayala, C.; Bustamante, C.; Hoyos, N.; Montenegro, O.; Ojeda, C.; Niño, H.; Ramirez, V.; Valencia, V.; Rincón, D.; Vervoort, J.; Zapata, S.

    2012-12-01

    A Paleogene conglomeratic-sandy succession preserves the complex record of arc-continent collision, orogen collapse and basin opening, followed by inversion related to renewed oblique convergence. This record is unique because both arc and continental margin are now severely fragmented and only partially exposed along the southern Caribbean-South American boundary in northern Colombia. We studied these clastic sequences in the San Jacinto deformed belt using an integrated provenance study that includes conglomerate clast counting, geochemistry and U-Pb and Hf isotopic analysis in magmatic clasts, together with sandstone petrography, heavy mineral analysis and detrital zircon U-Pb geochronology. The record of events extracted from these coarse clastic rocks includes the formation and approach of an allochthonous Upper Cretaceous intra-oceanic arc active from 88 Ma until 73 Ma. This arc collides against the upper Paleozoic to Triassic continental margin after 73 Ma, but before late Paleocene times. Poorly exposed remnants of serpentinized peridotites and middle pressure metamorphic detritus are related to closure of an intervening oceanic basin between the continent and the colliding arc. This orogen was emerged in late Maastrichtian-early Paleocene, and then collapsed as recorded by the thick upper Paleocene and younger succession of the San Jacinto deformed belt where the coarse clastics, subject of this study, are exposed. Orogenic collapse may have been the result of subduction zone flip, with incipient subduction of the buoyant Caribbean Plate under South America.

  9. Arcing in space structures in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Marinelli, W. J.; Weyl, G.; Carleton, K. L.

    1992-01-01

    This report describes results of an experimental and theoretical program to investigate arcing of structures containing dielectric and conducting materials when they are biased negatively with respect to a plasma. An argon ion source generated Ar(+) ions of directed energy 20 to 40 eV and density approximately 10(exp 7) cm(exp -3) that impinged upon samples containing a dielectric material on top of a negatively biased Kovar plate. Arcing events were studied for bias voltages between -300 and -1000V with respect to the ion beam. The samples were Dow Corning 93-500 adhesive on Kovar, fused silica cover slips bonded on Kovar, and silicon solar cells mounted on Kovar. Measurements of discharge current, Kovar plate voltage, and radiation from the arc versus time were carried out. Microsecond duration exposure images and optical spectra in the 0.24 to 0.40 micron band were also acquired during arcing events. Arcing events were found to be associated with exposed adhesive and means were found to eliminate arcing altogether. The charging of a silica cover plate and the fields around the plate were calculated using a particle-in-cell code. Models were developed to explain the ignition of the arc and the physical processes occurring during the discharge.

  10. Reactive Ion Etching in a VHF Parallel Plate Reactor

    NASA Technical Reports Server (NTRS)

    Dahi, H.; Murnick, D. E.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    VHF (very high frequency) capacitive plasma reactors may allow development of new RIE (reactive ion etching) systems with high etch rates, excellent uniformity and anisotropy and low damage. High ion and radical fluxes can be obtained by raising the RF (radio frequency) frequency which increases plasma density dramatically at a fixed voltage. The effects of variation in frequency (25-120 MHz), pressure (10-250 mTorr), and flow rate (1-100 sccm) in a CF4 discharge have been investigated. The RF current versus voltage characteristics and spatially resolved optical emission are used as diagnostics. Experiments on etch rates, etch uniformity and anisotropy in silicon, silicon dioxide and silicon nitride will be discussed. Results of fluid model simulations are used to interpret the experimental data.

  11. Ion emission intensity ratios as a function of electrode gap, melting current, and pressure during low current vacuum arc remelting

    SciTech Connect

    Williamson, R.L.; Grose, S.M.

    1994-08-01

    The arc energy distribution in the electrode gap plays a central role in the vacuum arc remelting (VAR) process. However, very little has been done to investigate the response of this important process variable to changes in process parameters. Emission spectroscopy was used to investigate variations in arc energy in the annulus of a VAR furnace during melting of 0.43 m diameter Alloy 718 electrode into 0.51 in diameter ingot. Time averaged (1 second) intensity data from various chromium atom and ion (Cr{sup +}) emission lines were simultaneously collected and selected intensity ratios were subsequently used as air energy indicators. These studies were carried out as a function of melting current, electrode gap, and CO partial pressure. The data were modeled and the ion electronic energy was found to be a function of electrode gap, the energy content of the ionic vapor decreasing with increasing gap length; the ion ratios were not found to be sensitive to pressure. On the other hand, the chromium atom electronic energy was difficult to model in the factor space investigated, but was determined to be sensitive, to pressure. The difference in character of the chromium ion and atom energy fluctuations in the furnace annulus are attributed to the difference in the origins of these arc species and the non-equilibrium nature of the metal vapor arc. Most of the ion population is emitted directly from cathode spots, whereas much of the atomic vapor arises due to vaporization from the electrode and pool surfaces. Also, the positively charged ionic species interact more strongly with the electron gas than the neutral atomic species, the two distributions never equilibrating due to the low pressure.

  12. Charge state, angular distribution, and kinetic energy of ions from multicomponent-cathodes in vacuum arc devices

    SciTech Connect

    Nikolaev, A. G. Savkin, K. P.; Yushkov, G. Yu.; Frolova, V. P.; Barengolts, S. A.

    2014-12-07

    We present research results on vacuum arc plasma produced with multicomponent cathode made of several different elements. The ion mass-to-charge-state spectra of the plasmas were studied by time-of-flight spectrometry. The angular distributions of different ion species were measured, and the kinetic energy of their directed (streaming) motion was determined. It is shown that the fractional composition of ions of different cathode components in the plasma flow from the cathode spot closely matches the fractional content of these components in the composite cathode. The charge states of ions of the various cathode components are determined by the average electron temperature in the cathode spot plasma. The angular distribution of lower mass ions in the plasma from a multicomponent cathode is less isotropic and broader than for the plasma from a single-component cathode of the same light element. The directed kinetic energies of the ions of the different components for plasma from a multicomponent cathode are lower for lighter elements and greater for heavier elements compared to the ion directed energy for plasmas from single-component cathodes made of the same materials. The physical processes responsible for these changes in the ion charge states in multicomponent-cathode vacuum arc plasma are discussed.

  13. Effect of ion mass and charge state on transport of vacuum ARC plasmas through a biased magnetic filter

    SciTech Connect

    Byon, Eungsun; Kim, Jong-Kuk; Kwon, Sik-Chol; Anders, Andre

    2003-12-01

    The effect of ion mass and charge state on plasma transport through a 90{sup o}-curved magnetic filter is experimentally investigated using a pulsed cathodic arc source. Graphite, copper, and tungsten were selected as test materials. The filter was a bent copper coil biased via the voltage drop across a low-ohm, ''self-bias'' resistor. Ion transport is accomplished via a guiding electric field, whose potential forms a ''trough'' shaped by the magnetic guiding field of the filter coil. Evaluation was done by measuring the filtered ion current and determination of the particle system coefficient, which can be defined as the ratio of filter ion current, divided by the mean ion charge state, to the arc current. It was found that the ion current and particle system coefficient decreased as the mass-to-charge ratio of ions increased. This result can be qualitatively interpreted by a very simply model of ion transport that is based on compensation of the centrifugal force by the electric force associated with the guiding potential trough.

  14. Dark-Field Scanning Transmission Ion Microscopy via Direct Detection of Transmitted Helium Ions with a Multichannel Plate

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor; White, Ryan; Keller, Robert

    A multichannel plate was used as an ion sensitive transmission detector in a commercial helium ion microscope for annular dark-field imaging of nanomaterials, i.e. scanning transmission ion microscopy. In contrast to previous transmission helium ion microscopy approaches that used secondary electron conversion holders, our new approach directly detects transmitted helium ions on an annular detector. Monte Carlo simulations are used to predict detector collection angles at which annular dark-field images with atomic number contrast are obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. While the resolution of this transmission technique is limited by beam broadening in the substrate, we image magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field scanning transmission ion microscopy will open avenues for more quantitative ion imaging techniques, such as direct mass-thickness determination, and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation.

  15. Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility

    SciTech Connect

    Manzolaro, M. Andrighetto, A.; Monetti, A.; Scarpa, D.; Rossignoli, M.; Vasquez, J.; Corradetti, S.; Calderolla, M.; Prete, G.; Meneghetti, G.

    2014-02-15

    An intense research and development activity to finalize the design of the target ion source system for the selective production of exotic species (SPES) facility (operating according to the isotope separation on line technique) is at present ongoing at Legnaro National Laboratories. In particular, the characterization of ion sources in terms of ionization efficiency and transversal emittance is currently in progress, and a preliminary set of data is already available. In this work, the off-line ionization efficiency and emittance measurements for the SPES forced electron beam induced arc discharge ion source in the case of a stable Ar beam are presented in detail.

  16. Vacuum Sputtered and Ion-Plated Coatings for Wear and Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1982-01-01

    The plasma or ion-assisted coating techniques such as sputtering and ion plating are discussed in view of wear and corrosion protection. The basic processes and the unique features of the technique are discussed in regard to the synthesis and development of high reliability wear and corrosion resistant films. The ions of the plasma which transfer energy, momentum, and charge to the substrate and the growing films can be beneficially used. As a result, coating adherence and cohesion is improved. Favorable morphological growth such as high density and porosity-free films can be developed, and residual stresses can be reduced.

  17. Friction and Wear Properties of Selected Solid Lubricating Films. Part 2; Ion-Plated Lead Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of ion-plated lead films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of 1.2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7 Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less then 1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the ion-plated lead films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the ion-plated lead films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 1(exp -6) cu mm/N.m or less, respectively. The ion-plated lead films met both criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen, where the coefficient of friction was higher than the criterion. Both the lead film wear rate and the ball wear rate met that criterion in all three environments. Adhesion and plastic deformation played important roles in the friction and wear of the ion-plated lead films in contact with 440C stainless steel balls in the three environments. All sliding involved adhesive transfer of materials: transfer of lead wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart lead.

  18. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones

    NASA Astrophysics Data System (ADS)

    Heuret, A.; Funiciello, F.; Faccenna, C.; Lallemand, S.

    2007-04-01

    A combination of statistical studies on present-day subduction zones and three-dimensional (3D) laboratory models is performed with the aim to clarify the way that plate kinematics control the geometry of the slab and the overriding plate deformation in subduction zones. In 3D laboratory models, the analogue of a two layer linearly viscous lithosphere-upper mantle system is achieved by means of silicon putty glucose syrup tank experiment. The subducting and overriding plate velocities are systematically changed by exploring the variability field of natural plate kinematics. Both statistical and modelling approaches recognize the importance of overriding plate motion on subduction process behavior: (1) trenches migrate at a rate close to the overriding plate motion, but always move slower than the overriding plates. The mechanism at work is a direct consequence of "slab anchoring" opposed by both lithosphere and mantle viscous resistance and is responsible for overriding plate deformation and slab geometry variability. (2) An overriding plate shortens when the overriding plate moves toward the trench and conditions that are favourable for overriding plate extension are created when the overriding plate moves away from the trench. (3) Shallow and steep dips are found if the overriding plate moves toward and away from the trench, respectively.

  19. FRACTURE TOUGHNESS OF 6.4 MM (0.25 INCH) ARC-CAST MOLOBDENUM AND MOLYBDENUM-TZM PLATE AT ROOM TEMPERATURE AND 300 DEGREES C

    SciTech Connect

    J. A. SHIELDS, JR.; P. LIPETZKY; A. J. MUELLER

    2001-04-11

    THE FRACTURE TOUGHNESS OF 6.4 mm (0.25 INCH) LOW CARBON ARC-CAST (LCAC) MOLYBDENUM AND ARC-CAST MOLYBDENUM-TZM ALLOY PLATE WERE MEASURED AT ROOM TEMPERATURE AND 300 DEGREES C USING COMPACT TNESION SPECIMENTS. THE EFFECT OF CRACK PLANE ORIENTATION (LONGITUDINAL VS. TRANSVERSE) AND ANNEALING PRACTICE (STRESS-RELIEVED VS. RECRYSTALLIZED) WERE EVALUATED. DEPENDING UPON THE TEST TEMPERATURE EITHER A STANDARD K[SUB]IC OR A J-INTEGRAL ANALYSIS WAS USED TO OBTAIN THE TOUGHNESS VALUE. AT ROOM TEMPERATURE, REGARDLESS OF ALLOY, ORIENTATION, OR MICROSTURECTURE, FRACTURE TOUGHNESS VALUES BETWEEN 15 AND 22 MPa m{sup 1/2} (14 AND 20 KSI IN{sup 1/2}) WERE MEASURED. THESE K[SUB]IC VALUES WERE CONSISTENT WITH MEASUREMENTS BY THE AUTHORS. INCREASING TEMPERATURE IMPROVES THE TOUGHNESS, DUE TO THE FACT THAT ONE TAKES ADVANTAGE OF THE DUCTIVE-BRITTLE TRANSITION BEHAVIOR OF MOLYBDENUM. AT 300 DEGREES C, THE FRACTURE TOUGHNESS OF RECRYSTALLIZED LCAC AND ARC-CAST TZM MOLYBDENUM WERE ALSO SIMILAR AT APPROXI MATELY 64 MPa m{sup 1/2} (58 KSI IN{sup 1/2}). IN THE STRESS-RELIEVED CONDITION, HOWEVER, THE TOUGHNESS OF ARC-CAST TZM (91 MPa m{sup 1/2}/83 KSI IN{sup 1/2}) WAS HIGHER THAN THAT OF THE LCAC MOLYBDENUM (74 MPa m{sup 1/2}/67 KSI IN{sup 1/2}).

  20. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional

  1. Opening of the Grenada back-arc Basin and evolution of the Caribbean plate during the Mesozoic and early Paleogene

    NASA Astrophysics Data System (ADS)

    Bouysse, Philippe

    1988-06-01

    Geological and geophysical data indicate that the Grenada Basin was presumably created, during the Paleocene, by sundering of a proto-Eastern Caribbean arc into a remnant arc to the west (Aves Swell) and an active arc to the east (Lesser Antilles Ridge). Grenada Basin spreading is thought to have been penecontemporaneous with the creation of the Yucatan Basin located at the opposite side of the Caribbean Sea. I suggest that a continuous Mesozoic Caribbean Arc (M.C.A.), including the Greater Antilles, the Aves-Lesser Antilles system, and the Aruba-Blanquilla Chain (Netherland-Venezuelan Antilles), was initiated in the Pacific, probably about 130-120 Ma ago. Its arrival in front of, and its subsequent motion inside the Central Atlantic ("Tethyan") seaway caused the opening of both Yucatan and Grenada basins which occurred at the two initial points of contact with the North and South American cratons. In contrast to the style of many other island arcs, this back-arc spreading event occurred only once in the long history of the M.C.A. The Lesser Antilles appear to be the oldest currently active intra-oceanic island arc.

  2. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    SciTech Connect

    Singh, M. J.; Hemsworth, R.; Boilson, D.; De Esch, H. P. L.

    2015-04-08

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D{sup +}, D{sub 2}{sup +}, D{sub 3}{sup +} or H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D{sub 2}{sup +}, H{sub 2}{sup +} and D{sup +}, H{sup +} ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 10{sup 7} s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 10{sup 6} s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  3. Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47 Ma

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Xiao, Wenjiao; Windley, Brian F.; Ji, Weiqiang; Fu, Bihong; Wang, Jiangang; Jin, Chunsheng

    2016-02-01

    The Pamir plateau forms a prominent tectonic salient that marks the western end of the Himalayan orogen containing several terranes that were accreted to Eurasia from the Late Paleozoic to Cenozoic. A detailed knowledge of the tectonic evolution of the Pamir salient during the Cenozoic is important for our understanding of the intracontinental deformation in the western Himalaya. Although the tectonic evolution of the Pamir salient has long been studied, the timing of collision between the Indian Plate and the Kohistan-Ladakh arc is still a matter of debate. We present new U-Pb ages and Hf isotopes of detrital zircons, magnetic fabrics, and stable isotopes from the foreland basin on the northeastern margin of the Pamir that indicate a change in sediment provenance started at about 47 Ma. Sediments in the southwest Tarim Basin were partially derived from the uplifted and eroded Karakoram and Kohistan terranes created by the collision between the Indian Plate and the Kohistan-Ladakh arc at circa 47 Ma, as a result of northward thrusting and propagation of the Indian Plate under Eurasia.

  4. Stress relaxation in unirradiated and in helium ion bombarded glass plates: Dimensional stability

    SciTech Connect

    Primak, W.

    1984-02-15

    The deformation of thin glass plates during bombardment with 140-keV He/sup +/ ions was measured with an external capacitor. The contour of the plates was determined interferometrically before irradiation, after irradiation, and after aging for several years. These results showed that the calibration of the capacitor equipment by dead-weight loading a silica plate was faulty. The deflection of a vitreous silica free cantilever on dead-weight loading was measured interferometrically, and the results showed that deformation occurred within the clamp. It was confirmed that placing a ground shield about the electrode of the capacitor increases the calculated deflections. Data for the permanent deformation of a stressed plate of vitreous silica are analyzed, and it is concluded that stress relaxation by a bulk viscoelastic deformation cannot be detected by a change in plate contour because the maximum precision for such a determination could not detect apparent viscosities greater than approx.10/sup 29/ P. The stress relaxation of the irradiated vitreous silica plates was about 10% in three years corresponding to an apparent post-irradiation viscosity of approx.10/sup 20/ P. The stress relaxations observed for the other glasses, Pyrex, BK7, and LF2 were much greater, and it is uncertain to what extent they were a viscoelastic effect or an annealing effect. The behavior of a sample of a facsimile radioactive waste storage glass, 76--68 indicated it was not a uniform product; the contour became irregular; hence, these techniques were not appropriate for it.

  5. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  6. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  7. New ion-assisted filtered cathodic arc deposition (IFCAD) technology for producing advanced thin films on temperature-sensitive substrates

    NASA Astrophysics Data System (ADS)

    Fulton, Michael L.

    1999-10-01

    An innovative Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) system has been developed for low temperature production of thin-film coatings. The IFCAD system employs electro-magnetic and mechanical filtering techniques to remove unwanted macroparticles and neutral atoms from the plasma stream. Therefore, only ions within a defined energy range arrive at the substrate surface, depositing thin-films with excellent mechanical and optical properties. Ion- Assisted-Deposition is coupled with Filtered Cathodic Arc technology to enhance and modify the arc deposited thin- films. Using an advanced computer controlled plasma beam scanning system, high quality, large area, uniform IFCAD multi-layer film structures are attained. Amorphous Diamond- Like-Carbon films (up to 85% sp3 bonded carbon; and micro- hardness greater than 50 GPa) have been deposited in multi- layer thin-film combinations with other IFCAD source materials (such as: Al2O3) for optical and tribological applications. Rutile TiO2 (refractive index of 2.8 at 500 nm) has been deposited with this technology for advanced optical filter applications. The new IFCAD technology has been included in development programs, such as: plastic and glass lens coatings for optical systems; wear resistant coatings on various metal substrates, ultra smooth, durable, surface hydrophobic coatings for aircraft windows; EUV coatings for space instrumentation; transparent conductive coatings; and UV protective coatings for solar cell concentrator plastic Fresnel lens elements for space power.

  8. Electroless nickel and ion-plated protective coatings for silvered glass mirrors

    SciTech Connect

    Lind, M.A.; Chaudiere, D.A.; Dake, L.S.; Stewart, T.L.

    1982-04-01

    A preliminary examination of two methods of protecting second surface silvered glass mirrors from environmental degradation is presented. One method employed silver mirrors overcoated with Al, Ni, 304 stainless steel, Cr, or an Al/Cu alloy prepared by ion-plating. The other method used conventional wet process silver mirrors protected with a thin electroless nickel coating. No attempt was made to optimize the coatings for either method. These experimental mirrors were compared with conventional paint backed silver/copper mirrors after exposure to elevated temperatures and water vapor in order to estimate their relative environmental stability. The electroless nickel mirrors showed consistently more resistance to these stresses than either the conventional or ion-plated mirrors, suggesting that they may provide more durable field service.

  9. The Role of Philippine Sea Plate to the Genesis of Quaternary Magmas of Northern Kyushu Island, Japan, Inferred from Along-Arc Geochemical Variations

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Itoh, J.; Ujike, O.; Miyoshi, M.; Takemura, K.

    2013-12-01

    Quaternary volcanoes on Kyushu Island comprise volcanoes Himeshima, Futagoyama, Yufu-Tsurumi, Kuju, Aso, Kirishima and Sakurajima from north to south alongstrike the volcanic front. Adakitic lavas are observed from Yufu-Tsurumi and Kuju volcanoes in northern Kyushu (Kita et al., 2001; Sugimoto et al., 2007), whereas no Quaternary adakites were observed at Aso (e.g., Hunter, 1998) and the volcanoes south of Aso along the entire Ryukyu arc. Sugimoto et al. (2007) suggested that the trace element and Sr, Nd, and Pb isotopic compositions of adakitic magmas from Yufu-Tsurumi volcano indicate derivation of the magmas by partial melting of the subducting PSP. In contrast, Zellmer et al. (2012) suggested that these adakites may have formed by fractional crystallization of mantle-derived mafic magmas within the garnet stability field in the crust. The Honshu-Kyushu arc transition is a particular favorable setting to address these controversial models for the origin of the adakitic lavas, because of the potential relationship between the PSP materials and the alongstrike variation of the lava chemistry. The Palau-Kyushu ridge divides the oceanic crust of the PSP into northeastern and southwestern segments with ages of 26-15 (Shikoku Basin) and 60-40 Ma (West Philippine Basin), respectively (Mahony et al., 2011). Although there are no clear plate images beneath northern Kyushu, the northern extension of the Palau-Kyushu ridge potentially corresponds to the boundary between the SW Japan and Ryukyu arcs. If adakite genesis was related to the subducted slab rather than the overlying crust, then the spatial distribution of Quaternary adakites should correlate with the age of the subducted PSP. In order to test such correlation and elucidate the petrogenesis of the northern Kyushu adakites, we compiled major and trace elements and Sr-Nd-Pb isotope ratios from volcanoes along the arc front that includes the transition from adakitic to non-adakitic arc volcanism. Comprehensive

  10. Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions

    SciTech Connect

    Eriksson, A. O.; Zhirkov, I.; Dahlqvist, M.; Jensen, J.; Hultman, L.; Rosen, J.

    2013-04-28

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSi{sub x} phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to {approx}200 and {approx}130 eV for Ti and Si, respectively, with corresponding average energies of {approx}60 and {approx}30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  11. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  12. Physical properties of the top of the subducting Philippine Sea plate beneath the SW Japan arc, derived from onshore - offshore integrated seismic survey

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Hirata, N.; Iwasaki, T.; Kodaira, S.; Kaneda, Y.

    2004-12-01

    The Nankai trough region, where the Philippine Sea Plate is subducting beneath the southwestern Japan arc, is a well-known seismogenic zone of interplate earthquakes (e.g. the 1944 Tonankai Earthquake (M=7.9) and the 1946 Nankai Earthquake (M=8.0)). A detailed crustal and upper mantle structure of the subducted Philippine Sea Plate and the overlying SW Japan arc is inevitably important to constrain the physical process of earthquake occurrence. In the summer of 1999, we conducted a highly dense onshore-offshore integrated seismic experiment in the eastern part of Shikoku Island and the adjacent Nankai trough, SW Japan. The most remarkable feature of the record sections is that extremely high amplitude reflections (bright reflections) can be recognized. This phase was interpreted as a reflected wave from the top of the subducting Philippine Sea plate at a depth of 18-30km (Kurashimo et al., 2002). Physical properties across the reflecting interface control amplitude versus offset (AVO) response. To obtain physical properties of the material between the subducting Philippine Sea plate and island arc crust, we investigated AVO response on this bright reflection. Analyzing this bright reflection, we could obtain the reflection coefficient (Rpp) as a function of the incident angle. Rpp tends to increase beyond about 50 degrees. To discuss about this characteristic, we calculated reflection coefficient for different velocity models. The single interface models (positive velocity contrast exists between the interface. negative velocity gradient exists upper side of the reflecter) can not explain the characteristic of the Rpp. Thin layer model (about 200 m) with a P-wave velocity of 4.0 km/s (a thin layer with a negative reflection coefficient at its upper boundary and a much larger, but positive reflection coefficient at its base exists) explains the characteristic of the Rpp. The P-wave velocity of the sediments shows 2.0-4.2km/s off Shikoku Island (Kodaira et al., 2002

  13. Size and Charge Dependence of Ion Transport in Human Nail Plate.

    PubMed

    Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B

    2016-03-01

    The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342

  14. Size and Charge Dependence of Ion Transport in Human Nail Plate.

    PubMed

    Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B

    2016-03-01

    The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate.

  15. Simulation of tectonic evolution of the Kanto basin of Japan since 1 Ma due to subduction of the Pacific and Philippine sea plates and collision of the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2015-04-01

    The Kanto basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the collision of the Izu-Bonin arc with the Japanese island arc. Geomorphological, geological, and thermochronological data on long-term vertical movements over the last 1 My suggest that subsidence initially affected the entire Kanto basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modelled the tectonic evolution of the Kanto basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the arc-arc collision process has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following a change in plate motion. Observed changes in the subsidence/uplift pattern are better explained by scenario (2), suggesting that recent (<1 My) deformation in the Kanto basin shows a lag in crustal response to the shift in plate motion. We also calculated recent stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  16. Through-silicon via plating void metrology using focused ion beam mill

    NASA Astrophysics Data System (ADS)

    Rudack, A. C.; Nadeau, J.; Routh, R.; Young, R. J.

    2012-03-01

    3D IC integration continues to increase in complexity, employing advanced interconnect technologies such as throughsilicon vias (TSVs), wafer-to-wafer (W2W) bonding, and multi-chip stacking. As always, the challenge with developing new processes is to get fast, effective feedback to the integration engineer. Ideally this data is provided by nondestructive in-line metrology, but this is not always possible. For example, some form of physical cross-sectioning is still the most practical way to detect and characterize TSV copper plating voids. This can be achieved by cleaving, followed by scanning electron microscope (SEM) inspection. A more effective physical cross-sectioning method has been developed using an automated dual-beam focused ion beam (FIB)-SEM system, in which multiple locations can be sectioned and imaged while leaving the wafer intact. This method has been used routinely to assess copper plating voids over the last 24 months at SEMATECH. FIB-SEM feedback has been used to evaluate new plating chemistries, plating recipes, and process tool requalification after downtime. The dualbeam FIB-SEM used for these studies employs a gallium-based liquid metal ion source (LMIS). The overall throughput of relatively large volumes being milled is limited to 3-4 hours per section due to the maximum available beam current of 20 nA. Despite the larger volumetric removal rates of other techniques (e.g., mechanical polishing, broad-ion milling, and laser ablation), the value of localized, site-specific, and artifact-free FIB milling is well appreciated. The challenge, therefore, has been to reap the desired FIB benefits, but at faster volume removal rates. This has led to several system and technology developments for improving the throughput of the FIB technique, the most recent being the introduction of FIBs based on an inductively coupled plasma (ICP) ion source. The ICP source offers much better performance than the LMIS at very high beam currents, enabling more than

  17. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  18. Characterization of defect growth structures in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Gold and copper films (0.2-2 micron thick) are ion plated on very smooth stainless steel 304 and mica surfaces. The deposited films are examined by SEM to identify the morphological growth of defects. Three types of coating defects are distinguished: nodular growth, abnormal or runaway growth, and spits. The potential nucleation sites for defect growth are analyzed to determine the cause of defect formation. It is found that nuclear growth is due to inherent surface microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation and ejection of droplets. All these defects have adverse effects on the coatings.

  19. High accuracy position response calibration method for a micro-channel plate ion detector

    NASA Astrophysics Data System (ADS)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M. G.; Swanson, H. E.; Zumwalt, D. W.

    2016-11-01

    We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an in situ calibration mask, an accuracy of 8 μm and a resolution of 85 μm (FWHM) have been achieved for MeV-scale α particles and ions with energies of ∼10 keV. At this level of accuracy, the difference between the MCP position responses to high-energy α particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear β-decay experiment.

  20. Screen Cage Ion Plating (SCIP) and scratch testing of polycrystalline aluminum oxide

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1992-01-01

    A screen cage ion plating (SCIP) technique was developed to apply silver films on electrically nonconducting aluminum oxide. It is shown that SCIP has remarkable throwing power; surfaces to be coated need not be in direct line of sight with the evaporation source. Scratch tests, employing a diamond stylus with a 200 micro m radius tip, were performed on uncoated and on silver coated alumina. Subsequent surface analysis show that a significant amount of silver remains on the scratched surfaces, even in areas where high stylus load produced severe crack patterns in the ceramic. Friction coefficients were lowered during the scratch tests on the coated alumina indicating that this modification of the ion planting process should be useful for applying lubricating films of soft metals to electrical insulating materials. The very good throwing power of SCIP also strongly suggests general applicability of this process in other areas of technology, e.g., electronics, in addition to tribology.

  1. Effect of non-uniform electron energy distribution function on plasma production in large arc driven negative ion source.

    PubMed

    Shibata, T; Koga, S; Terasaki, R; Inoue, T; Dairaku, M; Kashiwagi, M; Taniguchi, M; Tobari, H; Tsuchida, K; Umeda, N; Watanabe, K; Hatayama, A

    2012-02-01

    Spatially non-uniform electron energy distribution function (EEDF) in an arc driven negative ion source (JAEA 10A negative ion source: 10 A NIS) is calculated numerically by a three-dimensional Monte Carlo kinetic model for electrons to understand spatial distribution of plasma production (such as atomic and ionic hydrogen (H(0)∕H(+)) production) in source chamber. The local EEDFs were directly calculated from electron orbits including electromagnetic effects and elastic∕inelastic collision forces. From the EEDF, spatial distributions of H(0)∕H(+) production rate were obtained. The results suggest that spatial non-uniformity of H(0)∕H(+) productions is enhanced by high energy component of EEDF.

  2. Influence and analysis on ion barrier film to the noise factor of micro-channel plate

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-feng; Zhang, Fan; Zhang, Ni; Nie, Jing; Li, Dan; Zhang, Tai-min; Wang, Shu-fei; Liu, Xiao-jian; Liu, Zhao-lu

    2015-03-01

    The noise factor, which is the main factor affecting the noise performance of image intensifier and can accurately reflect the noise characteristics of the micro-channel plate(MCP), is the ratio of the input signal to noise ratio (SNR) and the output SNR. According to definition of noise factor of micro channel plate, noise mechanism and test principle, noise factor of filmed MCP test system is established in order to study the technical way to reduce noise factor of MCP. Because the input surface of the MCP is covered with ion barrier film to block the feedback ions, which have a great impact on the noise factor of the MCP. Hence, noise factor of filmed MCP and un-filmed MCP is measured respectively, and noise factors with different materials and different filmed thickness are measured too. Relationships between noise factor and filmed thickness, noise factor and output SNR of image intensifier have been obtained. That is valuable to reduce the noise of filmed MCP.

  3. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states. PMID:26724017

  4. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

    PubMed

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I(FC) by the mobile plate tuner. The I(FC) is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I(FC) and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I(FC) when we change the position of the mobile plate tuner.

  5. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    SciTech Connect

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.

  6. Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Kesterson, R. L.

    1973-01-01

    Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.

  7. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  8. ION PRODUCING MECHANISMS

    DOEpatents

    Brobeck, W.M.

    1959-02-10

    Ion generating means and means for producing ions of material for isotopic separation are discussed. One feature of the invention resides in providing a heater means located in the source block approximately equidistant from a charge reservoir and an arc chamber, whereby the heat distribution in the block is such as to avoid overheating and to maintain the temperature of the various critical localities of the unit at their optimum values. Another feature consists of a pair of plates disposed on either side of the arc chamber exit opening to define a narrow slit for the egression of the ion beam. When the adjacent edges of the plates have become worn, the plates may be detached and reversed to use the opposite edges thereof to define the exit opening.

  9. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5–20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  10. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5-20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  11. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect

    Xu Nan; Shen Jun; Xie Weidong; Wang Linzhi; Wang Dan; Min Dong

    2010-07-15

    In this study, the effects of heat input on the distribution of microhardness of tungsten inert gas (TIG) arc welded hot-extruded AZ61 magnesium alloy joints were investigated. The results show that with an increase of heat input, the distributions of microhardness at the top and bottom of the welded joints are different because they are determined by both the effect of grain coarsening and the effect of dispersion strengthening. With an increase of the heat input, the microhardness of the heat-affected zone (HAZ) at the top and bottom of welded joints and the fusion zone (FZ) at the bottom of welded joints decreased gradually, while the microhardness of the FZ at the top of welded joints decreased initially and then increased sharply. The reason for the abnormal distribution of microhardness of the FZ at the top of the welded joints is that this area is close to the heat source during welding and then large numbers of hard {beta}-Mg{sub 17}(Al,Zn){sub 12} particles are precipitated. Hence, in this case, the effect of dispersion strengthening dominated the microhardness.

  12. Characterization of defect growth structure in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Copper and gold films (0.2 to 2 microns) were ion plated onto polished 304-stainless-steel surfaces. These coatings were examined by scanning electron microscopy for coating growth defects. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause and origin for each type of defect was traced. Nodular growth is primarily due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation. All these defects have adverse effects on the coatings. They induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. Friction and wear characteristics are affected by coating defects, since the large nodules are pulled out and additional wear debris is generated.

  13. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  14. Subduction in Central Kermadec: Crustal Structures from the Incoming Plate and the Arc- Backarc Region From Wide-Angle Seismics

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.

    2007-12-01

    The central part of the 2500-km long Tonga-Kermadec Trench is characterized by the subduction of the Louisville Ridge and unusually large seismicity approximately 200-300 km to the south of this ridge subduction. From this region we show preliminary results which have been derived from the recently acquired interpretation of seismic wide-angle reflection/refraction data. The data were collected along an almost 500-km long transect carried out in April 2007 using the R/V Sonne in order to determine the upper lithospheric structures of the incoming Pacific Plate and the overriding Australian Plate across the Colville and Kermadec Ridges. This transect lies immediately north of Raoul Island, the largest of the Kermadec Islands and which is presently a highly active volcano. This study is part of the MANGO project (Marine Geoscientific Inverstigations on the Input and Output of the Kermadec Subduction Zone) which comprises a 1000-km long working area north of New Zealand's North Island. It covers the transition from subduction of the Hikurangi Plateau in the south to erosive subduction of normal Pacific oceanic crust in the centre and thence accretionary subduction further north. Overall the subduction is accompanied by northward increasing seismicity. The aim of this project is to understand the transition throughout the different regimes, the variation of the structures to explain the accompanying seismicty, and the role and evolution of the stratovolcanoes. This will be achieved by analysing the structures of the sediment, crust and upper mantle and also material transfers from its input and output through subduction zone processes.

  15. Compilation of seismic structural models of the Kyushu-Palau Ridge, paleo-island arc in the Philippine Sea plate, at 13-30 N

    NASA Astrophysics Data System (ADS)

    Nishizawa, A.; Kaneda, K.; Oikawa, M.

    2012-12-01

    The Kyushu-Palau Ridge (KPR) is a 2600 km long bathymetric high extending north-south at the center of the Philippine Sea plate. The origin of the KPR is regarded as a remnant of the proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc that was separated by backarc spreading of the Shikoku and Parece Vela Basins in the late Eocene. The extensive seismic explorations were implemented to grasp the spatial distribution of the arc crust of the KPR in 2004-2008 under the Japanese Continental Shelf Survey Project. We carried out 27 seismic reflection and refraction profiles across the ridge between 13 and 30 N and one along the ridge in the northernmost part. We deployed ocean bottom seismographs (OBSs) as a receiver at an average interval of 5 km along each line. A tuned airgun array with a volume of 8,040 cubic inches (132 liters) or a non-tuned airgun array with a volume of 6,000 cubic inches (98 liters) was shot at an interval of 200 m (90 sec) for the wide-angle seismic profiles. Multichannel reflection data using 480 ch. or 240 ch. hydrophone streamer were also collected on the coincident lines. We obtained P-wave velocity models using tomographic inversion, forward modeling with two-dimensional ray tracing and comparison with synthetic seismograms. The maximum crustal thickness for each profile across the KPR varies from 8 to 23 km among the seismic lines. The KPR crusts are roughly thicker in the north than those in the south and are always thicker than the neighboring backarc basin oceanic crusts of the West Philippine Basin to the west and of the Shikoku and Parece Vela Basins to the east. The thick crust is mainly attributed to the lower crust with P-wave velocity of 6.8-7.2 km/s. Pn velocities just beneath the KPR are less than 8 km/s, often accompanying with rather high Vp of 7.2 km/s at the base of the crust. Reflection signals observed in far offsets along several lines suggest some reflectors exist at the depths 23-40 km beneath the KPR. The crustal

  16. Three-thrust fault system at the plate suture of arc-continent collision in the southernmost Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chen, H.; Hsu, Y.; Yu, S.

    2013-12-01

    Active faults developed into a rather complex three-thrust fault system at the southern end of the narrow Longitudinal Valley in eastern Taiwan, a present-day on-land plate suture between the Philippine Sea plate and Eurasia. Based on more than ten years long geodetic data (including GPS and levelling), field geological investigation, seismological data, and regional tomography, this paper aims at elucidating the architecture of this three-thrust system and the associated surface deformation, as well as providing insights on fault kinematics, slip behaviors and implications of regional tectonics. Combining the results of interseismic (secular) horizontal and vertical velocities, we are able to map the surface traces of the three active faults in the Taitung area. The west-verging Longitudinal Valley Fault (LVF), along which the Coastal Range of the northern Luzon arc is thrusting over the Central Range of the Chinese continental margin, braches into two active strands bounding both sides of an uplifted, folded Quaternary fluvial deposits (Peinanshan massif) within the valley: the Lichi fault to the east and the Luyeh fault to the west. Both faults are creeping, to some extent, in the shallow surface level. However, while the Luyeh fault shows nearly pure thrust type, the Lichi fault reveals transpression regime in the north and transtension in the south end of the LVF in the Taitung plain. The results suggest that the deformation in the southern end of the Longitudinal Valley corresponds to a transition zone from present arc-collision to pre-collision zone in the offshore SE Taiwan. Concerning the Central Range, the third major fault in the area, the secular velocities indicate that the fault is mostly locked during the interseismic period and the accumulated strain would be able to produce a moderate earthquake, such as the example of the 2006 M6.1 Peinan earthquake, expressed by an oblique thrust (verging toward east) with significant left-lateral strike slip

  17. Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2016-06-01

    The Kanto Basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the repeated collision of the Izu-Bonin arc fragments with the Japanese island arc. Geomorphological, geological, and thermochronological data on vertical movements over the last 1 My suggest that subsidence initially affected the entire basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modeled the tectonic evolution of the Kanto Basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the latest collision of the Izu Peninsula block has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following the shift in plate motion. Observed changes in the uplift/subsidence pattern are better explained by scenario (2), suggesting that recent (< 1 My) deformation in the Kanto Basin shows a lag in crustal response to the plate motion shift. We also calculated stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  18. Selection of the material and the temperature conditions of the pickup plate of a fast-ion injector

    SciTech Connect

    Tel'kovskii, V.G.; Igritskii, A.N.; Pisarev, A.A.; Tsyplakov, V.N.

    1986-03-01

    In plasma units with injection of fast particles the authors address the problem of absorbing that part of the injected beam which was not captured by the plasma. In the selection of the material of injector pickup plates for fast ions, metals with a high negative thermal dissolution of hydrogen, a surface activation barrier, and a large coefficient of hydrogen diffusion must be tried. Niobium is the most suitable material as far as the coincidence of these parameters is concerned. The temperature of the pickup plate is chosen on the basis of a compromise between attempts to increase the temperature for obtaining rapid diffusion over the entire thickness of the plate and the need for reducing the temperature to avoid thermal liberation of gas and decomposition of the oxide film. Experiments have shown that a high efficiency of deuterium-ion capture in niobium can be maintained up to high fluxes and high irradiation temperatures.

  19. Effect of B2O3 containing fluxes on the microstructure and mechanical properties in submerged arc welded mild steel plates

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Roy, J.; Rai, R. N.; Prasada Rao, A. K.; Saha, S. C.

    2016-02-01

    This paper represents a study on the effect of B2O3 additions in fluxes on the microstructure and mechanical properties of the weld metal formed during Submerged Arc Welding of Mild Steel plates. Five fluxes with about 2.5, 5, 7.5, 10 and 12.5% B2O3 were used with a low carbon electrode. Welding process parameters were kept constant for all the conditions. The microstructure of weld metal for each flux consisted mainly of acicular ferrite, polygonal ferrite, grain boundary ferrites and equiaxed pearlite. It was noted that the Vicker's hardness value was a function of boron content and shows a mixed trend. Impact Energy and Tensile Strength were increased with the increase in boron content in welds this can be attributed to relation with the higher acicular ferrite percentage. However an optimum level of toughness and tensile strength was available with 7.5% and 5% of B2O3 respectively. A qualitative comparison has also be done with fresh flux by means of full metallography and mechanically.

  20. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect

    Min Dong; Shen Jun; Lai Shiqiang; Chen Jie

    2009-12-15

    In this paper, the effects of heat input on the microstructures and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that with an increase of the heat input, the grains both in the fusion zone and the heat-affected zone coarsen and the width of the heat-affected zone increased. Moreover, an increase of the heat input resulted in a decrease of the continuous {beta}-Mg{sub 17}Al{sub 12} phase and an increase of the granular {beta}-Mg{sub 17}Al{sub 12} phase in both the fusion zone and the heat-affected zone. The ultimate tensile strength of the welded joint increased with an increase of the heat input, while, too high a heat input resulted in a decrease of the ultimate tensile strength of the welded joint. In addition, the average microhardness of the heat-affected zone and fusion zone decreased sharply with an increase of the heat input and then decreased slowly at a relatively high heat input.

  1. The Fethiye-Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Hall, J.; Aksu, A. E.; Elitez, I.; Yaltırak, C.; Çifçi, G.

    2014-11-01

    The Hellenic and Cyprus Arcs, that mark the convergent boundary of the African and Aegean-Anatolian plates, are offset along a subduction transform edge propagator ('STEP') fault running NE-SW along the Pliny and Strabo Trenches. The continuation of the fault to the northeast through the Rhodes Basin and into SW Anatolia is assessed. Seismic reflection profiles show that the structural architecture of the northern sector of the Rhodes Basin includes a large crustal-scale fold-thrust belt which is overprinted by numerous faults with small extensional stratigraphic separations. A protracted episode of convergence in the Miocene resulted in the development of a prominent NE-SW-striking and NW-verging fold-thrust belt in the Rhodes Basin. The absence of evaporites in the Rhodes Basin and several seaward prograded vertically stacked Quaternary delta successions resting at 2500-3500 m water depth collectively suggest that the Rhodes Basin must have remained above the depositional base of marine evaporite environment during the Messinian and that the region must have subsided very rapidly during the Pliocene-Quaternary. During the Pliocene-Quaternary, a NE-SW-trending belt developed across the Rhodes Basin: while the structural framework of this belt was characterised by reactivated thrusts in the central portion of the basin, a prominent zone of NE-SW-striking and NW- and SE-dipping faults with extensional separations developed in the northern portion of the basin. Two seismic profiles running parallel to the present-day coastline provide the much needed linkage between the Fethiye-Burdur Fault Zone onland and the reactivated thrusts in central Rhodes Basin, and show that the Pliocene-Quaternary zone of high-angle faults with extensional separations clearly link with the similarly trending and dipping strike-slip faults onland in the Eşen Valley, thus providing the continuity between the Pliny-Strabo Trenches in the southwest and the Fethiye-Burdur Fault Zone in the

  2. Surface rippling by oblique ion incidence during plasma etching of silicon: Experimental demonstration using sheath control plates

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Matsumoto, Haruka; Eriguchi, Koji; Ono, Kouichi

    2015-09-01

    In the microfabrication of 3D transistors (e.g. Fin-FET), the sidewall roughness, such as LER and LWR caused by off-normal or oblique ion incidence during plasma etching, is a critical issue to be resolved, which in turn requires a better understanding of the effects of ion incidence angle θi on surface roughening. This paper presents surface roughening and rippling by oblique ion incidence during inductively coupled plasma etching of Si in Cl2, using the experimental setup as in our previous study. The oblique ion incidence was achieved by sheath control plates, which were placed on and electrically connected to the wafer stage. The plates had slits to vary the sheath structure thereon and to extract ions from plasma to samples on the bottom and/or side of the slits. The results indicated that at θi ~ 40° or oblique incidence; ripple structures were formed on surfaces perpendicularly to the direction of ion incidence, on the other hand, at θi ~ 80° or grazing incidence, small ripples or slit like grooves were formed on surfaces parallel to the direction of ion incidence, as predicted in our previous numerical investigations.

  3. Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): A story of crustal deformation along a convergent plate boundary

    NASA Astrophysics Data System (ADS)

    Scheuber, Ekkehard; Gonzalez, Gabriel

    1999-10-01

    The tectonic evolution of a continental magmatic arc that was active in the north Chilean Coastal Cordillera in Jurassic-Early Cretaceous times is described in order to show the relationship between arc deformation and plate convergence. During stage I (circa 195-155 Ma) a variety of structures formed at deep to shallow crustal levels, indicating sinistral arc-parallel strike-slip movements. From deep crustal levels a sequence of structures is described, starting with the formation of a broad belt of plutonic rocks which were sheared under granulite to amphibolite facies conditions (Bolfin Complex). The high-grade deformation was followed by the formation of two sets of conjugate greenschist facies shear zones showing strike-slip and thrust kinematics with a NW-SE directed maximum horizontal shortening, i.e., parallel to the probable Late Jurassic vector of plate convergence. A kinematic pattern compatible to this plate convergence is displayed by nonmetamorphic folds, thrusts, and high-angle normal faults which formed during the same time interval as the discrete shear zones. During stage II (160-150 Ma), strong arc-normal extension is revealed by brittle low-angle normal faults at shallow levels and some ductile normal faults and the intrusion of extended plutons at deeper levels. During stage III (155-147 Ma), two reversals in the stress regime took place indicated by two generations of dikes, an older one trending NE-SW and a younger one trending NW-SE. Sinistral strike-slip movements also prevailed during stage IV (until ˜125 Ma) when the Atacama Fault Zone originated as a sinistral trench-linked strike-slip fault. The tectonic evolution of the magmatic arc is interpreted in terms of coupling and decoupling between the downgoing and overriding plates. The structures of stages I and IV suggest that stress transmission due to seismic coupling between the plates was probably responsible for these deformations. However, decoupling of the plates occurred possibly

  4. Observations of an intense field-aligned thermal ion flow and associated intense narrow band electric field oscillations. [at auroral arc edge

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Kelley, M. C.; Mozer, F. S.

    1975-01-01

    An investigation is conducted concerning the conditions encountered during a Javelin sounding rocket experiment conducted on Apr. 3, 1970 at Fort Churchill, Canada. Evidence is presented that near the equatorward edge of the auroral arc an intense beam of cold plasma ions was flowing parallel to the earth's magnetic field. The beam was associated with intense narrow band electric field oscillations near the local ion gyrofrequency. The data support the hypothesis that intense electrostatic ion cyclotron waves were driven unstable by field-aligned currents.

  5. Purification of Cu by hydrogen plasma-arc zone melting and characterization of trace impurities by secondary ion mass spectrometry

    SciTech Connect

    Lalev, G.M.; Lim, J.-W. Munirathnam, N.R. Choi, G.-S.; Uchikoshi, M.; Mimura, K.; Isshiki, M.

    2009-01-15

    Purification of 4N (99.99%) and 6N (99.9999%) purity Cu rods by hydrogen plasma-arc zone melting was carried out. Weight loss in the 4N and 6N Cu rods as a function of number of zone refined passes revealed a higher rate of impurity removal by vaporization in 4N Cu when compared to 6N Cu. Purification effect was studied by analyzing major impurities like Mg, Si, Ca, Ti, Cr, Ni and Fe by O{sub 2}{sup +} ions and C, O, As, Cl, P and S by Cs{sup +} ion sources using secondary ion mass spectrometry. A remarkable decrease of Si, Ti and Fe impurity concentrations in Cu at x/L = 0.03 after 10 zone passes was observed, but no similar purification effect along the remaining length of the zone refined copper rod was observed. Mg, Se and Ca in the Cu rods were reduced faster by a high evaporation effect due to P{sub i}/P{sub Cu} > 10{sup 2}. On the other hand, removal of O, C, S and Se was expectedly dominated by vaporization in the form of H{sub 2}O, CH{sub 4,} H{sub 2}S, and H{sub 2}Se through thermodynamically favored reactions. The overall segregation rate of the individual impurity elements was decreased with an increase in the purity from 4N to 6N of Cu rods. SIMS analysis of trace impurities was successfully carried out on HPZM Cu for quantitative estimation.

  6. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  7. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  8. Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development

    NASA Astrophysics Data System (ADS)

    Hamilton, Hannah; Phenix Collaboration

    2015-10-01

    Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.

  9. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  10. The Cascaded Arc: High Flows of Rovibrationally Excited H{sub 2} and its Impact on H{sup -} Ion Formation

    SciTech Connect

    Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.; Sanden, M. C. M. van de; Engeln, R.

    2009-03-12

    The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detected by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H{sup -} ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.

  11. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    SciTech Connect

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-05-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.

  12. Numerical analysis of atomic density distribution in arc driven negative ion sources

    SciTech Connect

    Yamamoto, T. Shibata, T.; Hatayama, A.; Kashiwagi, M.; Hanada, M.; Sawada, K.

    2014-02-15

    The purpose of this study is to calculate atomic (H{sup 0}) density distribution in JAEA 10 ampere negative ion source. A collisional radiative model is developed for the calculation of the H{sup 0} density distribution. The non-equilibrium feature of the electron energy distribution function (EEDF), which mainly determines the H{sup 0} production rate, is included by substituting the EEDF calculated from 3D electron transport analysis. In this paper, the H{sup 0} production rate, the ionization rate, and the density distribution in the source chamber are calculated. In the region where high energy electrons exist, the H{sup 0} production and the ionization are enhanced. The calculated H{sup 0} density distribution without the effect of the H{sup 0} transport is relatively small in the upper region. In the next step, the effect should be taken into account to obtain more realistic H{sup 0} distribution.

  13. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  14. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  15. Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. [Microchannel Plates for ion, electron and photon image sensing and conversion

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Carlson, C. W.

    1979-01-01

    Microchannel plates (MCPs) are frequently used with resistive anodes to detect charged particles or photons and yield analog signals from which event positions can be decoded. The paper discusses a four-corner concave circular arc terminated resistive anode that permits theoretically distortionless encoding of Cartesian event positions into pulse charge ratios. The theory of the circular arc terminated anode is discussed along with anode design and performance. Electron beam images obtained by using such an anode are presented to confirm the usefulness of the approach.

  16. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    SciTech Connect

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  17. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Abicht, F.; Borghesi, M.; Braenzel, J.; Nickles, P. V.; Priebe, G.; Schnürer, M.; Ter-Avetisyan, S.

    2013-05-01

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  18. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    SciTech Connect

    Prasad, R.; Abicht, F.; Braenzel, J.; Priebe, G.; Schnuerer, M.; Borghesi, M.; Ter-Avetisyan, S.; Nickles, P. V.

    2013-05-15

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  19. North American Tropospheric Ozone Sources During Summer 2008 ARCTAS/ARC-IONS Derived from Laminar Identification with Tracers and Fire Maps

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Luzik, A. M.; Gallager, S. D.; Oltmans, S. J.; Tarasick, D. W.; Fromm, M.; Forbes, G.; Witte, J. C.; Soja, A.

    2009-05-01

    The ARC-IONS (ARCTAS Intensive Ozonesonde Network Study;, coordinated ozonesonde network, following the model of IONS-04 and IONS-06 [Thompson et al., 2007; 2008], operated over 17 Canadian and US sites in 2008, with daily launches (1-20 April; 26 June-12 July) during A-Train satellite overpasses, ~1300 local. The summer phase of ARC-IONS supported ARCTAS (Arctic Research of the Composition of the Troposphere with Aircraft and Satellites); sampling of ozone, CO and other tracers from ground bases and aircraft operating from Yellowknife (NT) and Cold Lake (AB) in Canada. The laminar identification (LID; Thompson et al., 2008; Yorks et al., 2009) method is applied to ozone and P-T-U profiles to determine ozone sources in the free troposphere. In addition to stratospheric ozone and a mixture of regional pollution-convection-lightning, about half of free tropospheric ozone is made up of recently advected ozone and background, aged ozone. Ensembles of back- trajectories are combined with LID results and satellite maps to extract fire contributions to column ozone over each ARC-IONS site. In addition, each sonde budget is disaggregated with respect to regional fire sources, eg California, western Canada, eastern US. An upper limit of 25% pyrogenic ozone, on average, is obtained from trajectory-fire coincidences over central and western Canada, with the "cleanest" site at Whitehorse (YK) and the most fire-perturbed at Kelowna (BC) and Stonyplain (Edmonton). The fire fraction declines when likely altitude of fire impacts is considered. Western North American sounding sites in 2008 were heavily affected by US west coast and Siberian fires. Eastern Canadian and southern US fires were important sources of ozone over Goose Bay, Egbert and maritime Canada.

  20. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  1. The influence of substrate-target orientation on the properties of ZrN films deposited by arc ion plating

    NASA Astrophysics Data System (ADS)

    Du, Jun; Zhang, Ping; Cai, Zhihai; Zhao, Junjun

    The crystallograpic structure and properties of Zirconium nitride (ZrN) films deposited on 304 stainless steel were investigated. The substrates were placed either parallel with or perpendicular to the Zirconium target. The ZrN films were found to exhibit {311} orientations when substrate parrallel with target, however {220} orientation when substrates perpendicular to target. SEM results showed that the parallel ZrN films have round-shaped droplets, and perpendicular orientation ZrN films have oval-shaped droplets. The thickness of ZrN films in parallel mode is 1/2 of that in perpendicular mode. Nanoindentation results showed the hardness of ZrN films in perpendicular mode is lower than that of parallel mode. Potentiodynamic scanning results showed the corrosion resistance of films in perpendicular mode is better than that of films in parallel mode.

  2. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Zhang, Zhao-Feng; Santosh, M.

    2015-08-01

    The Philippine island arc system is a collage of amalgamated terranes of oceanic, continental and island arc affinities. Here we investigate a volcanic suite in Cebu Island of central Philippines, including basalt, diabase dike, basaltic pyroclastic rock and porphyritic andesite. LA-ICP-MS U-Pb geochronology of zircon grains from the porphyritic andesite and pyroclastic rock yielded ages of 126 ± 3 Ma and 119 ± 2 Ma, respectively, indicating an Early Cretaceous age. The age distribution of the detrital zircons from river sand in the area displays a peak at ca. 118 Ma, close to the age of the pyroclastic rock. The early Cretaceous volcanic rocks in the central Philippines were previously regarded as parts of ophiolite complexes by most investigators, whereas the Cebu volcanics are distinct from these, and display calc-alkaline affinity and island arc setting, characterized by high LREE/HREE ratios and low HFSE contents. These features are similar to the Early Cretaceous arc basalts in the Amami Plateau and east Halmahera in the northernmost and southernmost West Philippine Basin respectively. Zircon Hf isotopes of the pyroclastic rocks show depleted nature similar to those of the Amami Plateau basalts, implying the subducted Pacific-type MORB as probable source. Zircon Hf isotopes of the porphyritic andesite show slight enrichment relative to that of the pyroclastic rocks and MORB, indicating subducted sediments as a minor end-member in the source. The Hf isotopic compositions of the volcanic rocks are also reflected in the detrital zircons from the river sands. We propose that the volcanic rocks of Cebu Island were derived from partial melting of sub-arc mantle wedge which was metasomatized by dehydration of subducted oceanic crust together with minor pelagic sediments. Within the tectonic environment of Southeast Asia during Early Cretaceous, the volcanic rocks in Cebu Island can be correlated to the subduction of paleo-Pacific plate. The Early Cretaceous

  3. Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication

    SciTech Connect

    Danyluk, Mike; Dhingra, Anoop

    2012-05-15

    In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

  4. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  5. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  6. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling

    NASA Astrophysics Data System (ADS)

    Legrand, N.; Knosp, B.; Desprez, P.; Lapicque, F.; Raël, S.

    2014-01-01

    This paper deals with occurrence of lithium plating on the negative electrode of lithium-ion batteries, a significant ageing phenomenon known to damage lithium-ion battery performances. Charge transfer process, one of the two different steps of the process of Li insertion in the negative active material being the cause of this ageing, was considered here to be the limiting process. This transfer occurs at short-time scales. The second process, the diffusion of lithium in the solid insertion compound, occurring at relatively long-time scales, has not been fully examined here. The aim of this paper was to develop a new method to evaluate the maximal rate of a charge pulse solicitation to prevent this ageing phenomenon. The approach relies on the use of a fundamental model of lithium ion battery with coupled mass and charge transfer. To validate the method, 2 s microcycles have been performed on a commercial VL41M SAFT cell. Theoretical and experimental works led to the maximum current density to be applied without undesired Li deposition, depending on the state of charge (SOC). The abacus established for the cell of interest can orient further specifications for suitable use of the battery.

  7. Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Yiu, I.; Anderson, C.; Tsuda, T.; Ogawa, Y.; Nozawa, S.; Aruliah, A.; Howells, V.; Baddeley, L. J.; McCrea, I. W.; Wild, J. A.

    2011-05-01

    We report on the first mesoscale combined ionospheric and thermospheric observations, partly in the vicinity of an auroral arc, from Svalbard in the polar cap on 2 February 2010. The EISCAT Svalbard radar employed a novel scanning mode in order to obtain F and E region ion flows over an annular region centered on the radar. Simultaneously, a colocated Scanning Doppler Imager observed the E region neutral winds and temperatures around 110 km altitude using the 557.7 nm auroral optical emission. Combining the ion and neutral data permits the E region Joule heating to be estimated with an azimuthal spatial resolution of ˜64 km at a radius of ˜163 km from the radar. The spatial distribution of Joule heating shows significant mesoscale variation. The ion-neutral collision frequency is measured in the E region by combining all the data over the entire field of view with only weak aurora present. The estimated ion-neutral collision frequency at ˜113 km altitude is in good agreement with the MSIS atmospheric model.

  8. Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng; Liu, Li; Yi, Lingguang; Xiao, Wei; Li, Min; Zhou, Qian; Guo, Guoxiong; Chen, Xiaoying; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2016-09-01

    NaTi2(PO4)3/C porous plates have been successfully synthesized via solvothermal approach with ammonia as inductive agent combined in-situ carbon coating. It reveals that the inductive agent plays a critical role in morphology-controllable fabrication. The morphology, structure, and electrochemical properties of NaTi2(PO4)3/C composites with multilayered plates, single-layered plate, porous multilayered plates all have been investigated, which are prepared by using urea, triethylamine, and ammonia, respectively. Among these samples, NaTi2(PO4)3/C porous multilayered plates with ammonia addition exhibit the best electrochemical properties due to their unique mesoporous structure. NaTi2(PO4)3/C porous multilayered plates deliver an initial specific capacity of 125 and 110 mAh g-1 at 0.1 and 1 C, respectively. Furthermore, NaTi2(PO4)3/C porous multilayered plates show a good rate capability, whose capacity and corresponding capacity retention reach 85 mAh g-1 and 82.4%, respectively, after 120 cycles under the high rate of 10 C. The excellent results indicate that the NaTi2(PO4)3/C porous multilayered plates are a promising electrode candidate for sodium ion battery.

  9. The 3D lithospheric structure and plate tectonics of the on-going Taiwan arc-continent collision and delamination: a context for understanding patterns of geomorphic uplift and contemporary stress and geodetic displacement fields.

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Kanda, R. V.; Carena, S.; Wu, Y.

    2012-12-01

    3D mapping of local and global tomographic data have considerably clarified the underlying architecture and long-term kinematics of ongoing arc-continent collision and subduction reversal in Taiwan, including the role of delamination of the continental mantle lithosphere and lowermost crust as an integral part of the ongoing collision. This subduction by continental delamination produces a new delamination Moho in northernmost Taiwan and is accompanied by extensional deformation and oroclinal bending of the overlying crust and now dead compressional mountain belt in northernmost Taiwan, even though subduction of Eurasian lithosphere continues at depth, with the Eurasian slab extending vertically to the mantle transtion zone. This subducting Eurasian continental lithosphere is continuous as a single intact slab across the Eurasian ocean-continent boundary, with the South China Sea Eurasian lithosphere to the south undergoing classic oceanic subduction. In this presentation we show that a 3D understanding of the geometry and long-term plate kinematics of this arc-continent collision informs and illuminates our understanding of [1] patterns of geomorphic uplift on a 100Ka timescale, [2] contemporary horizontal geodetic displacement fields, and [3] contemporary stress fields in the upper 100km determined from focal-mechanism inversions and borehole breakouts. Patterns of uplift and magmatism are closely linked to the locus of current delamination at depth. The contemporary horizontal displacement field shows on-going oroclinal bending. The very large changes in stress orientation are immediately clarified by their locations relative to fundamental structures, including the delamination Moho and the deep slabs of the Eurasian and Philippine Sea plates.

  10. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Gnanaraj, J. S.; Zinigrad, E.; Asraf, L.; Gottlieb, H. E.; Sprecher, M.; Aurbach, D.; Schmidt, M.

    The thermal stability of 1M LiPF 6, LiClO 4, LiN(SO 2CF 2CF 3) 2 (LiBETI) and LiPF 3(CF 2CF 3) 3 (LiFAP) solutions in mixtures of ethylene carbonate, diethyl carbonate and dimethyl carbonate in the temperature range 40-350 °C was studied by ARC and DSC. NMR was used to analyze the reaction products at different reaction stages. The least thermally stable are LiClO 4 solutions. LiPF 3(CF 2CF 3) 3 solutions showed higher thermal stability than LiPF 6 solutions. The highest thermal stability was found for LiN(SO 2CF 2CF 3) 2 solutions. Studies by DSC and pressure measurements during ARC experiments with LiPF 6 and LiFAP solutions detected an endothermic reaction, which occurs before a number of exothermic reactions as the temperature increases. Fluoride ions are formed and react with the alkyl carbonate molecules both as bases and as nucleophiles.

  11. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  12. Field-size effect of physical doses in carbon-ion scanning using range shifter plates

    SciTech Connect

    Inaniwa, Taku; Furukawa, Takuji; Nagano, Ai; Sato, Shinji; Saotome, Naoya; Noda, Koji; Kanai, Tatsuaki

    2009-07-15

    A field-size effect of physical doses was studied in scanning irradiation with carbon ions. For the target volumes of 60x60x80, 40x40x80, and 20x20x80 mm{sup 3}, the doses along the beam axis within the spread-out Bragg peaks reduced to 99.4%, 98.2%, and 96.0% of the dose for the target of 80x80x80 mm{sup 3}, respectively. The present study revealed that the observed reductions can be compensated for by adopting the three-Gaussian form of lateral dose distributions for the pencil beam model used in the treatment planning system. The parameters describing the form were determined through the irradiation experiments making flat concentric squared frames with a scanned carbon beam. Since utilizing the three-Gaussian model in the dose optimization loop is at present time consuming, the correction for the field-size effect should be implemented as a ''predicted-dose scaling factor.'' The validity of this correction method was confirmed through the irradiation of a target of 20x20x80 mm{sup 3}.

  13. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    PubMed Central

    Watts, David; Borghi, Giacomo; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistive plate chambers (RPC) for an ibPET application because of their excellent timing properties and low cost. In this paper we present a novel compact multi-gap RPC (MRPC) module design and construction method, which considering the large number of modules that would be needed to practically implement a high-sensitivity RPC-PET scanner, could be advantageous. Moreover, we give an overview of the efficiency and timing measurements that have been obtained in the laboratory using such single-gap and multi-gap RPC modules. PMID:23824118

  14. Effect of strontium ions on calcification of preosteoblasts cultured on porous calcium- and phosphate-containing titanium oxide layers formed by micro-arc oxidation.

    PubMed

    Sato, Mizuki; Chen, Peng; Tsutsumi, Yusuke; Shiota, Makoto; Hanawa, Takao; Kasugai, Shohei

    2016-01-01

    Strontium (Sr) ions were added to calcium- and phosphate-containing porous titanium oxide layers formed by micro-arc oxidation (MAO) of titanium (Ti) substrates to improve their osseointegration. An MC3T3-E1 preosteoblast was used to evaluate the effect of the incorporated Sr species on cell calcification. Similar surface microporous morphologies of the oxide layers were observed for all specimens produced by MAO, while the contents of the incorporated Sr ions increased with increasing Sr concentrations in MAO electrolytes. The calcium- and phosphate-containing porous layers promoted the cell alkaline phosphatase (ALP) activity, while cell calcification was promoted by the Sr addition. In particular, the ALP activity significantly increased after 10 days of culture, and larger areas of calcified deposits were observed for the specimens treated with MAO electrolytes containing 0.15 mol L(-1) of Sr species. The effect of Sr addition on the calcification of the MAO-treated Ti oxide layers was established in this study. PMID:27477229

  15. The effect of ion plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1991-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  16. The effect of ion-plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1993-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  17. Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Ling; Zhang, Huijuan; Zhang, Yan; Liu, Li; Wang, Yu

    2016-04-01

    Novel two-dimensional (2D) Fe-doped LiCoPO4 nano-plates with porous structure have been successfully fabricated using NH4CoPO4·H2O nanosheets as templates followed by Fe doping and high temperature annealing. The obtained Fe-doped LiCoPO4 nano-plates exhibit several merits in morphology and crystal structure, including well-crystallized feature, porous structure, numerous interconnected pathway, improved electric conductivity and good structural stabilization. All the advantages endow the nano-plates with enhanced electrochemical performance when they are used as cathode materials for lithium ion batteries (LIBs). In this research, high specific capacity, excellent cyclability and outstanding rate capability in electrochemical energy storage are presented. This synthetic strategy is simple, effective, and could be broadly applied in designed synthesis of other electrode materials for LIBs.

  18. The Banda Arc subduction enigma

    NASA Astrophysics Data System (ADS)

    Spakman, Wim; Hall, Robert

    2010-05-01

    The spectacularly curved Banda arc comprises young oceanic crust enclosed by a volcanic inner arc, outer arc islands, and a trough parallel to the Australian continental margin. Seismicity defines a spoon-shaped lithospheric fold in the upper mantle for which there are two contrasting explanations: deformation of a single subducted slab, or two different slabs subducted from north and south. We show that the Banda arc resulted from subduction of a single slab. Based on geology and seismic tomography, we argue that the arc formed since 15 Ma by subduction of a Jurassic oceanic embayment within the Australian plate. Viewed in an Atlantic-Indian hotspot reference frame, the stationary E-W striking Java trench propagated ESE into the Banda embayment by hinge rollback. Extension of the upper plate formed oceanic crust in the present Banda Sea between stretched continental crust of Australian origin. Slab morphology depends primarily on the geometry of the continental margin enclosing the embayment. Our model explains the first order tectonic development of the Banda region and links slab deformation to absolute plate motion.

  19. Vacuum arc deposition devices

    NASA Astrophysics Data System (ADS)

    Boxman, R. L.; Zhitomirsky, V. N.

    2006-02-01

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  20. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  1. The radiolarian evidence for the accretion of the Fu-saki Formation with the inferred oceanic plate stratigraphy: A case of weakly-metamorphosed accretionary complex in Ishigaki Jima, southern Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Nakae, Satoshi

    2013-09-01

    The island of Ishigaki Jima, located in the western part of the southern Ryukyu Arc, Japan, is underlain by a basement comprising the Tumuru and Fu-saki formations. The former is a pelitic glaucophane schist with a metamorphic age of 220-190 Ma, and the latter is a weakly metamorphosed accretionary complex, composed mainly of chert, mudstone and sandstone with minor amounts of limestone and mafic rocks. The Fu-saki Formation was weakly metamorphosed at ∼140 Ma. Latest Carboniferous-Early Jurassic microfossils have been obtained from the limestones, cherts and siliceous mudstones of this formation, but no fossils have been collected from the phyllitic mudstones. The radiolarian fauna of the phyllitic mudstones described herein indicates a late Pliensbachian-early Toarcian (Early Jurassic) age. This result, when combined with existing data, enables the reconstruction of an oceanic plate stratigraphy, showing a succession of (in ascending order) Upper Carboniferous-Triassic cherts, Sinemurian-lower Pliensbachian siliceous mudstones and upper Pliensbachian-lower Toarcian phyllitic mudstones and sandstones. The radiolarians from the phyllitic mudstones are important in constraining the timing of the accretion of the Fu-saki Formation to the base of the Tumuru Formation.

  2. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface.

  3. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    NASA Astrophysics Data System (ADS)

    Sun, Chen-Cheng; Lee, Shih-Chin; Dai, Shyue-Bin; Tien, Shein-Long; Chang, Chung-Chih; Fu, Yaw-Shyan

    2007-02-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.

  4. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  5. Modeling Arcs

    SciTech Connect

    Insepov, Z.; Norem, J.; Vetizer, S.; Mahalingam, S.

    2011-12-23

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gradient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  6. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    NASA Astrophysics Data System (ADS)

    Harres, K.; Schollmeier, M.; Brambrink, E.; Audebert, P.; Blažević, A.; Flippo, K.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Nürnberg, F.; Schreiber, J.; Wahl, H.; Roth, M.

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90×70) mm2 microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O+6), emitted from the rear surface of a laser-irradiated 50 μm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  7. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions.

    PubMed

    Harres, K; Schollmeier, M; Brambrink, E; Audebert, P; Blazević, A; Flippo, K; Gautier, D C; Geissel, M; Hegelich, B M; Nürnberg, F; Schreiber, J; Wahl, H; Roth, M

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O(+6)), emitted from the rear surface of a laser-irradiated 50 microm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented. PMID:19044406

  8. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    SciTech Connect

    Harres, K.; Schollmeier, M.; Nuernberg, F.; Roth, M.; Brambrink, E.; Audebert, P.; Blazevic, A.; Wahl, H.; Flippo, K.; Gautier, D. C.; Hegelich, B. M.; Geissel, M.; Schreiber, J.

    2008-09-15

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm{sup 2} microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O{sup +6}), emitted from the rear surface of a laser-irradiated 50 {mu}m Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  9. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    SciTech Connect

    Anders, André

    2014-09-02

    In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  10. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE PAGES

    Anders, André

    2014-09-02

    In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in thismore » review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less

  11. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  12. The Improvement of Ion Plated Ag and Au Film Adherence to Si3N4 and SiC Surfaces for Increased Tribological Performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1998-01-01

    A modified dc-diode plating system, utilizing a metallic screen cage as a cathode and referred as SCREEN CAGE ION PLATING (SCIP), is used to deposit Ag and Au lubricating films on Si3N4 and SiC surfaces. When deposition is performed in Ar or N2, glow discharge, the surface displays poor adhesive strength (less than 5 MPa). A dramatic increase in adhesive strength (less than 80 MPa) is achieved when plating is performed in a reactive 50% 02 + 50% Ar glow discharge. The excited/ionized oxygen species (O2(+)/O(+) in the glow discharge contribute to the oxidation of the Si3N4 or SiC surfaces as determined by X-ray Photoelectron Spectroscopy (XTS) depth profiling. The reactively sputter-oxidized S3N4 or SiC surfaces and the activated-oxidized-metastable Ag or Au species formed in the plasma cooperatively contribute to the increased adherence. As a result, the linear thermal expansion coefficient mismatch at the interface is reduced. These lubricating Ag and Au films under sliding conditions reduce the friction coefficient by a factor of 2-1/2 to 4.

  13. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  14. High thrust-to-power ratio micro-cathode arc thruster

    NASA Astrophysics Data System (ADS)

    Lukas, Joseph; Teel, George; Kolbeck, Jonathan; Keidar, Michael

    2016-02-01

    The Micro-Cathode Arc Thruster (μCAT) is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that, at the same power level, thrust may increase by utilizing an ablative anode. It was shown that ablative anode particles were found on a collection plate, compared to no particles from a non-ablative anode, while another experiment showed an increase in ion-to-arc current by approximately 40% at low frequencies compared to the non-ablative anode. Utilizing anode ablation leads to an increase in thrust-to-power ratio in the case of the μCAT.

  15. Partial Arc Curvilinear Direct Drive Servomotor

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  16. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  17. An advanced arc track resistant airframe wire

    NASA Astrophysics Data System (ADS)

    Beatty, J.

    1995-11-01

    Tensolite, a custom cable manufacturer specializing in high temperature materials as the dielectric medium, develops an advance arc track resistant airframe wire called Tufflite 2000. Tufflite 2000 has the following advantages over the other traditional wires: lighter weight and smaller in diameter; excellent wet and dry arc track resistance; superior dynamic cut-through performance even at elevated temperatures; flight proven performance on Boeing 737 and 757 airplanes; and true 260 C performance by utilizing Nickel plated copper conductors. This paper reports the different tests performed on Tufflite 2000: accelerated aging, arc resistance (wet and dry), dynamic cut through, humidity resistance, wire-to-wire abrasion, flammability, smoke, weight, notch sensitivity, flexibility, and markability. It particularly focuses on the BSI (British Standards Institute) dry arc resistance test and BSI wet arc tracking.

  18. An advanced arc track resistant airframe wire

    NASA Technical Reports Server (NTRS)

    Beatty, J.

    1995-01-01

    Tensolite, a custom cable manufacturer specializing in high temperature materials as the dielectric medium, develops an advance arc track resistant airframe wire called Tufflite 2000. Tufflite 2000 has the following advantages over the other traditional wires: lighter weight and smaller in diameter; excellent wet and dry arc track resistance; superior dynamic cut-through performance even at elevated temperatures; flight proven performance on Boeing 737 and 757 airplanes; and true 260 C performance by utilizing Nickel plated copper conductors. This paper reports the different tests performed on Tufflite 2000: accelerated aging, arc resistance (wet and dry), dynamic cut through, humidity resistance, wire-to-wire abrasion, flammability, smoke, weight, notch sensitivity, flexibility, and markability. It particularly focuses on the BSI (British Standards Institute) dry arc resistance test and BSI wet arc tracking.

  19. A hybrid surface arc discharge ion source to produce ultra pure Ca{sup +2} beams for {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction studies at ISAC/TRIUMF

    SciTech Connect

    Jayamanna, K.; Vockenhuber, C.

    2008-02-15

    ISAC is an accelerator facility primarily dedicated to astrophysical studies. Off-line and online ion sources provide up to 65 keV of stable and radioactive beams to the ISAC accelerators. Initial acceleration is done via a constant velocity radio frequency quadrupole that requires 2 keV/u. Then the beam is further accelerated to 1.5 MeV/u at ISAC-I and 6.5 MeV/u at ISAC-II. To study radiative capture reactions relevant for astrophysics, the recoil mass spectrometer DRAGON was built in the experimental area. {sup 40}Ca({alpha},{gamma}){sup 44}Ti is identified as one of the key reactions in supernovae to produce {sup 44}Ti and is given highest priority. For this experiment, an ultrapure Ca{sup +2} beam was requested from the off-line ion source. Initial tests showed that, when using conventional ion sources, {sup 40}Ar and {sup 40}K are the impurities that are most difficult to eliminate. In order to overcome this problem, a new concept was needed and the hybrid surface arc discharge ion source was born. The hybrid surface ion source consists of a small surface ionizer and an arc discharge placed in a solenoid field. A very low ratio of {sup 40}Ar/{sup 40}Ca=8x10{sup -5} was achieved with this new source and the experiment was completed successfully. The source is described in detail and its performance is discussed in this article.

  20. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  1. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  2. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range. PMID:27587107

  3. Uranium-molybdenum nuclear fuel plates behaviour under heavy ion irradiation: An X-ray diffraction analysis

    NASA Astrophysics Data System (ADS)

    Palancher, H.; Wieschalla, N.; Martin, P.; Tucoulou, R.; Sabathier, C.; Petry, W.; Berar, J.-F.; Valot, C.; Dubois, S.

    2009-03-01

    Heavy ion irradiation has been proposed for discriminating UMo/Al specimens which are good candidates for research reactor fuels. Two UMo/Al dispersed fuels (U-7 wt%Mo/Al and U-10 wt%Mo/Al) have been irradiated with a 80 MeV 127I beam up to an ion fluence of 2 × 1017 cm-2. Microscopy and mainly X-ray diffraction using large and micrometer sized beams have enabled to characterize the grown interaction layer: UAl3 appears to be the only produced crystallized phase. The presence of an amorphous additional phase can however not be excluded. These results are in good agreement with characterizations performed on in-pile irradiated fuels and encourage new studies with heavy ion irradiation.

  4. Plate boundaries and evolution of the Solomon Sea region

    NASA Astrophysics Data System (ADS)

    Honza, E.; Davies, H. L.; Keene, J. B.; Tiffin, D. L.

    1987-09-01

    The Solomon Sea Plate was widely developed during late Oligocene, separating the proto-West Melanesian Arc from the proto-Trobriand Arc. Spreading in the Bismarck Sea and in the Woodlark Basin resulted from interaction between the Pacific and Australian Plates, specifically from the collision of the proto-West Melanesian Arc with north New Guinea, which occurred after arc reversal. This model explains the extensive Miocene, Pliocene, and Quaternary volcanism of the Papua New Guinea mainland as it related to southward subduction of the Trobriand Trough. Our interpreted plate motions are concordant with the geological evidence onshore and also with complex tectonic features in the Solomon Sea Basin Region.

  5. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite

    SciTech Connect

    Tanaka, Y. T.; Yoshikawa, I.; Yoshioka, K.; Terasawa, T.; Saito, Y.; Mukai, T.

    2007-03-15

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%{+-}0.71% and 0.21%{+-}0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  6. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  7. Downgoing plate controls on overriding plate deformation in subduction zones

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Davies, Rhodri; Goes, Saskia; Davies, Huw; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Although subduction zones are convergent margins, deformation in the upper plate can be extensional or compressional and tends to change through time, sometimes in repeated episodes of strong deformation, e.g, phases of back-arc extension. It is not well understood what factors control this upper plate deformation. We use the code Fluidity, which uses an adaptive mesh and a free-surface formulation, to model a two-plate subduction system in 2-D. The model includes a composite temperature- and stress-dependent rheology, and plates are decoupled by a weak layer, which allows for free trench motion. We investigate the evolution of the state of stress and topography of the overriding plate during the different phases of the subduction process: onset of subduction, free-fall sinking in the upper mantle and interaction of the slab with the transition zone, here represented by a viscosity contrast between upper and lower mantle. We focus on (i) how overriding plate deformation varies with subducting plate age; (ii) how spontaneous and episodic back-arc spreading develops for some subduction settings; (iii) the correlation between overriding plate deformation and slab interaction with the transition zone; (iv) whether these trends resemble observations on Earth.

  8. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  9. Hollow melon-seed-shaped lithium iron phosphate micro- and sub-micrometer plates for lithium-ion batteries.

    PubMed

    Yang, Xian-Feng; Yang, Jin-Hua; Zhong, Yu Lin; Gariepy, Vincent; Trudeau, Michel L; Zaghib, Karim; Ying, Jackie Y

    2014-06-01

    Melon-seed-shaped LiFePO4 hollow micro- and sub-micrometer plates have been synthesized via a polyol-assisted hydrothermal method. The as-prepared LiFePO4 hollow materials were new with regard to their single-crystalline shells with large ac surfaces. Based on the detailed analysis of time-dependent studies, a possible growth mechanism was proposed involving nucleation, anisotropic growth, selective etching, and reversed recrystallization. The effects of polyol concentration, reaction temperature, and feeding sequence of precursors on the growth of LiFePO4 materials were investigated. The electrochemical properties of as-prepared LiFePO4 hollow materials were examined as cathode materials.

  10. ION PRODUCING MECHANISM

    DOEpatents

    Oppenheimer, F.F.

    1959-06-01

    A calutron ion source is described which masks the ends of the arc to provide a more stable beam from the middle portion. The masking is effected by milling the arc slit in a single sheet of material which is secured to the open face of the arc block. (T.R.H.)

  11. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  12. Plating on difficult-to-plate metals: what's new

    SciTech Connect

    Wiesner, H.J.

    1980-07-30

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required.

  13. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  14. Ion-plasma gun for ion-milling machine

    DOEpatents

    Kaminsky, Manfred S.; Campana, Jr., Thomas J.

    1976-01-01

    An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.

  15. Scattering of hydrogen, nitrogen and water ions from micro pore optic plates for application in spaceborne plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Stude, Joan; Wieser, Martin; Barabash, Stas

    2016-10-01

    Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.

  16. Effects of shielding gas hydrogen content on the arc behavior in gas tungsten arc welding

    SciTech Connect

    Onsoien, M.I.; Olson, D.L.; Liu, S.

    1994-12-31

    The primary role of the shielding gas in gas tungsten arc welding (GTAW) is to protect the weld pool and tungsten electrode from the oxygen and nitrogen in the surrounding atmosphere. Traditionally inert gases such as argon and helium have been used, either as pure gases or mixed with each other. However, additions of small amounts of hydrogen have been reported to improve weld bead penetration and enable higher welding speeds to be used. The present work was performed to investigate the effect of small hydrogen additions on the arc behavior in GTAW, and to further the fundamental understanding of the effect of shielding gas on arc characteristics. GTAW bead-on-plate welds were made on 12.5 mm x 150 mm x 75 mm Type 304 stainless steel test coupons. The welding current, voltage, and their variations were continuously monitored during welding. After welding, each test coupon was sectioned and prepared using standard metallographic techniques and etched in Vilella`s etch for macroexamination of the weld bead cross section. Bead width, depth, and cross-sectional area were measured using a LECO image analysator system. The influence of hydrogen content in an argon has tungsten arc was characterized. The electrical behavior of the arc, including the arc resistance, was measured as a function of current and hydrogen content. A better fundamental understanding of arc behavior and energy transfer was achieved using these experimental gas mixes. The results allow the following conclusions to be drawn: (1) Small additions of hydrogen in the argon based shielding gas in gas tungsten arc welding significantly change the weld bead geometry due to changes in the arc column. (2) Selection of the right argon, hydrogen shielding gas mixture to give the optimum arc column characteristics for a given condition can improve weld quality and increase productivity. (3) The resistance of the arc column was found to be an adequate parameter to describe the arc column behavior.

  17. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    PubMed Central

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV. PMID:23592622

  18. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    PubMed

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  19. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  20. Origin of a Voluminous Pulse of Eocene Arc Magmatism in Iran

    NASA Astrophysics Data System (ADS)

    Verdel, C.; Wernicke, B.; Hassanzadeh, J.

    2008-12-01

    The Late Triassic to Miocene closure of Neotethys via subduction beneath central Iran was characterized by slow (~2-3 cm/yr) and relatively constant convergence between Arabia and Eurasia. Despite this protracted history of subduction, the record of shallow marine arc volcanism in Iran is dominated by an Eocene pulse that is not readily explainable by changes in the rate or style of plate interactions between south Asian and Neotethyan lithosphere. New U-Pb and 40Ar/39Ar geochronology of volcanic arcs in central and northern Iran constrains the duration of this pulse to <22 My. Eocene volcanic rocks are enriched in large ion lithophile elements (LILE) and depleted in high-field strength elements (HFSE), a pattern typical of arc magmatism. In contrast, Oligocene basalts from the Urumieh-Dokhtar arc and the Alborz Mtns. are enriched in both LILE and HFSE. Together with the recent recognition of Eocene metamorphic core complexes in central and east-central Iran and stratigraphic evidence for Eocene subsidence, these geochemical and geochronological data suggest that the magmatic pulse was generated by extension-related decompression melting of lithosphere hydrated by slab-derived fluids, followed by Oligocene upwelling and melting of enriched mantle that was less extensively modified by hydrous fluids. Based on the inboard position of Cretaceous arc magmas relative to Eocene volcanism, we suggest that extension was driven by an episode of slab retreat or rollback, analogous to the western US. In contrast to the western US, slow subduction rate and restricted Mesozoic magmatism in Iran resulted in a long (~150 My) period of "preconditioning" the arc lithosphere, resulting in a much more voluminous magmatic episode during extension than in the western US.

  1. Arc - arc collisional tectonics within the Central Mobile Belt of the Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.; Rogers, N.; van Staal, C. R.; McNicoll, V. J.; Valverde-Vaquero, P.

    2007-12-01

    The Central Mobile Belt of Newfoundland Appalachians records the Ordovician arc - arc collision between the peri-Laurentian Red Indian Lake Arc of the Annieopsquotch accretionary tract (c. 480-460 Ma), and the peri- Gondwanan Victoria - Popelogan Arc (c. 473-453 Ma), which marks the closure of the Cambro-Ordovician Iapetus Ocean. Although the arc systems are in part coeval, they are distinguishable by the preservation of distinct structural histories and stratigraphies, unique basement characteristics as demonstrated by lead isotopic values of volcanic massive sulphide deposits and faunal differences. A modern analogue of such an arc - arc collision is observed in the Molucca and Solomon seas of the southwest Pacific. From such modern analogues it is evident that the Victoria - Popelogan Arc occupied a lower-plate setting during collision. This tectonic setting is demonstrated by subsidence of the Victoria - Popelogan Arc similar to the collision induced subsidence that is developed on the Australian active margin and Halmahera arcs of the Southwest Pacific. The timing of Victoria - Popelogan Arc subsidence is constrained by three age dates that form the last vestiges of arc volcanism (457 ± 2; 456.8 ± 3.1; 457 ± 3.6 Ma). These volcanic rocks are immediately overlain by Caradocian black shale of the Point Leamington Formation that marks the base of the Badger Group and the initiation of a successor basin. Caradocian black shale is noticeably absent from the top of the Red Indian Lake Arc with this time interval instead represented by a sub-Silurian unconformity, formed in response to collisional uplift. Emergence of the peri- Laurentian margin is demonstrated by detritus from it preserved in the Badger Group, which as it stratigraphically overlies the peri-Gondwanan Victoria - Popelogan Arc, requires that Iapetus was closed by this time. Following this collision, subduction stepped back into the outboard Tetagouche - Exploits back-arc basin. Whereas correlative

  2. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    NASA Astrophysics Data System (ADS)

    Shi, Yongjing; Long, Siyuan; Yang, Shicai; Pan, Fusheng

    2008-09-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2. The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS).

  3. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin; Yang, Shu-Feng

    2015-09-01

    The Dongfanghong hornblende gabbro is located in the western part of the Wandashan Orogen and to the east of the Jiamusi Block in NE China. It was emplaced into Early Paleozoic oceanic crust (i.e. Dongfanghong ophiolite) at ~ 275 Ma and both later collided with the eastern margin of the Jiamusi Block. The Dongfanghong gabbro is sub-alkaline with high Na2O contents and is characterized by enrichment in light rare earth elements (LREE), large ion lithosphile elements (LILE), Sr, Eu, and Ba, and depletion in high field strength elements (HFSE). The enriched isotopic signatures (87Sr/86Sri = ~ 0.7065, εNd(t) = ~- 0.5, 208Pb/204Pbi = ~ 38.05, 207Pb/204Pbi = ~ 15.56, 206Pb/204Pbi = ~ 18.20 and zircon εHf(t) = ~+ 5.8) indicate an enriched mantle (EM2) source, with some addition of continental material. It has arc geochemical affinities similar to Permian arc igneous rocks in the eastern margin of the Jiamusi Block, the Yakuno Ophiolite in SW Japan, arc rocks along the western margin of the North America Craton, and also the Gympie Group in eastern Australia. All these features, together with information from tectonic discrimination diagrams, suggest that the Dongfanghong gabbro formed in an immature island arc. The spatial configuration of ~ 290 Ma immature continental arc rocks in the eastern part of the Jiamusi Block and the ~ 275 Ma immature island arc Dongfanghong gabbro in the Wandashan Orogen to the east is best explained by eastward arc retreat and slab roll-back of the Paleo-Pacific Plate. This model is also supported by the Carboniferous-Permian stratigraphic transition in the Jiamusi Block from oceanic carbonate rocks to coal-bearing terrestrial clastic rocks and andesites. We thus suggest that both Paleo-Pacific subduction and roll-back occurred in the Early Permian along the eastern margin of Asia.

  4. Cathodic Vacuum Arc Plasma of Thallium

    SciTech Connect

    Yushkov, Georgy Yu.; Anders, Andre

    2006-10-02

    Thallium arc plasma was investigated in a vacuum arc ionsource. As expected from previous consideration of cathode materials inthe Periodic Table of the Elements, thallium plasma shows lead-likebehavior. Its mean ion charge state exceeds 2.0 immediately after arctriggering, reaches the predicted 1.60 and 1.45 after about 100 microsecand 150 microsec, respectively. The most likely ion velocity is initially8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150microsec, respectively. Both ion charge states and ion velocities decayfurther towards steady state values, which are not reached within the 300microsec pulses used here. It is argued that the exceptionally high vaporpressure and charge exchange reactions are associated with theestablishment of steady state ion values.

  5. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  6. Active tectonics of the eastern Sunda and Banda arcs

    NASA Astrophysics Data System (ADS)

    McCaffrey, Robert

    1988-12-01

    The mechanism of collision of the Australian continent with the East Sunda and Banda island arcs is examined. Depths and fault plane solutions of large earthquakes are estimated and are used to constrain the active, shallow tectonics of the collision zone. The convergence of the Australian continent with eastern Indonesia is accommodated to some degree by N-S crustal shortening throughout the forearc, arc, and back arc regions. Within the back arc (the Banda Basin), strike-slip and thrust faulting reveal convergence between Timor and Seram. Back arc thrusting plays an important role in the convergence across the collision zone. The Banda Basin probably formed as slices of northern New Guinea were transported westward with the Pacific plate and collided with an island arc in eastern Sulawesi.

  7. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  8. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  9. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    SciTech Connect

    Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  10. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  11. Back-Arc Extension in the Scotia Sea

    NASA Astrophysics Data System (ADS)

    Barker, P. F.; Hill, I. A.

    1981-03-01

    The nature of back-arc extension in the East Scotia Sea is re-examined with the use of an enlarged geophysical data set. Well developed oceanic magnetic lineations confirm that the present spreading episode started about 8 Ma ago, that spreading is asymmetric, and that the total rate increased from 50 to 70 mm/a about 1.5 Ma ago. Most of the currently active South Sandwich volcanic island arc lies upon ocean floor only 6-8 Ma old and generated at the current spreading ridge. Subsequent extension has not modified the curvature of the arc. East--west magnetic lineations of Miocene age in the Central Scotia Sea and contemporaneous low-K arc tholeiites dredged from the eastern South Scotia Ridge (Discovery Bank) indicate a regime of coupled subduction and back-arc extension preceding that occurring now. A speculative model involving a series of collisions of parts of this earlier Discovery trench with ridge crest sections of the South American--Antarctic plate boundary explains the transformation of this earlier regime into the present, self-contained Sandwich plate regime. The considerable small-scale variability observed in the back-arc region may be seen as an inevitable consequence of the action of the ridge--trench collision mechanism. The entire Scotia Sea could have formed by a similar kind of back-arc extensional modification of the South American--Antarctic plate boundary.

  12. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  13. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  14. This-layer chromatography/electrospray ionization triple-quadrupole linear ion trap mass spectrometry system: analysis of rhodamine dyes separated on reversed-phase C8 plates

    SciTech Connect

    Ford, Michael J; Kertesz, Vilmos; Van Berkel, Gary J

    2005-01-01

    The direct analysis of separated rhodamine dyes on reversed-phase C{sub 8} thin-layer chromatography plates using a surface sampling/electrospray emitter probe coupled with a triple-quadrupole linear ion trap mass spectrometer is presented. This report represents continuing work to advance the performance metrics and utility of this basic surface sampling electrospray mass spectrometry system for the analysis of thin-layer chromatography plates. Experimental results examining the role of sampling probe spray end configuration on liquid aspiration rate and gas-phase ion signal generated are discussed. The detection figures-of-merit afforded by full-scan, automated product ion and selected reaction monitoring modes of operation were examined. The effect of different eluting solvents on mass spectrum signal levels with the reversed-phase C{sub 8} plate was investigated. The combined effect of eluting solvent flow-rate and development lane surface scan rate on preservation of chromatographic resolution was also studied. Analysis of chromatographically separated red pen ink extracts from eight different pens using selected reaction monitoring demonstrated the potential of this surface sampling electrospray mass spectrometry system for targeted compound analysis with real samples.

  15. Intra-arc basins

    SciTech Connect

    Smith, G.A.

    1988-01-01

    Convergent-margin tectonic models feature forearc and back-arc basins and generally portray the arc itself as structurally static. However, intra-arc tectonics not only control distribution and petrology of extrusives and plutons, but also generate basins along the magmatic axis. Magma withdrawal and crustal loading by volcanic edifices contribute to subsidence, but most intra-arc basins are grabens or half-grabens indicative of extension. Grabens are isolated or continuous along long segments of the arc. Basin development may alternate with periods of arc uplife. No unique set of conditions causes intra-arc extension; numerous scenarios may initiate extension and subsidence of thermally weakened arc crust. Transtension related to oblique convergence contributed to the formation of most modern intra-arc basins. Andean basins may result from gravitational spreading of an unusually highstanding arc. Intra-arc basin sediment traps may starve arc-adjacent basins from coarse volcaniclastic detritus. Terrestrial intra-arc basins accommodate thick volcanic and volcaniclastic sediment sections, including lacustrine sequences. Marine intra-arc basins include bounding carbonate shelves, marginal and local intrabasinal submarine fans and aprons, and basin plains receiving pelagic and hemipelagic sediments. Structural patterns are appropriate for trapping hydrocarbons, source rocks are commonly present, and high heat flow favors early maturation. Reservoir quality is typically poor because of volcaniclastic diagenesis, but secondary porosity from dissolution of framework feldspars and carbonate or laumontite cements, and the known productivity of some volcanic reservoirs, suggest the potential for hydrocarbon accumulations. Geothermal resources and modest coal potential have also been recognized.

  16. Surface analysis and osteoblasts response of a titanium oxi-carbide film deposited on titanium by ion plating plasma assisted (IPPA).

    PubMed

    Mazzola, L; Bemporad, E; Misiano, C; Pepe, F; Santini, P; Scandurra, R

    2011-10-01

    Titanium is the most widely used material in orthopaedic and dental implantoprosthesis due to its superior physical properties and enhanced biocompatibility due to the spontaneous formation of a passivating layer of titanium oxides which, however, does not form good chemical bonds with bone and tends to brake exposing bulk titanium to harsh body fluids releasing titanium particles which may prime an inflammation response and a fibrotic tissue production. In order to avoid these possible problems and to enhance the biocompatibility of titanium implants, modifications of titanium surfaces by many different materials as hydroxyapatite, titanium nitride, titanium oxide and titanium carbide have been proposed. The latter is shown to be an efficient protection for the titanium implant in the harsh conditions of biological tissues and, compared to untreated titanium, acting like an osteoblast stimulation factor increasing in vitro production of proteins involved in osteogenesis. These results were confirmed by in vivo experiments in rabbits: implants covered by the titanium carbide (TiC) layer were faster and better osseointegrated than untreated titanium implants. The TiC layer was deposited by a Pulsed Laser Deposition (PLD) device which allowed only one deposition per cycle, shown to be unsuitable for industrial applications. Therefore the main objective of the present work was to replace PLD process with an Ion Plating Plasma Assisted (IPPA) deposition process, which is suitable for industrial upgrading. By this technique, nanostructured TiOx-TiCy-C has been deposited on titanium after sandblasting with 120 micron zirconia spheres. XPS analyses revealed the presence of about 33% carbon (50% of which is present as free carbon), 39% oxygen and 28% titanium (37% of which is bound to carbon to form TiC and 63% is bound to oxygen to form non stoichiometric oxides). Surface mechanical response of as-deposited coatings has been performed by nanoindentation techniques

  17. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    SciTech Connect

    Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.

    2014-07-14

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.

  18. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results

  19. Structural levels of deformation and failure of heat-resistant 12Cr1MoV steel modified by vacuum arc treatment by Zr{sup +} ion beam

    SciTech Connect

    Vlasov, I. V. E-mail: svp@ispms.tsc.ru; Panin, S. V. E-mail: svp@ispms.tsc.ru; Ovechkin, B. B.; Sergeev, V. P.

    2014-11-14

    Study of structural changes occurring in the surface layer modified by ion-beam irradiation was carried out by means of optical, scanning and transmission electron microscopy. It was shown that irradiation induces the structure modification not only in the surface layer, but along the entire cross section of 1 mm thick specimens. It was elucidated that the complex pattern of structural changes is responsible for the pronounced variation of mechanical properties taking place under static tension and cyclic alternating bending.

  20. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  1. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  2. Arc-parallel extrusion of the Timor sector of the Banda arc-continent collision

    NASA Astrophysics Data System (ADS)

    Duffy, Brendan; Quigley, Mark; Harris, Ron; Ring, Uwe

    2013-06-01

    studies of synorogenic basins in Timor using field and remote sensing techniques provide new structural and geomorphic evidence for syn-collisional extension in the converging plate boundary zone between the Australian Plate and Banda Arc. Fault mapping and kinematic analysis at scales ranging from outcrop (<1 m2) to the dimensions of the active orogen in East Timor (~100 km2) identify a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20 km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of NE-directed extension across the Timor orogen based on reconstructions of fault-dismembered massifs. Major orogen-parallel ENE-oriented faults on the northern and southern sides of Timor exhibit normal-sinistral and normal-dextral kinematics, respectively. The overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, before pronounced rapid uplift of the orogen. We link this to progressive coupling of the fore-arc to an underthrust plateau on the Australian Plate and subduction of its ocean crust. Our results enable us to track the structural evolution of the upper crust during dramatic plate-boundary reorganizations accompanying the transition from subduction to collision. The deformation structures that we document suggest that both upper and lower plate deformation during incipient island arc-continent collision was largely controlled by the geometry and topography of the lower plate.

  3. Ion beam generating apparatus

    DOEpatents

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  4. Initiation of Subduction at Relic Arcs

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Leng, W.

    2014-12-01

    Plate tectonics have been well established for tens of years, but how subduction initiates over tectonic history remains obscure. It has been proposed that passive margins may be a possible place for subduction initiation, but there is no obvious Cenozoic example of such a scenario, including along the passive margins of the Atlantic Ocean. With a computational method that follows the deformation of a visco-elasto-plastic medium, here we show that a favourable locale for subduction initiation is the juxtaposition of an old oceanic plate adjacent to a young, but relic arc. The probable enrichment of quartz in the middle to lower arc crust leads to two major factors which may have induced subduction initiation. One is the compositional density difference between the relic arc crust and the oceanic lithospheric mantle; the other is the significantly weakened lithosphere strength due to the rheology of wet quartz. With such a setup, we observe spontaneous subduction initiation within a few million years. The evidence that Izu-Bonin-Mariana and Tonga-Kermedec subduction zones both initiate adjacent to relic island arcs supports our conclusions. Our results provide an explanation for the rarity of subduction initiation at the passive margins. The continental lithosphere is typically old and cold. Consequently, the thermal effects cancel the compositional buoyancy contrast between the continental crust and the oceanic lithospheric mantle, making subduction initiation difficult at passive margins.

  5. Seismicity and plate tectonics in south central Alaska

    NASA Technical Reports Server (NTRS)

    Van Wormer, J. D.; Davies, J.; Gedney, L.

    1974-01-01

    Hypocenter distribution shows that the Benioff zone associated with the Aleutian arc terminates in interior Alaska some 75 km north of the Denali fault. There appears to be a break in the subducting Pacific plate in the Yentna River-Prince William Sound area which separates two seismically independent blocks, similar to the segmented structure reported for the central Aleutian arc.

  6. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  7. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  8. Arcing in LEO: Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  9. Arcing in LEO - Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  10. Multiple Collision and Subduction Structure of the Izu-Bonin Arc: Tectonics of the Arc-arc Collision in Central Japan

    NASA Astrophysics Data System (ADS)

    Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.

    2011-12-01

    The Izu collision zone in central Japan provides a great research field for studying crustal evolution of island arcs associated with collision and subduction processes. Since the middle Miocene, an intraoceanic volcanic arc named the Izu-Bonin arc has been colliding from south with the Honshu arc along with the subduction of the Philippine Sea plate. Intensive geological studies in the last few decades revealed that several crustal blocks derived from the Izu-Bonin arc, such as Koma Mountains, Misaka Mountains, Tanzawa Mountains and Izu Peninsula, were accreted onto the Honshu arc in the course of the multiple collision (e.g. Amano, 1991). In order to understand the whole crustal structure dominated by the active arc-arc collision, we carried out several seismic experiments using controlled sources (Sato et al., 2005, 2006; Arai et al., 2009). Structural models obtained by reflection and refraction/wide-angle reflection analyses show extremely complex collision styles characterized by obduction in the northernmost part (Misaka) and crustal stacking in the middle part (Tanzawa). Delamination structure is recognized at a mid-crustal level for these two blocks. On the other hand, a subduction style is dominant in the southern part (Izu). These differences may be attributed to the along-arc structural variation of the Izu-Bonin arc (Kodaira et al., 2007). It is also indicated that some portions of the Izu-Bonin middle crust were accreted at the bottom of the Honshu crust. Consideration of mass balance, however, suggests that the most Izu-Bonin crust has been subducting deep into the mantle without being accreted. So we can say that the dynamic process of this intraoceanic volcanic arc is essentially controlled by subduction rather than collision/accretion. A northwestward dipping reflector was found at depths of 25-35 km beneath the accreted crustal blocks of Misaka and Tanzawa, which is interpreted to be the upper surface of the subducting lower crust of the Izu

  11. Tectonic evolution of the Notre Dame magmatic arc, Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    van Staal, C.

    2003-12-01

    Notre Dame continental arc magmatism in Newfoundland had an overall lifespan of c. 60 Ma (489-429 Ma). Extensive age dating suggests that arc construction took place in 3 distinct stages, separated by gaps of magmatic quiescence (arc shut-off). The first phase of quiescence (c. 480-468 Ma) corresponds to the start of Taconic collision between the initially west-facing Notre Dame arc and Laurentia. The second phase of magmatic quiescence (455-445 Ma) corresponds to collision between the now east-facing Notre Dame arc and the west-facing, peri-Gondwanan Victoria arc built on a piece of Ganderian crust. Resurgence of arc magmatism followed stepping- back of the west-dipping subduction zone into the oceanic marginal basin that separated the Victoria arc from the Gander margin. A gradual transition (431-429 Ma) from arc-like to mainly juvenile, bimodal within plate-like magmatism coincides with suturing of the Notre Dame arc with the Gander margin along the Dog Bay line and probably reflects break off of the west-dipping Ganderian slab. Preservation of an unconformable and unmetamorphosed Silurian cover, consisting of red beds and bimodal volcanic rocks, over large tracts of the Notre Dame arc indicates that the arc was extinct and stabilized by the Late Silurian (c. 425 Ma) and did not experience any significant overprint during the Early Devonian Acadian orogeny, the effects of which were mainly localized further to the east due to accretion of Avalonia to Laurentia. The second, Mid-Ordovician phase of arc magmatism (c. 469-456 Ma) appears most voluminous and was mainly characterized by K-poor, calc-alkaline quartz diorite to tonalite and, to a lesser extent granodiorite, plutons. These calc-alkaline plutons intruded during deformation and significant thickening of the Notre Dame arc, presumably as a result of ongoing shortening following initial collision with Laurentia and an arc-polarity reversal. Such a tectonic scenario is consistent with the high metamorphic

  12. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  13. CALUTRON ION SOURCE

    DOEpatents

    Oppenheimer, F.F.

    1959-06-01

    A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)

  14. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  15. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  16. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  17. On plasma jet formation in vacuum arc with composite cathode

    NASA Astrophysics Data System (ADS)

    Shmelev, D. L.; Barengolts, S. A.; Uimanov, I. V.; Tsventoukh, M. M.; Savkin, K. P.

    2015-11-01

    This paper deals with the computer modeling of vacuum arc with composite multicomponent cathode. This arc is typical for certain kind of ion sources, plasma generator and vacuum interrupters. The described hybrid model treats the electrons as an inertialess fluid and ions as macroparticles. The macroparticle dynamic is calculated with the use of particle-incell method. Ion-ion Coulomb collision is considered with the use of Monte Carlo method. The model can simulate vacuum arc as a whole including separate cathode plasma jets, mixing zone, and common plasma column. The dependence of ion angular current distribution on the cathode composition reproduced with the help of developed model agrees well with experimental results.

  18. Arc Inception Mechanism on a Solar Array Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, B.; Galofaro, J.; Ferguson, D.

    2001-01-01

    In this report, results are presented of an experimental and theoretical study of arc phenomena and snapover for two samples of solar arrays immersed in argon plasma. The effects of arcing and snapover are investigated. I-V curves are measured, and arc and snapover inception voltages and arc rates are determined within the wide range of plasma parameters. A considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. It is shown that increasing gas pressure causes increasing ion current collection and, consequently, arc rate even though the effect of conditioning also takes place. Arc sites have been determined by employing a video-camera. It is confirmed that keeping sample under high vacuum for a long time results in shifting arc threshold voltage well below -300 V. The results obtained seem to be important for the understanding of arc inception mechanism.

  19. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  20. Modeling of Thermal Arcs in Molded Case Circuit Breakers in Air

    NASA Astrophysics Data System (ADS)

    Breden, Doug; Mahadevan, Shankar; Raja, Laxminarayan

    2015-09-01

    A general-purpose thermal plasma simulation tool (VizArc) was utilized to model a circuit breaker in atmospheric pressure air. The molded case circuit breaker (MCCB) circuit breaker works by separating two metal contacts when the breaking current is exceeded generating an arc. The self-consistent Lorentz force generated by the current pushes the arc into an array of splitter plates which quench the arc and break the circuit. The arc channel is modeled by coupling the electromagnetic equations with flow governing equations to model a multi-species, single-temperature quasi neutral arc plasma. Conjugate heat transfer to the metal splitter plates and vapor ablation into the gas are included in the model. The opening action of the moving contact armature is simulated dynamically in the simulation. The set of all governing equations and their implementation in the model will be discussed, and then the simulations of the MCCB circuit breaker using the model will be presented.

  1. Seismicity of the Earth 1900-2007, Kuril-Kamchatka Arc and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Benz, Harley

    2010-01-01

    This map shows details of the Kuril-Kamchatka arc not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. The arc extends about 2,100 km from Hokkaido, Japan, along the Kuril Islands and the pacific coast of the Kamchatka, Russia, peninsula to its intersection with the Aleutian arc near the Commander Islands, Russia. It marks the region where the Pacific plate subducts into the mantle beneath the Okhotsk microplate, a part of the larger North America plate. This subduction is responsible for the generation of the Kuril Islands chain and the deep offshore Kuril-Kamchatka trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that decreases from 83 mm per year at the arc's southern end to 75 mm per year near its northern edge.

  2. Geodynamics of the Eastern Pacific Region, Caribbean and Scotia Arcs. Volume 9

    SciTech Connect

    Cabre, R.

    1983-01-01

    This book analyze the geodynamic phenomena related to the interaction of the eastern Pacific with the Americas between Canada and the Antarctic peninsula. Studies include the Cordilleran arcs and Juan de Fuca plate.

  3. Lifetime Assessment of the NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    Ion thrusters are low thrust, high specific impulse devices with required operational lifetimes on the order of 10,000 to 100,000 hr. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest throttling point. Currently, a NEXT engineering model ion thruster with prototype model ion optics is undergoing a long duration test to determine wear characteristics and establish propellant throughput capability. The NEXT thruster includes many improvements over previous generations of ion thrusters, but two of its component improvements have a larger effect on thruster lifetime. These include the ion optics with tighter tolerances, a masked region and better gap control, and the discharge cathode keeper material change to graphite. Data from the NEXT 2000 hr wear test, the NEXT long duration test, and further analysis is used to determine the expected lifetime of the NEXT ion thruster. This paper will review the predictions for all of the anticipated failure mechanisms. The mechanisms will include wear of the ion optics and cathode s orifice plate and keeper from the plasma, depletion of low work function material in each cathode s insert, and spalling of material in the discharge chamber leading to arcing. Based on the analysis of the NEXT ion thruster, the first failure mode for operation above a specific impulse of 2000 sec is expected to be the structural failure of the ion optics at 750 kg of propellant throughput, 1.7 times the qualification requirement. An assessment based on mission analyses for operation below a specific impulse of 2000 sec indicates that the NEXT thruster is capable of double the propellant throughput required by these missions.

  4. Seismic velocity structure variation along northern Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Takahashi, T.; Tamura, Y.; Sakaguchi, H.

    2009-12-01

    The Izu-Bonin Island arc is an intra-oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Recent active seismic surveys in the Izu-Bonin arc show significant variations in thickness of the middle crust along the volcanic front [Kodaira et al, 2007]. To understand the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations to investigate structure variations in northern Izu-Bonin arc using natural earthquakes. A temporal ocean bottom seismograph (OBS) network consists of 40 pop-up type OBSs was deployed in April 2006 between Tori-shima and Hachijo-jima islands. These OBSs were retrieved in July after about 80-day observations. We used continuous seismic data at 36 OBSs and three F-net and Hi-net seismic stations on Hachijo-jima and Aoga-shima islands operated by National Research Institute for Earth Science and Disaster Prevention. During the OBS observations, more than 4000 earthquakes were observed by the OBSs. First, we modeled 1-D velocity structure using the VELEST [Kissling et al., 1995]. We used 325 earthquakes of which both P- and S-wave arrivals observed at 10 or more stations and occurred within the OBS network. The number of arrival data is 5382 and 5764 for P- and S-wave arrival, respectively. Then, we estimated 3-D velocity structure using the method by Kamiya and Kobayashi [2007]. The result of the 1-D velocity modeling was used for the initial model in the 3-D velocity tomography. We used about 2000 earthquakes for the 3-D tomography. The number of P- and S-wave arrivals are about 23000 and 26000, respectively. The 3-D velocity model indicates heterogeneous structures in the mantle along the arc. Low velocity anomalies down to the subducting slab beneath the volcanic front correspond to thicker parts of the arc crust around Hachijo-jima and Sumisu-jima islands. The low velocity

  5. Ultraviolet radiation emitted by CO(2) arc welding.

    PubMed

    Okuno, T; Ojima, J; Saito, H

    2001-10-01

    The arcs associated with arc welding emit high levels of ultraviolet radiation (UVR), and this often causes acute injuries in the workplace, particularly photokeratoconjunctivitis. It is important to know the level of UVR emitted by arc welding under various conditions, as this information will help in evaluating potential UVR hazards in welding workplaces and taking protective measures against it. In this study, the ACGIH effective irradiance for UVR was measured experimentally for CO(2) arc welding in order to evaluate its UVR hazards. A welding robot was used in the experiment in order to realize reproducible and consistent welding operations. The effective irradiance at 1 m from the arc was in the range 0.28-7.85 W/m(2) (28-785 microW/cm(2)) under the study conditions. The corresponding permissible exposure time per day is only 4-100 s, suggesting that UVR from CO(2) arc welding is actually hazardous for the eye and skin. It was found that the effective irradiance is inversely proportional to the square of the distance from the arc, is strongly dependent on the direction of emission from the arc with a maximum at 50-60 degrees from the plate surface, and tends to increase with welding current.

  6. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  7. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  8. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  9. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  10. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  11. APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS

    DOEpatents

    Starr, C.

    1957-11-19

    This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.

  12. Temporal and spatial distributions of carbon shunting arc plasma

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi; Konishi, Takumi; Mikawa, Ryota; Takahashi, Kazunori; Yukimura, Ken

    2015-01-01

    The temporal and spatial distributions of a magnetically driven shunting arc plasma were obtained using time-resolved probe measurement. A shunting arc was produced using a carbon rod and accelerated along a pair of rail electrodes by a Lorenz force. The pulse current for driving and maintaining the plasma was supplied from a 20 µF capacitor charged by a dc power supply. Double and single probes were employed to obtain the ion density of the shunting arc plasma. An ion density of 1 × 1019 m-3 was obtained at a distance of 50 mm from the carbon rod 15 µs after applying voltage. The ion density decreased to 2.0 × 1018 m-3 with increasing distance from 50 to 150 mm. The ion density changed with the energy inputted into the plasma.

  13. The global relevance of the Scotia Arc: An introduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Andrés; Dalziel, Ian W. D.; Leat, Philip T.

    2015-02-01

    The Scotia Arc, situated between South America and Antarctica, is one of the Earth's most important ocean gateways and former land bridges. Understanding its structure and development is critical for the knowledge of tectonic, paleoenvironmental and biological processes in the southern oceans and Antarctica. It extends from the Drake Passage in the west, where the Shackleton Fracture Zone forms a prominent, but discontinuous, bathymetric ridge between the southern South American continent and the northern tip of the Antarctic Peninsula to the active intra-oceanic volcanic arc forming the South Sandwich Island in the east. The tectonic arc comprises the NSR to the north and to the south the South Scotia Ridge, both transcurrent plate margins that respectively include the South Georgia and South Orkney microcontinents. The Scotia and Sandwich tectonic plates form the major basin within these margins. As the basins opened, formation of first shallow sea ways and then deep ocean connections controlled the initiation and development of the Antarctic Circumpolar Current, which is widely thought to have been important in providing the climatic conditions for formation of the polar ice-sheets. The evolution of the Scotia Arc is therefore of global palaeoclimatic significance. The Scotia Arc has been the focus of increasing international research interest. Many recent studies have stressed the links and interactions between the solid Earth, oceanographic, paleoenvironmental and biological processes in the area. This special issue presents new works that summarize significant recent research results and synthesize the current state of knowledge for the Scotia Arc.

  14. Back arc extension in the Okinawa Trough

    SciTech Connect

    Sibuet, J.; Letouzey, J.; Barbier, F.; Charvet, J.; Foucher, J.; Hilde, T.W.C.; Kimura, M.; Ling-Yun, C.; Marsset, B.; Muller, C.; and others

    1987-12-10

    The Okinawa Trough, lying to the east of China, is a back arc basin formed by extension within continental lithosphere behind the Ryukyu trench-arc system. Middle to late Miocene uplift, associated with normal faulting of the initially adjacent Ryukyu nonvolcanic arc and the Taiwan-Sinzi folded belt, corresponds to the first rifting phase. The timing of rifting is supported by the presence of marine sediments of corresponding age drilled in the northern Okinawa Trough. The rifting occurred after a major early Miocene change in the motion of the Philippine plate with respect to Eurasia and ceased during the Pliocene. A second rifting phase started about 2 m.y. ago, at the Plio-Pleistocene boundary and has continue until the present time. It has proceeded to a more advanced stage in the middle and southern Okinawa Trough than it has farther north. Detailed bathymetric (Sea Beam), seismic reflection and magnetics data collected during the POP 1 cruise of the R/V Jean Charcot reveal the principal features of the extensional processes. The back are spreading phase started very recently in the southern and middle Okinawa Trough, as exemplified by several and echelon and, in some cases, overlapping active, central graben oriented N70/sup 0/ E--N80/sup 0/ E. Some of these depressions are intruded by volcanic ridges of fresh back arc basalt with associated large magnetic anomalies. Transform faults between these en echelon active rifts are not obvious.

  15. Signal Analysis of Gas Tungsten Arc Welds

    NASA Technical Reports Server (NTRS)

    Eagar, T. W.

    1985-01-01

    Gas tungsten arc welding is a process in which the input parameters such as current, voltage and travel speed, can be easily controlled and/or monitored. However, weld quality is not solely a function of these parameters. An adaptive method of observing weld quality is desired to improve weld quality assurance. The use of dynamic electrical properties of the welding arc as a weld quality monitor was studied. The electrical properties of the arc are characterized by the current voltage transfer function. The hardware and software necessary to collect the data at a maximum rate of 45 kHz and to allow the off-line processing of this data are tested. The optimum input current waveform is determined. Bead-on-plate welds to observe such characteristics of the weld as the fundamental frequency of the puddle are studied. Future work is planned to observe changes of the arc response with changes in joint geometry, base metal chemistry, and shielding gas composition are discussed.

  16. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  17. Experimental Study of the Influence of Gassing Material on Blow Open Force and Arc Motion

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui; Liu, Hongwu; Shi, Zongqian; Wang, Jianhua

    2007-12-01

    The study of arc behavior is important to understand the dynamic phenomena concerning the interruption process in a variety of switching devices. This paper is devoted to investigate the influence of gassing material on blow open force and arc motion. To one double-breaker model, measuring the arc current, voltage and force acting on the moving conductor, the characteristics of the ratio of the emerging blow open force over arc power FB/(ui) could be obtained. With the help of a 2-D optical fiber measurement system, to one arc chamber model, arc motion behavior was measured, too. It is demonstrated that, with the action of gassing material, FB/(ui) will increase 2.5 times, and the arc will enter the splitter plates much easier.

  18. Review of crustal seismicity in the Aleutian Arc and implications for arc deformation

    NASA Astrophysics Data System (ADS)

    Ruppert, Natalia A.; Kozyreva, Natalia P.; Hansen, Roger A.

    2012-02-01

    Central and eastern Aleutian Arc is characterized by oblique convergence between the subducting Pacific and overriding Bering Plates. This results in westward arc translation and formation of rotating crustal blocks in the forearc. In 2006-2010 several moderate, shallow crustal earthquakes (up to magnitude 6.7) occurred in the region. These events are located about 150 km away from the trench, on the volcanic axis, and have either strike-slip (west of 174°W) or normal (east of 174°W) faulting mechanisms. We improve aftershock locations by applying precise relocation methods to aid in identifying preferred fault planes. We also review similar earthquakes that occurred prior to 2006. For the central Aleutian Arc we conclude that, while some of these events occurred along the boundaries of the rotating blocks, the majority are left-lateral strike-slip events on NW- to N-oriented fault planes in the unrotated Bering massif. These manifest Riedel shearing in response slip partitioning due to the oblique convergence. Normal faulting events in eastern Aleutian Arc reflect along-arc extension.

  19. Volcanism in response to plate flexure.

    PubMed

    Hirano, Naoto; Takahashi, Eiichi; Yamamoto, Junji; Abe, Natsue; Ingle, Stephanie P; Kaneoka, Ichiro; Hirata, Takafumi; Kimura, Jun-Ichi; Ishii, Teruaki; Ogawa, Yujiro; Machida, Shiki; Suyehiro, Kiyoshi

    2006-09-01

    Volcanism on Earth is known to occur in three tectonic settings: divergent plate boundaries (such as mid-ocean ridges), convergent plate boundaries (such as island arcs), and hot spots. We report volcanism on the 135 million-year-old Pacific Plate not belonging to any of these categories. Small alkalic volcanoes form from small percent melts and originate in the asthenosphere, as implied by their trace element geochemistry and noble gas isotopic compositions. We propose that these small volcanoes erupt along lithospheric fractures in response to plate flexure during subduction. Minor extents of asthenospheric melting and the volcanoes' tectonic alignment and age progression in the direction opposite to that of plate motion provide evidence for the presence of a small percent melt in the asthenosphere. PMID:16873612

  20. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    USGS Publications Warehouse

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  1. Effect of Energetic Electrons on Quiet Auroral Arc Formation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-11-01

    The theory of feedback instability between the magnetosphere and ionosphere is believed as one of the candidate to explain the formation of quiet auroral arc. Then, some magneto-hydro- dynamics simulations showed the arc formation by this macroscopic instability, while the effect of auroral energetic electrons on the arc formation was neglected or given as a macroscopic parameter in these simulations. On the other hand, because of the recent development of particle simulations, auroral energetic electrons are thought to be produced by the super ion-acoustic double layer that should be created by microscopic instability. To make close investigation of auroral arc formation, it is necessary to consider the interaction with microscopic instability. In this paper, we numerically study the effect of energetic electrons on quiet auroral arc formation by means of the Macro-Micro Interlocked simulation.

  2. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  3. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  4. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-04-15

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  5. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Tominaga, Aki; Hanada, Kenji; Yoshitake, Tsuyoshi

    2015-07-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably.

  6. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  7. Active Subduction Beneath The Gibraltar Arc

    NASA Astrophysics Data System (ADS)

    Gutscher, M.-A.; Malod, J.; Rehault, J.-P.; Contrucci, I.; Klingelhoefer, F.; Spakman, W.; Sismar Scientific Team

    The Gibraltar region features the arcuate Betic - Rif mountain belt with outward di- rected thrusting, surrounding a zone of strong Neogene subsidence and crustal thin- ning in the Western Alboran Sea. Until now its geodynamic interpretation has re- mained controversial. The Gibraltar Arc is located at the eastern end of the Azores- Gibraltar transform, a diffuse transpressional plate boundary between the Iberian and African Plates. Attention has recently been focussed on this plate boundary, while seeking the likely source of the destructive Lisbon great earthquake (M 8.5 - 9) and tsunami of 1755. The SISMAR marine seismic survey conducted in April 2001 ac- quired over 3000 km of 360-channel seismic data with a 4.5 km long streamer and 1000 km of wide-angle data recorded by ocean bottom seismometers (OBS), com- pletely spanning the actively deforming region between the margins of Portugal and northwest Morocco. Results from this seismic survey reveal a thick chaotic sedimen- tary mass west of Gibraltar to be an actively deforming accretionary wedge, with east dipping thrust faults disrupting the seafloor and soleing out to an east dipping decolle- ment. New travel-time tomographic results image a continuous east dipping body with high seismic velocities (i.e. a cold slab of oceanic lithosphere) descending from the Atlantic domain of the Gulf of Cadiz, passing through intermediate depth (60 - 120 km) seismicity beneath the Gibraltar Arc and Western Alboran Sea, and merging with a region of deep focus earthquakes 600 - 660 km below Granada Spain. Together these provide compelling evidence for an active east dipping subduction zone. Slab rollback towards the west provides a plausible mechanism for extension and subsidence in the Alboran Sea, while the associated westward advance of the Gibraltar Arc drives com- pressional deformation in the accretionary wedge where active mud volcanoes have recently been discovered.

  8. Seismic Activity in Northern Izu-Bonin arc by Ocean Bottom Seismograph Observations

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Sakaguchi, H.

    2006-12-01

    The Izu-Bonin Island arc is an oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Suyehiro et al. (1996) found a thick andesitic middle crust with velocity of 6 km/s in northern Izu arc. Recent active seismic experiments in the Izu-Bonin arc show significant variations of the thickness of the middle crust along the volcanic front (Kodaira et al, 2005). The thickness of the middle crust shows an inverse correlation with the average P-wave crustal velocity and the SiO2 composition of the Quaternary volcanoes along the arc. Crustal evolution in the oceanic island arc is a process including magma evolution in the mantle wedge. To understand the nature of the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations by a temporal ocean bottom seismograph (OBS) network in northern Izu-Bonin arc between Tori-shima and Hachijo-jima (30° to 34°N) to investigate structures of the oceanic island arc crust and the mantle wedge in northern Izu-Bonin arc by seismic tomography. The OBS network consists of 40 pop-up type OBSs with a three-component short-period seismometer. The OBSs were deployed in April 2006 and retrieved in July after about 80-day observations. The OBS data were processed with seismic data recorded at island stations on Hachijo-jima and Aoga-shima. These island stations are operated by National Research Institute for Earth Science and Disaster Prevention. From the preliminary results of the hypocenters, many earthquakes were located along the subducting Pacific plate. Along the volcanic front, shallow earthquake clusters were observed around Tori-shima and Sumisu-Jima islands. Another shallow earthquake cluster was observed near a seamount of echelon chains in the back-arc region of the Izu-Bonin arc. Earthquakes in the fore-arc region show strong attenuation at OBSs in the back-arc region

  9. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  10. Control of arc length during gas metal arc welding

    SciTech Connect

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementing a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.

  11. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  12. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  13. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  14. Saturn's elusive transpolar arc

    NASA Astrophysics Data System (ADS)

    Radioti, Aikaterini; Grodent, Denis; Gérard, Jean-Claude; Milan, Steve; Fear, Robert; Jackman, Caitriona; Bonfond, Bertrand; Pryor, Wayne

    2014-05-01

    Variations of the polar auroral emissions in response to magnetic reconnection provide evidence of the mechanisms which couple solar wind mass, energy and momentum into the magnetosphere. A signature of magnetosphere-ionosphere coupling related to tail reconnection and one of the most spectacular auroral emissions at Earth is the transpolar arc or 'theta aurora'. It represents the optical emission associated with closed field lines embedded within a region of open magnetic field lines (polar cap). Here we report the discovery of a transpolar arc at Saturn from UVIS Cassini spacecraft observations. We discuss the possibility the transpolar arc at Saturn is related to tail reconnection similar to Earth and we address the role of solar wind in the magnetotail dynamics at Saturn.

  15. A highly reliable trigger for vacuum ARC plasma source

    SciTech Connect

    Bernardet, H.; Godechot, X.; Jarjat, F.

    1996-08-01

    The authors have developed a reliable electrical trigger and its associated circuitry to fire vacuum arc plasma or ion source. They tested different embodiments of the trigger device in order to get a highly reliable one, which is able to perform more than 1.2 x 10{sup 6} shots at 60 A and 6.5 ps pulse length. The evolution of the ion current emitted has been recorded as a function of the number of shots. They have also investigated in which direction the plasma jet is emitted : axially or radially. This device can be used to fire a vacuum arc plasma or ion source by plasma injection. It has obvious advantage to be placed outside the cathode and therefore would ease maintenance of vacuum arc devices.

  16. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  17. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  18. New Observational Constraints on Theories of Auroral Arc Generation

    NASA Astrophysics Data System (ADS)

    McGuffin, N.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Rankin, R.; Baker, G.; Uritsky, V. M.; Jackel, B. J.; Barnetson, K.

    2009-12-01

    We do not know how auroral arcs are formed, whether or not there are different types of arcs (meaning different underlying physics), nor what arcs correspond to in the magnetosphere. Given the ubiquity of arcs and their obvious importance to MI coupling, including specific processes such as the substorm, resolving the questions we have about arcs is one of the key objectives in space physics. We have carried out a survey of a two-year subset of the THEMIS ASI image data set. In this survey, we have classified the ~150M images in terms of viewing conditions, presence or absence of aurora, and auroral type. One of the consequences of this survey is that we have amassed what is arguably (to date) the largest set of images of auroral arcs. This set of arcs spans all auroral latitudes and magnetic local times except for a few hours around local noon. In this paper we use this auroral survey, together with the results of a similar survey of the proton aurora (from the NORSTAR Meridian Scanning Photometer array) and magnetic pulsations (published by Baker et al. [JGR, Volume 108, doi:10.1029/2002JA009801, 2003]), to elucidate some new quantitative and qualitative results including the following: 1) auroral arcs occur on field lines that are poleward of the ion isotropy boundary; 2) the orientation of arcs in geomagnetic coordinates suggest that arcs are an ionospheric projection of a gradient of some as yet unidentified magnetospheric parameter; 3) although some arcs oscillate in ways that are compellingly suggestive of their generation via field line resonances, most auroral arcs do not oscillate; 4) the magnetic local time where auroral arc occurrence peaks corresponds to a minimum in the occurrence of Pc5 pulsations and field line resonances. We will conclude with a discussion of the implications of these results for models of auroral arc generation. MLT occurrence distributions of arcs (gray histogram) and FLRs in the Pc5 spectral band (transparent histogram with dark

  19. Across-arc variation of Magma Composition in Central Sunda Arc, Indonesia: A test of slab influence to mantle source

    NASA Astrophysics Data System (ADS)

    Wibowo, H.; Hasenaka, T.; Handini, E.; Harijoko, A.

    2011-12-01

    Sunda arc, a part of Pacific ring of fire, extends from West Java to Flores. The arc developed since Tertiary period at a convergent tectonic plate margin, where India-Australian plate is subducted northward beneath Eurasian plate. Central Sunda Arc (CSA) is represented by a series of Quartenary volcanoes from the fore arc toward the back arc including Merapi, Merbabu, Telomoyo, Ungaran and Muria. Estimated depth of Wadati-Benioff zone beneath CSA ranges from 190 km for Merapi to 350 km for Muria. Field works have been conducted for brief geologic observation and rock sample collection from Merbabu, Telomoyo, Muria, including Genuk on the north and Patiayam on the south of Muria. Data from Merapi is compiled from previous studies. X-Ray Fluorescence, Prompt Gamma Ray and Instrumental Neutron Activation Analyses were used to obtain whole rock compositions. Previously reported trace element of Altered Oceanic Crust (AOC) and Indian Ocean sediment are employed to estimate the derived fluid composition, by considering mobility of the elements and assuming 1.5% weight fraction of hydrous fluid extracted from them. By applying subduction component elements, we tried to estimate the slab influence to mantle source in magma genesis of CSA. High Al2O3 (~18 wt%), low Cr (~29 ppm) and Ni (~27 ppm) of the volcanic rocks characterize CSA. K2O content increases gradually with the depth of Benioff zone from each volcano. Most samples from Merapi, Merbabu, Telomoyo and Ungaran are classified as subalkaline, whereas Muria samples fall on both alkaline and subalkaline fields. In detail, Merapi samples could be divided into medium-K and high-K, Merbabu medium-K, Telomoyo and Ungaran high-K, and Muria samples range from high-K to shosonitic. We only selected unfractionated lavas to avoid assimilation, including basalt, basaltic andesite, basanite, and trachy basaltic andesite. We also exclude samples with hornblende, micas, and K-feldspar to avoid boron fractionation and assimilation

  20. Zinc recovery by ultrasound acid leaching of double kiln treated electric arc furnace dust

    SciTech Connect

    Barrera Godinez, J.A.

    1989-01-01

    The need to convert 70,000 tons a year of electric arc furnace (EAF) dust into an environmentally safe or recyclable product has encouraged studies to reclaim zinc from this waste material. Successful characterization of a double-kiln calcine, produced from EAF dust, has shown that the calcine pellets consisted mainly of zinc oxide plates with some iron oxide particles. Preliminary leaching tests using hydrochloric and sulfuric acids indicated that this calcine is suitable for selective ultrasound leaching of zinc. A factorially designed screening test using hydrochloric acid showed that ultrasound significantly lowered iron dissolution and increased zinc dissolution, thus enhancing the selective leaching of zinc. Ultrasound, temperature, air bubbling rate and acidity increased the sulfuric acid selectivity, while fluorosilicic acid was not selective. Reactor characterization through ultrasonic field measurements led to the selection of reactor and ultrasound bath, which were utilized to enhance the selectivity of a laboratory scale sulfuric acid leaching of a double-kiln treated electric arc furnace dust. Results indicated that ultrasonic leaching of this calcine is a satisfactory technique to selectively separate zinc from iron. After further iron removal by precipitation and cementation of nickel, it was possible to electrowin zinc from the leach liquor under common industrial conditions, with current efficiencies from 86% through 92% being observed. Calcine washing showed that a substantial chloride removal is possible, but fluoride ion in the electrolyte caused deposit sticking during electrowinning.

  1. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Mo, J. L.; Zhu, M. H.

    2009-06-01

    CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure P, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with P of 0.1 Pa, Vs of -100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.

  2. Evolution of the Mariana Convergent Plate Margin System

    NASA Astrophysics Data System (ADS)

    Fryer, Patricia

    1996-02-01

    The Mariana convergent plate margin system of the western Pacific provides opportunities for studying the tectonic and geochemical processes of intraoceanic plate subduction without the added complexities of continental geology. The system's relative geologic simplicity and the well-exposed sections of lithosphere in each of its tectonic provinces permit in situ examination of processes critical to understanding subduction tectonics. Its general history provides analogs to ancient convergent margin terranes exposed on land and helps to explain the chemical mass balance in convergent plate margins. The Mariana convergent margin's long history of sequential formation of volcanic arcs and extensional back arc basins has created a series of volcanic arcs at the eastern edge of the Philippine Sea plate. The trenchward edge of the overriding plate has a relatively sparse sediment cover. Rocks outcropping on the trench's inner slope are typical of the early formed suprasubduction zone's lithosphere and have been subjected to various processes related to its tectonic history. Pervasive forearc faulting has exposed crust and upper mantle lithosphere. Many large serpentinized peridotite seamounts are within 100 km of the trench axis. From these we can learn the history of regional metamorphism and observe and sample active venting of slab fluids. Ocean drilling recovered suprasubduction zone lava sequences erupted since the Eocene that suggest that the forearc region remains volcanologically dynamic. Seismic studies and seafloor mapping show evidence of deformation throughout forearc evolution. Large portions of uplifted southern forearc are exposed at the larger islands. Active volcanoes at the base of the eastern boundary fault of the Mariana Trough vary in size and composition along strike and record regional differences in source composition. Their locations along strike of the arc are controlled in part by cross-arc structures that also facilitate formation of submarine

  3. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  4. Variation in forearc basin development along the Sunda Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    van der Werff, W.

    The present forearc basin configuration along the Sunda Arc initially appears to have been controlled by extension and differential subsidence of basement blocks in response to the late Eocene collision of India with Asia. The late Oligocene increase in convergence between the South-east Asian and Indian Plates associated with a new pulse of subduction, resulted in basement uplift and the formation of a regional unconformity that can be recognized along the entire Sunda Arc. From the early to late Miocene, the Sumba and Savu forearc sectors along the eastern Sunda Arc may have been characterized by forearc extension. Submarine fan deposition on the arcward side of the evolving accretionary prism represents the first phase in forearc basin deposition. These fans were subsequently covered by basin and slope sediments derived from the evolving magmatic arc. Structural response to increased late Miocene compression varied along strike of the Sunda Arc. North of Bali, Lombok and Sumbawa, the incipient collision between Australia and the western Banda Arc caused back-arc thrusting and basin inversion. Towards the south of Java, an increase in both the size of the accretionary prism and convergence rates resulted in uplift and large scale folding of the outer forearc basin strata. Along the west coast of Sumatra, increased compression resulted in uplift along the inner side of the forearc along older transcurrent faults. Uplift of West Sumatra was followed by the deposition of a westward prograding sequence of terrigenous sediments that resulted in the development of a broad shelf. Initial forearc basin subsidence relates to the age of the subducting oceanic lithosphere, on top of which the basin is situated. Along the western Sunda Arc, both fexural loading of the evolving accretionary prism, and across arc strike-slip faulting represent additional factors that result in forearc subsidence.

  5. Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village.

    PubMed

    Tian, Lei; Chen, Xiao Dong; Yang, Qian Peng; Chen, Jin Chun; Shi, Lin; Li, Qiong

    2012-06-01

    Heat pump systems using treated sewage water as the heat source were used in the Beijing Olympic Village for domestic heating and cooling. However, considerable biofouling occurred in the plate heat exchangers used in the heat pump system, greatly limiting the system efficiency. This study investigates the biofouling characteristics using a plate heat exchanger in parallel with a flow cell system to focus on the effect of calcium ions on the biofilm development. The interactions between the microorganisms and Ca(2+) enhances both the extent and the rate of biofilm development with increasing Ca(2+) concentration, leading to increased heat transfer and flow resistances. Three stages of biofouling development were identified in the presence of Ca(2+) from different biofouling mass growth rates with an initial stage, a rapid growth stage and an extended growth stage. Each growth stage had different biofouling morphologies influenced by the Ca(2+) concentration. The effects of Ca(2+) on the biofouling heat transfer and flow resistances had a synergistic effect related to both the biofouling mass and the morphology. The effect of Ca(2+) on the biofouling development was most prominent during the rapid growth stage. PMID:22391321

  6. Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village.

    PubMed

    Tian, Lei; Chen, Xiao Dong; Yang, Qian Peng; Chen, Jin Chun; Shi, Lin; Li, Qiong

    2012-06-01

    Heat pump systems using treated sewage water as the heat source were used in the Beijing Olympic Village for domestic heating and cooling. However, considerable biofouling occurred in the plate heat exchangers used in the heat pump system, greatly limiting the system efficiency. This study investigates the biofouling characteristics using a plate heat exchanger in parallel with a flow cell system to focus on the effect of calcium ions on the biofilm development. The interactions between the microorganisms and Ca(2+) enhances both the extent and the rate of biofilm development with increasing Ca(2+) concentration, leading to increased heat transfer and flow resistances. Three stages of biofouling development were identified in the presence of Ca(2+) from different biofouling mass growth rates with an initial stage, a rapid growth stage and an extended growth stage. Each growth stage had different biofouling morphologies influenced by the Ca(2+) concentration. The effects of Ca(2+) on the biofouling heat transfer and flow resistances had a synergistic effect related to both the biofouling mass and the morphology. The effect of Ca(2+) on the biofouling development was most prominent during the rapid growth stage.

  7. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  8. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  9. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  10. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc.

    PubMed

    Timm, Christian; Davy, Bryan; Haase, Karsten; Hoernle, Kaj A; Graham, Ian J; de Ronde, Cornel E J; Woodhead, Jon; Bassett, Dan; Hauff, Folkmar; Mortimer, Nick; Seebeck, Hannu C; Wysoczanski, Richard J; Caratori-Tontini, Fabio; Gamble, John A

    2014-09-17

    Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of ~32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau-Kermadec arc collision ~250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant 'Hikurangi' mélange beneath the Moho that interacts with ascending arc melts.

  11. Metal vapor plasma behavior during vacuum arc remelting of alloy 718

    SciTech Connect

    Zanner, F.J.; Maguire, M.C.; Williamson, R.L. ); Adasczik, C.B. ); Roberts, R.R. ); Strohecker, R. )

    1992-01-01

    A production vacuum arc remelt (VAR) furnace was modified to enable direct viewing of the metal vapor arc and molten electrode tip during melting of 432 mm dia. alloy 718 electrodes into 508 mm dia. ingots. Diffuse and constricted arcing conditions were characterized using high speed cinematography, standard video format, and monochromatic imaging. Constricted arcing was observed while melting electrodes contaminated with oxide slag of the type used for refractory linings in vacuum induction furnaces. Monochromatic imaging was used in visualize the ion distribution in the arc plasma; these images clearly showed whether the arc operated in a diffuse or constricted model. Diffuse arc melting conditions were very similar to those previously reported in the literature for smaller laboratory sized melts.

  12. Metal vapor plasma behavior during vacuum arc remelting of alloy 718

    SciTech Connect

    Zanner, F.J.; Maguire, M.C.; Williamson, R.L.; Adasczik, C.B.; Roberts, R.R.; Strohecker, R.

    1992-05-01

    A production vacuum arc remelt (VAR) furnace was modified to enable direct viewing of the metal vapor arc and molten electrode tip during melting of 432 mm dia. alloy 718 electrodes into 508 mm dia. ingots. Diffuse and constricted arcing conditions were characterized using high speed cinematography, standard video format, and monochromatic imaging. Constricted arcing was observed while melting electrodes contaminated with oxide slag of the type used for refractory linings in vacuum induction furnaces. Monochromatic imaging was used in visualize the ion distribution in the arc plasma; these images clearly showed whether the arc operated in a diffuse or constricted model. Diffuse arc melting conditions were very similar to those previously reported in the literature for smaller laboratory sized melts.

  13. Seismological constraints and speculations on Banda arc tectonics

    NASA Astrophysics Data System (ADS)

    McCaffrey, Robert

    Fault plane solutions of shallow earthquakes show that the collision of the Australian continent with the Banda Arc shortens the overriding Indonesian plate in the north-south direction and elongates it in the east-west direction by a combination of strike-slip and thrust faulting. The shallow tectonics and the distribution of deep earthquakes beneath the Banda Basin both indicate that two plates subduct beneath the Banda Arc; the Australia-Indian Ocean plate northward beneath the Java Trench, Timor Trough, and Aru Troughs, and the Bird's Head southwestward beneath the Seram Trough. The slab of the Indian Ocean plate forms a westward plunging synform beneath the Banda Basin. Its unusual shape in interpreted to have been caused by subduction beneath the westward moving Pacific plate which transported slivers of New Guinea into the back arc. The lithosphere of the Bird's Head was subducted beneath the Seram Trough and now reaches 300 km depth. At the surface decoupling between Australian and the Bird's Head probably occurs by left-lateral strike slip at the Tarera-Aiduna fault zone in western Irian Jaya and by convergence in the New Guinea fold-and-thrust belt. Seismic quiescence occurs at depths of 50 to 380 km beneath both Timor and the inactive volcanic arc to its north but the efficient propagation of S-waves through the same volume suggests that the lithospheric slab is continuous there. The lack of seismic and volcanic activity may result from removal of part of the Australian continental crust prior to subduction of the lower part of the lithosphere. This crust was stacked up to form the island of Timor.

  14. Anatomy of Intra-Oceanic Arc Systems

    NASA Astrophysics Data System (ADS)

    Stern, R. J.

    2004-12-01

    Intra-oceanic arc systems (IOAS) are ultimately embedded in orogenic belts and added to the continental crust. Reconstructing fossil IOASs in collision zones requires understanding the salient features of a typical IOAS. IOASs have the relative dimensions of tagliatelle (flat) pasta: much wider (~250 km) than thick (10-30 km), much longer (1000's of km) than wide. IOASs begin to form when subduction begins, either spontaneously (SNSZ) or by forced convergence (INSZ). For SNSZ, IOASs start as broad zones of seafloor spreading associated with subsidence of the adjacent lithosphere, whereas INSZ IOASs are built on trapped crust. IOAS magmatism manifests the evolution of its subduction zone and indirectly the breadth of the subducted ocean. Two stages in SNSZ IOAS magmato-tectonic evolution exist: infancy and maturity. Infancy lasts 5-10 Ma and results in broad zones of seafloor spreading of tholeiite/boninite; this becomes forearc for the mature IOAS and is emplaced as ophiolite during collision (subduction zone failure). Arc maturity begins with true subduction, as the subducted slab reaches depths ~130 km, focusing magmatism to begin building the magmatic arc ~200km away from the trench and allowing the forearc to cool and hydrate. Mature magmatic arcs mostly yield low-K tholeiitic and medium-K calc-alkaline magmas. Magmatic focusing begins crustal thickening beneath the magmatic arc, at ~500m/Ma for the Izu-Bonin-Mariana IOAS. No systematic compositional evolution to more LIL-enriched primitive magmas occurs once IOAS maturity is reached, except when upper plate stress regime (BAB formation, strike- slip faulting) or the nature of subducted material (more/different sediments, young oceanic crust) changes. Thickening is accompanied by processing of crust beneath the magmatic arc, with progressive differentiation into upper volcanic, middle tonalitic, and lower mafic layers, producing an increasingly effective density filter for magma ascent. Crustal layer formation

  15. Anatomy of Intra-Oceanic Arc Systems

    NASA Astrophysics Data System (ADS)

    Stern, R. J.

    2007-12-01

    Intra-oceanic arc systems (IOAS) are ultimately embedded in orogenic belts and added to the continental crust. Reconstructing fossil IOASs in collision zones requires understanding the salient features of a typical IOAS. IOASs have the relative dimensions of tagliatelle (flat) pasta: much wider (~250 km) than thick (10-30 km), much longer (1000's of km) than wide. IOASs begin to form when subduction begins, either spontaneously (SNSZ) or by forced convergence (INSZ). For SNSZ, IOASs start as broad zones of seafloor spreading associated with subsidence of the adjacent lithosphere, whereas INSZ IOASs are built on trapped crust. IOAS magmatism manifests the evolution of its subduction zone and indirectly the breadth of the subducted ocean. Two stages in SNSZ IOAS magmato-tectonic evolution exist: infancy and maturity. Infancy lasts 5-10 Ma and results in broad zones of seafloor spreading of tholeiite/boninite; this becomes forearc for the mature IOAS and is emplaced as ophiolite during collision (subduction zone failure). Arc maturity begins with true subduction, as the subducted slab reaches depths ~130 km, focusing magmatism to begin building the magmatic arc ~200km away from the trench and allowing the forearc to cool and hydrate. Mature magmatic arcs mostly yield low-K tholeiitic and medium-K calc-alkaline magmas. Magmatic focusing begins crustal thickening beneath the magmatic arc, at ~500m/Ma for the Izu-Bonin-Mariana IOAS. No systematic compositional evolution to more LIL-enriched primitive magmas occurs once IOAS maturity is reached, except when upper plate stress regime (BAB formation, strike- slip faulting) or the nature of subducted material (more/different sediments, young oceanic crust) changes. Thickening is accompanied by processing of crust beneath the magmatic arc, with progressive differentiation into upper volcanic, middle tonalitic, and lower mafic layers, producing an increasingly effective density filter for magma ascent. Crustal layer formation

  16. Systematic variation in the depths of slabs beneath arc volcanoes

    USGS Publications Warehouse

    England, P.; Engdahl, R.; Thatcher, W.

    2004-01-01

    The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.

  17. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Saleeby, Jason B.; Bergantz, George

    2015-05-01

    Continental magmatic arcs form above subduction zones where the upper plate is continental lithosphere and/or accreted transitional lithosphere. The best-studied examples are found along the western margin of the Americas. They are Earth's largest sites of intermediate magmatism. They are long lived (tens to hundreds of millions of years) and spatially complex; their location migrates laterally due to a host of tectonic causes. Episodes of crustal and lithospheric thickening alternating with periods of root foundering produce cyclic vertical changes in arcs. The average plutonic and volcanic rocks in these arcs straddle the compositional boundary between an andesite and a dacite, very similar to that of continental crust; about half of that comes from newly added mafic material from the mantle. Arc products of the upper crust differentiated from deep crustal (>40 km) residual materials, which are unstable in the lithosphere. Continental arcs evolve into stable continental masses over time; trace elemental budgets, however, present challenges to the concept that Phanerozoic arcs are the main factories of continental crust.

  18. Update on plasma arc centrifugal treatment

    SciTech Connect

    Haun, R.E.; Paulson, W.S.; Eschenbach, R.C.

    1996-12-31

    Over the last eight years, Retech has developed a plasma-powered system for destroying organics and stabilizing metal oxides in a non-leaching slag. The system, termed Plasma Arc Centrifugal Treatment (PACT), can handle a variety of waste streams such as contaminated soils, sludges, ion-exchange resins, incinerator bottom and fly-ash and drummed waste among others. This paper will review recent commercial applications of the technology. Three Plasma Arc Centrifugal Treatment systems having an eight-foot diameter centrifuge (PACT-8) are in the construction phase. One will be used in the Lockheed Environmental Systems and Technologies (LESAT) system for remediating Pit 9 at the Idaho National Engineering Lab (INEL). A second unit will be located at the Retech plant in Ukiah, California. The third unit will be located at a site in Munster, Germany.

  19. A pulsed cathodic arc spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Neumann, P. R. C.; Bilek, M. M. M.; Tarrant, R. N.; McKenzie, D. R.

    2009-11-01

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>104 m s-1), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  20. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  1. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  2. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    USGS Publications Warehouse

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  3. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  4. Back-arc strain in subduction zones: Statistical observations versus numerical modeling

    NASA Astrophysics Data System (ADS)

    Arcay, D.; Lallemand, S.; Doin, M.-P.

    2008-05-01

    Recent statistical analysis by Lallemand et al. (2008) of subduction zone parameters revealed that the back-arc deformation mode depends on the combination between the subducting (vsub) and upper (vup) plate velocities. No significant strain is recorded in the arc area if plate kinematics verifies vup = 0.5 vsub - 2.3 (cm/a) in the HS3 reference frame. Arc spreading (shortening) occurs if vup is greater (lower) than the preceding relationship. We test this statistical law with numerical models of subduction, by applying constant plate velocities far away from the subduction zone. The subducting lithosphere is free to deform at all depths. We quantify the force applied on the two converging plates to sustain constant surface velocities. The simulated rheology combined viscous (non-Newtonian) and brittle behaviors, and depends on water content. The influence of subduction rate vs is first studied for a fixed upper plate. After 950 km of convergence (steady state slab pull), the transition from extensional to compressive stresses in the upper plate occurs for vs ˜ 1.4 cm/a. The effect of upper plate velocity is then tested at constant subduction rate. Upper plate retreat (advance) with respect to the trench increases extension (compression) in the arc lithosphere and increases (decreases) the subducting plate dip. Our modeling confirms the statistical kinematic relationship between vsub and vup that describes the transition from extensional to compressive stresses in the arc lithosphere, even if the modeled law is shifted toward higher rates of upper plate retreat, using our set of physical parameters (e.g., 100 km thick subducting oceanic plate) and short-term simulations. Our results make valid the choice of the HS3 reference frame for assessing plate velocity influence on arc tectonic regime. The subduction model suggests that friction along the interplate contact and the mantle Stokes reaction could be the two main forces competing against slab pull for upper

  5. Simple filtered repetitively pulsed vacuum arc plasma source

    SciTech Connect

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-15

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10{sup -2} mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  6. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    NASA Astrophysics Data System (ADS)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  7. Semicircular Rashba arc spin polarizer

    SciTech Connect

    Bin Siu, Zhuo; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  8. Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Risthaus, Tim; Wang, Jun; Friesen, Alex; Wilken, Andrea; Berghus, Debbie; Winter, Martin; Li, Jie

    2015-10-01

    Spinel LiNi0.5Mn1.5O4 material has been synthesized by a spray drying process and subsequent solid state reaction. Polyvinylpyrrolidone (PVP) is given as additive to the spray drying precursor solution and its effects on structural and electrochemical properties are evaluated. By using PVP in the synthesis process, the obtained sample displays a secondary plate morphology which is consisting of densely arranged primary octahedrally shaped particles. The new cathode material has a lesser degree of impurity phases, a higher discharge capacity, a superior rate capability, and a slightly better cycling performance than the sample synthesized without PVP. In more detail, by the use of PVP the ratio of Mn3+ to Mn4+ in the final product decreases from 20.8 to 9.2%. The initial discharge capacity at 0.1 C exhibits an increase of about 14%. The normalized capacity at 20 C is 84.1% instead of 67.0%. A slightly improved cycling performance with the capacity retention increase from 93.8 to 97.9% could be observed as well.

  9. Quartenary Gede Salak volcanic complex, Banten area, at the junction between Sumatra arc and Java arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Kurniawan, I.; Hasenaka, T.; Suparka, E.

    2011-12-01

    Pleistocene Gede Salak volcanic complex is located at Banten, northwestern edge of Java island (NWJ), forming a part of Sunda arc. The volcanism is associated with the subduction of the India-Australia plate beneath Eurasian plate at the rate of 7 cm/y. This volcanic complex consists of Gede, Salak, Batur and Wadas volcanoes. To southeast is located Pinang volcano, and to south is volcanic complex of Rawa Dano. These volcanoes are located near Sunda Strait, a transitional zone between Java arc and Sumatera arc where oblique subduction is observed. The distance of all these volcanoes from Java trench varies from 250 km to 300 km. This study is the first geochemical study of volcanic rocks characterizing across-arc variation of Java-Sumatra junction. Gede Salak volcanic complex consists of pyroclastic flow deposits in the western part and lava flows in the eastern part. The later development of dome Wadas formation is probably associated with fault structures trending northwest to southeast. Pinang volcano mainly consists of basaltic lavas. Rawa Dano volcanic complex consists of two caldera, Anyer caldera and Dano caldera, which produced large amount of volcanic tuff called Tufa Banten. Samples from this volcanic complex include basaltic to trachytic rocks, in the range of medium-K to high-K. MgO content is less than 3 %. Elements of Rb, Zr, Ce, and La increase with increasing SiO2. Chondrite-normalized REE patterns are similar to those of island arc basalts. When compared to volcanic samples from western Java volcanoes (WJ), REE pattern is similar to those from back-arc volcanoes. Gede Salak volcano is slightly enriched in the subduction component, as illustrated by the low Nb/Zr and elevated Ba/Zr ratios. B/Nb and B/Zr ratios are in the range of 1.5 - 5.4 and 0.03 - 0.10 respectively, which are higher than those of the back arc volcano in central Java (CJ), but lower than those of the frontal volcanoes there. Across arc variation of NWJ including GSVC, Pinang and

  10. Subduction initiation adjacent to a relic island arc

    NASA Astrophysics Data System (ADS)

    Leng, W.; Gurnis, M.

    2013-12-01

    Although plate tectonics is well established, how subduction initiates over tectonic history has remained obscure. It has been proposed that passive margins may be a possible place for subduction initiation, but there is no obvious Cenozoic example of such a scenario, including along the passive margins of the Atlantic Ocean. With a computational method that follows the deformation of a visco-elasto-plastic medium, here we show that a favourable locale for subduction initiation is the juxtaposition of an old oceanic plate adjacent to a young, but relic arc. Significant density anomalies leading to subduction initiation arise from two major factors. One is the compositional difference between the relic arc crust and the oceanic lithospheric mantle; the other is the thermal difference due to the age offset between the two plates. With such a setup, we observe spontaneous subduction initiation if the oceanic crust is significantly weakened by pore fluid pressure. If the oceanic crust is relatively strong, a small amount of plate convergence is required to induce subduction. The evidence that Izu-Bonin-Mariana and Tonga-Kermedec subduction zones both initiate adjacent to a relic island arc support our conclusions. The initiation of both subduction zones at 51-52 Ma with commensurate compression on their respective overriding plates support a causal link between both subduction initiation events through a change in Pacific Plate motion. Our results provide an explanation for the rarity of subduction initiation at the passive margins. The continental lithosphere is typically old and cold. Consequently, the thermal effects cancel the compositional buoyancy contrast between the continental crust and the oceanic lithospheric mantle, making subduction initiation difficult at passive margins.

  11. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  12. Properties of vaccum arc deposited amorphous hard carbon films

    SciTech Connect

    Anders, S.; Anders, A.; Raoux, S.

    1995-12-31

    Amorphous hard carbon films formed by vacuum arc deposition are, hydrogen-free, dense, and very hard. The properties of amorphous hard carbon films depend strongly on the energy of the incident ions. A technique which is called Plasma Immersion Ion Implantation can be applied to vacuum arc deposition of amorphous hard carbon films to influence the ion energy. We have studied the influence of the ion energy on the elastic modulus determined by an ultrasonic method, and have measured the optical gap for films with the highest sp{sup 3} content we have obtained so far with this deposition technique. The results show an elastic modulus close to that of diamond, and an optical gap of 2.1 eV which is much greater than for amorphous hard carbon films deposited by other techniques.

  13. Properties of vacuum arc deposited amorphous hard carbon films

    SciTech Connect

    Anders, S.; Anders, A.; Raoux, S.

    1995-04-01

    Amorphous hard carbon films formed by vacuum arc deposition are hydrogen-free, dense, and very hard. The properties of amorphous hard carbon films depend strongly on the energy of the incident ions. A technique which is called Plasma Immersion Ion Implantation can be applied to vacuum arc deposition of amorphous hard carbon films to influence the ion energy. The authors have studied the influence of the ion energy on the elastic modulus determined by an ultrasonic method, and have measured the optical gap for films with the highest sp{sup 3} content they have obtained so far with this deposition technique. The results show an elastic modulus close to that of diamond, and an optical gap of 2.1 eV which is much greater than for amorphous hard carbon films deposited by other techniques.

  14. Caribbean plate tectonics from seismic tomography

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Villasenor, A.

    2012-12-01

    New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.

  15. Slip partitioning in the Lesser Antilles arc: implications for seismic and volcanic hazards

    NASA Astrophysics Data System (ADS)

    Feuillet, N.; Leclerc, F.; Deplus, C.; Tapponnier, P.; Beauducel, F.; Jacques, E.; Beck, C.; Le Friant, A.; Boudon, G.; LeBrun, J.; Bazin, S.

    2012-12-01

    The Lesser Antilles arc is a region of high seismic and volcanic hazards exposed to large megathrust earthquakes along the subduction zone, to more local events within the arc and to destructive eruptions as in 1902 at Mount Pelee or in 1995 at Soufriere Hills of Montserrat. On November 21, 2004, the Guadeloupe archipelago was struck by a magnitude 6.3 superficial and very damaging earthquake. To better constrain the mechanisms of the recent deformation within the arc and its link with volcanic activity, several marine cruises were conducted since 1998 (AGUADOMAR, GWADASEIS and BATHYSAINTES). A lot of high-resolution data were acquired: Bathymetry, back-scatter images, Küllenberg cores, seismic reflection and chirp profiles. By combining them with onshore data, observations and measurements in the field, we have documented at several scales the active faulting between St Lucia and Saba, the northernmost emerged volcano of the arc. We have shown that the Lesser Antilles arc is crosscut by two main fault sets: arc perpendicular graben in the outer arc and a large en echelon system along the inner active arc. Volcanic complexes are crosscut by or emplaced within fault systems implying that faulting controls the emission of volcanic products. The Nevis volcano is growing on the hanging-wall of a large NE-dipping offshore normal fault probably responsible for the M6+ 1961 earthquake. Montserrat volcanic domes are aligned along a fissure set, parallel to large normal faults and Soufriere of Guadeloupe lies at the western tip of the Marie-Galante graben. At plate scale, the arc perpendicular fore arc graben and inner arc en echelon system are connected, forming a sinistral horsetail, east of the tip of the left lateral Puerto Rico fault zone that takes up the trench parallel component of convergence between the North American and Caribbean plates, west of the Anegada passage. Considering the newly published Caribbean North American Euler vector, the trench parallel

  16. Eastern Aleutian volcanic arc digital model - version 1.0

    USGS Publications Warehouse

    Saltus, R.W.; Barnett, Adrienne

    2000-01-01

    A 3-dimensional model (Figure 1) of the interaction of oceanic and continental tectonic plates along the eastern portion of the Aleutian volcanic arc helps in the visualization of basic tectonic, geodetic, and geophysical data in this active plate boundary region. The model is constrained by topographic, bathymetric, and seismic data and by the principle of isostasy. Examination of free-air gravity anomalies over the region indicates where the flexural strength of the down-going oceanic slab disturbs local isostatic balance and where low-density sediments have accumulated in the trench and forearc regions.

  17. Circuit model of surface arcing

    SciTech Connect

    Robiscoe, R.T.; Sui, Z.

    1988-11-01

    An electrical breakdown on a highly charged dielectric surface can result in a discharge along the surface, i.e., a flashover arc. We construct a simple circuit model for such an arc: the discharge of a capacitor C (related to the initial charged area) through a series inductor L and resistor R (related to the arc considered as a plasma). The arc current assumes a very simple form over most of its dynamic range, and such measured arc quantities as total charge transport, pulse width, peak current, and rise time are easily calculated. Moreover, straightforward a priori estimates of C, L, and R values give calculated arc quantities in good agreement with observation, for both typical magnitudes and areal scaling. We also analyze the effect on areal scaling of allowing the arc resistance R to ''switch'' during the evolution of the arc, from a small value characteristic of the arc plasma to a large value characteristic of the dielectric surface. Finally, we consider some aspects of the electromagnetic radiation generated by the arc.

  18. Volcano spacing and plate rigidity

    SciTech Connect

    Brink, U. )

    1991-04-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  19. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  20. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  1. Plate Tectonics: From Initiation of Subduction to Global Plate Motions (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gurnis, Michael

    2013-04-01

    Plates are driven by buoyancy forces distributed in the mantle, within cooling oceanic plates (ridge push) and within subducted slabs. Although the case is often made that subducted slabs provide the principle driving force on plate motion, consensus has not been achieved. This is at least partially due to the great difficulty in realistically capturing the role of slabs in observationally-constrained models as slabs act to drive and resist plate motions through their high effective viscosity. Slab buoyancy acts directly on the edge of the plate (slab pull), while inducing mantle flow that tends to drag both subducting and overriding plates toward the trench. While plates bend during subduction they undergo a form of 'plastic failure' (as evident through faulting, seismicity and reduction of flexural parameters at the outer trench wall). The birth of a new subduction zone, subduction initiation, provides important insight into plate motions and subduction dynamics. About half of all subduction zones initiated over the Cenozoic and the geophysical and geological observations of them provide first order constraints on the mechanics of how these margins evolved from their preexisting tectonic state to self-sustaining subduction. We have examples of subduction initiation at different phases of the initiation process (e.g. early versus late) as well as how margins have responded to different tectonic forcings. The consequences of subduction initiation are variable: intense trench roll back and extensive boninitic volcanism followed initiation of the Izu-Bonin-Mariana arc while both were absent during Aleutian arc initiation. Such differences may be related to the character of the preexisting plates, the size of and forces on the plates, and how the lithosphere was initially bending during initiation. I will address issues associated with the forces driving plate tectonics and initiating new subduction zones from two perspectives. A common thread is the origin and

  2. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  3. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-08-19

    A novel ion source is described for use in a calutron which has the prime adwantage of reducing the nunnber of unwanted ions in the ion generating mechamism.An important feature of the invention resides In an arc chamber having a lining of the polyisotopic material to be treated In the calutron and bombardment of the linirg with positive ions of a light gas to induce sputtering and ionization of the lining. With the reduction of unwanted ions in the source beam provided by the described source, the calutron operation may be more accurately controlled.

  4. Seismological, Geological and Geomorphic Aspects of Arc Segmentation and Their Relation to Subducting Bathymetric Features in the Solomon Island Arc, SW Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chen, M.; Frohlich, C.; Taylor, F. W.

    2006-12-01

    Arc segmentation partitions forearcs into multiple blocks so that the forearc behaves like a "keyboard on a piano" as each segment potentially interacts with the downgoing plate in a different tectonic style. For example, parts of the forearc of the Solomon Islands arc has undergone hundreds of meters of rapid subsidence and uplift during late Quaternary time. Other parts have undergone only minor late Quaternary movements. We use seismology, geology, and geomorphology to identify arc segments in order to evaluate how bathymetric features on the subducting plate influence seismicity and active tectonics and cause overriding plate segmentation. Seismic rupture areas for large earthquakes, seismicity patterns, seismicity cross sections, focal mechanisms, and seismic moment calculations all reveal that the central arc being underthrust by the Woodlark Basin system of active sea-floor spreading is very different from the northwest and southeast parts of the arc. Woodlark subduction is characterized by sparse seismicity, gentle subduction angle, and thrust faulting with some normal and strike-slip components. Observations from geologic maps, coastal geomorphology, and emerged coral reefs show that the arc segments are undergoing varying amounts and rates of uplift and submergence. Larger islands such as Guadalcanal and San Cristobal have both drowning and emerging coastlines. This information indicates the individual segments have dramatically different histories of vertical tectonics. We identify three supersegments: Bougainville, New Georgia, and Guadalcanal-San Cristobal. Smaller segments subdivide each supersegment. Thus we identify nine major boundaries, seven minor boundaries, and six possible boundaries. The classification of each boundary depends on the strength of evidence supporting its existence and the amount of change in tectonic behavior across the boundary. We speculate that subduction of the young Woodlark Spreading Center with seamounts and ridges on

  5. ION SOURCE FOR A CALUTRON

    DOEpatents

    Lofgren, E.J.

    1959-04-14

    This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.

  6. ION SOURCE UNIT FOR CALUTRON

    DOEpatents

    Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.

    1959-04-14

    An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.

  7. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  8. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  9. ION SOURCE FOR A CALUTRON

    DOEpatents

    Backus, J.G.

    1957-12-24

    This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

  10. Modeling the role of back-arc spreading in controlling 3-D circulation and temperature patterns in subduction zones

    NASA Astrophysics Data System (ADS)

    Kincaid, C.

    2005-12-01

    Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs

  11. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  12. Joan of Arc.

    PubMed

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization. PMID:1743152

  13. Arcing on dc power systems

    NASA Technical Reports Server (NTRS)

    Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.

    1992-01-01

    Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.

  14. First E-region observations of meso-scale neutral wind interaction with auroral arcs

    NASA Astrophysics Data System (ADS)

    Kosch, M.; Anderson, C.; Makarevitch, R.; Carter, B.; Fiori, R. A.; Conde, M. G.; Dyson, P. L.; Davies, T.

    2009-12-01

    We report the first observations of E-region neutral wind fields and their interaction with auroral arcs at meso-scale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E-region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ~50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward ion convection. The wind rotations occurred within 7-16 min. In another case, as an auroral arc propagated from the horizon toward the local zenith, the background E-region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modelling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be greatly enhanced ion drag associated with the increased plasma density and localised ionospheric electric field associated with auroral arcs. In all cases, the F-region neutral wind appeared only slightly affected by the auroral arc, although its presence is clear in the data.

  15. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  16. Surface deformation and slab-mantle interaction during Banda arc subduction rollback

    NASA Astrophysics Data System (ADS)

    Spakman, Wim; Hall, Robert

    2010-08-01

    The spectacularly curved Banda arc comprises young oceanic crust enclosed by a volcanic inner arc, outer arc islands and a trough parallel to the Australian continental margin. Strong seismic activity in the upper mantle defines a folded surface, for which there are two contrasting explanations: deformation of a single slab or two separate slabs subducting from the north and south. Here we combine seismic tomography with the plate tectonic evolution of the region to infer that the Banda arc results from subduction of a single slab. Our palaeogeographic reconstruction shows that a Jurassic embayment, which consisted of dense oceanic lithosphere enclosed by continental crust, once existed within the Australian plate. Banda subduction began about 15million years ago when active Java subduction tore eastwards into the embayment. The present morphology of the subducting slab is only partially controlled by the shape of the embayment. As the Australian plate moved northward at a high speed of about 7cmyr-1, the Banda oceanic slab rolled back towards the south-southeast accompanied by active delamination separating the crust from the denser mantle. Increasing resistance of the mantle to plate motion progressively folded the slab and caused strong deformation of the crust. The Banda arc represents an outstanding example of large-scale deformation of the Earth's crust in response to coupling between the crust, slab and surrounding mantle.

  17. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  18. Effect of CO{sub 2} laser irradiation on arc welding

    SciTech Connect

    Abe, Nobuyuki; Agano, Yasuo; Tsukamoto, Masahiro

    1996-12-31

    Combination welding was performed using a CO{sub 2} laser and MIG arc under various conditions to investigate the effectiveness of combining these two welding methods for high speed welding of thick plates. The penetration depth of combination welding was affected by the assist gas flow rate similar to when laser welding is performed at a low welding speed. Penetration was governed by the laser, while the bead width was governed by the arc. Laser-arc combination welding enabled welding of 12mm thick mild steel at a welding speed of 2000 mm/min with proper selection of the assist gas flow rate and root gap.

  19. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen.

  20. Polarization Anisotropy Along the Anatolian African Plate Boundary

    NASA Astrophysics Data System (ADS)

    Sandvol, E.; Polat, G.; Lough, A.; Sahin, S.; Turkelli, N.

    2006-12-01

    This study focuses on mantle flow beneath and around the Anatolian plate using measurements of seismic anisotropy. Observations of shear wave splitting across the Anatolian plate have a NE-SW fast direction and lag time similar to that observed from temporary broadband stations within the plate, indicating that the anisotropic fabric may be relatively uniform throughout the upper mantle beneath the Anatolian plate. The extensive young basaltic volcanism, regional travel time tomography, and regional phase attenuation tomography all indicate that the lithospheric mantle beneath most of the Anatolian plate has largely been removed or is very thin. Unless exceptionally high anisotropy exists in the thinned lithosphere, the main contribution to the observed delay times (of order 1 s) must therefore be asthenospheric and thus reflect recent asthenospheric flow patterns. One exception appears to be a change in the fast direction across a region of concentrated extension in western Anatolia. We observe a change in the orientation of the splitting that is consistent with the direction of crustal extension. The African-Anatolian plate boundary is made up of two very different convergent margins: the Hellenic arc to the west and the Cyprian arc to the east. There is substantial evidence that the Hellenic arc is retreating and the Cyprian arc is relatively stationary. Furthermore, both earthquake hypocenters and tomographic models indicate that the Cyprian angle of subduction is much less steep than the subduction occurring along the Hellenic arc. This substantial geometric difference implies that there is a tear or gap in the subduction of African oceanic lithosphere beneath the Anatolian plate along what is called the Isparta Angle. We are investigating mantle dynamics and mantle flow around and through this possible tear in the lithosphere. We will use a combination of seismic tomographic methods (surface wave, body wave, and attenuation) as well as neotectonics studies to

  1. Arc segmentation and seismicity in the Solomon Islands arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chu; Frohlich, Cliff; Taylor, Frederick W.; Burr, George; van Ufford, Andrew Quarles

    2011-07-01

    surface trace of the interplate thrust zone defines it adequately. The New Georgia supersegment has smaller arc segments, and more islands due to general late Quaternary forearc uplift very close to the trench where vertical displacement rates tend to be faster; prior to the 2007 earthquake it had much lower rates of seismic activity than the neighboring supersegments. Generally the mean along-arc lateral extent of Solomon arc segments is about 75 km, somewhat smaller than the segments reported in some other island arcs such as Japan (~ 100-260 km), but larger than those of the Tonga (30-80 km) and Central New Hebrides arcs (30-110 km). These differences may be real but it may occur simply because the coral-friendly tropical environment of the South Pacific arcs, numerous emerged forearc islands, and high seismicity rates provide an unusually favorable situation for observing variations in vertical tectonic activity and thus for identifying segment boundaries. Over the past century seismic slip in the Solomons, as indicated by seismic moment release, has corresponded to about half the plate convergence rate; however, there are notable variations along the arc. Even with the 2007 earthquake, the long-term moment release rate in the New Georgia supersegment is relatively low, and this may indicate that large earthquakes are imminent.

  2. Along-arc geochemical and isotopic variations in Javanese volcanic rocks: 'crustal' versus 'source' contamination at the Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Handley, H.; Blichert-Toft, J.; Turner, S.; Macpherson, C. G.

    2012-12-01

    Understanding the genesis of volcanic rocks in subduction zone settings is complicated by the multitude of differentiation processes and source components that exert control on lava geochemistry. Magma genesis and evolution at the Sunda arc is controlled and influenced by 1) along arc changes in the composition and thickness of the overriding Eurasian plate, 2) the variable age of the subducting oceanic crust and, 3) changes in the type and amount of sediment deposited on the subducting plate. Along-arc changes in geochemistry have long been recognised in the Sunda arc (Whitford, 1975), but debate still prevails over the cause of such variations and the relative importance of shallow (crustal) versus deep (subduction) contamination at the Sunda arc, Indonesia. Detailed study of individual Sunda arc volcanic centres is, therefore, a prerequisite in order to establish the relative importance and contributions of various potential source components and composition modifying differentiation processes at individual volcanoes, prior to an along arc comparative petrogenetic investigation. We present new radiogenic isotope data for Javanese volcanoes, which is combined with our recently published (Handley et al., 2007; Handley et al., 2008, Handley et al., 2010; Handley et al., 2011) geochemical and isotopic data of Javanese volcanic rocks along with data from other detailed geochemical studies to establish whether variable contributions from the subducting slab, or a change in crustal architecture of the overriding plate, best explain along-arc variations in isotope ratios and trace element characteristics. In West and Central Java Sr isotope ratios of the volcanic rocks broadly correlate with inferred lithospheric thickness implicating a shallow level control on isotopic composition. However, key trace element ratios combined with Hf isotope data indicate that the subducted slab and slab thermal regime also exert major control on the composition of the erupted Javanese

  3. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  4. Method for plating with metal oxides

    SciTech Connect

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  5. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H.

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  6. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  7. Arc Reflector For Welding Ducts

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1990-01-01

    Arc-light reflector for through-the-torch welding vision system designed expressly for use in welding ducts of small diameter. Cylindrical reflector positioned to reflect light diffusely from welding arc onto nearby surface of workpiece for most advantageous viewing along axis of welding torch.

  8. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1.

    PubMed

    Lassak, Jürgen; Henche, Anna-Lena; Binnenkade, Lucas; Thormann, Kai M

    2010-05-01

    The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.

  9. Transitional melt flow in downwelling arc mantle

    NASA Astrophysics Data System (ADS)

    Petford, N.; Turner, S.

    2005-12-01

    226Ra excesses in arc lavas are inferred to result from fluid addition from the subducting plate and their preservatrion provides an important constraint on the magma extraction rate, indicating rapid transport from source to surface <1000 years. This requires channelled melt ascent but an important question is whether melt can be supplied to veins sufficiently rapidly to preserve short-lived isotope disequilibria. Such high rates require a fluid dynamical explanation, yet are incompatible with a transport history governed by compaction and simple porous flow. We present the results of a 2D axisymmetric numerical model that simulates the lateral flow of viscous melt into low pressure channels in downwelling subarc mantle. Finite element coupling provides a simultaneous solution to the fluid dynamical equations linking the transition between porous and channel flow. The transitioning (Brinkman) local flow field is non-linear and position-dependent, increasing in velocity towards the outer channel boundary. Average maximum lateral flow rates for a reference matrix permeability of 10- 15m2 are c. 10-4m/s, a factor of 104 to 100 times faster than matrix downweling velocites based on plate tectonic rates. Upwards melt flow rates in the channel (r = 0.1 m) are c. 0.03 m/s. Vertical (downwards) melt flow in the porous matrix is c. 104 lower than lateral migration veocities. These physical results are consistent with a downgoing arc mantle wedge source region where melting and extraction are sufficiently rapid to preserve source-derived 238U-230 Th-226Ra and potentially also 226Ra-210Pb disequilibria.

  10. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  11. An algorithm to calculate a collapsed arc dose matrix in volumetric modulated arc therapy

    SciTech Connect

    Arumugam, Sankar; Xing Aitang; Jameson, Michael; Holloway, Lois

    2013-07-15

    Purpose: The delivery of volumetric modulated arc therapy (VMAT) is more complex than other conformal radiotherapy techniques. In this work, the authors present the feasibility of performing routine verification of VMAT delivery using a dose matrix measured by a gantry mounted 2D ion chamber array and corresponding dose matrix calculated by an inhouse developed algorithm.Methods: Pinnacle, v9.0, treatment planning system (TPS) was used in this study to generate VMAT plans for a 6 MV photon beam from an Elekta-Synergy linear accelerator. An algorithm was developed and implemented with inhouse computer code to calculate the dose matrix resulting from a VMAT arc in a plane perpendicular to the beam at isocenter. The algorithm was validated using measurement of standard patterns and clinical VMAT plans with a 2D ion chamber array. The clinical VMAT plans were also validated using ArcCHECK measurements. The measured and calculated dose matrices were compared using gamma ({gamma}) analysis with 3%/3 mm criteria and {gamma} tolerance of 1.Results: The dose matrix comparison of standard patterns has shown excellent agreement with the mean {gamma} pass rate 97.7 ({sigma}= 0.4)%. The validation of clinical VMAT plans using the dose matrix predicted by the algorithm and the corresponding measured dose matrices also showed good agreement with the mean {gamma} pass rate of 97.6 ({sigma}= 1.6)%. The validation of clinical VMAT plans using ArcCHECK measurements showed a mean pass rate of 95.6 ({sigma}= 1.8)%.Conclusions: The developed algorithm was shown to accurately predict the dose matrix, in a plane perpendicular to the beam, by considering all possible leaf trajectories in a VMAT delivery. This enables the verification of VMAT delivery using a 2D array detector mounted on a treatment head.

  12. Saturn's elusive nightside polar arc

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Gérard, J.-C.; Milan, S. E.; Fear, R. C.; Jackman, C. M.; Bonfond, B.; Pryor, W.

    2014-09-01

    Nightside polar arcs are some of the most puzzling auroral emissions at Earth. They are features which extend from the nightside auroral oval into the open magnetic field line region (polar cap), and they represent optical signatures of magnetotail dynamics. Here we report the first observation of an arc at Saturn, which is attached at the nightside main oval and extends into the polar cap region, resembling a terrestrial transpolar arc. We show that Earth-like polar arcs can exceptionally occur in a fast rotational and internally influenced magnetosphere such as Saturn's. Finally, we discuss the possibility that the polar arc at Saturn is related to tail reconnection and we address the role of solar wind in the magnetotail dynamics at Saturn.

  13. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  14. Plasma Heating and Flow in an Auroral Arc

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.

    1996-01-01

    We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.

  15. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  16. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  17. SU-E-T-448: On the Perturbation Factor P-cav of the Markus Parallel Plate Ion Chambers in Clinical Electron Beams, Monte Carlo Based Reintegration of An Historical Experiment

    SciTech Connect

    Voigts-Rhetz, P von; Zink, K

    2014-06-01

    Purpose: All present dosimetry protocols recommend well-guarded parallel-plate ion chambers for electron dosimetry. For the guard-less Markus chamber an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read-out of a Markus and a NACP chamber, which was assumed to be “perturbation-free”. Aim of the present study is a Monte Carlo based reiteration of this experiment. Methods: Detailed models of four parallel-plate chambers (Roos, Markus, NACP and Advanced Markus) were designed using the Monte Carlo code EGSnrc and placed in a water phantom. For all chambers the dose to the active volume filled with low density water was calculated for 13 clinical electron spectra (E{sub 0}=6-21 MeV) at the depth of maximum and at the reference depth under reference conditions. In all cases the chamber's reference point was positioned at the depth of measurement. Moreover, the dose to water DW was calculated in a small water voxel positioned at the same depth. Results: The calculated dose ratio D{sub NACP}/D{sub Markus}, which according to van der Plaetsen reflects the fluence perturbation correction of the Markus chamber, deviates less from unity than the values given by van der Plaetsen's but exhibits a similar energy dependence. The same holds for the dose ratios of the other well guarded chambers. But, in comparison to water, the Markus chamber reveals the smallest overall perturbation correction which is nearly energy independent at both investigated depths. Conclusion: The simulations principally confirm the energy dependence of the dose ratio D{sub NACP}/D{sub Markus} as published by van der Plaetsen. But, as shown by our simulations of the ratio D{sub W}/D{sub Markus}, the conclusion drawn in all dosimetry protocols is questionable: in contrast to all well-guarded chambers the guard-less Markus chamber reveals the smallest overall perturbation correction and

  18. The origin of summit basins on the Aleutian Ridge: implications for block rotation of an arc massif ( Pacific).

    USGS Publications Warehouse

    Geist, E.L.; Childs, J. R.; Scholl, D. W.

    1988-01-01

    It is proposed that many summit basins along the Aleutian Arc form from the clockwise rotation of blocks of the arc massic. Summit basins are arc-parallel grabens or half-grabens formed within the arc massif and are commonly located near or along the axis of late Cenozoic volcanism. Geomorphically, the Aleutian Arc appears to consist of contiguous rhombic blocks of varying size, 10's to 100's of km in length. Presents a model for block rotation that involves translation of blocks parallel to an arc. It is suggested that block rotation, which appears to have accelerated in late Cenozoic time, is linked to: 1) a shift in the Euler pole for the Pacific plate; 2) the consequential start-up of late Cenozoic volcanism; 3) improved interplate coupling instigated by sediment flooding of the Aleutian Trench; and 4) westward subduction of NE striking segments of the inactive Kula-Pacific Ridge.-from Authors

  19. Temperature field acquisition during gas metal arc welding using thermocouples, thermography and fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Moreira, P. M. G. P.; Frazão, O.; Tavares, S. M. O.; de Figueiredo, M. A. V.; Restivo, M. T.; Santos, J. L.; de Castro, P. M. S. T.

    2007-03-01

    The paper presents the application of temperature acquisition systems integrating thermocouples, a thermographic camera and fibre Bragg grating (FBG) sensors in gas metal arc welding (GMAW) process, MIG (metal inert gas) welding type. Efficient procedures to use FBG sensors and thermocouples were developed. The paper presents and compares measurements made in welded plates of aluminium alloy 6082-T6. Tests were performed in both plate surfaces and good agreement between the three techniques was found.

  20. Sedimentary processes in modern and ancient oceanic arc settings: evidence from the Jurassic Talkeetna Formation of Alaska and the Mariana and Tonga Arcs, western Pacific

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.

    2006-01-01

    Sediment deposited around oceanic volcanic ares potentially provides the most complete record of the tectonic and geochemical evolution of active margins. The use of such tectonic and geochemical records requires an accurate understanding of sedimentary dynamics in an arc setting: processes of deposition and reworking that affect the degree to which sediments represent the contemporaneous volcanism at the time of their deposition. We review evidence from the modern Mariana and Tonga arcs and the ancient arc crustal section in the Lower Jurassic Talkeetna Formation of south-central Alaska, and introduce new data from the Mariana Arc, to produce a conceptual model of volcaniclastic sedimentation processes in oceanic arc settings. All three arcs are interpreted to have formed in tectonically erosive margin settings, resulting in long-term extension and subsidence. Debris aprons composed of turbidites and debris flow deposits occur in the immediate vicinity of arc volcanoes, forming relatively continuous mass-wasted volcaniclastic records in abundant accommodation space. There is little erosion or reworking of old volcanic materials near the arc volcanic front. Tectonically generated topography in the forearc effectively blocks sediment flow from the volcanic front to the trench; although some canyons deliver sediment to the trench slope, most volcaniclastic sedimentation is limited to the area immediately around volcanic centers. Arc sedimentary sections in erosive plate margins can provide comprehensive records of volcanism and tectonism spanning < 10 My. The chemical evolution of a limited section of an oceanic arc may be best reconstructed from sediments of the debris aprons for intervals up to ~ 20 My but no longer, because subduction erosion causes migration of the forearc basin crust and its sedimentary cover toward the trench, where there is little volcaniclastic sedimentation and where older sediments are dissected and reworked along the trench slope.

  1. Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran

    NASA Astrophysics Data System (ADS)

    Saadat, Saeed; Stern, Charles R.

    2011-07-01

    Small monogenetic Quaternary parasitic cones around Bazman stratovolcano, located at the western edge of the Makran arc, southeastern Iran, erupted low-Ti subalkaline olivine basalts with MgO (3.8-8.6 wt.%) and Al2O3 (16.5-18.6 wt.%). Positive correlation of decreasing MgO, Ni and Cr indicates that formation of low MgO basalts involved limited crystal-liquid fractionation of olivine and clinopyroxene, the common phenocrysts. The basalts have variable 87Sr/86Sr (0.704177-0.705139) and 143Nd/144Nd (0.512689-0.512830) ratios, within the range of OIB-like intra-plate alkaline basalts erupted in eastern Iran north of the Makran arc. This, and the lack of correlation between Sr content and Sr-isotopic ratio, suggest that upper crustal contamination was not significant in their formation, consistent with the relatively thin crust (≤ 40 km) in the area. Enrichment of large-ion-lithophile elements (LILE) relative to light rare-earth-elements (LREE; Ba/La = 9-25), and depletions in Nb relatively to LILE (Ba/Nb = 12-35; La/Nb = 0.8-2.1), are similar in most cases to other convergent plate boundary arc basalts, suggesting that the Bazman basalts formed by melting of subcontinental mantle modified by dehydration of subducted Oman Sea oceanic lithosphere. Pb isotopic ratios of the basalts define a linear trend above the Northern Hemisphere Line, consistent with their derivation from mantle contaminated by Pb derived from subducted sediment. Trace element contents and ratios (LaN = 10-25; YbN = 3-6; (La/Yb)N = 3-8) suggest that these basalts formed as a result of low (~ 10%) degrees of partial melting of subarc mantle modified only moderately by subducted components. Relatively low Ba/Nb < 15, La/Nb < 1.5 and Ba/La < 15 ratios for some basalts confirm only limited contamination of the source of these samples, consistent with observations in other arcs that parasitic cones tap sources less affected by slab-derived fluids than the larger stratovolcanoes they surround. Comparison

  2. Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, V.; Stadler, G.; Gurnis, M.

    2013-12-01

    Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant

  3. The expanding thermal arc plasma: the low-flow regime

    NASA Astrophysics Data System (ADS)

    van de Sanden, M. C. M.; Tobin, J. A.

    1998-02-01

    This paper reports on experiments on an expanding thermal arc plasma using pure argon flows in the 50 to 500 sccm range. From pressure and voltage measurements on the arc it is verified that the arc plasma is still a thermal plasma at these low flows. Langmuir probe measurements of the radial profiles downstream using different flows and chamber pressures are presented and discussed. These measurements indicate an enhanced ion loss for low flows at constant pressure. The enhanced loss is explained by the increase in residence time and due to this a relatively large volumetric recombination. The sputter etch rate of PECVD deposited silicon oxide at 100 mTorr and 400 V DC bias is measured and compared with the results of the Langmuir probe.

  4. An interchangeable-cathode vacuum arc plasma source.

    PubMed

    Olson, David K; Peterson, Bryan G; Hart, Grant W

    2010-01-01

    A simplified vacuum arc design [based on metal vapor vacuum arc (MeVVA) concepts] is employed as a plasma source for a study of a (7)Be non-neutral plasma. The design includes a mechanism for interchanging the cathode source. Testing of the plasma source showed that it is capable of producing on the order of 10(12) charges at confinable energies using a boron-carbide disk as the cathode target. The design is simplified from typical designs for lower energy and lower density applications by using only the trigger spark rather than the full vacuum arc in high current ion beam designs. The interchangeability of the cathode design gives the source the ability to replace only the source sample, simplifying use of radioactive materials in the plasma source. The sample can also be replaced with a completely different conductive material. The design can be easily modified for use in other plasma confinement or full MeVVA applications.

  5. Acid copper sulfate plating bath: Control of chloride and copper

    SciTech Connect

    Borhani, K.J.

    1992-08-01

    Plated-through holes in high-reliability printed wiring boards require a ductile copper plate of uniform consistency. The level of control of the chemical constituents in the electroplating solutions dictates the physical properties of the copper plate. To improve the control of the chemical bath constituents, in-situ methods for electrochemically determining copper and chloride in acid copper sulfate baths were developed. A solid-state ion-selective electrode was used for the chloride ion and proved to be more reproducible than conventional silver chloride turbidimetric methods. The use of a copper solid-state ion-selective electrode in-situ was also successful in this application.

  6. Plate detachment, asthenosphere upwelling, and topography across subduction zones

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Zohar; Nur, Amos

    1999-06-01

    This study analyzes the topography across subduction zones, considering the separate contributions of the crust and the mantle lithosphere to the observed surface elevation. We have found a transition from a region where the overriding plate is coupled to the descending slab and pulled down along with it to a region where the overriding plate floats freely on the asthenosphere. When the subducting slab retreats oceanward rapidly this transition is abrupt, and the edge of the overriding plate is uplifted. We propose that at some point during rapid slab rollback the overriding plate detaches and rebounds like a boat released from its keel. This event is associated with suction of asthenospheric material into the gap that is opened between the plates up to the base of the crust. As a result, the forearc uplifts, and magmatism in the arc increases.

  7. Down-bucklng of a corner of a descending plate

    NASA Technical Reports Server (NTRS)

    Lowrey, B. E.

    1973-01-01

    A model of the earth's crust is presented as a set of rigid crustal blocks in which the crust is consumed, compressed, or created only at the boundaries of the blocks. As such the trench boundary moves with respect to the colliding plates because of down-buckling at the corner of the descending plate. It is further shown that this mechanism requires plate consumption of the descending plate at a rate faster than the relative plate motion, which in turn causes infilling of the basin behind the arc to compensate for the increased destruction. It is demonstrated that earthquake, heat flow, paleomagnetic, gravity anomaly, and geologic data derived from Japan and the Sea of Japan support the model.

  8. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  9. Deep structure of the central Lesser Antilles Island Arc: Relevance for the formation of continental crust

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Weinzierl, W.; Becel, A.; Charvis, P.; Evain, M.; Flueh, E. R.; Gailler, A.; Galve, A.; Hirn, A.; Kandilarov, A.; Klaeschen, D.; Laigle, M.; Papenberg, C.; Planert, L.; Roux, E.

    2011-04-01

    Oceanic island arcs are sites of high magma production and contribute to the formation of continental crust. Geophysical studies may provide information on the configuration and composition of island arc crust, however, to date only few seismic profiles exist across active island arcs, limiting our knowledge on the deep structure and processes related to the production of arc crust. We acquired active-source wide-angle seismic data crossing the central Lesser Antilles island arc north of Dominica where the oceanic Tiburon Ridge subducts obliquely beneath the forearc. A combined analysis of wide-angle seismics and pre-stack depth migrated reflection data images the complex structure of the backstop and its segmentation into two individual ridges, suggesting an intricate relation between subducted basement relief and forearc deformation. Tomographic imaging reveals three distinct layers composing the island arc crust. A three kilometer thick upper crust of volcanogenic sedimentary rocks and volcaniclastics is underlain by intermediate to felsic middle crust and plutonic lower crust. The island arc crust may comprise inherited elements of oceanic plateau material contributing to the observed crustal thickness. A high density ultramafic cumulates layer is not detected, which is an important observation for models of continental crust formation. The upper plate Moho is found at a depth of 24 km below the sea floor. Upper mantle velocities are close to the global average. Our study provides important information on the composition of the island arc crust and its deep structure, ranging from intermediate to felsic and mafic conditions.

  10. Controls on the fore-arc CO2 flux along the Central America margin

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Barry, P. H.; Ramirez, C. J.; Kulongoski, J. T.; Patel, B. S.; Virrueta, C.; Blackmon, K.

    2015-12-01

    The subduction of carbon to the deep mantle via subduction zones is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Whereas output fluxes for arc and back-arc locales are well constrained for the Central America Volcanic Arc (CAVA) [1-2], the fore-arc flux via cold seeps and ground waters is poorly known. We present new He and CO2 data (isotopes and relative abundances) for the volcanic front and inner fore-arc of western Panama to complement on-going studies of fore-arc C-fluxes in Costa Rica [3-4] and to determine tectonic controls on the fore-arc C-outgassing fluxes. Helium isotope (3He/4He) values at Baru, La Yeguada, and El Valle volcanoes are high (5-8RA), consistent with results for other Central America volcanoes. However, CO2/3He values are variable (from > 1012 to < 108). Baru has an arc-like δ13C of - 4‰, whereas the other volcanoes have δ13C < -10 ‰. Cold seeps collected in the coastal fore-arc of Panama show a trend of decreasing He-isotopes from west (~6RA) to east (~1RA). This trend is mirrored by δ13C (-5‰ to <-20‰) values. CO2/3He values of the seeps are also variable and fall between 106 and 1012. Using CO2/3He-δ13C mixing plots with conventional endmember values for Limestone, Organic Sediment and Mantle CO2, we show that several Panama samples have been extensively modified by crustal processes. Nevertheless, there are clear west-to east trends (both volcanoes and coastal seeps), whereby L dominates the CO2 inventory in the west, similar to Costa Rica, and S-derived CO2 increases eastward towards central Panama. Previously [4], we limited the Costa Rica subaerial fore-arc flux to ~ 6 × 107 gCkm-1yr-1, or ~ 4% of the total incoming sedimentary C-load. This flux diminishes to zero within ~400 km to the east of Baru volcano. The transition from orthogonal subduction of the Cocos Plate to oblique subduction of the Nazca Plate, relative to the common over-riding Caribbean Plate, is the major impediment to

  11. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

    NASA Astrophysics Data System (ADS)

    van der Meer, D. G.; Torsvik, T. H.; Spakman, W.; van Hinsbergen, D. J. J.; Amaru, M. L.

    2012-03-01

    The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean's history since the Cretaceous period, and the Triassic-Jurassic plate tectonic evolution of the Panthalassa Ocean remains largely unresolved. Geological clues come from extinct intra-oceanic volcanic arcs that formed above ancient subduction zones, but have since been accreted to the North American and Asian continental margins. Here we compile data on the composition, the timing of formation and accretion, and the present-day locations of these volcanic arcs and show that intra-oceanic subduction zones must have once been situated in a central Panthalassa location in our plate tectonic reconstructions. To constrain the palaeoposition of the extinct arcs, we correlate them with remnants of subducted slabs that have been identified in the mantle using seismic-wave tomographic models. We suggest that a series of subduction zones, together called Telkhinia, may have defined two separate palaeo-oceanic plate systems--the Pontus and Thalassa oceans. Our reconstruction provides constraints on the palaeolongitude and tectonic evolution of the Telkhinia subduction zones and Panthalassa Ocean that are crucial for global plate tectonic reconstructions and models of mantle dynamics.

  12. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  13. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former

  14. A Detailed Geochemical Study of Island Arc Crust: The Talkeetna Arc Section, South-central Alaska

    NASA Astrophysics Data System (ADS)

    Greene, A. R.; Debari, S. M.; Kelemen, P. B.; Clift, P. D.; Blusztajn, J.

    2002-12-01

    The Talkeetna arc section in south-central Alaska is recognized as the exposed upper mantle and crust of an accreted, Late Triassic to Middle Jurassic island arc. Detailed geochemical studies of layered gabbronorite from the middle and lower crust of this arc and a diverse suite of volcanic and plutonic rocks from the middle and upper crust provide crucial data for understanding arc magma evolution. We also present new data on parental magma compositions for the arc. The deepest level of the arc section consists of residual mantle and ultramafic cumulates adjacent to garnet gabbro and basal gabbronorite interlayered with pyroxenite. The middle crust is primarily layered gabbronorite, ranging from anorthosite to pyroxenite in composition, and is the most widespread plutonic lithology. The upper mid crust is a heterogenous assemblage of dioritic to tonalitic rocks mixed with gabbro and intruded by abundant mafic dikes and chilled pillows. The upper crust of the arc is comprised of volcanic rocks of the Talkeetna Formation ranging from basalt to rhyolite. Most of these volcanic rocks have evolved compositions (<5% MgO, Mg# <60) and overlap the composition of intermediate to felsic plutonic rocks (<3.5% MgO, Mg# <45). However, several chilled mafic rocks and one basalt have primitive characteristics (>8% MgO, Mg# >60). Ion microprobe analyses of clinopyroxene in mid-crustal layered gabbronorites have parallel REE patterns with positive-sloping LREE segments (La/Sm(N)=0.05-0.17; mean 0.11) and flat HREE segments (5-25xchondrite; mean 10xchondrite). Liquids in REE equilibrium with the clinopyroxene in these gabbronorite cumulates were calculated in order to constrain parental magmas. These calculated liquids(La/Sm(N)=0.77-1.83; mean 1.26) all fall within the range of dike and volcanic rock(La/Sm(N)=0.78-2.12; mean 1.23) compositions. However, three lavas out of the 44 we have analyzed show strong HREE depletion, which is not observed in any of the liquid compositions

  15. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  16. Crustal structure of the Caribbean-northeastern South America arc-continent collision zone

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Mann, Paul; Escalona, Alejandro; Aitken, Trevor J.

    2008-08-01

    We present the results of a 568-km-long regional wide-angle seismic profile conducted in the southeastern Caribbean that crosses an active island arc, a remnant arc, two basins possibly floored by oceanic crust, an allochthonous terrane of forearc affinity, and the passive margin of northern South America. The velocity structures of the Late Cretaceous Aves Ridge remnant arc and Miocene and younger Lesser Antilles arc are remarkably similar, which implies that magmatic processes have remained moderately steady over time. Crustal thickness is ˜26 km at the Aves Ridge and ˜24 km at the Lesser Antilles arc. In comparison to the Izu-Bonin and Aleutian arcs, the Lesser Antilles arc is thinner and has no evidence for a lower crustal cumulate layer, which is consistent with the estimated low magma production rates of the Lesser Antilles arc. Crustal thickness beneath the Grenada and Tobago basins is 4-10 km, and the velocity structure suggests that these basins could be floored by oceanic crust. A decrease of ˜1 km/s in average seismic velocity of the upper crust is observed from NW to SE across the North Coast fault zone; we argue that this marks the suture between the far-traveled Caribbean arc and the passive margin of the South American continent. Current strike-slip motion between the Caribbean and South American plates is located ˜30 km to the south, and thus material originally deposited on the South American passive margin has now been transferred to the Caribbean plate.

  17. Sputtering Holes with Ion Beamlets

    NASA Technical Reports Server (NTRS)

    Byers, D. C.; Banks, B. A.

    1974-01-01

    Ion beamlets of predetermined configurations are formed by shaped apertures in the screen grid of an ion thruster having a double grid accelerator system. A plate is placed downstream from the screen grid holes and attached to the accelerator grid. When the ion thruster is operated holes having the configuration of the beamlets formed by the screen grid are sputtered through the plate at the accelerator grid.

  18. First E region observations of mesoscale neutral wind interaction with auroral arcs

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Anderson, C.; Makarevich, R. A.; Carter, B. A.; Fiori, R. A. D.; Conde, M.; Dyson, P. L.; Davies, T.

    2010-02-01

    We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ˜50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7-16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data.

  19. Spatial and temporal characteristics of a vacuum-arc rail-gun plasma

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Vijayan, T.; Iyengar, S. T.

    1997-08-01

    The dynamics of a vacuum-arc operated rail-gun plasma were numerically simulated for the undercritically damped regime and confirmed in experiments. Analytical solutions of arc current, its velocity, and position also showed good agreement with the results. The spatial development of the arc is shown here to follow a linear behavior, even though the propulsion velocity followed an exponential-step function due to the sinusoidal nature of the arc current. Peak arc current ˜100 kA, 15 μs period was propelled to ˜106 cm/s as indicated in time-of-flight measurements and simulations. The voltage signal induced on a B-dot probe by the dynamic sinusoidal arc was simulated, which compared well with the measured probe signal. A Gaussian current distribution inside the measured arc length ˜1-2 cm, was established by unfolding the B-dot probe signal. A peak magnetic field of the order 1-5 kG was also interpreted inside the arc. The emerging plasma contained ion current over tens of amperes in the pulse duration encompassing the arc envelope.

  20. Spatial and temporal characteristics of a vacuum-arc rail-gun plasma

    SciTech Connect

    Roychowdhury, P.; Vijayan, T.; Iyengar, S.T.

    1997-08-01

    The dynamics of a vacuum-arc operated rail-gun plasma were numerically simulated for the undercritically damped regime and confirmed in experiments. Analytical solutions of arc current, its velocity, and position also showed good agreement with the results. The spatial development of the arc is shown here to follow a linear behavior, even though the propulsion velocity followed an exponential-step function due to the sinusoidal nature of the arc current. Peak arc current {approximately}100kA, 15 {mu}s period was propelled to {approximately}10{sup 6}cm/s as indicated in time-of-flight measurements and simulations. The voltage signal induced on a B-dot probe by the dynamic sinusoidal arc was simulated, which compared well with the measured probe signal. A Gaussian current distribution inside the measured arc length {approximately}1{endash}2cm, was established by unfolding the B-dot probe signal. A peak magnetic field of the order 1{endash}5 kG was also interpreted inside the arc. The emerging plasma contained ion current over tens of amperes in the pulse duration encompassing the arc envelope. {copyright} {ital 1997 American Institute of Physics.}

  1. Crustal structure variations along the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Schlaphorst, D.; Kendall, J. M.; Melekhova, E.; Blundy, J.; Baptie, B.; Latchman, J. L.

    2013-12-01

    Continental crust is predominantly formed along subduction zones. Therefore, an investigation of the crustal and mantle structure variation of these areas is crucial for understanding the growth of continental crust. This work deals with the seismological characteristics along the Lesser Antilles Arc, an island arc system built by the relatively slow subduction (~2cm/yr) of the North and South American plates beneath the Caribbean plate. The amount of subducted sediments changes significantly from sediment-rich subduction in the South to sediment-poor subduction in the North. The abundance of broadband seismic stations on the Lesser Antilles islands enables a range of seismic methods to be used to study arc processes. Furthermore, the abundance of cumulate samples allows for a detailed petrological analysis, which can be related to the seismological patterns. We use data from three component broadband stations located on the individual islands along the arc. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. In this work, we investigate crustal structure using receiver functions to determine Moho depth and Vp/Vs ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. The receiver functions are computed using the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006). This method has the advantage of resistance to noise, which is helpful since most of the data around the arc will have been collected by stations close to the ocean, thus containing a large amount of noise. Our results show clear variations in these measurements. There are also regions where the Moho is not very sharp due to a low velocity contrast. The real data results were then compared to synthetic receiver functions from subsurface models. We compute a range of synthetic

  2. Intensive hydration of the wedge mantle at the Kuril arc - NE Japan arc junction: implications from mafic lavas from Usu Volcano, northern Japan

    NASA Astrophysics Data System (ADS)

    Kuritani, T.; Tanaka, M.; Yokoyama, T.; Nakagawa, M.; Matsumoto, A.

    2015-12-01

    The southwestern part of Hokkaido, northern Japan, is located at the junction of the NE Japan arc and the Kuril arc. The subducting Pacific plate under this region shows a hinge-like shape due to the dip change of the subducting plate along the trench. Because of the interest in this unique tectonic setting, this arc-arc junction has been the focus of extensive geophysical studies (e.g. Kita et al., 2010, Morishige and van Keken, 2014; Wada et al., 2015). This region is also known as an area in which magmatism has been intense; there are many active volcanoes such as Usu, Tarumae, and Komagatake, and large calderas including Toya, Shikotsu, and Kuttara. In this region, the temporal and spatial evolution of the volcanism and the chemical compositions of the volcanic rocks are well characterized (e.g. Nakagawa, 1992). However, the generation conditions of magmas have not been estimated for these volcanoes, probably because of the scarcity of basaltic products. Therefore, a possible link between the tectonic setting and the intense magmatism is still unclear. In this study, we carried out a petrological and geochemical study on mafic lavas (49.6-51.3 wt.% SiO2) from Usu Volcano, and estimated the conditions under which the magmas were generated. By application of a plagioclase-melt hygrometer to the plagioclase and the host magma, the water content of ~6.5 wt.% was obtained for the basaltic magma. Using this information, as well as the olivine maximum fractionation model (Tatsumi et al., 1983), the composition of the primary magma is estimated to be 47.9 wt.% SiO2, 15.1 wt.% MgO, and 4.1 wt.% H2O. Analyses using the multi-component thermodynamics suggest that the primary magma was generated in the source mantle with 0.9 wt.% H2O at 1310ºC and at 1.6 GPa. The water content of 0.9 wt.% of the source mantle is significantly higher than the estimates for the source mantle in the main NE Japan arc (<0.7 wt.% H2O); this implies that the flux of slab-derived fluids is

  3. The stationary vacuum arc on non-thermionic hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh; Antonov, N. N.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-11-01

    Experimental study of vacuum arc with distributed spot on plumbum cathode at temperatures 1.25-1.45 kK has been presented. At these conditions current density of thermionic emission from cathode was less than 1 μA/cm2, while the mean current density on the cathode was about 10 A/cm2. Plumbum was placed in heat-insulated crucible (cathode) with external diameter 25 mm. Electron-beam heater was situated under the crucible. Arc current was changed in the range 20-70 A, arc voltage was about 15 V. The studied arc is characterized by the absence of the random voltage fluctuations; the micro particles of cathode erosion products were observed only in transition regimes. Spectral data of plasma radiation and values of the heat flow from plasma to cathode were obtained. It has been experimentally established that the evaporation rate in arc approximately two times less than without discharge. The average charge of plumbum particles in the cathode jet was in range 0.2-0.3e. Comparison of the characteristics of studied discharge on thermionic gadolinium cathode and non-thermionic cathodes was fulfilled. One can assume that ions provide the charge transfer on the cathode in the studied discharge.

  4. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  5. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia. PMID:21878026

  6. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  7. Helical tomotherapy quality assurance with ArcCHECK.

    PubMed

    Chapman, David; Barnett, Rob; Yartsev, Slav

    2014-01-01

    To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquid and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ~2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient. PMID:24433834

  8. Helical tomotherapy quality assurance with ArcCHECK

    SciTech Connect

    Chapman, David; Barnett, Rob; Yartsev, Slav

    2014-07-01

    To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10 cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquid and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ∼2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient.

  9. Helical tomotherapy quality assurance with ArcCHECK.

    PubMed

    Chapman, David; Barnett, Rob; Yartsev, Slav

    2014-01-01

    To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquid and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ~2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient.

  10. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  11. Igniting flare-up events in Cordilleran arcs

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Barton, Mark D.

    2007-11-01

    High-flux pulses of magmatism that make up most of the exposed North American Cordilleran arcs are derived primarily from upper plate lithospheric source materials, and not the mantle wedge as most models would predict, based on a compilation of thousands of previously published Sr, Nd, and O isotopic data. Mass balance calculations show that no more than 50% of that mass can be mantle-derived. Flare-ups must have fundamentally developed simultaneously with crustal/lithospheric thickening, thus implying a connection. Subduction erosion from the trench side, and retroarc shortening from the foreland side are the main tectonic shortening processes that operate in conjunction with high flux magmatism during subduction, and therefore are likely triggers for flare-up events in arc. These arcs represent the sites of crustal differentiation, and thus contribute to net continental growth, only if dense residual lower crust was returned to the convective mantle. Isotopic data shown here suggest that if convective removal of batholithic roots takes place, it must be a consequence and not a cause of episodic flare-ups. The Altiplano-Puna Volcanic Complex in South America may be the most recent continental arc segment in flare-up mode.

  12. Back-arc Extension: Critical Analisys of Subduction-related and Non Subduction-related Driving Mechanisms

    NASA Astrophysics Data System (ADS)

    Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Albarello, D.

    It is argued that the opening of back arc basins can hardly be explained as an effect of subduction related forces, since this kind of interpretation has not yet provided plausible explanations for several major features of such processes in the world. In particular, it is not clear why back arc extension occurs in some subduction zones and not in others, why extension ceased in zones where subduction has remained active, why the arcs associated with back arc basins are often characterized by a strongly curved shape, why arc-trench-back arc systems do not develop along the entire length of consuming borders and why no significant correlation can be recognized between any parameter of subduction processes and the occurrence of back arc extension. In addition, modelling experiments indicate that the magnitude of the tensional stress induced in the overriding plate by subduction-related forces is significantly lower than the lithospheric strength. These problems are discussed, in particular, for three subduction-related interpretations, the "slab-pull", the "corner flow" and the "sea an- chor" models, which seem to be the most quoted in literature. It is then argued that possible solutions of the above problems may be provided by the extrusion model, which postulates that back arc basins are generated by the forced separation of the arc from the overriding plate, along a sector of the consuming border. This separa- tion is generally caused by the oblique indentation of strong and buoyant structures against the accretionary belt. In this view, subduction and back arc extension are not causally linked one to the other, but rather represent simultaneous effects of the lateral migration of the arc, driven by plate convergence. It is pointed out that the conditions required for the occurrence of this kind of mechanism may be recognized in the tec- tonic contexts where back arc basins developed in the wake of arc-trench migrating systems. On the other hand, in the zones

  13. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  14. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Leat, Philip T.; Day, Simon J.; Tate, Alex J.; Martin, Tara J.; Owen, Matthew J.; Tappin, David R.

    2013-09-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that the volcanic arc has a simple structure composed of large volcanoes which form a well-defined volcanic front, but with three parallel cross-cutting seamount chains extending 38-60 km from near the volcanic front into the rear-arc. There is no evidence for intra-arc rifting or extinct volcanic lines. Topographic evidence for faulting is generally absent, except near the northern and southern plate boundaries. Most of the volcanic arc appears to be built on ocean crust formed at the associated back-arc spreading centre, as previously proposed from magnetic data, but the southern part of the arc appears to be underlain by older arc or continental crust whose west-facing rifted margin facing the back-arc basin is defined by the new bathymetry. The new survey shows nine main volcanic edifices along the volcanic front and ca. 20 main seamounts. The main volcanoes form largely glaciated islands with summits 3.0-3.5 km above base levels which are 2500-3000 m deep in the north and shallower at 2000-2500 m deep in the south. Some of the component seamounts are interpreted to have been active since the last glacial maximum, and so are approximately contemporaneous with the volcanic front volcanism. Seven calderas, all either submarine or ice-filled, have been identified: Adventure volcano, a newly discovered submarine volcanic front caldera volcano is described for the first time. All but one of the calderas are situated on summits of large volcanoes in the southern part of the arc, and

  15. Fore- and Back-Arc Structures Along the Hikurangi-Kermadec Subduction Zone

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2009-04-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate is continental in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 degrees South. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper arc mantle are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. Here, arc volcanism is relatively active, with many large volcanoes directly on the ridge. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate

  16. Motion of the Scotia sea plates

    USGS Publications Warehouse

    Thomas, C.; Livermore, R.; Pollitz, F.

    2003-01-01

    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  17. Investigation of the effects of shear on arc-electrode erosion using a modified arc-electrode mass loss model

    NASA Astrophysics Data System (ADS)

    Webb, Bryan T.

    The electrodes are the attachment points for an electric arc where electrons and positive ions enter and leave the gas, creating a flow of current. Electrons enter the gas at the cathode and are removed at the anode. Electrons then flow out through the leads on the anode and are replenished from the power supply through the leads on the cathode. Electric arc attachment to the electrode surface causes intensive heating and subsequent melting and vaporization. At that point a multitude of factors can contribute to mass loss, to include vaporization (boiling), material removal via shear forces, chemical reactions, evaporation, and ejection of material in jets due to pressure effects. If these factors were more thoroughly understood and could be modeled, this knowledge would guide the development of an electrode design with minimal erosion. An analytic model was developed by a previous researcher that models mass loss by melting, evaporation and boiling with a moving arc attachment point. This pseudo one-dimensional model includes surface heat flux in periodic cycles of heating and cooling to model motion of a spinning arc in an annular electrode where the arc periodically returns to the same spot. This model, however, does not account for removal of material due to shear or pressure induced effects, or the effects of chemical reactions. As a result of this, the model under-predicts material removal by about 50%. High velocity air flowing over an electrode will result in a shear force which has the potential to remove molten material as the arc melts the surface on its path around the electrode. In order to study the effects of shear on mass loss rate, the model from this previous investigator has been altered to include this mass loss mechanism. The results of this study have shown that shear is a viable mechanism for mass loss in electrodes and can account for the mismatch between theoretical and experimental rates determined by previous investigators. The results of

  18. Geochemistry of the Chagai-Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary

    NASA Astrophysics Data System (ADS)

    Nicholson, K. N.; Khan, M.; Mahmood, K.

    2010-08-01

    The Chagai-Raskoh arc is located in western Pakistan and extends into Iran and Afghanistan. The arc forms an elongate body trending EW and is roughly 500 km long by 150 km wide. Activity along the arc began in the Late Cretaceous and continued through into the Quaternary. The oldest volcanic rocks in the arc belong to the Sinjrani and Kuchakki Formations. These rocks are primarily basalts and andesites which form both pillow sequences and massive flows. Geochemically these units are very similar. They are tholeiitic lavas with typical island arc characteristics and an N-MORB source. For example when normalized to N-MORB they are large ion lithophile element (LILE) enriched, high field strength element (HFSE) depleted, and have negative Nb and Ti anomalies. Also within the Sinjrani Formation are a sequence of Senonian basalt-dacite lavas that were generated from an N-MORB type mantle source, and although they are initially tholeiitic the more evolved lavas are calc-alkaline. Trace element data indicates these lavas have a very minor continental affiliation. The generation of these lavas may mark the increasing proximity of the Afghan continental block. The youngest units in this study belong to the Quaternary Koh-e-Sultan and the Miocene Koh-e-Dalil. These units have a calc-alkaline fractionation trend and contain more silicic lavas, including dacites, than the older lavas. Chemically these units are very similar; they both contain continental arc signatures and were generated from low degrees of partial melting of an enriched source. Current theories to explain the multiple phases of volcanism in the Chagai-Raskoh arc propose that these lavas are the result of intra-oceanic convergence in the Neo-Tethys. Our data supports this model in that the initial phases of volcanism are entirely formed in an oceanic arc. However the increasing proximity of the Afghan Block, ca. 65 Ma, is evidenced by increasing continental signatures in the lavas, followed by much younger

  19. A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles

    SciTech Connect

    Lee, S.Y.; Na, S.J.

    1996-09-01

    The influences of parameters such as electrode angle, welding current and arc length on the gas tungsten arc welding process using Ar shielding gas were studied assuming the current density distribution along the cathode surface. Its distribution was assumed to have a Gaussian form, which is characterized by the maximum current density at the electrode tip or the distribution parameter. For determining these two values according to the electrode angle and welding current, the temperature distributions of a 60-deg angle electrode were calculated for 100, 200 and 300 A welding currents and compared with the experimental measurements obtained by previous research. Using these assumed current density distributions as the boundary condition for the current continuity equation, the heat flux and current density on the base plate were calculated for various influencing parameters and compared with the experimental results obtained under the same welding conditions. Furthermore, other transporting phenomena acting on the anode plate, such as arc pressure and shear stress, were calculated.

  20. Seismotectonics of New Guinea: a Model for Arc Reversal Following Arc-Continent Collision

    NASA Astrophysics Data System (ADS)

    Cooper, Patricia; Taylor, Brian

    1987-02-01

    The structure and evolution of the northern New Guinea collision zone is deduced from International Seismological Center (ISC) seismicity (1964-1985), new and previously published focal mechanisms and a reexamination of pertinent geological data. A tectonic model for the New Guinea margin is derived which illustrates the sequential stages in the collision and suturing of the Bewani-Toricelli-Adelbert-Finisterre-Huon-New Britain arc to central New Guinea followed by subduction polarity reversal in the west. East of 149°E, the Solomon plate is being subducted both to the north and south; bringing the New Britain and Trobriand forearcs toward collision. West of 149°E the forearcs have collided, and together they override a fold in the doubly subducted Solomon plate lithosphere, which has an axis that is parallel to the strike of the Ramu-Markham suture and that plunges westward at an angle of 5° beneath the coast ranges of northern New Guinea. Active volcanism off the north coast of New Guinea is related to subduction of the Solomon plate beneath the Bismarck plate. Active volcanism of the Papuan peninsula and Quaternary volcanism of the New Guinea highlands are related to slow subduction of the Solomon plate beneath the Indo-Australian plate along the Trobriand Trough and the trough's former extension to the west, respectively. From 144°-148°E, seismicity and focal mechanisms reveal that convergence between the sutured Bismarck and Indo-Australian plates is accommodated by thrusting within the Finisterre and Adelbert ranges and compression of the New Guinea orogenic belt, together with basement-involved foreland folding and thrusting to the south. The Finisterre block overthrusts the New Guinea orogenic belt, whereas the Adelbert block is sutured to New Guinea and overthrusts the oceanic lithosphere of the Bismarck Sea. Along the New Guinea Trench, west of 144°E, seismicity defines a southward dipping Wadati-Benioif zone, and focal mechanisms indicate oblique

  1. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  2. Plating Tank Control Software

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  3. Seismicity of the Earth 1900–2010 Australia plate and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Australia plate and vicinity not presented in Tarr and others (2010). The boundary of the Australia plate includes all fundamental plate boundary components: mid-ocean ridges, subduction zones, arc-continent collisions, and large-offset transform faults. Along the southern edge of the plate the mid-ocean ridge separates the Australia and Antarctica plates and its behavior is straightforward. In contrast, the other boundary segments that ring the Australia plate represent some of the most seismically active elements of the global plate boundary system, and some of the most rapidly evolving plate interactions. As a result, there are some very complex structures which host many large and great earthquakes

  4. Initial Observations From the Talkeetna Arc Continental Dynamics Project

    NASA Astrophysics Data System (ADS)

    Kelemen, P.

    2001-12-01

    The Jurassic Talkeetna arc section in Alaska lies north of the Border Ranges Fault in the northern Chugach Mtns, extending NW into the southern Talkeetna Mtns. Previous studies have demonstrated that the section formed in an island arc prior to accretion on the North American margin; mass balance estimates for a ``1D'' cross-section showed that it has a basaltic bulk composition; and garnet gabbros juxtaposed with pyroxenite overlying residual mantle harzburgite were interpreted as indicating a crustal thickness of about 30 km. Primary goals of this study are to extend mass balance calculations to 2D via mapping and thermobarometry, constrain the nature of primary magmas in the arc as a function of time during its (?) 20-30 Ma history, investigate the genesis of intermediate plutonic rocks, and evaluate the liklihood of lower crustal, convective instability (``delamination''). The project is designed to provide constraints on the evolution of continental crust via arc processes. After reconnaissance in 2000, 2001 field work focused on additional sampling for thermobarometry and laboratory based seismic velocity studies near the base of the section, mapping and sampling in the Klanelneechina klippe (gabbros in a thrust sheet overlying a metamorphosed accretionary complex south of the Border Ranges Fault, with uncertain affinity to the Talkeetna arc), extensive sampling of mid-crustal gabbros for petrological and ion probe analysis, detailed stratigraphic studies in the volcanic section, and investigating the relationship of extensive, Jurassic quartz diorite and granodiorite in the southern Talkeetna Mtns (K/Ar ages 160-170 Ma) to dominantly gabbroic plutonic rocks in the arc further south and east (K/Ar and our new U/Pb and Ar/Ar ages 170-195 Ma). Our preliminary thermobarometric estimates suggest that the crustal thickness may have been 20 to 25 km. This is important since an apparent discrepancy between the ~ 30 km crustal thickness estimate and the ~ 15 km

  5. Transient crustal movement in the northern Izu-Bonin arc starting in 2004: A large slow slip event or a slow back-arc rifting event?

    NASA Astrophysics Data System (ADS)

    Arisa, Deasy; Heki, Kosuke

    2016-07-01

    The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. Horizontal velocities of continuous Global Navigation Satellite System stations on the Izu Islands move eastward by up to ~ 1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. Here, we report that such eastward movements transiently accelerated in the middle of 2004 resulting in ~ 3 cm extra movements in 3 years. We compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. By comparing crustal movements in different regions, the first possibility can be shown unlikely. It is difficult to rule out the second possibility, but current evidence support the third possibility, i.e. a large slow slip event with moment magnitude of ~ 7.5 may have occurred there.

  6. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  7. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.

    PubMed

    Shi, Chenyi; Lin, Qinrui; Deng, Chunhui

    2015-04-01

    In this study, a novel on-plate IMAC technique was developed for highly selective enrichment and isolation of phosphopeptides with high-throughput MALDI-TOF-MS analysis. At first, a MALDI plate was coated with polydopamine (PDA), and then Ti(4+) was immobilized on the PDA-coated plate. The obtained IMAC plate was successfully applied to the highly selective enrichment and isolation of phosphopeptides in protein digests and human serum. Because of no loss of samples, the on-plate IMAC platform exhibits excellent selectivity and sensitivity in the selective enrichment and isolation of phosphopeptides, which provides a potential technique for high selectivity in the detection of low-abundance phosphopeptides in biological samples.

  8. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.

    PubMed

    Shi, Chenyi; Lin, Qinrui; Deng, Chunhui

    2015-04-01

    In this study, a novel on-plate IMAC technique was developed for highly selective enrichment and isolation of phosphopeptides with high-throughput MALDI-TOF-MS analysis. At first, a MALDI plate was coated with polydopamine (PDA), and then Ti(4+) was immobilized on the PDA-coated plate. The obtained IMAC plate was successfully applied to the highly selective enrichment and isolation of phosphopeptides in protein digests and human serum. Because of no loss of samples, the on-plate IMAC platform exhibits excellent selectivity and sensitivity in the selective enrichment and isolation of phosphopeptides, which provides a potential technique for high selectivity in the detection of low-abundance phosphopeptides in biological samples. PMID:25640129

  9. Scattering-matrix arc detection on the JET ITER-like ICRH antenna

    SciTech Connect

    Becoulet, A.; Vrancken, M.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Lerche, E.; Van Eester, D.; Vervier, M.; Argouarch, A.; Blackman, T.

    2009-06-01

    Operating Ion Cyclotron Resonance Heating (ICRH) antennas at high power density puts them at risk of arcing which reduces the coupled power to the plasma because the perturbed impedance match triggers the Voltage Standing Wave Ratio (VWSR) based generator trip system but even worse might damage the antenna beyond repair because of the the arc s localised energy deposition. New antennas are designed to operate in a load tolerant way which creates low impedance zones that are especially at risk since the existing VSWR protection systems are less sensitive to arcs in these areas. To protect these low impedance areas, a new arc protection system referred as Scattering Matrix Arc Detection (SMAD) was proposed. This paper describes the basic operating principle and implementation in hard- and software for the JET ITER-Like Antenna (ILA), with testbed and preliminary JET commissioning results.

  10. Timing constraints on building an intermediate plutonic arc crustal section: U- Pb zircon geochronology of the Sierra Valle Fértil-La Huerta, Famatinian arc, Argentina

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Otamendi, Juan E.; Bergantz, George; Stair, Kelley M.; Valencia, Victor A.; Gehrels, George E.

    2010-08-01

    The Sierra Valle Fértil Range in northwestern Argentina exposes a tilted crustal section through the Ordovician Famatinian arc, from >25 km to shallow crustal paleodepths. Fourteen new U-Pb zircon crystallization ages of magmatic rocks from Sierra Valle Fértil area show that this section of the arc was built over a short time interval during the Ordovician, between 485 and 465 Ma. Zircon rim ages demonstrate that high-grade metamorphism and migmatization were synchronous with magmatic emplacement. Inherited ages in some of the plutonic rocks as well as detrital zircons in the metasedimentary framework suggest that the Famatinian arc was emplaced into a thick miogeoclinal cover to the thinned margin of the proto-South American continent in the Ordovician, which represents a part of Gondwana. Docking of the Precordilleran terrane outboard of proto-South America led to the cessation of arc magmatism in the Valle Fértil area and preservation of the arc in its early stages after <60 Myr of subduction during the Pampean and Famatinian magmatic stages. Our age data from the Sierra Valle Fértil indicate that wet mafic magmas were emplaced into the section at a rate typical for modern island arcs, ˜30 km3 km-1 Myr-1. The production of intermediate to felsic magmas in the upper plate was a result of partial melting of the metasedimentary framework and hybridization with mantle-derived melts and resulted in the generation of tonalites, granodiorites, and granites in the upper crust at a rate of ˜100 km3 km-1 Myr-1, similar to major magmatic flare-ups in the mature arcs of North American Cordillera. The Sierra Valle Fértil arc section is a type example of an immature Cordilleran arc, before major crustal thickening and crustal overturn takes place in the upper plate. The Famatinian arc section may also be an equivalent to the crustal architecture of more mature modern island arcs, such as parts of the Aleutians, Caribbean, and Japan.

  11. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chadwick, John; Perfit, Michael; McInnes, Brent; Kamenov, George; Plank, Terry; Jonasson, Ian; Chadwick, Claire

    2009-03-01

    The Woodlark Spreading Center (WSC) is subducted at the San Cristobal trench, forming a triple junction at the New Georgia Group (NGG) arc in the Solomon Islands. WSC lavas are N-MORB at > 100 km from the trench, but with decreasing distance they have increasingly arc-like Sr-Nd-Pb isotopic ratios, enrichments in Rb > K > Pb > Sr, and depletions in HFSE and Y. Within 50 km of the trench on the Simbo and Ghizo Ridges, many recovered samples are island arc tholeiites to medium-K calc-alkaline andesites and dacites, and many have the same or similar major and trace element and isotopic characteristics as true arc lavas in the NGG on the other side of the trench. Previous investigations have concluded that these WSC lavas are the result of relic back arc mantle enrichments resulting from subduction of the Pacific plate prior to the late Miocene at the North Solomon trench, > 200 km to the north. However, the high-silica WSC lavas are more arc-like than those recovered from other distal back arcs, and are more voluminous, forming large submarine ridges and stratovolcanoes. We suggest that true arc mantle migrates across the plate boundary from the adjacent NGG arc through slab windows created by the subduction of the WSC. This leads to variable mixing between NGG arc and WSC N-MORB end-members, forming the transitional lavas recovered from the WSC. Lavas with similar arc-like characteristics have previously been recovered on the Chile Rise near where it is subducted at the Chile Trench, raising the possibility that such mantle transfer is a common phenomenon where active spreading centers are subducted. The presence of slab windows may also be responsible for the unusual forearc volcanism in the NGG, and melting of slab window margins may account for the presence of high-silica adakite-like lavas on the WSC.

  12. The intra-oceanic Cretaceous (~ 108 Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon

    2016-09-01

    The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* < 1 for the Aulan sample with initial εHf of + 8.6 ± 0.2 is interpreted as the magma dominated by contributions from fluid fluxing of the mantle wedge and lesser contributions of low temperature melt from subducted slab sediment, in an oceanic setting. This mechanism can explain the sub-DM initial εHf value, without the need to invoke melting of significantly older (continental) crust in an Andean setting. We interpret the Kata-Rash igneous rocks as a fragment of the Late Cretaceous suprasubduction zone system (named here the Kata-Rash arc) that most likely developed within the Neotethys Ocean rather than at a continental margin. Subsequently during the latest Cretaceous

  13. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  14. Angular shear plate

    SciTech Connect

    Ruda, Mitchell C.; Greynolds, Alan W.; Stuhlinger, Tilman W.

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  15. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  16. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system. PMID:23591887

  17. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  18. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    SciTech Connect

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-15

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of JxB propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (T{sub e}) of hundreds of eV in the arc as revealed by the simulation. Hence T{sub e} of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90 eV, which is confirmed by Langmuir electric probe measurements. Density n{sub e} of this metal plasma is shown to be in the range 4x10{sup 21}-6x10{sup 21} m{sup -3} and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2x10{sup 6} cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  19. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  20. Geologically current plate motions

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Gordon, Richard G.; Argus, Donald F.

    2010-04-01

    We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit-MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6-2.6mmyr-1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca-Antarctic and Nazca-Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also

  1. A Mechanical Model for the Michoacan Subduction Zone and Associated Intra-Arc Extension

    NASA Astrophysics Data System (ADS)

    Contreras, J. J.

    2006-12-01

    The Trans-Mexican volcanic belt is a subduction-related arc dissected by a field of seismically active normal faults clustered in its western part. This field of normal faults is an enigmatic feature of the Trans-Mexican volcanic belt and the nature of the mechanism driving extension has been the subject of debate for more than 25 years. These faults form en echelon arrays and systems of nested faults aligned parallel to the axis of the volcanic belt with a characteristic width of 20 km. Fault arrays seldom exceed 30 km in length and examples include the Tepic-Zoacalco, Chapala, and Morelia-Acambay fault zones. Moreover, crosscutting relations with basalt flows indicate that these faults started to accrue displacement at 5-6 My during a period of high convergence rate between the North America and Rivera plates. The model consists of a 40 km-thick elastic plate (i.e., the North America plate) sitting on top of Newtonian incompressible fluid (upper mantle) forced in convection along the Wadati-Benioff zone. The plate is allowed to undergo plasticity when deviatoric stresses exceed the Mohr-Coulomb yield strength. The thermal state of the subduction zone is also incorporated in the model, given the strong dependence of the rehology of both mantle and crust on temperature. Boundary conditions of the model are consistent with heat-flow measurements, gravity modeling, convergence rates derived from sea-floor magnetic anomalies, as well as geological and seismological observations. Model shows that extension in the arc is the direct result of subduction due to viscous coupling between tectonic plates. Numerical solutions indicate that positive changes in momentum of the Rivera plate increase viscous drag along the base and leading edge of North America resulting in downward bending of the continental plate. This gives rise to tension 100-200 km inland from the trench in good agreement with the location of the active normal faults of the western Trans-Mexican volcanic

  2. Paleomagnetic rotations and the Cenozoic tectonics of the Cascade Arc, Washington, Oregon, and California

    SciTech Connect

    Wells, R.E. )

    1990-11-10

    Paleomagnetic results from Cenozoic (62-12 Ma) volcanic rocks of the Cascade arc and adjacent indicate that moderate to large clockwise rotations are an important component of the tectonic history of the arc. Two mechanisms of rotation are suggested by the regional pattern of paleomagnetic rotations. The progressive increase in rotation toward the coast in arc and forearc rocks results from distributed dextral shear, which is likely driven by oblique subduction of oceanic plates to the west. Simple shear rotation is accommodated in the upper crust by strike-slip faulting. The right-lateral Mount St. Helens seismic zone may be an active manifestation of this process. Dextral shear probably obscures a subequal contribution to arc and forearc rotation that is driven by intraarc or backarc extension. This rotation is suggested by the average southward increase in continental margin rotations into the region outboard of the Basin and Range. The southward increase in rotation parallels a change in the arc tectonic regime from largely compressional in northern Washington to extensional in Oregon. Concomitant with this change is a southward increase in the volume of eruptive rocks and the number of basaltic vents in the arc. A progressive eastward shift of the arc volcanic front with time in the rotated arc terrane is the result of the westward pivoting of the arc block in front of a zone of extension since Eocene time. Westward migration of bimodal Basin and Range volcanism since at least 16 Ma is tracking westward rotation of the frontal arc block and growth of the Basin and Range in its wake.

  3. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  4. Continent-arc collision in the Banda Arc imaged by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Miller, Meghan S.; O'Driscoll, Leland J.; Harris, Cooper W.; Roosmawati, Nova; Teofilo da Costa, Luis

    2016-09-01

    The tectonic configuration of the Banda region in southeast Asia captures the spatial transition from subduction of Indian Ocean lithosphere to subduction and collision of the Australian continental lithosphere beneath the Banda Arc. An ongoing broadband seismic deployment funded by NSF is aimed at better understanding the mantle and lithospheric structure in the region and the relationship of the arc-continent collision to orogenesis. Here, we present results from ambient noise tomography in the region utilizing this temporary deployment of 30 broadband instruments and 39 permanent stations in Indonesia, Timor Leste, and Australia. We measure dispersion curves for over 21,000 inter-station paths resulting in good recovery of the velocity structure of the crust and upper mantle beneath the Savu Sea, Timor Leste, and the Nusa Tenggara Timur (NTT) region of Indonesia. The resulting three dimensional model indicates up to ∼25% variation in shear velocity throughout the plate boundary region; first-order velocity anomalies are associated with the subducting oceanic lithosphere, subducted Australian continental lithosphere, obducted oceanic sediments forming the core of the island of Timor, and high velocity anomalies in the Savu Sea and Sumba. The structure in Sumba and the Savu Sea is consistent with an uplifting forearc sliver. Beneath the island of Timor, we confirm earlier inferences of pervasive crustal duplexing from surface mapping, and establish a link to underlying structural features in the lowermost crust and uppermost mantle that drive upper crustal shortening. Finally, our images of the volcanic arc under Flores, Wetar, and Alor show high velocity structures of the Banda Terrane, but also a clear low velocity anomaly at the transition between subduction of oceanic and continental lithosphere. Given that the footprint of the Banda Terrane has previously been poorly defined, this model provides important constraints on tectonic reconstructions that

  5. Atmospheric pressure arc discharge with ablating graphite anode

    SciTech Connect

    Nemchinsky, V. A.; Raitses, Y.

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  6. Gravitational removal of volcanic arc roots in Cordilleran orogens

    NASA Astrophysics Data System (ADS)

    Currie, C. A.; Ducea, M. N.; DeCelles, P. G.; Beaumont, C.

    2013-12-01

    Cordilleran orogens, such as the central Andes, form above subduction zones and their evolution depends on processes associated with oceanic plate subduction and continental plate shortening. Such orogens are characterized by abundant arc volcanism and the formation of thick (>30 km) granitoid batholiths. The magma composition is consistent with a multi-stage model, in which parental mantle-derived basaltic magmas stagnate within the continental lithosphere and then undergo differentiation. Felsic partial melts rise through the crust, leaving a high-density garnet pyroxenite root in the deep lithosphere. Here, we study the dynamics of gravitational removal of this root using regional two-dimensional thermal-mechanical models of subduction below a continent. In the models, the volcanic arc location is determined dynamically based on subduction zone thermal structure, and formation of the batholith-root complex is simulated by changing the density of the volcanic arc lithosphere over time. For the lithosphere structure used in our models, arc roots that undergo even a small density increase are readily removed through gravitational foundering for a wide range of root strengths and subduction rates. The dynamics of removal depend on the relative rates of downward gravitational growth and horizontal shearing by subduction-induced mantle flow. Gravitational growth dominates for high root densification rates, high root viscosities and low subduction rates, leading to drip-like removal of the root as a single downwelling over 1-3 Myr. At lower growth rates, the root is removed over ~6 Myr through shear entrainment, as it is carried sideways by mantle flow and then subducted on top of the oceanic plate. In all models, >80% of the root is removed, making this an effective way to thin mantle lithosphere in the volcanic arc region. This can help resolve the mass problem in the central Andes, where observations indicate a thin mantle lithosphere, despite significant crustal

  7. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen

    NASA Astrophysics Data System (ADS)

    Gallhofer, Daniela; Quadt, Albrecht von; Peytcheva, Irena; Schmid, Stefan M.; Heinrich, Christoph A.

    2015-09-01

    The Apuseni-Banat-Timok-Srednogorie Late Cretaceous magmatic arc in the Carpathian-Balkan orogen formed on the European margin during closure of the Neotethys Ocean. It was subsequently deformed into a complex orocline by continental collisions. The Cu-Au mineralized arc consists of geologically distinct segments: the Apuseni, Banat, Timok, Panagyurishte, and Eastern Srednogorie segments. New U-Pb zircon ages and geochemical whole rock data for the Banat and Apuseni segments are combined with previously published data to reconstruct the original arc geometry and better constrain its tectonic evolution. Trace element and isotopic signatures of the arc magmas indicate a subduction-enriched source in all segments and variable contamination by continental crust. The magmatic arc was active for 25 Myr (~92-67 Ma). Across-arc age trends of progressively younger ages toward the inferred paleo-trench indicate gradual steepening of the subducting slab away from the upper plate European margin. This leads to asthenospheric corner flow in the overriding plate, which is recorded by decreasing 87Sr/86Sr (0.70577 to 0.70373) and increasing 143Nd/144Nd (0.51234 to 0.51264) ratios over time in some segments. The close spatial relationship between arc magmatism, large-scale shear zones, and related strike-slip sedimentary basins in the Timok and Pangyurishte segments indicates mild transtension in these central segments of the restored arc. In contrast, the Eastern Srednogorie segment underwent strong orthogonal intraarc extension. Segmental distribution of tectonic stress may account for the concentration of rich porphyry Cu deposits in the transtensional segments, where lower crustal magma storage and fractionation favored the evolution of volatile-rich magmas.

  8. Late Neogene kinematics of intra-arc oblique shear zones: The Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    van Dijk, J. P.

    1994-10-01

    compression and extension (related to pulsating thrust wedge dynamics with phases of accretion and underthrusting respectively) and (3) regional, compressive interplate stress (middle Messinian-middle Pliocene). All structures are overprinted by post middle Pleistocene extensional faulting (related to rapid uplift of intra-arc massifs) and reversal along thrust planes and transcurrent faults. This extensional collapse reflects isostatic adjustments in response to plate rupture which was provoked by regional compressive stress.

  9. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective.

    PubMed

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  10. TOPICAL REVIEW: High-speed imaging in plasma arc cutting: a review and new developments

    NASA Astrophysics Data System (ADS)

    Colombo, V.; Concetti, A.; Ghedini, E.; Dallavalle, S.; Vancini, M.

    2009-05-01

    The aim of this paper is twofold: (i) to review all the achievements in our understanding of the phenomena related to plasma arc cutting (PAC) technology by means of high-speed camera (HSC) imaging and flow visualization techniques and (ii) to report on new studies that make use of recent and advanced instrumentation for HSC diagnostics, also highlighting some previously uncovered research subjects. In the last decade HSC imaging and flow visualization techniques have progressed considerably as a powerful qualitative diagnostic technique for investigating some of the fundamental phenomena typically occurring in PAC technology. More recently, HSC imaging has also been used to investigate pre-cut phases in PAC analysis, such as pilot arcing and piercing of mild steel and stainless steel plates with dual gas torches in various operating conditions, providing new insight into the process and highlighting some interesting plasma behaviour. HSC imaging of pilot arcing has been used to investigate the influence of the arc current, plasma pressure and swirl strength on the shape of the arc, on the type of the rotational motion of its attachment on the nozzle tip and to track trajectories and velocities of hafnium particles emitted from the electrode insert during that phase. HSC imaging can also highlight the behaviour of the arc during piercing phases and the possible presence of short non-destructive double arcing, otherwise impossible to recognize.

  11. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective.

    PubMed

    Chiaradia, Massimo

    2015-01-29

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts.

  12. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective

    PubMed Central

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  13. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  14. Spreading continents kick-started plate tectonics.

    PubMed

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining. PMID:25230662

  15. Spreading continents kick-started plate tectonics.

    PubMed

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  16. Controls on the location of arc volcanoes: an Andean study

    NASA Astrophysics Data System (ADS)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  17. Crustal structure variation along the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, Mike; Blundy, Jon; Melekhova, Elena; Baptie, Brian; Latchman, Joan; Bouin, Marie-Paule; Tait, Steve

    2014-05-01

    Subduction zones are the major location for the formation of continental crust. Therefore, an investigation of the crustal and mantle structure variation of these areas helps understanding the process of continental crust growth. Here we focus on a seismological investigation of the Lesser Antilles Arc. This island arc system is built by the relatively slow subduction (~ 2cm/yr) of the North and South American plates beneath the Caribbean plate. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. The abundance of broadband seismic stations on the Lesser Antilles islands in combination with the abundance of cumulated samples allows for a link between the seismic methods with a detailed petrological analysis. We use data from three-component broadband stations located on the individual islands along the arc. We investigate crustal structure using receiver functions to determine Moho depth and V P/V S ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. We use the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006) to compute the receiver functions. This method has the advantage of resistance to noise and gives stable solutions for the data, despite its large amount of oceanic noise. Our results show clear along-arc crustal properties. There are regions where the Moho is not very sharp due to a low velocity contrast. The real data results are then compared to synthetic receiver functions based on plausible models. We compute a range of synthetic crustal models and receiver functions based on petrologic constraints from cumulates. The seismic velocities are obtained from experimental data using different temperatures and pressures to simulate different depths. The initial water content was also varied to model dry and wet slab conditions. Our

  18. Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Watts, Anthony B.

    2015-05-01

    An ensemble-averaging technique is used to remove the long-wavelength topography and gravity field associated with subduction zones. Short-wavelength residual anomalies are attributed to the tectonic structure of subducting and overthrusting plates. A paired (positive-negative) fore-arc anomaly is observed consisting of a long (>1000 km), linear, trench-parallel ridge landward of the deep-sea-terrace basin. Ridges have amplitudes of 1500-3000 m and 160-240 mGal, wavelengths of 150-200 km, and high gravity anomaly to topography ratios (50-75 mGal km-1). The ridge crests correlate with the downdip limit of coseismic slip and strong interplate coupling and in Cascadia, the updip limit of tremor epicenters. The ridge crest may be interpreted as defining the boundary between the velocity-weakening and seismogenic region of the subduction interface and the downdip frictional transition zone. In Tonga-Kermadec, the Kuril Islands and Chile landward ridges are associated with extinct volcanic arcs. Paired anomalies are attributed to the preferential subduction erosion of the outer fore arc and a spatially varying combination of (a) lower crustal underplating beneath the inner fore arc, (b) the transformation of interseismic strain into permanent geologic strain via faulting, folding, or buckling of the inner fore arc, and (c) the relative trenchward migration of extinct volcanic arcs in regions operating with a net crustal deficit. Along-strike transitions in fore-arc morphology and seismogenic behavior are related to preexisting crustal structure of subducting and overthrusting plates. Fore arcs have the added potential of recording the time-integrated response of the upper plate to subduction processes, and fore-arc structure should be considered in tandem with seismological observations.

  19. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  20. Signs of continental rifting in the southwestern Japanese Island Arc

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. A.; Eroshenko, D. V.

    2016-03-01

    The southwestern margin of the Japan Arc evolved in the geodynamic regime of continental rifting during the Miocene-Pleistocene. This has been verified by broad manifestations of metasomatosis of mantle peridotites that underlie the lithosphere of the Japan Islands and by episodes of deep magmatism (kimberlites and melilitites) in the region. The high enrichment of deep melts in incompatible rare and rare earth elements is partially preserved in melts of regional basalts from smaller depths. In contrast, spreading basalts of the Sea of Japan and subduction basalts from the Nankai trench at the boundary with the Philippine Plate are extremely depleted in rare elements.