Science.gov

Sample records for arc root motions

  1. Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-Wavelength Transmission Lines

    NASA Astrophysics Data System (ADS)

    Cong, Haoxi; Li, Qingmin; Xing, Jinyuan; Li, Jinsong

    2014-09-01

    Secondary arc discharge is a complicated physical phenomenon and one of the key fundamental issues associated with ultra high voltage (UHV) half-wavelength transmission lines (HWTL). With the establishment of a physical simulation platform for the HWTLs, experiments were carried out regarding the motion and extinction characteristics of secondary arcs. The cathode arc root and the anode arc root were found to show an obvious polarity effect while the arc column was moving in a spiral, due to their different motion mechanisms. The extinction behavior was also recorded and experiments were designed with different compensation conditions. Results show that the arcing time can be greatly reduced if there exists an electrical compensation network. The research provides fundamentals for understanding the physics involved, especially the motion and extinction mechanisms of the secondary arcs.

  2. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  3. Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Ding, Juwen; Wu, Yi; Yang, Fei; Dong, Delong; Fan, Xingyu; Rong, Mingzhe

    2016-03-01

    In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three-dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of thermal radiation, the change of physical parameters of arc plasma and the nonlinear characteristic of ferromagnetic material. The distributions of pressure, temperature, gas flow and current density of arc plasma in the arc region are calculated. The simulation results show some phenomena which discourage arc interruption, such as back commutation and arc burning at the back of the splitter plate. To verify the simulation model, the arc motion is studied experimentally. The influences of the material and position of the innermost barrier plate are analyzed mainly. It proved that the model developed in this paper can efficiently simulate the arc motion. The results indicate that the insulation barrier plate close to the top of the splitter plate is conducive to the arc splitting, which leads to the significant increase of the arc voltage, so it is better for arc interruption. The research can provide methods and references to the optimization of ACB design. supported by National Key Basic Research Program of China (973 Program) (Nos. 2015CB251002, 6132620303), National Natural Science Foundation of China (Nos. 51221005, 51377128, 51577144), and the Fundamental Research Funds for the Central Universities, China

  4. Driven Motion and Instability of an Atmospheric Pressure Arc

    SciTech Connect

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  5. Prediction of the cathodic arc root behaviour in a hollow cathode thermal plasma torch

    NASA Astrophysics Data System (ADS)

    Freton, Pierre; Gonzalez, Jean-Jacques; Escalier, Gaelle

    2009-10-01

    The upper part of a well type cathode (WTC) plasma torch is modelled for several conditions in an air medium in the presence of an electric arc. The plasma flow created by the electric arc is described and the results compared with the data from the literature. Special attention is paid to the description of arc root attachment and to its movement due to the balance of forces. A fine description of the magnetic field produced by the external solenoid is reported. The model is based on the @Fluent software implemented with specific developments to be adapted to the thermal plasma domain. The paper shows the necessity to provide an accurate description of the external magnetic field due to the strong influence of the radial magnetic field component. Overall, we propose an original approach for arc root movement description which contributes to the understanding of the flow behaviour in the WTC torch.

  6. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  7. Aortic root and left atrial wall motion. An echocardiographic study.

    PubMed Central

    Akgün, G; Layton, C

    1977-01-01

    The echocardiographically recorded movement of the aortic root was studied by analysing the relation between posterior aortic wall motion and other intracardiac events. The systolic anterior movement of the aortic root continued beyond aortic valve closure and in cases with mitral regurgitation began significantly earlier than in normal subjects. The diastolic rapid posterior movement began after mitral valve opening but did not occur in patients with mitral stenosis. The total amplitude of aortic root motion was increased in patients with mitral regurgitation, diminished in cases of mitral stenosis, and was normal with aortic regurgitation. In patients with atrioventricular block an abrupt posterior movement followed the P wave of the electrocardiogram irrespective of its timing in diastole. These observations correlate with the expected changes in left atrial volume during the cardiac cycle both in the normal subjects and patients with heart disease. The results support the hypothesis that phasic changes in left atrial dimension are largely responsible for the echocardiographically observed movement of the aortic root and indicate a potential role for echocardiography in the analysis of left atrial events. Images PMID:911559

  8. Vacuum arc cathode spot motion in oblique magnetic fields: An interpretation of the Robson experiment

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.

    2016-09-01

    A model was developed of vacuum arc cathode spot motion in a magnetic field that obliquely intercepts the cathode surface. The model takes into account a force under an electric field caused by retrograde spot motion across the normal component of the magnetic field, producing a drift velocity component in the direction of the acute angle between the magnetic field and the cathode surface. The relationship between velocity of the retrograde direction and drift velocity of the cathode spot motion to the acute angle was developed. The dependencies of the drift angle θ on the acute angle φ, magnetic field strength B, and arc current I were calculated. It was found that the calculated θ increased with φ, B, and I in accordance with Robson's measurements.

  9. Thick, Cold and Dry Roots: the Key to Longevity of Continental Arc Lithosphere?

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Soustelle, V.; Hirth, G.; Saal, A. E.; Kruckenberg, S. C.; Eiler, J. M.

    2015-12-01

    In contrast to the continuity of mid-ocean ridge magmatism, arc volcanism is episodic, characterized by flareups lasting 10 - 50 My which, for reasons that remain unclear, end abruptly in <10 My. Key to understanding the origins of episodic arc behavior lie in constraining the roles of subducting vs. overriding lithosphere. Here, we show that upper mantle xenoliths from the Sierra Nevada arc, CA, USA represent mantle wedge residues that were thickened and rapidly cooled at ~3 GPa and 750 C, presumably at the slab-mantle interface. Pervasive melt infiltration from wedge-derived basalts transformed the depleted residues into refertilized lherzolite. Olivine crystal-preferred orientations (CPO) are weak and show predominantly axial-(010) and one lherzolite with B-type CPO. Measured water contents by SIMS in olivine and pyroxene are low, 5 - 9 ppm and 30 - 500 ppm, respectively. Assuming olivine lost water during eruption, recalculated olivine water in equilibrium with pyroxene does not exceed 35 ppm, resulting in reconstructed bulk rock water content similar to the MORB source. Extrapolation of experimental olivine water solubility to the xenoliths' final PT conditions ranges from 30 to 270 ppm, indicating that the peridotites are water-undersaturated. Such low water contents are not sufficient to produce axial-(010) and B-type CPO. Instead, we propose that the observed CPO was inherited from the prior melt infiltration event, which deformed the peridotites via grain-size sensitive, diffusion creep (e.g., grain boundary sliding). Therefore, water played little role in deformation of arc mantle. Low water contents in thick, cold arc roots result in very high viscosities which preclude significant deformation at final PT. In the Sierran case, rapid cooling also helped to freeze in geochemical and microstructural evidence of earlier melt-assisted deformation, and allowed the preservation of arc mantle lithosphere for ~80 My after it was formed. Only when the Farallon

  10. Implementation of a New Method for Dynamic Multileaf Collimator Tracking of Prostate Motion in Arc Radiotherapy Using a Single KV Imager

    SciTech Connect

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Keall, Paul J.

    2010-03-01

    Purpose: To implement a method for real-time prostate motion estimation with a single kV imager during arc radiotherapy and to integrate it with dynamic multileaf collimator (DMLC) target tracking. Methods and Materials: An arc field with a circular aperture and 358 deg. gantry rotation was delivered to a motion phantom with a fiducial marker under continuous kV X-ray imaging at 5 Hz, perpendicular to the treatment beam. A pretreatment gantry rotation of 120 deg. in 20 sec with continuous imaging preceded the treatment. During treatment, each kV image was first used together with all previous images to estimate the three-dimensional (3D) target probability density function and then used together with this probability density function to estimate the 3D target position. The MLC aperture was then adapted to the estimated 3D target position. Tracking was performed with five patient-measured prostate trajectories that represented characteristic prostate motion patterns. Two data sets were recorded during tracking: (1) the estimated 3D target positions, for off-line comparison with the actual phantom motion; and (2) continuous portal images, for independent off-line calculation of the 2D tracking error as the positional difference between the marker and the MLC aperture center in each portal image. All experiments were also made with 1- Hz kV imaging. Results: The mean 3D root-mean-square error of the trajectory estimation was 0.6 mm. The mean root-mean-square tracking error was 0.7 mm, both parallel and perpendicular to the MLC. The accuracy degraded slightly for 1- Hz imaging. Conclusions: Single-imager DMLC prostate tracking that allows arbitrary beam modulation during arc radiotherapy was implemented. It has submillimeter accuracy for most prostate motion types.

  11. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Wasson, Andrew J; Fairchild, Doug P; Wang, Yanli; Feng, Zhili

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  12. Assessing the Dosimetric Impact of Real-Time Prostate Motion During Volumetric Modulated Arc Therapy

    SciTech Connect

    Azcona, Juan Diego; Xing, Lei; Chen, Xin; Bush, Karl; Li, Ruijiang

    2014-04-01

    Purpose: To develop a method for dose reconstruction by incorporating the interplay effect between aperture modulation and target motion, and to assess the dosimetric impact of real-time prostate motion during volumetric modulated arc therapy (VMAT). Methods and Materials: Clinical VMAT plans were delivered with the TrueBeam linac for 8 patients with prostate cancer. The real-time target motion during dose delivery was determined based on the 2-dimensional fiducial localization using an onboard electronic portal imaging device. The target shift in each image was correlated with the control point with the same gantry angle in the VMAT plan. An in-house-developed Monte Carlo simulation tool was used to calculate the 3-dimensional dose distribution for each control point individually, taking into account the corresponding real-time target motion (assuming a nondeformable target with no rotation). The delivered target dose was then estimated by accumulating the dose from all control points in the plan. On the basis of this information, dose–volume histograms and 3-dimensional dose distributions were calculated to assess their degradation from the planned dose caused by target motion. Thirty-two prostate motion trajectories were analyzed. Results: The minimum dose to 0.03 cm{sup 3} of the gross tumor volume (D{sub 0.03cc}) was only slightly degraded after taking motion into account, with a minimum value of 94.1% of the planned dose among all patients and fractions. However, the gross tumor volume receiving prescription dose (V{sub 100%}) could be largely affected by motion, dropping below 60% in 1 trajectory. We did not observe a correlation between motion magnitude and dose degradation. Conclusions: Prostate motion degrades the delivered dose to the target in an unpredictable way, although its effect is reduced over multiple fractions, and for most patients the degradation is small. Patients with greater prostate motion or those treated with stereotactic body

  13. Experimental study of gliding arc plasma channel motion: buoyancy and gas flow phenomena under normal and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Potočňáková, Lucia; Šperka, Jiří; Zikán, Petr; van Loon, Jack J. W. A.; Beckers, Job; Kudrle, Vít

    2017-04-01

    The details of plasma channel motion are investigated by frame-by-frame image analysis of high speed recording of a gliding arc. The gliding arc is operated in several noble gases at various flow rates, voltages and artificial gravity levels. Several peculiarities in evolution of individual glides are observed, described and discussed, such as accelerating motion of plasma channel or shortcutting events of various kinds. Statistics of averaged parameters are significantly different for buoyancy and gas drag dominated regimes, which is put into relation with differing flow patterns for hypergravity and high gas flow.

  14. Electromagnetic-Guided Dynamic Multileaf Collimator Tracking Enables Motion Management for Intensity-Modulated Arc Therapy

    SciTech Connect

    Keall, Paul J.; Sawant, Amit; Cho, Byungchul; Ruan, Dan; Wu Junqing; Poulsen, Per; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Korreman, Stine

    2011-01-01

    Purpose: Intensity-modulated arc therapy (IMAT) is attractive because of high-dose conformality and efficient delivery. However, managing intrafraction motion is challenging for IMAT. The purpose of this research was to develop and investigate electromagnetically guided dynamic multileaf collimator (DMLC) tracking as an enabling technology to treat moving targets during IMAT. Methods and Materials: A real-time three-dimensional DMLC-based target tracking system was developed and integrated with a linear accelerator. The DMLC tracking software inputs a real-time electromagnetically measured target position and the IMAT plan, and dynamically creates new leaf positions directed at the moving target. Low- and high-modulation IMAT plans were created for lung and prostate cancer cases. The IMAT plans were delivered to a three-axis motion platform programmed with measured patient motion. Dosimetric measurements were acquired by placing an ion chamber array on the moving platform. Measurements were acquired with tracking, without tracking (current clinical practice), and with the phantom in a static position (reference). Analysis of dose distribution differences from the static reference used a {gamma}-test. Results: On average, 1.6% of dose points for the lung plans and 1.2% of points for the prostate plans failed the 3-mm/3% {gamma}-test with tracking; without tracking, 34% and 14% (respectively) of points failed the {gamma}-test. The delivery time was the same with and without tracking. Conclusions: Electromagnetic-guided DMLC target tracking with IMAT has been investigated for the first time. Dose distributions to moving targets with DMLC tracking were significantly superior to those without tracking. There was no loss of treatment efficiency with DMLC tracking.

  15. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  16. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery*

    PubMed Central

    Hunt, Margie A.; Sonnick, Mark; Pham, Hai; Regmi, Rajesh; Xiong, Jian-ping; Morf, Daniel; Mageras, Gig S.; Zelefsky, Michael; Zhang, Pengpeng

    2016-01-01

    The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios. Automatic registration of kV images and single MV frames or MV SA-DTS reconstructed with arc lengths from 2° to 7° with the appropriate reference fiducial template images was performed using special purpose-built software. Clinical feasibility was evaluated by retrospectively analyzing images acquired over four or five sessions for each of three patients undergoing hypofractionated prostate radiotherapy. The standard deviation of the registration error in phantom using MV SA-DTS was similar to single MV images for the static and prostate motion scenarios (σ = 0.25 mm). Under respiratory motion conditions, the standard deviation of the registration error increased to 0.7mm and 1.7 mm for single MV and MV SA-DTS, respectively. Registration failures were observed with the respiratory scenario only and were due to motion-induced fiducial blurring. For the three patients studied, the mean and standard deviation of the difference between automatic registration using 4° MV SA-DTS and manual registration using single MV images results was 0.07±0.52mm. The MV SA-DTS results in patients were, on average, superior to single-frame MV by nearly 1 mm — significantly more than what was observed in phantom. The best MV SA-DTS results were observed with arc lengths of 3° to 4°. Registration failures in patients using MV SA-DTS were primarily due to blockage of the gold seeds by the MLC. The failure rate varied from 2% to 16%. Combined MV SA

  17. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery.

    PubMed

    Hunt, Margie A; Sonnick, Mark; Pham, Hai; Regmi, Rajesh; Xiong, Jian-ping; Morf, Daniel; Mageras, Gig S; Zelefsky, Michael; Zhang, Pengpeng

    2016-03-08

    The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios. Automatic registra-tion of kV images and single MV frames or MV SA-DTS reconstructed with arc lengths from 2° to 7° with the appropriate reference fiducial template images was performed using special purpose-built software. Clinical feasibility was evaluated by retrospectively analyzing images acquired over four or five sessions for each of three patients undergoing hypofractionated prostate radiotherapy. The standard deviation of the registration error in phantom using MV SA-DTS was similar to single MV images for the static and prostate motion scenarios (σ = 0.25 mm). Under respiratory motion conditions, the standard deviation of the registration error increased to 0.7mm and 1.7 mm for single MV and MV SA-DTS, respectively. Registration failures were observed with the respiratory scenario only and were due to motion-induced fiducial blurring. For the three patients studied, the mean and standard deviation of the difference between automatic registration using 4° MV SA-DTS and manual registration using single MV images results was 0.07±0.52mm. The MV SA-DTS results in patients were, on average, superior to single-frame MV by nearly 1 mm - significantly more than what was observed in phantom. The best MV SA-DTS results were observed with arc lengths of 3° to 4°. Registration failures in patients using MV SA-DTS were primarily due to blockage of the gold seeds by the MLC. The failure rate varied from 2% to 16%. Combined MV SA

  18. Reliability of Measurement of Glenohumeral Internal Rotation, External Rotation, and Total Arc of Motion in 3 Test Positions

    PubMed Central

    Kevern, Mark A.; Beecher, Michael; Rao, Smita

    2014-01-01

    Context: Athletes who participate in throwing and racket sports consistently demonstrate adaptive changes in glenohumeral-joint internal and external rotation in the dominant arm. Measurements of these motions have demonstrated excellent intrarater and poor interrater reliability. Objective: To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3 testing procedures in National Collegiate Athletic Association Division I baseball and softball athletes. Design: Cross-sectional study. Setting: Athletic department. Patients or Other Participants Thirty-eight players participated in the study. Shoulder internal rotation, external rotation, and total arc of motion were measured by 2 investigators in 3 test positions. The standard supine position was compared with a side-lying test position, as well as a supine test position without examiner overpressure. Results: Excellent intrarater reliability was noted for all 3 test positions and ranges of motion, with intraclass correlation coefficient values ranging from 0.93 to 0.99. Results for interrater reliability were less favorable. Reliability for internal rotation was highest in the side-lying position (0.68) and reliability for external rotation and total arc was highest in the supine-without-overpressure position (0.774 and 0.713, respectively). The supine-with-overpressure position yielded the lowest interrater reliability results in all positions. The side-lying position had the most consistent results, with very little variation among intraclass correlation coefficient values for the various test positions. Conclusions: The results of our study clearly indicate that the side-lying test procedure is of equal or greater value than the traditional supine-with-overpressure method. PMID:25188316

  19. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    SciTech Connect

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-07-15

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators.

  20. Quasi-parallel electron beams and their possible application in inferring the auroral arc's root in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Liang, J.; Jiang, F.; Donovan, E.; Spanswick, E.; Angelopoulos, V.; Strangeway, R.

    2013-06-01

    In this study we investigate the upgoing electron beams at the topside ionosphere and their counterpart feature, the bidirectional quasi-parallel electron beams (QPEB) in the equatorial magnetosphere, with highlight on their potential application in estimating the location of the arc's root (AR) in the magnetotail central plasma sheet (CPS). We infer from FAST data that the upgoing electron beam is often found in the equatorward vicinity of the inverted-V arc. On the premise of such a scenario, we propose a method to estimate the location of the AR from available magnetospheric measurements by assuming that the tailward boundary of the QPEB demarcates the earthward boundary of the AR. We report two events with THEMIS observations of QPEBs in the magnetotail CPS, and demonstrate how to use the QPEB features, together with the magnetic signatures of the current circuit constituted by the QPEB and arc, to estimate the earthward boundary of the AR. We find that the estimated earthward boundary of AR is situated at the periphery of a quasi-dipolar magnetosphere characterized by a strong Bz gradient. This finding is consistent with previously existing proposals on the possible AR location in the tail (e.g., Lui and Burrows, 1978; Sergeev et al., 2012).

  1. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    SciTech Connect

    Xu, Z; Wang, I; Yao, R; Podgorsak, M

    2015-06-15

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans and then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance

  2. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    SciTech Connect

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  3. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery.

    PubMed

    Singh, S D; Xu, X Y; Pepper, J R; Izgi, C; Treasure, T; Mohiaddin, R H

    2016-07-05

    Aortic root motion was previously identified as a risk factor for aortic dissection due to increased longitudinal stresses in the ascending aorta. The aim of this study was to investigate the effects of aortic root motion on wall stress and strain in the ascending aorta and evaluate changes before and after implantation of personalised external aortic root support (PEARS). Finite element (FE) models of the aortic root and thoracic aorta were developed using patient-specific geometries reconstructed from pre- and post-PEARS cardiovascular magnetic resonance (CMR) images in three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied. Cardiovascular MR cine images were used to quantify aortic root motion, which was imposed at the aortic root boundary of the FE model, with zero-displacement constraints at the distal ends of the aortic branches and descending aorta. Measurements of the systolic downward motion of the aortic root revealed a significant reduction in the axial displacement in all three patients post-PEARS compared with its pre-PEARS counterparts. Higher longitudinal stresses were observed in the ascending aorta when compared with models without the root motion. Implantation of PEARS reduced the longitudinal stresses in the ascending aorta by up to 52%. In contrast, the circumferential stresses at the interface between the supported and unsupported aorta were increase by up to 82%. However, all peak stresses were less than half the known yield stress for the dilated thoracic aorta.

  4. Exact solution for the self-induced motion of a vortex filament in the arc-length representation of the local induction approximation.

    PubMed

    Van Gorder, Robert A

    2012-11-01

    We review two formulations of the fully nonlinear local induction equation approximating the self-induced motion of the vortex filament (in the local induction approximation), corresponding to the Cartesian and arc-length coordinate systems. The arc-length representation put forth by Umeki [Theor. Comput. Fluid Dyn. 24, 383 (2010)] results in a type of 1+1 derivative nonlinear Schrödinger (NLS) equation describing the motion of such a vortex filament. We obtain exact stationary solutions to this derivative NLS equation; such exact solutions are a rarity. These solutions are periodic in space and we determine the nonlinear dependence of the period on the amplitude.

  5. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy.

    PubMed

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-03-06

    Many real-time imaging techniques have been developed to localize the target in 3D space or in 2D beam's eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting on average only <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem during 2D BEV tracking.

  6. Comparison of curved root canals preparation using reciprocating, continuous and an association of motions.

    PubMed

    Hoppe, Carolina Bender; Böttcher, Daiana Elisabeth; Justo, Aline Martins; Só, Marcus Vinícius Reis; Grecca, Fabiana Soares

    2016-09-01

    The aim of this study was to compare the rotary ProTaper Universal system, the single-file reciprocating WaveOne system and an association of motions assessing shaping ability, cleanliness, preparation time and instrument failures after preparation of curved root canals. Sixty root canals of extracted human molar teeth, with curvatures ranging between 20° and 40°, were divided into three groups, according with preparation system. Canals were prepared until apical size 25 using the ProTaper Universal system (G1), WaveOne (G2), or a hybrid technique (G3) associating reciprocating preparation with rotary glide path and cervical pre-enlargement. Teeth were scanned pre and post-operatively using computed tomography. Direction of transportation and centering ability of canals were measured using a computer image analysis program, and the results were analyzed statistically using one-way ANOVA. Preparation time was analyzed by one-way ANOVA and the Tukey post hoc test. Instrument failures were recorded. The amounts of debris and smear layer were quantified based on a numerical evaluation scale by scanning electron microscopy and were analyzed statistically using the Kruskal-Wallis test. No difference in transportation and centering ratio was found between the systems. Instrumentation with WaveOne was significantly faster than with other instruments (p < 0.05). During preparation, no instruments fractured and three suffered deformations. For debris removal and remaining smear layer, the results for the three groups were similar. The single-file reciprocating instrument was capable of providing faster root canal preparation with similar transporting, centralization and cleaning ability when compared with continuous and an association of motions in curved canals. SCANNING 38:462-468, 2016. © 2016 Wiley Periodicals, Inc.

  7. Tectonic evolution of the Sierra Maestra Mountains, SE Cuba, during Tertiary times: From arc-continent collision to transform motion

    NASA Astrophysics Data System (ADS)

    Rojas-Agramonte, Y.; Neubauer, F.; Garcia-Delgado, D. E.; Handler, R.; Friedl, G.; Delgado-Damas, R.

    2008-09-01

    A structural study was carried out along the southern Sierra Maestra mountain range, SE Cuba. This was aimed to monitor the effects of Paleogene island arc formation and collision due to convergence of the Caribbean and North American plates and subsequent Neogene disruption of the arc by initiation of the North Caribbean Transform Fault. In the Sierra Maestra two different and unrelated volcanic arcs are exposed, one of Cretaceous age (pre-Maastrichtian) and the other of Paleogene age, the latter forming the main expression of the mountain range. The volcanic arcs are overlain by Middle-Upper Eocene siliciclastic, carbonate and terrigenous rocks. Six distinct phases of deformation were recognized in this area (D1-D6). The first phase (D1) is related to the intrusion of a set of extensive subparallel, N-trending subvertical basalt-andesite dikes which record mainly E-W extension and N-S shortening during the Late Paleocene to Middle Eocene. The final stage of collision of eastern Cuba (Caribbean plate) with the Bahamas Platform (North American plate) began in the Middle Eocene and coincided with cessation of magmatism in the Sierra Maestra. Following uplift in the Sierra Maestra, coarse clastic sediments were deposited along the northern edge with clast provenance from the uplifted, southerly located, areas. Between Late Middle Eocene and Early Oligocene, rocks of the Sierra Maestra were deformed by nearly east-west trending folds and north-vergent thrust faults (D2) in an overall antiformal structure. This deformation was linked to a shift in the stress regime of the Caribbean plate from mainly N-S to NE-SW compression. Subsequent shifting in plate motion caused the abandonment of the Nipe-Guacanayabo fault system in the Early Oligocene and initiation of a deformation front to the south where the Oriente fault is now located. Shortening structures within the Sierra Maestra were overprinted in the Oligocene to Early Miocene by widespread extensional structures (D3

  8. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  9. Poster — Thur Eve — 31: Dosimetric Effect of Respiratory Motion on RapidArc Lung SBRT Treatment Delivered by TrueBeam Linear Accelerator

    SciTech Connect

    Jiang, Runqing; Zhan, Lixin; Osei, Ernest

    2014-08-15

    Volumetric modulated arc therapy (VMAT) allows fast delivery of stereotactic radiotherapy. However, the discrepancies between the calculated and delivered dose distributions due to respiratory motion and dynamic multileaf collimators (MLCs) interplay are not avoidable. The purpose of this study is to investigate RapidArc lung SBRT treatment delivered by the flattening filter-free (FFF) beam and flattened beam with Varian TrueBeam machine. CIRS Dynamic Thorax Phantom with in-house made lung tumor insertion was CT scanned both in free breathing and 4DCT. 4DCT was used to determine the internal target volume. The free breathing CT scan was used for treatment planning. A 5 mm margin was given to ITV to generate a planning target volume. Varian Eclipse treatment planning was used to generate RapidArc plans based on the 6 MV flattened beam and 6MV FFF beam. The prescription dose was 48 Gy in 4 fractions. At least 95% of PTV was covered by the prescribed dose. The RapidArc plans with 6 MV flattened beam and 6MV FFF beam were delivered with Varian TrueBeam machine. The dosimetric measurements were performed with Gafchromic XR-RV3 film, which was placed in the lung tumor insertion. The interplay between the dynamic MLC-based delivery of VMAT and the respiratory motion of the tumor degraded target coverage and created undesired hot or cold dose spots inside the lung tumor. Lung SBRT RapidArc treatments delivered by the FFF beam of TrueBeam linear accelerator is superior to the flattened beam. Further investigation will be performed by Monte Carlo simulation.

  10. TU-CD-304-01: FEATURED PRESENTATION and BEST IN PHYSICS (THERAPY): Trajectory Modulated Arc Therapy: Development of Novel Arc Delivery Techniques Integrating Dynamic Table Motion for Extended Volume Treatments

    SciTech Connect

    Chin, E; Hoppe, R; Million, L; Loo, B; Koong, A; Xing, L; Hsu, A; Fahimian, B; Otto, K

    2015-06-15

    Purpose: Integration of coordinated robotic table motion with inversely-planned arc delivery has the potential to resolve table-top delivery limitations of large-field treatments such as Total Body Irradiation (TBI), Total Lymphoid Irradiation (TLI), and Cranial-Spinal Irradiation (CSI). We formulate the foundation for Trajectory Modulated Arc Therapy (TMAT), and using Varian Developer Mode capabilities, experimentally investigate its practical implementation for such techniques. Methods: A MATLAB algorithm was developed for inverse planning optimization of the table motion, MLC positions, and gantry motion under extended-SSD geometry. To maximize the effective field size, delivery trajectories for TMAT TBI were formed with the table rotated at 270° IEC and dropped vertically to 152.5cm SSD. Preliminary testing of algorithm parameters was done through retrospective planning analysis. Robotic delivery was programmed using custom XML scripting on the TrueBeam Developer Mode platform. Final dose was calculated using the Eclipse AAA algorithm. Initial verification of delivery accuracy was measured using OSLDs on a solid water phantom of varying thickness. Results: A comparison of DVH curves demonstrated that dynamic couch motion irradiation was sufficiently approximated by static control points spaced in intervals of less than 2cm. Optimized MLC motion decreased the average lung dose to 68.5% of the prescription dose. The programmed irradiation integrating coordinated table motion was deliverable on a TrueBeam STx linac in 6.7 min. With the couch translating under an open 10cmx20cm field angled at 10°, OSLD measurements along the midline of a solid water phantom at depths of 3, 5, and 9cm were within 3% of the TPS AAA algorithm with an average deviation of 1.2%. Conclusion: A treatment planning and delivery system for Trajectory Modulated Arc Therapy of extended volumes has been established and experimentally demonstrated for TBI. Extension to other treatment

  11. Complexity of In-situ zircon U-Pb-Hf isotope systematics during arc magma genesis at the roots of a Cretaceous arc, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Milan, L. A.; Daczko, N. R.; Clarke, G. L.; Allibone, A. H.

    2016-11-01

    Zircons from seventeen samples of Western Fiordland Orthogneiss (WFO) diorites and three samples of country rock (two schists and one Darran Suite diorite) from the lowermost exposed sections of the Median Batholith, Fiordland, New Zealand, were analysed for in-situ U-Pb and Hf-isotopes. The WFO represents the deeper levels of Early Cretaceous continental arc magmatism on the Pacific margin of Gondwana, marking the final stage of long-lived arc magmatism on the margin spanning the Palaeozoic. The WFO plutons were emplaced at high-P (mid to deep crust at c. 8-12 kbar) between 124 and 114 Ma. Minor very high-P (c. 18 kbar) WFO eclogite and omphacite granulite facies orthogneiss (Breaksea Orthogneiss) are inferred to have crystallised in the base of thickened crust at c. 124 Ma. Zircons from the Breaksea Orthogneiss are considered to be variably affected by Pb-loss due to emplacement of the adjacent (Malaspina) Pluton at c. 114 Ma. By identifying Pb-loss, magmatic ages were able to be inferred in respect to apparent Pb-loss ages. Hf isotope data for the WFO define an excursion to less radiogenic Hf isotope ratios with time, reflecting increased recycling of an old source component. Peaks at c. 555, 770 and 2480 Ma, determine the age spectra of inherited populations of zircons within the WFO. This contrasts with detrital zircon patterns in country rocks of the Takaka terrane, which include peaks at c. 465 Ma, and 1250-900 Ma that are absent in the WFO inheritance pattern. These results indicate a previously unrecognised Precambrian lower crustal component of New Zealand. Recycling of this lower crust became increasingly important as a source for the final stage or Mesozoic arc magmatism along this segment of the palaeo-Pacific margin of Gondwana.

  12. [Endodontics in motion: new concepts, materials and techniques 4. Root canal disinfection in 2015].

    PubMed

    van der Waal, S V; de Soet, J J

    2015-12-01

    Apical periodontitis is an inflammatory response around the root tip of a tooth to microbial infection of the root canal system. Therefore, disinfection of the root canal system is the most important aim of root canal treatment. There are various mechanical and chemical ways to clean and disinfect. Most methods, however, cannot be relied upon to fully decontaminate in all cases. There are problems, for example, with the proper concentrations of disinfectant agents, like sodium hypochlorite. But the more recent agents, like ethylenediaminetetraacetic acid, calcium hydroxide or antibiotic pastes also have disadvantages, which are mostly a result of poor access of the irrigant to the biofilm bacteria in the affected root canals. Currently, a new strategy with a modified salt solution is under investigation that offers the prospect of being used as a root canal irrigant. At this moment the preferred treatment still seems to be to remove infected tissue as much as possible and to create access for irrigation procedures. The best results are achieved with 1-2% sodium hypochlorite as a disinfectant, possibly alternating with ethylenediaminetetraacetic acid as a cleansing agent. There is no scientific evidence for the successful use of calcium hydroxide.

  13. Dosimetric Impact of Breathing Motion in Lung Stereotactic Body Radiotherapy Treatment Using Image-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    SciTech Connect

    Rao Min; Wu Jianzhou; Cao Daliang; Wong, Tony; Mehta, Vivek; Shepard, David; Ye Jinsong

    2012-06-01

    Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.

  14. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    DOE PAGES

    Gershman, Sophia; Raitses, Yevgeny

    2016-07-27

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  15. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    SciTech Connect

    Gershman, Sophia; Raitses, Yevgeny

    2016-07-27

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  16. Pervasive lower crustal melting and granite genesis in southern India: mechanisms of magma differentiation and rheological equilibration in continental-arc roots

    NASA Astrophysics Data System (ADS)

    GR, R.; Chettootty, S.

    2013-12-01

    Comprehensive studies of well preserved orogenic belts reveal that the continental crust generated at accretionary margins generally acquire contrasting compositions from that of underlying primary basaltic material. Although major process that lead to juvenile addition of continental crust via accretion of intra-oceanic volcanic arcs is well understood, the processes that advance the compositional diversification of primary magma are not yet fully understood. In this context we examine the geochemical and thermo-mechanical characteristics of magmatic pattern preserved in the Kerala Khondalite Belt (KKB), a Proterozoic section of exhumed roots of magmatic arc, within the southern Indian granulite belt and address the problem of magma differentiation and possible mechanism of ascent to middle-crust levels. The calc-alkaline tonalitic and granitic rocks of the KKB record complimentary geochemical characteristics. Low contents of Y and Ti and high [La/Yb]N ratios in tonalites are suggestive of melting and removal of garnet, titanite and or ilmenite in the source. Therefore tonalites are identified as product of partial melting of metamorphosed hydrated basaltic lower crust, under fluid present conditions. On the contrary, the geochemistry of granites with significant negative Eu anomaly and relatively high Rb/Sr and Ba/Sr ratios indicate magmatic fractionation produced by reworking of early crust. The tectonic scenarios for the formation are: (1) low- to moderate-degree partial melting of hydrated basaltic crust at pressures high enough to stabilize garnet-amphibole residue for the formation of tonalitic magma and (2) continental arc-accretion directed to an episode of crustal remelting of the tonalitic crust, within plagioclase stability field for the production of granites. Calculations based on molar volumes of major oxide concentrations (Bottinga and Weill, 1970), indicate that the density of the original, hydrous magma with lowest silica content would have been

  17. Rigid motions: Action-angles, relative cohomology and polynomials with roots on the unit circle

    NASA Astrophysics Data System (ADS)

    Françoise, J.-P.; Garrido, P. L.; Gallavotti, G.

    2013-03-01

    Revisiting canonical integration of the classical solid near a hyperbolic or elliptic uniform rotation, normal canonical coordinates p, q are constructed so that the Hamiltonian becomes a function ("normal form") of x+ = pq or of x- = p2 + q2: the two cases are treated simultaneously distinguishing them, respectively, by a label a = ±, in terms of various power series with coefficients which are shown to be polynomials in a variable r^2_a depending on the inertia moments. The normal forms are derived via the analysis of a relative cohomology problem and shown to be obtainable without reference to the construction of the normal coordinates via elliptic integrals (unlike the derivation of the normal coordinates p, q). Results and conjectures also emerge about the properties of the above polynomials and the location of their roots. In particular a class of polynomials with all roots on the unit circle arises.

  18. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  19. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  20. A Double Blind Comparative Trial of Powdered Ginger Root, Hyosine Hydrobromide, and Cinnarizine in the Prophylaxis of Motion Sickness Induced by Cross Coupled Stimulation,

    DTIC Science & Technology

    A double blind laboratory trial was conducted to study the relative effectiveness of powdered ginger root (1G), hyosine (0.6 mg), cinnarizine (15 mg...range of tests was carried out in the period between ninety minutes and two hours after taking the drug. The study confirmed the effectiveness of...report that powdered root ginger is of value in the prophylaxis of motion sickness. Significant differences in the results of performance tests were

  1. Westward extension of the Levantine Basin to the Eratosthenes Seamount and the Cyprus Arc - no evidence for strike-slip motion

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Ehrhardt, Axel

    2013-04-01

    The Eastern Mediterranean represents a complex pattern of micro plates. A side by side distribution of diverse tectonic situations like collision, subduction, obduction and shear makes this area a very interesting spot on earth. Whereas subduction of Neo-Tethys oceanic crust is still ongoing at the Hellenic Arc, a collision occurred eastward when the Eratosthenes Seamount (ESM) entered the Cyprus Arc. If subduction is still active further east towards the Syrian coast remains unclear. The collision related deformation of the ESM and the adjacent Levantine Basin will be discussed in this paper. We present a new set of 2D multichannel seismic data, acquired in 2010 with the RV Maria S Merian, which is a dense line grid with NW-SE and NE-SW trending profiles crossing the ESM and the western part of the Levantine Basin south of Cyprus. We show first results of the profiles that were processed up to Pre-Stack Depth Migration. Based on the dense line grid with distances of not more than 5 nautical miles, we picked the key horizons in the Levantine Basin and generated reliable 3D-grids of the horizons. With this dense line grid, it was possible to trace the western extension of the Levantine Basin sometimes also referred to as Baltim Hecataeus Line (BHL), which is a fault lineament of Mesozoic age separating the Levantine Basin from the ESM. This extension is observed on every NW-SE and NE-SW trending profile and we were able to trace it even further north and south of the ESM. The BHL is believed to be reactivated as a linear sinistral transform fault that compensates the northward motion of the African-Arabian plate with respect to the blocked ESM. With our data we can show that the western extension of the Levantine Basin does not coincide with a sinistral transform fault and that it is rather a normal fault with a meandering NNE-SSW trending strike.

  2. Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1976-01-01

    Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.

  3. Petrology and tectonic significance of gabbros, tonalites, shoshonites, and anorthosites in a late Paleozoic arc-root complex in the Wrangellia Terrane, southern Alaska

    SciTech Connect

    Beard, J.S. ); Barker, F. )

    1989-11-01

    Plutonic rocks intrusive into the late Paleozoic Tetelna Formation of southern Alaska are the underpinnings of the late Paleozoic Skolai arc of the Wrangellia Terrane. There are four groups of intrusive rocks within the Skolai arc: (1) Gabbro-diorite plutons that contain gabbroic to anorthositic cumulates along with a differentiated series of gabbros and diorites of basaltic to andesitic composition; (2) Silicic intrusions including tonalite, granodiorite, and granite; (3) Monzonitic to syenitic plutonic rocks of the Ahtell complex and related dikes and sills; (4) Fault-bounded bytownite anorthosite of uncertain age and association. These anorthosites may be related to post-Skolai, Nikolai Greenstone magmatism. The silicic rocks yield discordant U-Pb zircon ages of 290-320 Ma (early to late Pennsylvanian). The monzonitic rocks of the Ahtell complex have shoshonitic chemistry. Similar shoshonitic rocks are widespread in both the Wrangellia terrane and the neighboring Alexander terrane and intrude the contact between the two. In modern oceanic arcs, shoshonitic rocks are typically associated with tectonic instability occurring during the initial stages of subduction or just prior to or during termination or flip of an established subduction zone. The nature of any tectonic instability which may have led to the cessation of subduction in the Skolai arc is unclear. Possibilities include collision of the arc with a ridge, an oceanic plateau, another arc, or a continental fragment. One possibility is that the shoshonitic magmatism marks the late Paleozoic amalgamation of Wrangellia and the Alexander terrane. The scarcity of arc rocks predating the shoshonites in the Alexander terrane supports this possibility, but structural corroboration is lacking.

  4. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways

    PubMed Central

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi

    2015-01-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin–horseradish peroxidase (WGA–HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA–HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg. PMID:25582052

  5. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  6. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams

    SciTech Connect

    Ong, Chin Loon; Dahele, Max; Cuijpers, Johan P.; Senan, Suresh; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-07-01

    Purpose: To study the dosimetric impact of relatively short-duration intrafraction shifts during a single fraction of RapidArc delivery for vertebral stereotactic body radiation therapy (SBRT) using flattened (FF) and flattening filter-free (FFF) beams. Methods and Materials: The RapidArc plans, each with 2 to 3 arcs, were generated for 9 patients using 6-MV FF and 10-MV FFF beams with maximum dose rates of 1000 and 2400 MU/min, respectively. A total of 1272 plans were created to estimate the dosimetric consequences in target and spinal cord volumes caused by intrafraction shifts during one of the arcs. Shifts of 1, 2, and 3 mm for periods of 5, 10, and 30 seconds, and 5 mm for 5 and 10 seconds, were modelled during a part of the arc associated with high doses and steep dose gradients. Results: For FFF plans, shifts of 2 mm over 10 seconds and 30 seconds could increase spinal cord D{sub max} by up to 6.5% and 13%, respectively. Dosimetric deviations in FFF plans were approximately 2-fold greater than in FF plans. Reduction in target coverage was <1% for 83% and 96% of the FFF and FF plans, respectively. Conclusion: Even short-duration intrafraction shifts can cause significant dosimetric deviations during vertebral SBRT delivery, especially when using very high dose rate FFF beams and when the shift occurs in that part of the arc delivering high doses and steep gradients. The impact is greatest on the spinal cord and its planning-at-risk volume. Accurate and stable patient positioning is therefore required for vertebral SBRT.

  7. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  8. An In Vitro Comparative Study of Intracanal Fluid Motion and Wall Shear Stress Induced by Ultrasonic and Polymer Rotary Finishing Files in a Simulated Root Canal Model

    PubMed Central

    Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James

    2012-01-01

    Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software. PMID:22461994

  9. An in vitro comparative study of intracanal fluid motion and wall shear stress induced by ultrasonic and polymer rotary finishing files in a simulated root canal model.

    PubMed

    Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James

    2012-01-01

    Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software.

  10. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  11. Implanting iodine-125 seeds into rat dorsal root ganglion for neuropathic pain: neuronal microdamage without impacting hind limb motion.

    PubMed

    Jiao, Ling; Zhang, Tengda; Wang, Huixing; Zhang, Wenyi; Fan, Saijun; Huo, Xiaodong; Zheng, Baosen; Ma, Wenting

    2014-06-15

    The use of iodine-125 ((125)I) in cancer treatment has been shown to relieve patients' pain. Considering dorsal root ganglia are critical for neural transmission between the peripheral and central nervous systems, we assumed that (125)I could be implanted into rat dorsal root ganglia to provide relief for neuropathic pain. (125)I seeds with different radioactivity (0, 14.8, 29.6 MBq) were implanted separately through L4-5 and L5-6 intervertebral foramen into the vicinity of the L5 dorsal root ganglion. von Frey hair results demonstrated the mechanical pain threshold was elevated after implanting (125)I seeds from the high radioactivity group. Transmission electron microscopy revealed that nuclear membrane shrinkage, nucleolar margination, widespread mitochondrial swelling, partial vacuolization, lysosome increase, and partial endoplasmic reticulum dilation were visible at 1,440 hours in the low radioactivity group and at 336 hours in the high radioactivity group. Abundant nuclear membrane shrinkage, partial fuzzy nuclear membrane and endoplasmic reticulum necrosis were observed at 1,440 hours in the high radioactivity group. No significant difference in combined behavioral scores was detected between preoperation and postoperation in the low and high radioactivity groups. These results suggested that the mechanical pain threshold was elevated after implanting (125)I seeds without influencing motor functions of the hind limb, although cell injury was present.

  12. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

    PubMed

    Miura, Hideharu; Fujiwara, Masayuki; Tanooka, Masao; Doi, Hiroshi; Inoue, Hiroyuki; Takada, Yasuhiro; Kamikonya, Norihiko; Hirota, Shozo

    2012-09-01

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s(2)), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer.

  13. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  14. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  15. Preliminary results, Central Gneiss Complex of the Coast Range batholith, southeastern Alaska: the roots of a high-K, calc-alkaline arc?

    USGS Publications Warehouse

    Barker, F.; Arth, Joseph G.

    1984-01-01

    The Central Gneiss Complex (CGC) of the Coast Range batholith is the oldest unit of the batholith east of Ketchikan, Alaska, being dated by the zircon UPb method (by T.W. Stern) at 128-140 Ma. Heterogeneous, layered, commonly migmatitic, orthogneiss of hornblende-biotite quartz diorite, tonalite, quartz monzodiorite and granodiorite compositions (IUGS terminology) form the major part of the CGC. These gneisses show a range of 50-65% SiO2 and are high in Al2O3 (c. 15-19%), K2O (1.5-4%) and Sr (800-900 ppm). Most major elements show coherent, typically magmatic trends with SiO2. La and Rb show maxima at ??? 58% SiO2. Initial 87Sr/86Sr ratios are relatively high and range from 0.7052 to 0.7066. Wallrocks of the CGC are mostly metagraywacke, pelite and metavolcanic rocks at amphibolite facies; they are geochemically dissimilar to the CGC. Major and minor elements of the CGC are very similar to those of high-K orogenic, calc-alkaline andesitic suites. The CGC may have formed largely by fractionation of mantle-derived, high AlKSr basaltic liquid in an ascending diapir, having hornblende, plagioclase, and biotite as major precipitating phases. The CGC probably represents the plutonic equivalent of a continental-margin or Andean arc that formed when the Taku terrane of the Insular belt on the west collided with the previously emplaced (but also allochthonous) Stikine terrane on the east in Late Jurassic or Early Cretaceous time. ?? 1984.

  16. Gated Volumetric-Modulated Arc Therapy vs. Tumor-Tracking CyberKnife Radiotherapy as Stereotactic Body Radiotherapy for Hepatocellular Carcinoma: A Dosimetric Comparison Study Focused on the Impact of Respiratory Motion Managements

    PubMed Central

    Yoon, KyoungJun; Kwak, Jungwon; Cho, Byungchul; Park, Jin-hong; Yoon, Sang Min; Lee, Sang-wook; Kim, Jong Hoon

    2016-01-01

    Purpose To assess the potential dosimetric benefits associated with the CyberKnife (CK) tumor tracking capability, wherein an extra margin for respiratory tumor motion is not required, when compared to respiratory-gated volumetric-modulated arc therapy (VMAT) for hepatocellular carcinoma (HCC). Methods Twenty-nine HCC patients previously treated with double-arc VMAT were enrolled. In each VMAT plan, the individual internal target volume (ITV) margin around the tumor was determined by measuring its motion over 30–70% of respiratory phases using four-dimensional computed tomography, followed by a 5-mm isotropic margin for the planning target volume (PTV). For each VMAT plan, two CK plans were generated using the original (CKoriginal, ITV included) and modified PTVs (CKmodified, ITV excluded) for comparison. In each case, the CKoriginal and CKmodified plans were compared to the original VMAT plan in terms of the dosimetric parameters including the conformity index (CI), PTV coverage (CO), organs at risk (OAR) doses, and normal liver tissue sparing. Results The original PTVs with median 24 cc (range, 9–65 cc) were significantly reduced to median 12 cc (range, 5–41 cc) in the CKmodified plans. Statistically significant differences in plan qualities were observed between the VMAT and the CK plans: mean CI, 1.05 in VMAT vs. 1.17 in both CK plans (p < 0.001); and mean CO, 93.0% in VMAT vs. 96.6% in CKoriginal and 96.9% in CKmodified (p < 0.001). The average volume of normal liver tissue receiving > 15 Gy was significantly decreased in the CKmodified plan, as compared to that in the VMAT and CKoriginal plans, by 1.75- and 1.61-fold, respectively. Conclusions The tumor tracking capability of the CK system can significantly decrease the volume of normal liver tissue receiving > 15 Gy, while maintaining high precision in target localization, conformity, tumor coverage, and dose sparing of the OAR. Therefore, it can be a valuable SBRT option, particularly for HCC patients

  17. Investigation of arc length versus flange thickness while using an arc voltage controller

    SciTech Connect

    Daumeyer, G.J.

    1994-11-01

    An arc voltage controller (AVC) for gas tungsten arc welding will change arc length when flange thickness changes while all other variables, including AVC setting, are held constant. A procedure for calibrating an LVDT (linear variable displacement transducer) used for electrode assembly motion monitoring was proven for laboratory setups and special investigations. A partial characterization on the deadband and sensitivity control settings of the Cyclomatic AVC was completed.

  18. A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone.

    PubMed

    van der Weele, Corine M; Jiang, Hai S; Palaniappan, Krishnan K; Ivanov, Viktor B; Palaniappan, Kannapan; Baskin, Tobias I

    2003-07-01

    A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request.

  19. A New Algorithm for Computational Image Analysis of Deformable Motion at High Spatial and Temporal Resolution Applied to Root Growth. Roughly Uniform Elongation in the Meristem and Also, after an Abrupt Acceleration, in the Elongation Zone1

    PubMed Central

    van der Weele, Corine M.; Jiang, Hai S.; Palaniappan, Krishnan K.; Ivanov, Viktor B.; Palaniappan, Kannapan; Baskin, Tobias I.

    2003-01-01

    A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request. PMID:12857796

  20. Instability of a Short Anodic Arc Used for Synthesis of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia; Raitses, Yevgeny

    2016-10-01

    The short anodic arc discharge is used for the synthesis of nanomaterials and had been presumed stable. We report the results of electrical and fast imaging measurements that reveal a combined motion of the arc column and the arc attachment region to the anode when the arc is operated with a high ablation rate. The arc exhibits a negative differential resistance before the arc motion occurs. The observed arc motion correlates with the arc voltage and current oscillations. The characteristic time of these instabilities is in a 10-3 sec range. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. The measured negative differential resistance of the arc during the oscillations indirectly supports the thermal model. Our model suggests that the injection of the ablating material into the plasma locally reduces the energy flux to the surface and leads to the arc shifting to the adjacent position. The observed arc motion can potentially cause the mixing of the various nanoparticles synthesized in the arc in the high ablation regime leading to the poor selectivity characteristic of the arc synthesis of nanomaterials. US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  1. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events ...

  2. Unstable Behavior of Anodic Arc Discharge for Synthesis of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    Fast imaging and electrical current measurements reveal unstable behavior of the carbon arc discharge for synthesis of nanomaterials. The arc column and the arc attachment region to the anode move in a somewhat sporadic way with a characteristic time in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. A physical mechanism is proposed based on the thermal processes in the arc plasma region interacting with the ablating anode which leads to the shift of the arc to a new anode region. According to the transient heat transfer analysis, the time needed to heat a new anode region is also in a 10-3 sec range. For a 0.6 cm diameter anode used in our experiments, this time yields a frequency of about 200-300 Hz, comparable to the measured frequency of the arc motion. The voltage and current measurements show oscillations with a similar characteristic frequency. The thermal model is indirectly supported by the measured negative differential resistance of the arc discharge during arc oscillations. The observed unstable behavior of the arc may be responsible for the mixing of the flow of nanoparticles during the synthesis of nanoparticles leading to poor selectivity typical for the arc synthesis. The work was supported by US DOE under Contract No. DE-AC02-09CH11466.

  3. Tangential electric fields in a drifting auroral arc

    NASA Astrophysics Data System (ADS)

    Yau, A. W.; Whalen, B. A.; Creutzberg, F.

    1981-04-01

    Rocket-borne ion convection velocity and ground-based optical measurements in an early evening, equatorward drifting, NW-SE oriented auroral arc are reported. Measurements indicate a detailed correspondence between the normal component of the ion convection velocity (the component normal to the auroral arc) and the drift motion of the auroral arc. The two velocities were identical on a time scale of minutes, and correlated strongly with each other in smaller-scale temporal variations. The correspondence implies a near-zero tangential electric field in an auroral arc, in the frame of reference of the arc. The observations have serious consequences for several auroral theories.

  4. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    NASA Astrophysics Data System (ADS)

    Cong, Haoxi; Li, Qingmin; Xing, Jinyuan; Li, Jinsong; Chen, Qiang

    2015-06-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. supported by National Natural Science Foundation of China (Nos. 51277061 and 51420105011)

  5. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  6. Analysis of optical perturbations of the SLC arcs

    SciTech Connect

    Weng, W.T.; Sands, M.

    1987-01-01

    This paper establishes the analytical framework in solving optical pertubations in a transport line in general and the SLC Arc specifically. The Formulation presented here is applicable to any transport system in a straightforward way. The equations of motion of a perturbed betatron function and dispersion function are presented. Sources of field errors for the SLC Arc system are discussed. Magnitudes of pertubations to the optical functions for the SLC Arc are estimated. (JDH)

  7. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  8. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  9. Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2016-01-01

    The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.

  10. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  11. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    SciTech Connect

    Shieh, C; Huang, C; Keall, P; Feain, I

    2015-06-15

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used to select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance

  12. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  13. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  14. Dynamic electron arc radiotherapy (DEAR): a feasibility study

    NASA Astrophysics Data System (ADS)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-01

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm2 and 3×10 cm2 for a 15×15 cm2 applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min-1). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  15. Dynamic electron arc radiotherapy (DEAR): a feasibility study.

    PubMed

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen

    2014-01-20

    Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm(2) and 3×10 cm(2) for a 15×15 cm(2) applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min(-1)). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.

  16. NOTE: Monte Carlo simulation of RapidArc radiotherapy delivery

    NASA Astrophysics Data System (ADS)

    Bush, K.; Townson, R.; Zavgorodni, S.

    2008-10-01

    RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions—the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.

  17. Monte Carlo simulation of RapidArc radiotherapy delivery.

    PubMed

    Bush, K; Townson, R; Zavgorodni, S

    2008-10-07

    RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions-the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.

  18. Philippine Sea Slab and South-Ryukyu Arc Sliver Accommodation of Arc-Continent Collision East of Taiwan

    NASA Astrophysics Data System (ADS)

    Lallemand, S.; Theunissen, T.; Font, Y.; Schnurle, P.; Lee, C.; Liu, C.

    2011-12-01

    The southern termination of the Ryukyu arc-trench system underwent a complex polyphased and extremely rapid tectonic evolution during the last 5 to 8 My. At first, the relative motion of the Philippine Sea plate (PSP) has changed about 5 My ago from a northward to a northwestward motion relative to Eurasia. Secondly, the Ryukyu trench has propagated from east to west during the same time period resulting in a tectonic inversion along the former passive margin of the South China Sea into the active margin of the S-Ryukyu trench. Thirdly, the convergence rate along the neo-formed S-Ryukyu trench dramatically increased from 8 to 13 cm/yr since at least 2 My when the Southern Okinawa Trough (SOT) started to rift. At the same time, the oceanic subduction of the South China Sea beneath the northern Manila arc progressively evolved into a continental subduction of the Chinese platform at the origin of the Taiwan orogen. The timing of these various kinematic and tectonic events should have been recorded in the deformed sedimentary basins and fold-and-thrust belts in the region. Unfortunately, a large part is now below the sea-level and no or a few age constraints are available. The recent joint project between Taiwan-USA & France (TAIGER & ACTS) gave us the opportunity to considerably increase the resolution of the seismic imagery around the island and especially in the most highly deformed area east of Taiwan along the S-Ryukyu forearc. We already knew that the seismic activity focussed in this region but we ignored how the converging plates deformed. We can now argue that the PSP strongly deforms in the vicinity of its deep interaction with the root of the Taiwan orogen. The north-dipping PSP slab buckles and tears along two diverging directions with a down-faulted part subducting beneath the SOT.

  19. Motion artifact on computed tomography scan suggesting an unstable 3-column spine injury: case report of a "near miss" root cause of unneeded surgery

    PubMed Central

    2013-01-01

    Background Polytrauma patients often present with altered mental status, thus making clinical examination challenging. Due to its reliability for detecting traumatic injuries to the spine, computed tomography (CT) is generally the imaging study of choice when the mechanism of injury and/or preliminary exam suggests spinal injury. However, motion artifact may lead to false diagnoses. Case report A 19-year-old intoxicated female involved in a high-speed motor vehicle crash suffered multiple spine, head, chest, and abdominal injuries. CT scan also suggested an unstable three column ligamentous injury at L2-3. Preparations were made for surgery the following morning, by which time her mental status had improved. She was re-examined in the operating room prior to induction by anesthesia and no focal lumbar pain or tenderness was detected. Imaging was further reviewed and motion artifact at the L2-3 level was noted. The surgery was cancelled. Conclusion Motion artifact mimicked an unstable three column ligamentous injury at the L2-3 level. Findings on CT scan should always be correlated to physical exam in order to avoid wrongful surgical intervention. PMID:24274703

  20. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  1. Arc initiation in cathodic arc plasma sources

    SciTech Connect

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  2. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  3. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  4. Trajectory Modulated Arc Therapy: A Fully Dynamic Delivery With Synchronized Couch and Gantry Motion Significantly Improves Dosimetric Indices Correlated With Poor Cosmesis in Accelerated Partial Breast Irradiation

    SciTech Connect

    Liang, Jieming; Atwood, Todd; Eyben, Rie von; Fahimian, Benjamin; Chin, Erika; Horst, Kathleen; Otto, Karl; Hristov, Dimitre

    2015-08-01

    Purpose: To develop planning and delivery capabilities for linear accelerator–based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. Methods and Materials: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives and constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. Results: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were −10.81% ± 6.91%, −27.81% ± 7.39%, −14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). Conclusions: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.

  5. WSTF electrical arc projects

    NASA Astrophysics Data System (ADS)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  6. WSTF electrical arc projects

    NASA Technical Reports Server (NTRS)

    Linley, Larry

    1994-01-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  7. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  8. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  9. The confinement of Neptune's ring arcs by the moon Galatea.

    PubMed

    Namouni, Faith; Porco, Carolyn

    2002-05-02

    Neptune has five narrow ring arcs, spanning about 40 degrees in longitude, which are apparently confined against the rapid azimuthal and radial spreading that normally results from inter-particle collisions. A gravitational resonance based on the vertical motion of the nearby neptunian moon Galatea was proposed to explain the trapping of the ring particles into a sequence of arcs. But recent observations have indicated that the arcs are away from the resonance, leaving their stability again unexplained. Here we report that a resonance based on Galatea's eccentricity is responsible for the angular confinement of the arcs. The mass of the arcs affects the precession of Galatea's eccentric orbit, which will enable a mass estimate from future observations of Galatea's eccentricity.

  10. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    low-voltage circuit breakers, metal vapour is formed by evaporation of the electrodes (runners) and the splitter plates, and can have a major influence on the dynamics of arc motion. While the influence of metal vapour on arcs is now understood in general terms, there are many unresolved questions. Areas in which improvements and new insights are required include: diagnostic techniques for measurements of arc properties in the presence of metal vapour, and understanding of the possible deviations from local thermodynamic equilibrium and their influence on such measurements; measurements of the influence of metal vapour in circuit breakers, in which the arc occurs within a solid enclosure, and in gas-metal arc welding, in which the formation of metal droplets and arc instabilities can disrupt standard techniques; determination of the concentration of metal vapour species in different types of arcs; understanding of the relative importance of the different effects of metal vapour (such as increased radiation and electrical conductivity, and the rapid influx of relatively cold gas) on the arc for different configurations; the influence of metal vapour on the electrode boundary and sheath regions; the treatment of radiative and mass transport in computational models; understanding and treatment of the vaporization, condensation and nucleation of metal species, and methods of incorporation of these processes in computational models. In this cluster issue, many of these and related issues are addressed. The twelve contributions cover gas-metal arc welding, gas-tungsten arc welding and low-voltage circuit breakers, and include both experimental and computational studies, in some cases with striking results. A review of the influence of metal vapour in welding arcs is followed by three accounts of spectroscopic measurements of gas-metal arc welding, which are difficult to perform and until recently have rarely been attempted. The application of spectroscopic techniques to

  11. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  12. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  13. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  14. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  15. Back-arc spreading of the northern Izu-Ogasawara (Bonin) Islands arc clarified by GPS data

    NASA Astrophysics Data System (ADS)

    Nishimura, Takuya

    2011-11-01

    We examined GPS data in the northwestern Pacific region, which includes the Izu-Ogasawara (Bonin)-Mariana (IBM) arc and the Japan arc. GPS velocity vectors on the Izu Islands, including Hachijo-jima and Aoga-shima, show systematic eastward movement deviating from that predicted by the rigid rotation of the Philippine Sea plate; this deviation supports the active back-arc spreading model suggested by previous geological studies. The results of a statistical F-test analysis with 99% confidence level showed that the forearc of the Izu Islands arc has an independent motion with respect to the rigid part of the Philippine Sea plate. We developed a kinematic block-fault model to estimate both rigid rotations of crustal blocks and elastic deformation due to locked faults on the block boundaries. The model suggests that the back-arc opening rate along the Izu back-arc rift zone ranges from 2 mm/yr at its southern end to 9 mm/yr near Miyake-jima, its northern end. It also predicts 23-28 mm/yr of relative motion along the Sagami Trough in the direction of ~ N25°W, where the Izu forearc subducts beneath central Japan. The orientation of this motion is supported by slip vectors of recent medium-size earthquakes, repeated slow-slip events, and the 1923 M = 7.9 Kanto earthquake.

  16. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  17. Arc Voltage Between Deion Grid Affected by Division of Arc in Magnetic Driven Arc

    NASA Astrophysics Data System (ADS)

    Inuzuka, Yutaro; Yamato, Takashi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Magnetic driven arc has been applied to DC breaker and fault current limiters. However, it has not been researched, especially stagnation and re-strike of the arc. In this paper, the arc voltage between deion grid affected by division of arc in magnetic driven arc and arc behavior are measured by using the oscilloscope and HSVC (High Speed Video Camera). As a result, arc voltage increased because of division of the arc. The arc mean moving speed increases with increasing the external magnetic field. However, when the arc was not stalemate, the arc moving speed does not change so much. The arc re-strike time increases and stalemate time decreases with increasing the external magnetic field. Therefore, the anode spot moving speed increases 8 times because arc re-strike occurs easily with the external magnetic field. Thus, the erosion of electrodes decreases and the arc movement becomes the smooth. When the arc is divided, the arc voltage increased because of the electrode fall voltage. Therefore, the arc voltage increases with increasing the number of deion grid.

  18. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  19. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  20. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  1. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.

    2016-08-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.

  2. The Role of Water Vapor and Dissociative Recombination Processes in Solar Array Arc Initiation

    NASA Technical Reports Server (NTRS)

    Galofar, J.; Vayner, B.; Degroot, W.; Ferguson, D.

    2002-01-01

    Experimental plasma arc investigations involving the onset of arc initiation for a negatively biased solar array immersed in low-density plasma have been performed. Previous studies into the arc initiation process have shown that the most probable arcing sites tend to occur at the triple junction involving the conductor, dielectric and plasma. More recently our own experiments have led us to believe that water vapor is the main causal factor behind the arc initiation process. Assuming the main component of the expelled plasma cloud by weight is water, the fastest process available is dissociative recombination (H2O(+) + e(-) (goes to) H* + OH*). A model that agrees with the observed dependency of arc current pulse width on the square root of capacitance is presented. A 400 MHz digital storage scope and current probe was used to detect arcs at the triple junction of a solar array. Simultaneous measurements of the arc trigger pulse, the gate pulse, the arc current and the arc voltage were then obtained. Finally, a large number of measurements of individual arc spectra were obtained in very short time intervals, ranging from 10 to 30 microseconds, using a 1/4 a spectrometer coupled with a gated intensified CCD. The spectrometer was systematically tuned to obtain optical arc spectra over the entire wavelength range of 260 to 680 nanometers. All relevant atomic lines and molecular bands were then identified.

  3. Geometric and dosimetric accuracy of dynamic tumor-tracking conformal arc irradiation with a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Shiinoki, Takehiro; Sawada, Akira; Kokubo, Masaki

    2014-03-15

    Purpose: The Vero4DRT system has the capability for dynamic tumor-tracking (DTT) stereotactic irradiation using a unique gimbaled x-ray head. The purposes of this study were to develop DTT conformal arc irradiation and to estimate its geometric and dosimetric accuracy. Methods: The gimbaled x-ray head, supported on an O-ring gantry, was moved in the pan and tilt directions during O-ring gantry rotation. To evaluate the mechanical accuracy, the gimbaled x-ray head was moved during the gantry rotating according to input command signals without a target tracking, and a machine log analysis was performed. The difference between a command and a measured position was calculated as mechanical error. To evaluate beam-positioning accuracy, a moving phantom, which had a steel ball fixed at the center, was driven based on a sinusoidal wave (amplitude [A]: 20 mm, time period [T]: 4 s), a patient breathing motion with a regular pattern (A: 16 mm, average T: 4.5 s), and an irregular pattern (A: 7.2–23.0 mm, T: 2.3–10.0 s), and irradiated with DTT during gantry rotation. The beam-positioning error was evaluated as the difference between the centroid position of the irradiated field and the steel ball on images from an electronic portal imaging device. For dosimetric accuracy, dose distributions in static and moving targets were evaluated with DTT conformal arc irradiation. Results: The root mean squares (RMSs) of the mechanical error were up to 0.11 mm for pan motion and up to 0.14 mm for tilt motion. The RMSs of the beam-positioning error were within 0.23 mm for each pattern. The dose distribution in a moving phantom with tracking arc irradiation was in good agreement with that in static conditions. Conclusions: The gimbal positional accuracy was not degraded by gantry motion. As in the case of a fixed port, the Vero4DRT system showed adequate accuracy of DTT conformal arc irradiation.

  4. Birth and Life of Auroral Arcs Embedded in the Evening Auroral Oval

    NASA Astrophysics Data System (ADS)

    Haerendel, G.; Chaston, C. C.; Frey, H. U.; Amm, O.; Juusola, L.; Nakamura, R.; Seran, E.; Weygand, J. M.

    2011-12-01

    We report on all-sky camera observations at Ft. Simpson during the crossing of the FAST spacecraft on 09 March 2008 at about 19:00 MLT. FAST registered eight auroral arcs with the associated upward currents and two periods of downward currents during the crossing time of five minutes. All arcs were moving equatorward with speeds near 300 m/s. Some of them exhibited local broadening and subsequent unfolding. Most remarkable was the appearance of new arcs at the poleward border of the auroral oval, clearly marked by an Alfvénic arc. The FAST data on energy and energy flux of the precipitating electrons and the jumps of the transverse magnetic perturbation field through the arcs were evaluated for five of the arcs following the formalism of Haerendel [2007]. This led to very consistent values for the integral wave impedance, field-parallel conductance, Alfvénic transit time, arc width, proper motion, and total energy release including the ionospheric dissipation. The most significant result is that all equatorward motions of the arcs were consistent with being proper motions in the rest frame of the ambient plasma. This is observational evidence for the arcs feeding on the magnetic energy liberated by the release of shear stresses in a region of dominantly upward field-aligned currents.

  5. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  6. Control of arc length during gas metal arc welding

    SciTech Connect

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementing a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.

  7. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  8. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  9. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  10. Arc reattachment driven by a turbulent boundary layer: implications for the sweeping of lightning arcs along aircraft

    NASA Astrophysics Data System (ADS)

    Guerra-Garcia, C.; Nguyen, N. C.; Peraire, J.; Martinez-Sanchez, M.

    2016-09-01

    A lightning channel attached to an aircraft in flight will be swept along the aircraft’s surface in response to the relative velocity between the arc’s root (attached to a moving electrode) and the bulk of the arc, which is stationary with respect to the air. During this process, the reattachment of the arc to new locations often occurs. The detailed description of this swept stroke is still at an early stage of research, and it entails the interaction between an electrical arc and the flow boundary layer. In this paper we examine the implications of the structure of the boundary layer for the arc sweeping and reattachment process by considering different velocity profiles, both for laminar and turbulent flow, as well as a high fidelity description, using large eddy simulation, of transitional flow over an airfoil. It is found that the local velocity fluctuations in a turbulent flow may be important contributors to the reattachment of the arc, through a combination of an increased potential drop along the arc and local approaches of the arc to the surface. Specific flow features, such as the presence of a laminar recirculation bubble, can also contribute to the possibility of reattachment.

  11. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  12. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  13. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  14. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  15. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  16. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  17. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  18. Dosimetric Impact of Interplay Effect on RapidArc Lung Stereotactic Treatment Delivery

    SciTech Connect

    Ong, Chin Loon; Verbakel, Wilko F.A.R.; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2011-01-01

    Purpose: Volumetric modulated arc therapy (RapidArc; Varian Medical Systems, Palo Alto, CA) allows fast delivery of stereotactic radiotherapy for Stage I lung tumors. We investigated discrepancies between the calculated and delivered dose distributions, as well as the dosimetric impact of leaf interplay with breathing-induced tumor motion. Methods and Materials: In 20 consecutive patients with Stage I lung cancer who completed RapidArc delivery, 15 had tumor motion exceeding 5 mm on four-dimensional computed tomography scan. Static and dynamic measurements were performed with Gafchromic EBT film (International Specialty Products Inc., Wayne, NJ) in a Quasar motion phantom (Modus Medical Devices, London, Ontario, Canada). Static measurements were compared with calculated dose distributions, and dynamic measurements were compared with the convolution of static measurements with sinusoidal motion patterns. Besides clinical treatment plans, additional cases were optimized to create excessive multileaf collimator modulation and delivered on the phantom with peak-to-peak motions of up to 25 mm. {gamma} Analysis with a 3% dose difference and 2- or 1-mm distance to agreement was used to evaluate the accuracy of delivery and the dosimetric impact of the interplay effect. Results: In static mode film dosimetry of the two-arc delivery in the phantom showed that, on average, fewer than 3% of measurements had {gamma} greater than 1. Dynamic measurements of clinical plans showed a high degree of agreement with the convolutions: for double-arc plans, 99.5% met the {gamma} criterion. The degree of agreement was 98.5% for the plans with excessive multileaf collimator modulations and 25 mm of motion. Conclusions: Film dosimetry shows that RapidArc accurately delivers the calculated dose distribution and that interplay between leaves and tumor motion is not significant for single-fraction treatments when RapidArc is delivered with two different arcs.

  19. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  20. Geometrical and electromagnetic effects on arc propagation in a railplug ignitor

    NASA Astrophysics Data System (ADS)

    Ekici, O.; Matthews, R. D.; Ezekoye, O. A.

    2007-12-01

    Three-dimensional simulation of arc motion is presented for conditions representative of those for a railplug ignitor. A railplug ignitor is a miniature rail-gun used to deliver an arc ignition source for internal combustion engine applications. Computations explored the influence of the railplug geometry, effects of an external magnetic field, and impact of the circuit current on arc velocity. One underlying question about arc motion in railplug systems has been the influence of the expansion velocity associated with energy deposition on arc motion. A single open end muzzle would result in higher velocities if the expansion effects are dominant. This was tested by simulating two types of geometries, single open end and double open end muzzles. The double open end configuration was shown to have faster arc propagation velocities. A discussion of the mechanisms is presented. A simple scaling analysis was found to explain the increased arc propagation velocity associated with application of an external magnetic field. Increasing the circuit current was found to increase the final arc propagation velocity, although the early time velocities were slower for larger currents.

  1. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  2. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  3. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  4. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    SciTech Connect

    Feng, Dingyu; Xiu, Shixin Wang, Yi; Liu, Gang; Zhang, Yali; Bi, Dongli

    2015-10-15

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.

  5. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    USGS Publications Warehouse

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  6. Semicircular Rashba arc spin polarizer

    SciTech Connect

    Bin Siu, Zhuo; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  7. Intensity-modulated arc therapy: principles, technologies and clinical implementation

    NASA Astrophysics Data System (ADS)

    Yu, Cedric X.; Tang, Grace

    2011-03-01

    Intensity-modulated arc therapy (IMAT) was proposed by Yu (1995 Phys. Med. Biol. 40 1435-49) as an alternative to tomotherapy. Over more than a decade, much progress has been made. The advantages and limitations of the IMAT technique have also been better understood. In recent years, single-arc forms of IMAT have emerged and become commercially adopted. The leading example is the volumetric-modulated arc therapy (VMAT), a single-arc form of IMAT that delivers apertures of varying weights with a single-arc rotation that uses dose-rate variation of the treatment machine. With commercial implementation of VMAT, wide clinical adoption has quickly taken root. However, there remains a lack of general understanding for the planning of such arc treatments, as well as what delivery limitations and compromises are made. Commercial promotion and competition add further confusion for the end users. It is therefore necessary to provide a summary of this technology and some guidelines on its clinical implementation. The purpose of this review is to provide a summary of the works from the radiotherapy community that led to wide clinical adoption, and point out the issues that still remain, providing some perspective on its further developments. Because there has been vast experience in IMRT using multiple intensity-modulated fields, comparisons between IMAT and IMRT are also made in the review within the areas of planning, delivery and quality assurance.

  8. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  9. Optical diagnostics of a gliding arc.

    PubMed

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

  10. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  11. The fractal nature of vacuum arc cathode spots

    SciTech Connect

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  12. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    SciTech Connect

    Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  13. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  14. Geologic implications of great interplate earthquakes along the Aleutian arc

    SciTech Connect

    Ryan, H.F.; Scholl, D.W.

    1993-12-01

    We present new marine geophysical observations and synthesize previous geologic interpretations of the Aleutian arc to show that the epicenters of these great thrust-type earthquakes coincide with upper plate segments of the arc characterized by a coherent forearc structural fabric. We propose that variations in upper plate structural strength and mobility affect the mechanical properties of the interplate thrust zone and need to be considered in localizing interplate asperities. Forearc tectonic segmentaion associated with the partitioning of strike-slip and thrust motions may exert long-term controls on the rates of seismic moment release.

  15. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  16. Sensitivity analysis of physics and planning SmartArc parameters for single and partial arc VMAT planning.

    PubMed

    Yang, Kai; Yan, Di; Tyagi, Neelam

    2012-11-08

    We investigate the sensitivity of various physics and planning SmartArc parameters to generate single and partial arc VMAT plans with equivalent or better plan quality as IMRT. Patients previously treated with step-and-shoot IMRT for several treatment sites were replanned using SmartArc. These treatment sites included head and neck, prostate, lung, and spine. Effect of various physics and planning SmartArc parameters, such as continuous vs. binned dose rate, dynamic leaf gap, leaf speed, maximum delivery time, number of arcs, and control point spacing, were investigated for Elekta Axesse and Synergy linacs. Absolute dose distribution was measured by using the ArcCHECK 3D cylindrical diode array. For all cases investigated, plan metrics such as conformity indices and dose homogeneity indices increased, while plan QA decreased with increasing leaf speed. Leaf speed had a significant impact on the segment size for low dose per fractionation cases. Constraining leaf motion to a lower speed not only avoids tiny large leaf travel and low-dose rate value, but also achieves better PTV coverage (defined as the volume receiving prescription dose) with less total MUs. Maximum delivery time, the number of arcs, and the spacing of control points all had similar effects as the leaf motion constraint on dose rate and segment size. The maximum delivery time had a significant effect on the optimization, acting as a hard constraint. Increasing the control point spacing from 2 to 6 degrees increased the PTV coverage, but reduced the absolute dose gamma passing rate. Plans generated using continuous and binned dose rate modes did not show any difference in the quality and the delivery for the Elekta machines. Dosimetric analysis with a 3D cylindrical QA phantom resulted in 93.6%-99.3% of detectors with a gamma index (3%/2 mm) < 1 for all cases.

  17. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  18. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    NASA Astrophysics Data System (ADS)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  19. Models for Jupiter's decametric arcs

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1981-01-01

    Arc-shaped structures that dominate Jupiter's decametric emission are discussed in terms of a magnetic fine structure. The sequence of arcs manifest the occurence of widespread fine structures similar to the white ovals on Jupiter's visible surface. An arc concave toward increasing time occurs at the east limb passage, and an arc convex occurs at the west limb passage, which is consistent with the early source producing vertex early arcs, and the late source producing vertex late arcs. Due to the geometry of the Io plasma torus (IPT) which is arranged so that Io skims the northern surface of the IPT, for any connection between Io and Jupiter's surface that involves Alfven waves, the propagation time, the refraction and the directional defocusing of these waves must be strongly influenced by the amount of Alfven wave path length between the instantaneous position of Io and the surface of the IPT.

  20. Joan of Arc.

    PubMed

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  1. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  2. Arcing on dc power systems

    NASA Technical Reports Server (NTRS)

    Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.

    1992-01-01

    Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.

  3. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    SciTech Connect

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  4. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  5. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  6. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  7. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  8. Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics

    NASA Astrophysics Data System (ADS)

    Sun, S. R.; Kolev, St.; Wang, H. X.; Bogaerts, A.

    2017-01-01

    We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column. The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.

  9. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Ding, Juwen; Yang, Fei; Dong, Delong; Rong, Mingzhe; Xu, Dan

    2016-05-01

    In this paper, a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB). The distributions of pressure, temperature, gas flow and current density of the arc plasma in the arc region are calculated, and the factors influencing the commutation process are analyzed according to the calculated results. Based on the airflow in the arc chamber, the causes of arc commutation asynchrony and the back commutation are investigated. It indicates that a reasonable contact space design is crucial to a successful arc commutation process. To verify the simulation results, the influence of contact space on arc voltage and arc commutation is tested. This research can provide methods and references to the optimization of ACB design. supported by National Key Basic Research Program of China (973 Program) (Nos. 2015CB251002, 6132620303) and National Natural Science Foundation of China (Nos. 51221005, 51377128, 51577144), and Science and Technology Project Through Grid State Corporation (No. SGSNKYOOKJJS1501564)

  10. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  11. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  12. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  13. Motion of the first metatarsophalangeal joint.

    PubMed

    Hetherington, V J; Carnett, J; Patterson, B A

    1989-01-01

    The analysis of motion of the first metatarsophalangeal joint in this study demonstrates the character of motion about this joint. Four instantaneous centers of rotation were calculated in the first metatarsal head that formed an arc encircling an area of increased stress patterns. The joint motion is made up of rolling, sliding, and compression. The fact that there is more than one center of motion contradicts the theory of a simple hinge joint. The joint is a dynamic acetabulum or "hammock," as described by Kelikian. That is, the first metatarsal head moves within a stable support comprised of the base of the proximal phalanx, the sesamoids, soft tissue, and muscle tendons. The nature of first metatarsophalangeal joint motion must be considered when contemplating surgical procedures of the first metatarsophalangeal joint.

  14. Neptune's ring arcs: VLT/NACO near-infrared observations and a model to explain their stability

    NASA Astrophysics Data System (ADS)

    Renner, S.; Sicardy, B.; Souami, D.; Carry, B.; Dumas, C.

    2014-03-01

    Context. Neptune's incomplete ring arcs have been stable since their discovery in 1984 although these structures should be destroyed in a few months through differential Keplerian motion. Regular imaging data are needed to address the question of the arc stability. Aims: We present the first NACO observations of Neptune's ring arcs taken at 2.2 μm (Ks band) with the Very Large Telescope in August 2007, and propose a model for the arc stability based on co-orbital motion. Methods: The images were aligned using the ephemerides of the satellites Proteus and Triton and were suitably co-added to enhance ring or satellite signals. Resonance theory and N-body simulations were used to model the arcs' confinement. Results: We derive accurate mean motion values for the arcs and Galatea and confirm the mismatch between the arcs' position and the location of the 42:43 corotation inclination resonance. We propose a new confinement mechanism where small co-orbital satellites in equilibrium trap ring arc material. We constrain the masses and locations of these hypothetical co-orbital bodies. Collected at the European Southern Observatory, Paranal, Chile - 079.C-0682.

  15. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    NASA Astrophysics Data System (ADS)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  16. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  17. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    PubMed

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  18. Birth and life of auroral arcs embedded in the evening auroral oval convection: A critical comparison of observations with theory

    NASA Astrophysics Data System (ADS)

    Haerendel, G.; Frey, H. U.; Chaston, C. C.; Amm, O.; Juusola, L.; Nakamura, R.; Seran, E.; Weygand, J. M.

    2012-12-01

    We present and analyze data on auroral arcs obtained during a pass of the FAST satellite over the field-of-view of the all-sky camera at Ft. Simpson (Canada), supported by ground-based magnetometer and SuperDARN radar data, and plasma data from THEMIS-A near the source region of the auroral currents. The auroral event took place at 19:00 MLT during substorm activity further east. Active auroral arcs were present over six degrees in latitude moving equatorward with significant changes in brightness and structure. New arcs were forming continuously at the polar border of the auroral oval which was marked by an Alfvénic arc. The data analysis revealed that the equatorward drift of the arcs was in part due to convective motion of the plasma frame but was rather dominated by proper motions of the arcs. Interpretation of these findings in the framework of theoretical work by one of the authors reproduces quantitatively the observed proper motion as a consequence of the progressive erosion of magnetic shear stresses. Most important was the possibility to deduce the interaction time scale between arc and source region. On average it corresponded to about six to eight transit times of an Alfvén wave between arc and source plasma or two fundamental eigenperiods of toroidal mode or azimuthally polarized Alfvén waves. However, large variations of the interaction times and corresponding proper motions were found. They are attributed to temporal and spatial variations of the energy input from the source plasma. The more remarkable is the fact that analysis on the basis of a quasi-stationary model produces consistent results. The progressive release of shear stresses during the equatorward motion of the arcs leads to the conclusion that they are dying after having reached the maximum of the poleward Pedersen current.

  19. Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow

    SciTech Connect

    Zhao, Tian-Liang; Liu, Jing-Lin; Li, Xiao-Song; Liu, Jin-Bao; Song, Yuan-Hong; Xu, Yong; Zhu, Ai-Min

    2014-05-15

    An annular-mode gliding arc discharge powered by a 50 Hz alternating current (ac) supply was studied in a vortex flow of dry and humid air. Its temporal evolution characteristics were investigated by electrical measurement, temporally resolved imaging, and temporally resolved optical emission spectroscopic measurements. Three discharge stages of arc-ignition, arc-gliding, and arc-extinction were clearly observed in each half-cycle of the discharge. During the arc-gliding stage, the intensity of light emission from the arc root at the cathode was remarkably higher than that at other areas. The spectral intensity of N{sub 2}(C{sup 3}Π{sub u}−B{sup 3}Π{sub g}) during the arc-ignition stage was much higher than that during the arc-gliding stage, which was contrary to the temporal evolutions of spectral intensities for N{sub 2}{sup +}(B{sup 2}Σ{sub u}{sup +}−X{sup 2}Σ{sub g}{sup +}) and OH(A{sup 2}Σ{sup +}−X{sup 2}Π{sub i}). Temporally resolved vibrational and rotational temperatures of N{sub 2} were also presented and decreased with increasing the water vapor content.

  20. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  1. Motion Sickness

    MedlinePlus

    ... but it is more common in children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling and cold sweats. It can then lead to dizziness and nausea and vomiting. Your brain senses movement by getting signals from your inner ears, eyes, ...

  2. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  3. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  4. PC-based arc ignition and arc length control system for gas tungsten arc welding

    SciTech Connect

    Liu, Y. ); Cook, G.E.; Barnett, R.J.; Springfield, J.F. . School of Engineering)

    1992-10-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard.

  5. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  6. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  7. Regional bond strengths to root canal dentin of fiber posts luted with three cementation systems.

    PubMed

    Gomes, Giovana Mongruel; Gomes, Osnara Maria Mongruel; Reis, Alessandra; Gomes, João Carlos; Loguercio, Alessandro Dourado; Calixto, Abraham Lincoln

    2011-01-01

    This study evaluated the influence of the cementation system on the regional push-out bond strength and failure pattern of fiber posts to radicular dentin. The roots of 48 extracted human incisors were prepared and divided into 3 groups (n = 16), according to the cementation system: AdperScotchbond Multi-Purpose + resin cement RelyX ARC (SBMP+ARC); Adper SingleBond 2 + RelyX ARC (SB+ARC) and; RelyX U100 self-adhesive resin cement (U100). The posts were cemented as per manufacturer's instructions for each cementation system. After 1 week, the roots were sectioned transversely into 6 discs. Two discs were obtained from the cervical, middle and apical thirds and the push-out test was carried out. The failure pattern was examined on all debonded specimens. The data were analyzed by two-way repeated measures ANOVA and Tukey's test. When U100 was used, no statistically significant difference (p>0.05) was observed among the different root regions. Statistically higher push-out bond strength values were detected in the cervical third for SBMP+ARC and SB+ARC (p<0.05). The U100 showed significantly more mixed failures than SBMP+ARC in the apical third (p<0.05). In conclusion, the self-adhesive cement RelyX U100 was the only cement not sensitive to the root canal region.

  8. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited

    USGS Publications Warehouse

    Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.

    2007-01-01

    Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.

  9. Theoretical motions of hydrofoil systems

    NASA Technical Reports Server (NTRS)

    Imlay, Frederick H

    1948-01-01

    Results are presented of an investigation that has been undertaken to develop theoretical methods of treating the motions of hydrofoil systems and to determine some of the important parameters. Variations of parameters include three distributions of area between the hydrofoils, two rates of change of downwash angle with angle of attack, three depths of immersion, two dihedral angles, two rates of change of lift with immersion, three longitudinal hydrofoil spacings, two radii of gyration in pitching, and various horizontal and vertical locations of the center of gravity. Graphs are presented to show locations of the center of gravity for stable motion, values of the stability roots, and motions following the sudden application of a vertical force or a pitching moment to the hydrofoil system for numerous sets of values of the parameters.

  10. A simple kinetic theory of auroral arc scales

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.

    1986-01-01

    A kinetic theory of the origins of the auroral arc scale spectrum is presented in this paper. The conceptual basis of the theory is current conservation in a turbulent plasma at the magnetospheric equatorial region in which a field-aligned current is generated and the local electrostatic potential structure is forced to adjust to the presence of the field-aligned current. This simple model uses an ad hoc Ohm's law relationship between the perpendicular current and the perpendicular electric field, but with a negative conductance in the generator region so that J(perpendicular) x E(perpendicular) is less than 0. An exact solution of a simple model of the concept yields a bistatic auroral generator for which multiple-arc formation is predicted if the field-aligned current exceeds a critical value. The predicted scale spectrum is inversely proportional to the square root of the field-aligned current strength spectrum.

  11. Measurement of Velocity Induced by a Propagating Arc Magnetohydrodynamic Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan

    2016-09-01

    Plasma actuators can substantially improve the maneuverability and efficiency of aerial vehicles. These solid state devices have low mass, small volume, and high bandwidth that make them excellent alternatives to conventional mechanical actuators. In particular, a Rail Plasma Actuator (RailPAc) has the potential to delay flow separation on an aerodynamic surface by generating a large body force. A RailPAc consists of parallel rails and an electrical arc that propagates along the rails with a self-induced Lorentz force. The motion of the arc transfers momentum to the surrounding neutral air. A study was conducted to understand how the motion and shape of a propagating arc couples with the fluid momentum. In particular, we used Particle Imaging Velocimetry (PIV) and seedless PIV based on Background Oriented Schlieren (BOS) technique to measure the induced velocity of a propagating arc in one atmosphere. Results obtained provide insight into how the flow field responds to the passage of a RailPAc electrical arc. A complete description of the RailPAc actuation mechanism can be obtained if the fluid momentum measurements from PIV and seedless PIV are compared to the transit characteristics of an arc. US ARL Grant W911NF1410226.

  12. The ultimate arc: Differential displacement, oroclinal bending, and vertical axis rotation in the External Betic-Rif arc

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Allerton, S.; Kirker, A.; Mandeville, C.; Mayfield, A.; Platzman, E. S.; Rimi, A.

    2003-06-01

    The External Betic-Rif arc, which lies between the converging African and Iberian plates, is one of the tightest orogenic arcs on Earth. It is a thin-skinned fold and thrust belt formed in Miocene time around the periphery of the Alborán Domain, an older contractional orogen that underwent extensional collapse coevally with the formation of the thrust belt. Restoration of four sections across the thrust belt, together with kinematic and paleomagnetic analysis, allows a reconstruction of the prethrusting geometry of the Alborán Domain, and the identification of the following processes that contributed to the formation of the arc: (1) The Alborán Domain moved some 250 km westward relative to Iberia and Africa during the Miocene. This initiated the two limbs of the arc on its NW and SW margins, closing to the WSW in the region of Cherafat in northern Morocco. The overall convergence direction on the Iberian side of the arc was between 310° and 295°, and on the African side it was between 235° and 215°. The difference in convergence direction between the two sectors was primarily a result of the relative motion between Africa and Iberia. (2) Extensional collapse of the Alborán Domain during the Miocene modified the geometry of the western end of the arc: the Internal Rif rotated anticlockwise to form the present north trending sector of the arc, and additional components of displacement produced by extension were transferred into the external thrust belt along a series of strike-slip faults and shear zones. These allowed the limbs of the arc to rotate and extend, tightening the arc, and creating variations in the amounts and directions of shortening around the arc. The Betic sector of the arc rotated clockwise by 25° during this process, and the southern Rif rotated anticlockwise by ˜55°. (3) Oblique convergence on the two limbs of the arc, dextral in the Betics and sinistral in the southern Rif, resulted in strongly noncoaxial deformation. This had three

  13. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  14. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  15. Clines Arc through Multivariate Morphospace.

    PubMed

    Lohman, Brian K; Berner, Daniel; Bolnick, Daniel I

    2017-04-01

    Evolutionary biologists typically represent clines as spatial gradients in a univariate character (or a principal-component axis) whose mean changes as a function of location along a transect spanning an environmental gradient or ecotone. This univariate approach may obscure the multivariate nature of phenotypic evolution across a landscape. Clines might instead be plotted as a series of vectors in multidimensional morphospace, connecting sequential geographic sites. We present a model showing that clines may trace nonlinear paths that arc through morphospace rather than elongating along a single major trajectory. Arcing clines arise because different characters diverge at different rates or locations along a geographic transect. We empirically confirm that some clines arc through morphospace, using morphological data from threespine stickleback sampled along eight independent transects from lakes down their respective outlet streams. In all eight clines, successive vectors of lake-stream divergence fluctuate in direction and magnitude in trait space, rather than pointing along a single phenotypic axis. Most clines exhibit surprisingly irregular directions of divergence as one moves downstream, although a few clines exhibit more directional arcs through morphospace. Our results highlight the multivariate complexity of clines that cannot be captured with the traditional graphical framework. We discuss hypotheses regarding the causes, and implications, of such arcing multivariate clines.

  16. Small and meso-scale properties of a substorm onset auroral arc

    NASA Astrophysics Data System (ADS)

    Frey, H. U.; Amm, O.; Chaston, C. C.; Fu, S.; Haerendel, G.; Juusola, L.; Karlsson, T.; Lanchester, B.; Nakamura, R.; Østgaard, N.; Sakanoi, T.; Séran, E.; Whiter, D.; Weygand, J.; Asamura, K.; Hirahara, M.

    2010-10-01

    We present small and meso-scale properties of a substorm onset arc observed simultaneously by the Reimei and THEMIS satellites together with ground-based observations by the THEMIS GBO system. The optical observations revealed the slow equatorward motion of the growth-phase arc and the development of a much brighter onset arc poleward of it. Both arcs showed the typical particle signature of electrostatic acceleration in an inverted-V structure together with a strong Alfvén wave acceleration signature at the poleward edge of the onset arc. Two THEMIS spacecraft encountered earthward flow bursts around the times the expanding optical aurora reached their magnetic footprints in the ionosphere. The particle and field measurements allowed for the reconstruction of the field-aligned current system and the determination of plasma properties in the auroral source region. Auroral arc properties were extracted from the optical and particle measurements and were used to compare measured values to theoretical predictions of the electrodynamic model for the generation of auroral arcs. Good agreement could be reached for the meso-scale arc properties. A qualitative analysis of the internal structuring of the bright onset arc suggests the operation of the tearing instability which provides a 'rope-like' appearance due to advection of the current in the sheared flow across the arc. We also note that for the observed parameters ionospheric conductivity gradients due to electron precipitation will be unstable to the feedback instability in the ionospheric Alfvén resonator that can drive structuring in luminosity over the range of scales observed.

  17. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  18. Late Neogene kinematics of intra-arc oblique shear zones: The Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    van Dijk, J. P.

    1994-10-01

    The kinematics of intra-arc shear zones play a key role in the secondary shaping of orogenic arcs such as the Calabrian Arc (central Mediterranean). Comparison of the Neogene structural development of the Petilia-Rizzuto Fault Zone and the basement structure of the bordering Sila massif reveals that the fault zone is the surface expression of a deep NW-SE trending sinistral crustal oblique shear zone. This shear zone continues over a length of more than 130 km across the northern segment of the Calabrian Arc and shows a post-Eocene sinistral displacement of about 50 km. The late Neogene forearc basin development and syndepositional tectonics along the fault zone are reconstructed in great detail by analyzing the middle Miocene-Recent tectonic sequence stratigraphy. A strike-slip cycle can be recognized whereby the subsequent activity of Riedel shears, tensional faults, and P shears, positive flower structures and principle displacement wrench faults, can accurately be traced in time. Observed phenomena are discussed in terms of the activity of a conjugate system of oblique thrust zones within the growing accretionary complex. The evolution of special types of thrust belt basins is illustrated. These include oblique thin-skinned pull-apart basins, oblique rhomboidal "harmonica" basins, and "detached slab" basins (new terms introduced here), evolving one into the other. A new feature illustrated is the recurrent basin inversion which generated passive roof duplexes through back-shear motion and out-of-sequence thrusting along the wedge. The fault patterns and the style of inversion tectonics imply an E-W directed axis of effective compressive stress in this part of the arc. This resulted from an interaction of (1) local E-W directed compression related to a differential displacement of two parallel segments of the arc (generated by the migration to the southeast of the Calabrian Arc and opening of the Tyrrhenian backarc basin); (2) alternating NW-SE directed

  19. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc

    NASA Astrophysics Data System (ADS)

    Timm, Christian; Bassett, Daniel; Graham, Ian J.; Leybourne, Matthew I.; de Ronde, Cornel E. J.; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B.

    2013-04-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated 206Pb/204Pb, 208Pb/204Pb, 86Sr/87Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  20. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  1. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  2. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  3. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  4. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  5. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  6. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    lessens to the west (Minster and Jordan, 1978). Along the central Aleutian Ridge, underthrusting is about 30° from normal to the volcanic axis. Motion between plates is approximately parallel along the western Aleutian Ridge.In this paper we briefly describe and interpret the Cenozoic evolution of the Aleutian arc by focusing on the onshore and offshore geologic frameworks in four of its sectors, two sectors each from the Aleutian Ridge and Alaska Peninsula-Kodiak Island segments (Fig. 1). We compare the geologic evolution of the segments and comment on the implications of some new, previously unpublished data.

  7. Volcanic Supply Rate and Evolving of the Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    Fujioka, K.; Kido, M.

    2001-12-01

    The Izu-Bonin Arc-Trench system is one of the oceanic arc-trench system which is crucial for understanding how to evolve island arc and continental crust during Archean. We estimated total volume of the volcanic materials accreted to IB arc since 48 Ma by the model crustal structure and bathymetric map available through IB arc which is divided into three segments by two tectonic lines. ODP Leg 125 and 126 have revealed the volcanic history of the IB arc. We took into account the spatial distribution and isotopic ages of the volcanic rocks and elucidated the arc evolution by the division of events occurred during 48-43, 43-34, 34-27, 27-15, 15-6, 6-2, and < 2Ma, respectively. Boninitic rocks pored out on the deep sea environment during 48-43 Ma. After the change of the Pacific plate motion strong boninitic and calc-alkalic volcanism took place along the paleo-IB arc during 43-34 Ma. The arc grew quickly to the shallow level and yielded explosive volcanic materials and debris flow deposits until 34 Ma. Paleo-IB arc split into to halves, present-day IB arc and Palau-Kyushu remnant arc to form Shikoku and Parece Vela backarc basins at 30-27 Ma. Volcanic activity during the 27-15 Ma was quiescent compared to the other stage because of the backarc spreading consumed a large amount of volcanic materials. Explosive and bimodal volcanism were dominated to form backarc depressions in the backarc area and strata-volcanoes on the volcanic front during 15-6 Ma. Finally, strato-volcanoes and catastrophic explosion of the caldera forming acidic volcanics were predominating on the volcanic front since 2 Ma. Through the volcanic history the IB arc was formed most part during initial 10 my to build a paleo-IB arc and volcanic supply rate during initial 10 my was very high, almost compatible to that of super plume.

  8. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  9. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  10. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  11. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  12. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  13. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  14. STRUVE arc and EUPOS® stations

    NASA Astrophysics Data System (ADS)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  15. The variable polarity plasma arc welding process: Characteristics and performance

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  16. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  17. Magnification Bias in Gravitational Arc Statistics

    SciTech Connect

    Caminha, G. B.; Estrada, J.; Makler, M.

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  18. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  19. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  20. Thermal analysis of an arc heater electrode with a rotating arc foot

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Shepard, Charles E.

    1993-01-01

    A smoothly rotating arc foot and an arc foot that jumps between multiple sticking points were analyzed using analytic formulations and numerical solution procedures. For each case the temperature distribution for a copper electrode was obtained for the plausible range of operating conditions. It is shown that the smoothly rotating arc foot is an extremely safe mode of operation, whereas the jumping arc foot produces excessively high electrode surface temperatures which are not greatly alleviated by increasing the average rotational frequency of the arc foot. It is suggested to eliminate arc-foot rotation and rely on the distribution of fixed electrodes with stationary arc attachment to avoid electrode failure at high current.

  1. Auditory Motion Elicits a Visual Motion Aftereffect

    PubMed Central

    Berger, Christopher C.; Ehrsson, H. Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates. PMID:27994538

  2. Crustal structure of the Caribbean-northeastern South America arc-continent collision zone

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Mann, Paul; Escalona, Alejandro; Aitken, Trevor J.

    2008-08-01

    We present the results of a 568-km-long regional wide-angle seismic profile conducted in the southeastern Caribbean that crosses an active island arc, a remnant arc, two basins possibly floored by oceanic crust, an allochthonous terrane of forearc affinity, and the passive margin of northern South America. The velocity structures of the Late Cretaceous Aves Ridge remnant arc and Miocene and younger Lesser Antilles arc are remarkably similar, which implies that magmatic processes have remained moderately steady over time. Crustal thickness is ˜26 km at the Aves Ridge and ˜24 km at the Lesser Antilles arc. In comparison to the Izu-Bonin and Aleutian arcs, the Lesser Antilles arc is thinner and has no evidence for a lower crustal cumulate layer, which is consistent with the estimated low magma production rates of the Lesser Antilles arc. Crustal thickness beneath the Grenada and Tobago basins is 4-10 km, and the velocity structure suggests that these basins could be floored by oceanic crust. A decrease of ˜1 km/s in average seismic velocity of the upper crust is observed from NW to SE across the North Coast fault zone; we argue that this marks the suture between the far-traveled Caribbean arc and the passive margin of the South American continent. Current strike-slip motion between the Caribbean and South American plates is located ˜30 km to the south, and thus material originally deposited on the South American passive margin has now been transferred to the Caribbean plate.

  3. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  4. Chamber free fusion welding root side purging method and apparatus

    NASA Technical Reports Server (NTRS)

    Mcgee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1993-01-01

    A method and apparati are presented for non-chamber root side purging in fusion welding of oxygen reactive metals which require that the molten weld zone and local solid areas of the weld seam remaining at high temperatures be shielded from normal atmosphere to prevent degradation of the welded area. The apparati provide an inert atmosphere to the root side of a weld joint through a porous medium whereby the jet-like thrust of the plasma arc actually draws the continuously supplied inert atmosphere into the path of the molten or high temperature solid weld zone. The porous medium is configured so it can be placed at the borders of the weld seam and substantially parallel to the seam without restricting the view of the root side of the seam. The inert gas is dispersed evenly through the porous media and across the weld seam, at the point of arc penetration and in front of and behind the arc. The apparati can be constructed so as to limit the amount of inert gas flow and can be mobile and travel synchronously with the welding arc.

  5. Chamber free fusion welding root side purging method and apparatus

    NASA Technical Reports Server (NTRS)

    Dailey, J. R. (Inventor); Mcgee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1995-01-01

    A method and apparati are presented for non-chamber root side purging in fusion welding of oxygen reactive metals which require that the molten weld zone and local solid areas of the weld seam remaining at high temperatures be shielded from normal atmosphere to prevent degradation of the welded area. The apparati provide an inert atmosphere to the root side of a weld joint through a porous medium whereby the jet-like thrust of the plasma arc actually draws the continuously supplied inert atmosphere into the path of the molten or high temperature solid weld zone. The porous medium is configured so it can be placed at the borders of the weld seam and substantially parallel to the seam without restricting the view of the root side of the seam. The inert gas is dispersed evenly through the porous media and across the weld seam, at the point of arc penetration and in front of and behind the arc. The apparati can be constructed so as to limit the amount of inert gas flow and can be mobile and travel synchronously with the welding arc.

  6. ION PRODUCING MECHANISM (ARC EXTERNAL TO BLOCK)

    DOEpatents

    Brobeck, W.H.

    1958-09-01

    This patent pentains to an ion producing mechanism employed in a calutron which has the decided advantage of an increased amount of ionization effectuated by the arc, and a substantially uniform arc in poiat of time, i arc location and along the arc length. The unique features of the disclosed ion source lie in the specific structural arrangement of the source block, gas ionizing passage, filament shield and filament whereby the arc is established both within the ionizing passage and immediately outside the exit of the ionizing passage at the block face.

  7. A mechanism that triggers double arcing during plasma arc cutting

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2009-10-01

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  8. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    NASA Technical Reports Server (NTRS)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  9. Robotic Variable Polarity Plasma Arc (VPPA) welding

    NASA Astrophysics Data System (ADS)

    Jaffery, Waris S.

    1993-02-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  10. A Glove Box Enclosed Gas-Tungsten Arc Welding System

    SciTech Connect

    Reevr, E, M; Robino, C.V.

    1999-07-01

    This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

  11. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  12. The SOAR Gravitational Arc Survey

    NASA Astrophysics Data System (ADS)

    Makler, M.; Furlanetto, C.; Santiago, B. X.; Caminha, G. B.; Cypriano, E.; Cibirka, N.; Pereira, M. E. S.; Bom, C. R. D.; Lima, M. P.; Brandt, C. H.; Neto, A. F.; Estrada, J.; Lin, H.; Hao, J.; McKay, T. M.; da Costa, L. N.; Maia, M. A. G.

    2014-10-01

    We present the first results of the SOAR Gravitational Arc Survey (SOGRAS). The survey imaged 47 clusters in two redshift intervals centered at z=0.27 and z=0.55, targeting the richest clusters in each interval. Images were obtained in the g', r' and i' bands with a median seeing of 0.83, 0.76 and 0.71 arcsec, respectively, in these filters. Most of the survey clusters are located within the Sloan Digital Sky Survey (SDSS) Stripe-82 region and all of them are in the SDSS footprint. We present the first results of the survey, including the 6 best strong lensing systems, photometric and morphometric catalogs of the galaxy sample, and cross matches of the clusters and galaxies with complementary samples (spectroscopic redshifts, photometry in several bands, X-ray and Sunyaev Zel'dovich clusters, etc.), exploiting the synergy with other surveys in Stripe-82. We apply several methods to characterize the gravitational arc candidates, including the Mediatrix method (Bom et al. 2012) and ArcFitting (Furlanetto et al. 2012), and for the subtraction of galaxy cluster light. Finally, we apply strong lensing inversion techniques to the best systems, providing constraints on their mass distribution. The analyses of a spectral follow-up with Gemini and the derived dynamical masses are presented in a poster submitted to this same meeting (Cibirka et al.). Deeper follow-up images with Gemini strengthen the case for the strong lensing nature of the candidates found in this survey.

  13. Circular random motion in diatom gliding under isotropic conditions

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Medina, Braulio; Jiménez Guerra, Andrés; Peña Maldonado, Ana Iris; Covarrubias Rubio, Yadiralia; Viridiana García Meza, Jessica

    2014-12-01

    How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms.

  14. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  15. Optimized Hybrid MV-kV Imaging Protocol for Volumetric Prostate Arc Therapy

    PubMed Central

    Liu, Wu; Wiersma, Rodney D.; Xing, Lei

    2009-01-01

    Purpose To develop a real-time prostate position monitoring technique for modern arc radiotherapy through novel usage of cine-MV imaging together with as-needed kV imaging. Methods We divided the task of monitoring intrafraction prostate motion into two steps for rotational deliveries: (i) to detect potential target motion beyond a pre-defined threshold using MV images from different viewing angles by taking advantage of gantry rotation during arc therapy and (ii) to verify the displacement and determine whether an intervention is needed using fiducial/tumor position information acquired from combined MV-kV imaging (by turning on the kV imager). A Varian Trilogy™ linac with onboard kV imager was used to examine selected typical trajectories using a 4D motion phantom. The performance of the algorithm was evaluated using phantom measurements and computer simulation for 536 Calypso-measured tracks from 17 patients. Results Fiducial displacement relative to the MV beam was limited to within a range of 3mm for 99.9% of the time with better than 1mm accuracy. On average, only ∼0.5 intervention per arc delivery was needed to achieve this level of accuracy. Compared to other fluoroscopy-based tracking techniques, kV usage is significantly reduced to an average of less than 15 times per arc delivery. Conclusions By focusing the attention to detecting a pre-defined abnormal motion (i.e., “failure” detection) and utilizing the inherent mechanism of gantry rotation during arc radiotherapy, the current approach provides us with a high confidence about the prostate position in real-time without paying the unwanted overhead of continuous or periodic kV imaging strategy. PMID:20472354

  16. Optimized Hybrid Megavoltage-Kilovoltage Imaging Protocol for Volumetric Prostate Arc Therapy

    SciTech Connect

    Liu Wu; Wiersma, Rodney D.; Xing Lei

    2010-10-01

    Purpose: To develop a real-time prostate position monitoring technique for modern arc radiotherapy through novel use of cine-megavoltage (MV) imaging, together with as-needed kilovoltage (kV) imaging. Methods and Materials: We divided the task of monitoring the intrafraction prostate motion into two steps for rotational deliveries: to detect potential target motion beyond a predefined threshold using MV images from different viewing angles by taking advantage of gantry rotation during arc therapy and to verify the displacement and determine whether intervention is needed using fiducial/tumor position information acquired from combined MV-kV imaging (by turning on the kV imager). A Varian Trilogy linear accelerator with an onboard kV imager was used to examine selected typical trajectories using a four-dimensional motion phantom. The performance of the algorithm was evaluated using phantom measurements and computer simulation for 536 Calypso-measured tracks from 17 patients. Results: Fiducial displacement relative to the MV beam was limited to within a range of 3 mm 99.9% of the time with <1 mm accuracy. On average, only {approx}0.5 intervention per arc delivery was needed to achieve this level of accuracy. Compared with other fluoroscopy-based tracking techniques, kV use was significantly reduced to an average of <15 times per arc delivery. Conclusion: By focusing the attention on detecting predefined abnormal motion (i.e., 'failure' detection) and using the inherent mechanism of gantry rotation during arc radiotherapy, the current approach provides high confidence regarding the prostate position in real time without the unwanted overhead of continuous or periodic kV imaging.

  17. Paleomagnetic rotations and the kinematics of the Gibraltar arc

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.

    1992-04-01

    Paleomagnetic investigations of a Mesozoic limestone sequence around the Gibraltar arc show that there have been large systematic rotations about a vertical axis and imply that there must have been a significant component of westward motion within the Betic-Rif orogenic belt. Rotations of the Late Jurassic and Late Cretaceous limestones in the Betic Cordillera of southern Spain are clockwise, with the exception of the unrotated Sierra Gorda, whereas the Jurassic sites in the Rif Mountains of Morocco are rotated counterclockwise, except in the area around Tetuan. These data are generally consistent with formation of the arc either by a westward-moving Alboran microplate or by extensional collapse of a collisional mountain chain. The former model, however, fails to recognize the nonrigid, nonplate-like character of the Alboran domain and lacks a definable driving mechanism. A model of a collapsing east-west-elongated ridge that takes into account the obliquity of the convergence along the active margin may provide mechanisms both for the observed rotations and for the large westward component of motion, and therefore can explain the geometry of the Gibraltar are.

  18. Plasma Heating and Flow in an Auroral Arc

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.

    1996-01-01

    We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.

  19. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  20. Review of switching arcs and plasma chemistry

    NASA Astrophysics Data System (ADS)

    Benenson, D. M.; Gilmour, A. S., Jr.; Dollinger, R. E.; Nagamatsu, H. T.; Pfender, E.; Warder, R. C., Jr.

    1980-05-01

    Physical processes in switching arcs are considered in such applications as circuit interruption (in high pressure, high voltage gas blast circuit breakers and vacuum arc interrupters), fault current limiting (principally through vacuum arc devices), and pulse power systems (using vacuum arcs). The physics of arc heaters, associated with processes in the anode region, are described. Analytical models of (1) the current zero region and interrupter performance of gas blast interrupters and (2) the heat transfer mechanisms in the anode region of arc heaters, are discussed. Selected diagnostic techniques are presented. Applications of plasma chemistry involving the high pressure, equilibrium (thermal) plasma are noted. Low pressure (nonequilibrium) plasma processing is described through mechanisms associated with coating, deposition, and etching applications.

  1. ARC length control for plasma welding

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1988-01-01

    A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.

  2. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  3. Water in Aleutian Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Plank, T.; Zimmer, M. M.; Hauri, E. H.

    2011-12-01

    In the past decade, baseline data have been obtained on pre-eruptive water contents for several volcanic arcs worldwide. One surprising observation is that parental magmas contain ~ 4 wt% H2O on average at each arc worldwide [1]. Within each arc, the variation from volcano to volcano is from 2 to 6 w% H2O, with few exceptions. The similar averages at different arcs are unexpected given the order of magnitude variations in the concentration of other slab tracers. H2O is clearly different from other tracers, however, being both a major driver of melting in the mantle and a major control of buoyancy and viscosity in the crust. Some process, such as mantle melting or crustal storage, apparently modulates the water content of mafic magmas at arcs. Mantle melting may deliver a fairly uniform product to the Moho, if the wet melt process includes a negative feedback. On the other hand, magmas with variable water content may be generated in the mantle, but a crustal filter may lead to magma degassing up to a common mid-to-upper crustal storage region. Testing between these two end-member scenarios is critical to our understanding of subduction dehydration, global water budgets, magmatic plumbing systems, melt generation and eruptive potential. The Alaska-Aleutian arc is a prime location to explore this fundamental problem in the subduction water cycle, because active volcanoes vary more than elsewhere in the world in parental H2O contents (based on least-degassed, mafic melt inclusions hosted primarily in olivine). For example, Shishaldin volcano taps magma with among the lowest H2O contents globally (~ 2 wt%) and records low pressure crystal fractionation [2], consistent with a shallow magma system (< 1 km bsl). At the other extreme, Augustine volcano is fed by a mafic parent that contains among the highest H2O globally (~ 7 wt%), and has evolved by deep crystal fractionation [2], consistent with a deep magma system (~ 14 km bsl). Do these magmas stall at different depths

  4. Nomenclature of SLC Arc beamline components

    SciTech Connect

    Silva, J.; Weng, W.T.

    1986-04-10

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained.

  5. Overvoltage protector using varistor initiated arc

    DOEpatents

    Brainard, John P.

    1982-01-01

    Coaxial conductors are protected against electrical overvoltage by at least one element of non-electroded varistor material that adjoins each other varistor element and conductor with which it contacts. With this construction, overvoltage current initiated through the varistor material arcs at the point contacts between varistor elements and, as the current increases, the arcs increase until they become a continuous arc between conductors, bypassing the varistor material.

  6. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  7. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  8. Plasma arc melting of zirconium

    SciTech Connect

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  9. The Abundance of Large Arcs From CLASH

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  10. Atmospheric spreading of protons in auroral arcs

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Vondrak, R. R.

    1974-01-01

    A model is developed to calculate the effect of atmospheric spreading on the flux and angular distribution of protons in homogeneous auroral arcs. An expression is derived that indicates the angular distribution in the atmosphere as a function of distance from arc center, neutral scale height, arc width, and initial angular distribution. The results of the model agree favorably with those based on Monte-Carlo calculations. From these results the enhancement factors needed to compute the original proton current above the atmosphere are obtained. A technique is indicated for determining the incident angular distribution from rocket-based measurements of the arc width and angular distribution.

  11. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  12. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  13. Helium and Carbon Systematics of the Sangihe Arc, Indonesia: Tracing Volatile Sources in an Arc-Arc Collision

    NASA Astrophysics Data System (ADS)

    Jaffe, L. A.; Hilton, D. R.; Fischer, T. P.; Hartono, U.

    2002-12-01

    The Sangihe and Halmahera arcs in northeastern Indonesia are presently colliding, forming the world's only extant example of an arc-arc collision. We report the first helium and carbon isotopic and relative abundance data from the Sangihe Arc volcanoes as a means to trace magma origins in this complicated tectonic region. Gas chemistry and N-isotopes from the same localities are reported in a companion paper (Clor et al, this volume). There is a distinct regional pattern in He and CO2 variations along the north-south strike of the Sangihe Arc. The two northernmost volcanoes (Awu and Karangetang) have 3He/4He <= 6.4RA (where RA = air 3He/4He), CO2/3He >= 30x109, and δ13C >= -2.0‰ . In contrast, the southern volcanoes along the arc (Ruang, Lokon, Mahawu) have 3He/4He >= 7.0RA, CO2/3He < 7x109 and δ13C < -3.0‰ . The southern volcanoes, therefore, sample volatiles more typical of island arc volcanoes. Resolving the CO2 into component structures (mantle-derived, plus slab-derived organic and limestone CO2 - following the approach of Sano and Marty, Chem. Geol., 1995), the northern volcanoes contain higher than average slab-derived limestone contributions. For example, limestone-derived CO2 makes up > 90% of the total CO2 at Karangetang and ~98% at Awu. These values compare with an average limestone contribution of ~65% in the southern Sangihe arc and ~73% in other arcs worldwide. We are investigating possible reasons for the enhanced limestone contributions in the northern Sangihe arc. The sedimentary mélange wedge is thickest in the north (up to 15km) - where the arcs initially collided. The greater availability of sediment may result in a greater input of subducted sediment, thereby providing enhanced dilution of mantle wedge C inputs. Alternatively, subducted sediments may be more carbonate-rich in the northern segment of the arc. This may reflect obduction of shallow, organic-bearing sediments onto the over-riding plate, leaving only pelagic carbonates to

  14. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  15. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  16. Impact of the arc length on GNSS analysis results

    NASA Astrophysics Data System (ADS)

    Lutz, Simon; Meindl, Michael; Steigenberger, Peter; Beutler, Gerhard; Sośnica, Krzysztof; Schaer, Stefan; Dach, Rolf; Arnold, Daniel; Thaller, Daniela; Jäggi, Adrian

    2016-04-01

    Homogeneously reprocessed combined GPS/GLONASS 1- and 3-day solutions from 1994 to 2013, generated by the Center for Orbit Determination in Europe (CODE) in the frame of the second reprocessing campaign REPRO-2 of the International GNSS Service, as well as GPS- and GLONASS-only 1- and 3-day solutions for the years 2009 to 2011 are analyzed to assess the impact of the arc length on the estimated Earth Orientation Parameters (EOP, namely polar motion and length of day), on the geocenter, and on the orbits. The conventional CODE 3-day solutions assume continuity of orbits, polar motion components, and of other parameters at the day boundaries. An experimental 3-day solution, which assumes continuity of the orbits, but independence from day to day for all other parameters, as well as a non-overlapping 3-day solution, is included into our analysis. The time series of EOPs, geocenter coordinates, and orbit misclosures, are analyzed. The long-arc solutions were found to be superior to the 1-day solutions: the RMS values of EOP and geocenter series are typically reduced between 10 and 40 %, except for the polar motion rates, where RMS reductions by factors of 2-3 with respect to the 1-day solutions are achieved for the overlapping and the non-overlapping 3-day solutions. In the low-frequency part of the spectrum, the reduction is even more important. The better performance of the orbits of 3-day solutions with respect to 1-day solutions is also confirmed by the validation with satellite laser ranging.

  17. The electric field structure of auroral arcs as determined from barium plasma injection experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1981-01-01

    Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.

  18. Examining Rotational Ground Motion Induced by Tornados

    NASA Astrophysics Data System (ADS)

    Kessler, Elijah; Dunn, Robert

    2016-03-01

    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  19. Leaf-sequencing for intensity-modulated arc therapy using graph algorithms

    SciTech Connect

    Luan Shuang; Wang Chao; Cao Daliang; Chen, Danny Z.; Shepard, David M.; Yu, Cedric X.

    2008-01-15

    Intensity-modulated arc therapy (IMAT) is a rotational IMRT technique. It uses a set of overlapping or nonoverlapping arcs to create a prescribed dose distribution. Despite its numerous advantages, IMAT has not gained widespread clinical applications. This is mainly due to the lack of an effective IMAT leaf-sequencing algorithm that can convert the optimized intensity patterns for all beam directions into IMAT treatment arcs. To address this problem, we have developed an IMAT leaf-sequencing algorithm and software using graph algorithms in computer science. The input to our leaf-sequencing software includes (1) a set of (continuous) intensity patterns optimized by a treatment planning system at a sequence of equally spaced beam angles (typically 10 deg. apart), (2) a maximum leaf motion constraint, and (3) the number of desired arcs, k. The output is a set of treatment arcs that best approximates the set of optimized intensity patterns at all beam angles with guaranteed smooth delivery without violating the maximum leaf motion constraint. The new algorithm consists of the following key steps. First, the optimized intensity patterns are segmented into intensity profiles that are aligned with individual MLC leaf pairs. Then each intensity profile is segmented into k MLC leaf openings using a k-link shortest path algorithm. The leaf openings for all beam angles are subsequently connected together to form 1D IMAT arcs under the maximum leaf motion constraint using a shortest path algorithm. Finally, the 1D IMAT arcs are combined to form IMAT treatment arcs of MLC apertures. The performance of the implemented leaf-sequencing software has been tested for four treatment sites (prostate, breast, head and neck, and lung). In all cases, our leaf-sequencing algorithm produces efficient and highly conformal IMAT plans that rival their counterpart, the tomotherapy plans, and significantly improve the IMRT plans. Algorithm execution times ranging from a few seconds to 2 min are

  20. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc

  1. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  2. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  3. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  4. Quantum Oscillations from Fermi Arcs

    NASA Astrophysics Data System (ADS)

    Pereg-Barnea, Tamar; Refael, Gil; Franz, Marcel; Weber, Heidi; Seradjeh, Babak

    2009-03-01

    Recent experiments[1] in a variety of High Tc superconductors revel 1/B oscillations in the vortex-liquid state. The period of oscillations in underdoped samples is short and can be translated, via the Onsager relation to an area in k-space which makes up a few percents of the Brillouin zone. Quantum oscillations are usually thought of as arising from closed orbits in momentum space along the Fermi surface and are used to measure the Fermi vector. Thus, the observation of quantum oscillations in the cuprates seems to be at odds with the observation of Fermi arcs in ARPES experiments[2] due to their fragmented Fermi surface topology. In this talk we show that quantum oscillations can arise from a partially gapped Fermi surface. We adopt a phenomenological model of arcs which terminate at a regime with a superconducting gap of d-wave symmetry to describe the pseudo gap phase. Without invoking any additional order, quantization of energy is found well below the gap maximum. Semiclassically the quantization condition arises from closed orbits in real-space. When translated to momentum space, the area enclosed by the orbits is much smaller than that of the full Fermi surface. [1]N. Doiron-Leyaraud et al. nature 447, 565 (2007) [2]Kanigel et al. Nature Physics 2 447 (2006)

  5. Neoproterozoic oceanic arc remnants in the Moroccan Anti-Atlas: reconstructing deep to shallow arc crustal sequence and tracking Pan-African subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Spagna, Paul; Watlet, Arnaud; Vandycke, Sara

    2015-04-01

    established that they were recrystallized under garnet-granulites P-T conditions (up to ~1000°C at 12 kbar). Preliminary geochemical data of hornblende-gabbros and garnet-bearing granulites portray similar trace geochemical signatures ((La/Sm)N: 0.8-1.6 ; (Nb/La) < 0.46) as studied paleo-arc complexes. These P-T results and new geochemical data argue that Asmlil mafic complex could represent a deep arc root comparable to the deep section of exposed oceanic arcs (i.e. Kohistan, Talkeetna, Amalaoulaou). We propose that Iriri and Asmlil units depict the deep-to-shallow sequence of a single Cryogenian oceanic arc (760-740 Ma), as discrete exposures along the southern edge of Anti-Atlas ophiolitic assemblages. Nevertheless, this primary arc has been likely broke up and intruded by subsequent hydrous arc-related magmas under medium- to high-grade P-T conditions (700 to 650 Ma). We interpret this period as an oceanic pre-collision stage when subduction geometry is intensively perturbed (c.g. composite subductions, polarity inversion), doping production of typical hydrous arc magma that intrudes original arc. This complex arc melange has been lastly accreted and sealed on the West African Craton margin.

  6. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  7. Opening of the Grenada back-arc Basin and evolution of the Caribbean plate during the Mesozoic and early Paleogene

    NASA Astrophysics Data System (ADS)

    Bouysse, Philippe

    1988-06-01

    Geological and geophysical data indicate that the Grenada Basin was presumably created, during the Paleocene, by sundering of a proto-Eastern Caribbean arc into a remnant arc to the west (Aves Swell) and an active arc to the east (Lesser Antilles Ridge). Grenada Basin spreading is thought to have been penecontemporaneous with the creation of the Yucatan Basin located at the opposite side of the Caribbean Sea. I suggest that a continuous Mesozoic Caribbean Arc (M.C.A.), including the Greater Antilles, the Aves-Lesser Antilles system, and the Aruba-Blanquilla Chain (Netherland-Venezuelan Antilles), was initiated in the Pacific, probably about 130-120 Ma ago. Its arrival in front of, and its subsequent motion inside the Central Atlantic ("Tethyan") seaway caused the opening of both Yucatan and Grenada basins which occurred at the two initial points of contact with the North and South American cratons. In contrast to the style of many other island arcs, this back-arc spreading event occurred only once in the long history of the M.C.A. The Lesser Antilles appear to be the oldest currently active intra-oceanic island arc.

  8. Discrimination and identification of periodic motion trajectories.

    PubMed

    Or, Charles C-F; Thabet, Michel; Wilkinson, Frances; Wilson, Hugh R

    2011-07-12

    Humans are extremely sensitive to radial deformations of static circular contours (F. Wilkinson, H. R. Wilson, & C. Habak, 1998). Here, we investigate detection and identification of periodic motion trajectories defined by these radial frequency (RF) patterns over a range of radial frequencies of 2-5 cycles. We showed that the average detection thresholds for RF trajectories range from 1 to 4 min of arc and performance improves as a power-law function of radial frequency. RF trajectories are also detected for a range of speeds. We also showed that spatiotemporal global processing is involved in trajectory detection, as improvement in detection performance with increasing radial deformation displayed cannot be accounted for by local probability summation. Finally, identification of RF trajectories is possible over this RF range. Overall thresholds are about 6 times higher than previously reported for static stimuli. These novel stimuli should be a useful tool to investigate motion trajectory learning and discrimination in humans and other primates.

  9. Non-equilibrium modelling of transferred arcs

    NASA Astrophysics Data System (ADS)

    Haidar, J.

    1999-02-01

    A two-temperature, variable-density, arc model has been developed for description of high-current free-burning arcs, including departures from thermodynamic and chemical equilibrium in the plasma. The treatment includes the arc, the anode and the cathode and considers the separate energy balance of the electrons and the heavy particles, together with the continuity equations for these species throughout the plasma. The output includes a two-dimensional distribution for the temperatures and densities both of the electrons and of the heavy particles, plasma velocity, current density and electrical potential throughout the arc. For a 200 A arc in pure argon at 1 atm, we calculate large differences between the temperatures of the electrons and the heavy particles in the plasma region near the cathode tip, together with large departures from local chemical plasma equilibrium. In the main body of the arc at high plasma temperatures, we predict minor differences between the temperatures of the electrons and the heavy particles, which are inconsistent with recent measurements using laser-scattering techniques showing differences of up to several thousand degrees. However, we find that, for the region in front of the cathode tip, the ground-state level of the neutral atoms is overpopulated relative to the corresponding populations under conditions of LTE, in agreement with experimental observations. These departures from LTE are caused by the injection of a large mass flow of cold gas into the arc core due to arc constriction at the tip of the cathode.

  10. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  11. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  12. Feature extraction of arc tracking phenomenon

    NASA Technical Reports Server (NTRS)

    Attia, John Okyere

    1995-01-01

    This document outlines arc tracking signals -- both the data acquisition and signal processing. The objective is to obtain the salient features of the arc tracking phenomenon. As part of the signal processing, the power spectral density is obtained and used in a MATLAB program.

  13. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  14. Orbital evolution of Neptune's ring arcs

    NASA Astrophysics Data System (ADS)

    Giuliatti-Winter, Silvia; Madeira, Gustavo

    2016-10-01

    Voyager 2 spacecraft sent several images of the Neptune's ring system in 1989. These images show a set of arcs (Courage, Liberté, Egalité and Fraternité), previously detected by stellar occultation in 1984, embedded in the tenuous Adams ring. In order to maintain the confinement of the arcs against the spreading, Renner et al. (2015) proposeda model which the Adams ring has a collection of small coorbital satellites placed in specific positions. These coorbitals would be responsible for maintaining the arcs particles. In this work we analyse the orbital evolution of the particles coorbital to the satellites by adding the effects of the solar radiation force. Our numerical results show that due to this dissipative effect the smallest particles, 1μm in size, leave the arc in less than 10years. Larger particles leave the arc, but can stay confined between the coorbital satellites. De Pater et al. (2005) suggested that a small moonlet embedded in the arc Fraternité can be the source of the arcs and even theAdams ring through an erosion mechanism. Our preliminary results showed that a moonlet up to 200m in radius can stay in the arc without causing any significant variation in the eccentricities of the coorbitals and the particles.

  15. Carbon arc ignition improved by simple auxiliary circuit

    NASA Technical Reports Server (NTRS)

    1965-01-01

    High voltage, low current pulse in series with arc power supply efficiently ignites a carbon arc. The easily and economically produced circuit is useful with arc burners and searchlights and with plasma jets.

  16. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  17. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    NASA Astrophysics Data System (ADS)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  18. Properties of the particles deposited from a low-temperature plasma arc discharge

    NASA Astrophysics Data System (ADS)

    Smolanov, N. A.

    2017-01-01

    The possible mechanisms for the formation of fractal particles of the plasma arc have been studies. The existence of dust structures of two types strongly and weakly magnetic was found. Paramagnetism of particles is the result of the synthesis of titanium carbonitride with embedded (encapsulated) magnetic substrate elements. The magnetization of particles indicates the presence in the test nanostructure particles. inhomogeneous distribution of electric charges in motion conducting bodies (drops) in a magnetized plasma is the reason for the formation of dust particles.

  19. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  20. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  1. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  2. 'European approach' to arc flash risk.

    PubMed

    Baillie, Jonathan

    2011-11-01

    DuPont claims that electrical arc, and the resulting "arc flash", are among the deadliest, least understood hazards of electricity", and can potentially occur in many industrial and other applications, including hospital plant rooms. Technical and engineering personnel from DuPont Engineering Technology, DuPont Personal Protection, and external independent experts, have thus collaborated to develop "a European approach to electrical arc risk assessment". The resulting free online resource, the DuPont Arc-Guide, sets out key steps to minimise serious arc flash incident risk, and details a range of optional, paid-for tailored risk assessment services, and an accompanying secure web portal, offering more in-depth guidance on this important, but apparently often overlooked, issue. HEJ editor Jonathan Baillie reports.

  3. An advanced arc track resistant airframe wire

    NASA Technical Reports Server (NTRS)

    Beatty, J.

    1995-01-01

    Tensolite, a custom cable manufacturer specializing in high temperature materials as the dielectric medium, develops an advance arc track resistant airframe wire called Tufflite 2000. Tufflite 2000 has the following advantages over the other traditional wires: lighter weight and smaller in diameter; excellent wet and dry arc track resistance; superior dynamic cut-through performance even at elevated temperatures; flight proven performance on Boeing 737 and 757 airplanes; and true 260 C performance by utilizing Nickel plated copper conductors. This paper reports the different tests performed on Tufflite 2000: accelerated aging, arc resistance (wet and dry), dynamic cut through, humidity resistance, wire-to-wire abrasion, flammability, smoke, weight, notch sensitivity, flexibility, and markability. It particularly focuses on the BSI (British Standards Institute) dry arc resistance test and BSI wet arc tracking.

  4. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  5. Numerical simulation of ac plasma arc thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Han-Ming; Carey, G. F.; Oakes, M. E.

    1994-05-01

    A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequnecy range of 10-10(exp 2) Hz which includes most industry ac arc frequencies.

  6. Numerical Simulation of AC Plasma Arc Thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Han-Ming; Carey, G. F.; Oakes, M. E.

    1994-05-01

    A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-102 Hz which includes most industry ac arc frequencies.

  7. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories

    NASA Astrophysics Data System (ADS)

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  8. The Ophiolite - Oceanic Fore-Arc Connection

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Pearce, J. A.; Stern, R. J.; Ishizuka, O.; Petronotis, K. E.

    2014-12-01

    Miyashiro (1973, EPSL) put forward the hypothesis that many ophiolites are generated in subduction zone settings. More recently, ophiolitic sequences including MORB-like basalts underlying boninites or other subduction-related rock types have been linked to near-trench spreading during subduction infancy (e.g., Stern and Bloomer, 1992, GSA Bull.; Shervais, 2001, G-cubed; Stern et al., 2012, Lithos.). These contentions were given strong support by the results of Shinkai 6500 diving in the Izu-Bonin-Mariana (IBM) fore-arc (e.g., Reagan et al., 2010, G-cubed; Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL). Based on widely spaced dives and grab sampling at disbursed dive stops, these studies concluded that the most abundant and most submerged volcanic rocks in the IBM fore-arc are MORB-like basalts (fore-arc basalts or FAB), and that these basalts appear to be part of a crustal sequence of gabbro, dolerite, FAB, boninite, and normal arc lavas overlying depleted peridotite. This ophiolitic sequence was further postulated to make up most or all of the IBM fore-arc from Guam to Japan, with similar magmatic ages (52 Ma FAB to 45 Ma arc) north to south, reflecting a western-Pacific wide subduction initiation event. At the time of this writing, IODP Expedition 352 is about to set sail, with a principal goal of drilling the entire volcanic sequence in the Bonin fore-arc. This drilling will define the compositional gradients through the volcanic sequence associated with subduction initiation and arc infancy, and test the hypothesized oceanic fore-arc - ophiolite genetic relationship. A primary goal of this expedition is to illustrate how mantle compositions and melting processes evolved during decompression melting of asthenosphere during subduction initiation to later flux melting of depleted mantle. These insights will provide important empirical constraints for geodynamic models of subduction initiation and early arc development.

  9. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air

    NASA Astrophysics Data System (ADS)

    Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.

    2007-04-01

    The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter

  10. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  11. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  12. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  13. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  14. Propagation of back-arc extension into the arc lithosphere in the southern New Hebrides volcanic arc

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Collot, J.; Danyushevsky, L.; Fabre, M.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M.; Fournier, M.

    2015-09-01

    New geophysical data acquired during three expeditions of the R/V Southern Surveyor in the southern part of the North Fiji Basin allow us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone, where it bends eastward along the Hunter Ridge. Unlike the northern end of the Tonga subduction zone, on the other side of the North Fiji Basin, the 90° bend does not correspond to the transition from a subduction zone to a transform fault, but it is due to the progressive retreat of the New Hebrides trench. The subduction trench retreat is accommodated in the upper plate by the migration toward the southwest of the New Hebrides arc and toward the south of the Hunter Ridge, so that the direction of convergence remains everywhere orthogonal to the trench. In the back-arc domain, the active deformation is characterized by propagation of the back-arc spreading ridge into the Hunter volcanic arc. The N-S spreading axis propagates southward and penetrates in the arc, where it connects to a sinistral strike-slip zone via an oblique rift. The collision of the Loyalty Ridge with the New Hebrides arc, less than two million years ago, likely initiated this deformation pattern and the fragmentation of the upper plate. In this particular geodynamic setting, with an oceanic lithosphere subducting beneath a highly sheared volcanic arc, a wide range of primitive subduction-related magmas has been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.

  15. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  16. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  17. Arc statistics with realistic cluster potentials

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias; Steinmetz, Matthias; Weiss, Achim

    1995-07-01

    We construct a sample of numerical models for clusters of galaxies and employ these to investigate their capability of imaging background sources into long arcs. The clusters are simulated within the CDM cosmogonic scheme in an Einstein-de Sitter universe. Emphasis is laid on the statistics of the arcs formed, and optical depths for arc formation are determined. We also compare the results to predictions based on simplified, radially symmetric cluster models. We find that the capability of the numerically modeled clusters to produce long arcs is increased by a factor of <~50 compared to a sample of softened isothermal spheres with the same observable parameters (core radii and velocity dispersions), and that they are comparably efficient as singular isothermal spheres with the same velocity dispersion. This largely enhanced capability to produce large arcs of the numerical cluster models can be understood in terms of substructure and intrinsic asymmetry, which enhance the tidal field (shear) of the clusters compared to the radially symmetric cases. We also find that the intrinsic ellipticity of the background sources has a noticeable influence on arc statistics; the optical depth for arcs with a length-to-width ratio of >~10 is significantly larger for elliptical than for circular background sources.

  18. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  19. Masking, persistence, and transfer in rotating arcs.

    PubMed

    Geremek, Adam; Stürzel, Frank; da Pos, Osvaldo; Spillmann, Lothar

    2002-10-01

    We demonstrate that the apparent length of a thin white arc on a black disk, rotating concentrically at 2.5 rps, varies with angular length and exposure duration. While short arcs (9-18 degrees ) gradually expand, long arcs (36-72 degrees ) first undergo a brief contraction, before they also expand. On average, perceived elongation asymptotes after 15 s equivalent to visual persistencies ranging from 68 to 170 ms. Using bi- and tri-colored arcs, we find that the apparent increase in length derives from the rear end of the rotating stimulus, while the initial shrinkage derives from contraction of the middle. After 15 s of adaptation, perceived length of the arc decays to actual stimulus length within an average of 6 s and, upon re-exposure of the arc, reaches its former value after only 5 s (priming). When the rotating arc is presented first to one eye and then to the other, apparent elongation transfers partially (46%), suggesting a contribution by the binocular cells in the visual cortex. A partial transfer (26%) also occurs from clockwise to counterclockwise rotation. When tested interocularly, the directional transfer is more pronounced (47%) and equals the interocular transfer under equidirectional conditions, suggesting that the directional transfer (cw versus ccw) might derive from non-directional cortical units. Whereas the initial contraction may be attributable to backward masking, the observed elongation likely reflects a cumulative build-up of after-discharge in cortical neurons over time.

  20. Initial development of the Banda Volcanic Arc

    SciTech Connect

    Hartono, H.M.S. )

    1990-06-01

    The initial development of the Banda Volcanic Arc can be determined by obtaining absolute ages of granites or volcanics, stratigraphy of the Eocene Metan Volcanics of Timor as the oldest formation containing Banda Volcanic Arc extrusives, and tectonic analysis. Banda Arc volcanism is the result of subduction of oceanic crust under the volcanic arc. The time of initial subduction is related to initial seafloor spreading between Australia and Antarctica, which is identical to geomagnetic polarity time 34 (82 mybp). Therefore, 82 mybp can be used as one of the criteria to determine the birth of the Banda Volcanic Arc. With present available time data for determining the birth of the Banda Volcanic Arc, the minimum age coincides with the age of the Metan Volcanics (Eocene, 39-56 mybp) and the maximum age coincides with initial seafloor spreading between Australia and Antarctica (82 mybp). This time span is too long. With the assumption that it needs some time to develop from transcurrent faulting to subduction and volcanism, it is proposed that the initial development of Banda Arc volcanism was during early Tertiary.

  1. Acoustic characteristics of electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  2. Towards a theory for Neptune's arc rings

    NASA Astrophysics Data System (ADS)

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-08-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.

  3. Towards a theory for Neptune's arc rings

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-01-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.

  4. Subduction, back-arc spreading and global mantle flow

    NASA Technical Reports Server (NTRS)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  5. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  6. Motion discrimination of throwing a baseball using forearm electrical impedance

    NASA Astrophysics Data System (ADS)

    Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake

    2013-04-01

    The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.

  7. Markerless motion tracking of awake animals in positron emission tomography.

    PubMed

    Kyme, Andre; Se, Stephen; Meikle, Steven; Angelis, Georgios; Ryder, Will; Popovic, Kata; Yatigammana, Dylan; Fulton, Roger

    2014-11-01

    Noninvasive functional imaging of awake, unrestrained small animals using motion-compensation removes the need for anesthetics and enables an animal's behavioral response to stimuli or administered drugs to be studied concurrently with imaging. While the feasibility of motion-compensated radiotracer imaging of awake rodents using marker-based optical motion tracking has been shown, markerless motion tracking would avoid the risk of marker detachment, streamline the experimental workflow, and potentially provide more accurate pose estimates over a greater range of motion. We have developed a stereoscopic tracking system which relies on native features on the head to estimate motion. Features are detected and matched across multiple camera views to accumulate a database of head landmarks and pose is estimated based on 3D-2D registration of the landmarks to features in each image. Pose estimates of a taxidermal rat head phantom undergoing realistic rat head motion via robot control had a root mean square error of 0.15 and 1.8 mm using markerless and marker-based motion tracking, respectively. Markerless motion tracking also led to an appreciable reduction in motion artifacts in motion-compensated positron emission tomography imaging of a live, unanesthetized rat. The results suggest that further improvements in live subjects are likely if nonrigid features are discriminated robustly and excluded from the pose estimation process.

  8. A simple prescription for simulating and characterizing gravitational arcs

    NASA Astrophysics Data System (ADS)

    Furlanetto, C.; Santiago, B. X.; Makler, M.; de Bom, C.; Brandt, C. H.; Neto, A. F.; Ferreira, P. C.; da Costa, L. N.; Maia, M. A. G.

    2013-01-01

    Simple models of gravitational arcs are crucial for simulating large samples of these objects with full control of the input parameters. These models also provide approximate and automated estimates of the shape and structure of the arcs, which are necessary for detecting and characterizing these objects on massive wide-area imaging surveys. We here present and explore the ArcEllipse, a simple prescription for creating objects with a shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a Sérsic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+Sérsic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor that prevents ArcEllipse models from accurately describing real lensed systems.

  9. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  10. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  11. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, S.

    1995-11-21

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.

  12. Motion of the Scotia sea plates

    USGS Publications Warehouse

    Thomas, C.; Livermore, R.; Pollitz, F.

    2003-01-01

    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  13. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  14. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  15. Arc - arc collisional tectonics within the Central Mobile Belt of the Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.; Rogers, N.; van Staal, C. R.; McNicoll, V. J.; Valverde-Vaquero, P.

    2007-12-01

    The Central Mobile Belt of Newfoundland Appalachians records the Ordovician arc - arc collision between the peri-Laurentian Red Indian Lake Arc of the Annieopsquotch accretionary tract (c. 480-460 Ma), and the peri- Gondwanan Victoria - Popelogan Arc (c. 473-453 Ma), which marks the closure of the Cambro-Ordovician Iapetus Ocean. Although the arc systems are in part coeval, they are distinguishable by the preservation of distinct structural histories and stratigraphies, unique basement characteristics as demonstrated by lead isotopic values of volcanic massive sulphide deposits and faunal differences. A modern analogue of such an arc - arc collision is observed in the Molucca and Solomon seas of the southwest Pacific. From such modern analogues it is evident that the Victoria - Popelogan Arc occupied a lower-plate setting during collision. This tectonic setting is demonstrated by subsidence of the Victoria - Popelogan Arc similar to the collision induced subsidence that is developed on the Australian active margin and Halmahera arcs of the Southwest Pacific. The timing of Victoria - Popelogan Arc subsidence is constrained by three age dates that form the last vestiges of arc volcanism (457 ± 2; 456.8 ± 3.1; 457 ± 3.6 Ma). These volcanic rocks are immediately overlain by Caradocian black shale of the Point Leamington Formation that marks the base of the Badger Group and the initiation of a successor basin. Caradocian black shale is noticeably absent from the top of the Red Indian Lake Arc with this time interval instead represented by a sub-Silurian unconformity, formed in response to collisional uplift. Emergence of the peri- Laurentian margin is demonstrated by detritus from it preserved in the Badger Group, which as it stratigraphically overlies the peri-Gondwanan Victoria - Popelogan Arc, requires that Iapetus was closed by this time. Following this collision, subduction stepped back into the outboard Tetagouche - Exploits back-arc basin. Whereas correlative

  16. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  17. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  18. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  19. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  20. Arc tracks on nanostructured surfaces after microbreakdowns

    NASA Astrophysics Data System (ADS)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  1. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  2. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  3. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  4. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  5. Arc voltage measurements of the hyperbaric MIG process

    SciTech Connect

    Huismann, G.; Hoffmeister, H.

    1996-12-01

    As a vital part of the MIG process, the arc controls the stability of the process, the melting of the filler wire and the base material. In order to control and describe the arc behavior, it is necessary to know the voltage- current- arc length relations, or the arc characteristics. Knowledge of arc characteristics is necessary for control of the MIG process and further automation of welding systems, in particular, at hyperbaric welding. In literature, information on arc characteristics for hyperbaric open arc pulsed process is not available so far. Therefore, in the present work, arc characteristics were measured for a pressure range of 1 to 16 bar. In measuring arc voltages and arc lengths of MIG arcs, specific problems are encountered as compared to TIG arcs where the distance between the electrode and work piece can be taken as the arc length and the ohmic voltage drop in the tungsten electrode is low. The movement of the electrode in the MIG process and the deformation of the molten wire end together with weld pool fluctuations are providing a complex system. For determining the arc characteristics certain simplifications are thus required which have been applied in this work. This paper presents a new concept on measuring arc lengths and voltages in the open MIG arc.

  6. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  7. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  8. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family…

  9. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  10. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  11. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  12. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  13. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  14. Aligning Plasma-Arc Welding Oscillations

    NASA Technical Reports Server (NTRS)

    Norris, Jeff; Fairley, Mike

    1989-01-01

    Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.

  15. Metal Vapor Arcing Risk Assessment Tool

    NASA Technical Reports Server (NTRS)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  16. Visualization of Gas Tungsten Arc Weld Pools

    DTIC Science & Technology

    1991-09-01

    flow visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night~vision...visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night-vision image-intensifier...effects of electromagnetic stirring on GTA welds in austenitic stainless steel . Changes in shape and solidification structure of welds observed

  17. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  18. Root nutrient foraging.

    PubMed

    Giehl, Ricardo F H; von Wirén, Nicolaus

    2014-10-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.

  19. Arc spot welding technique for underwater use

    SciTech Connect

    Koga, H.; Ide, Y.; Ogawa, Y.

    1995-12-31

    An arc spot welding equipment with special local cavity shroud was developed for underwater salvaging activity. Arc spot welding for lapped plates is an effective method to recover defects. This method in surface is so simple to use widely in the field of railways and chemical plants manufacturing. But there is some problems on the reliability of joint strength and bead shapes. A special arc spot nozzle to improve welding quality was developed. A small outlet of air jet at the bottom of the nozzle was created to maintain the swirl flow of shielding gas and certain rejection of excessive molten metal. This nozzle covers the welding part completely, then it also works as a local cavity shroud under water. This paper describes the design and function of the nozzle for CO{sub 2} arc spot welding system. A programmable controller manages the welding sequence of shielding gas flow, air jet flow, and arcing time. This welding gun is operated manually, but the operation is only to press the gun on the weld point. After that welding will proceed automatically, and arcing time is about three seconds. Whole time for welding which includes pre and post gas flow time is less than ten seconds for surface use, it is required some more additional pre drying process of welding point for underwater use to guarantee the high quality welding results. Fundamental analysis of welding conditions and the effects of air jet were considered.

  20. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  1. Dynamics of a discrete auroral arc

    NASA Technical Reports Server (NTRS)

    Bruening, K.; Goertz, C. K.

    1986-01-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  2. Dynamics of a discrete auroral arc

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1986-06-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  3. Magnesium isotope geochemistry in arc volcanism.

    PubMed

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  4. Magnesium isotope geochemistry in arc volcanism

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  5. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  6. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  7. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  8. Physical and Chemical Variations During Episodic Behavior of Mesozoic Cordilleran Arcs

    NASA Astrophysics Data System (ADS)

    Paterson, S. R.; Kirsch, M.; Cao, W.

    2015-12-01

    Models of episodic or cyclic behavior in Mesozoic Cordilleran continental arcs often examine broad patterns based on a single event or cycle. However, our comparison of multiple events/cycles both in single arc segments and in multiple, along-strike segments over ~15,000 km indicate that significant variations occur. For example during the three flare-ups peaking at ~225, ~161, and ~98 Ma in the Sierran segment, magma addition rates (MARs) indicate that the Triassic flare-up produced 3 times and the Cretaceous ~7 times as much magma as the Jurassic and 100 to 1000 times more magma than during lulls. Isostatic modeling combining arc shortening + MARs thus results in small roots/surface elevations in the Jurassic and Triassic and a large root/surface elevation during the Cretaceous. Age-constrained geochemical data in the Mesozoic Sierra Nevada show both general and specific flare-up versus lull trends. General trends during flare-ups include decrease in ɛNdi median values, and an increase to higher median values of SiO2, 87Sr/86Sri, Sr/Y, and (Sm/Yb)n. However these median values vary dramatically from one flare-up/lull episode to the next. For example the change in 87Sr/86Sri, Sr/Y, (Sm/Yb)n during flare-ups and lulls is not as pronounced for the Triassic and Jurassic events compared to the Cretaceous. And the Early Cretaceous displays unusually high median values in Sr/Y and (Sm/Yb)n. These patterns draw attention to a potential correlation between MARs and geochemical patterns. Although MARs are largely unavailable for other arc segments, along-strike, arc segment comparisons of zircon age spectra indicate flare-up periodicity of ~60-80 Ma over variable spatial scales ranging up to ~6000 km. Variations occur in all of the above geochemical measurements in both general and specific flare-up trends. Our results suggest that driving mechanisms for flare-ups/lulls vary along this Mesozoic arc and that second order effects vary between flare-ups and arc segments.

  9. Rates, Mechanisms, and Implications of Crustal Assimilation in Continental Arcs

    NASA Astrophysics Data System (ADS)

    Dungan, M.; Davidson, J.

    2002-12-01

    chemical consequences for whole-rock compositions of arc basalts at the Tatara-San Pedro complex (TSPC), Chilean Andes. This occurrence, although thermally challenged according to the traditional paradigm, demonstrates that significant modifications of trace element abundances and ratios need not shift the host magma composition outside the basaltic range. In fact, the retention of micro-xenolithic clots rich in olivine and augite has produced positive correlations between incompatible and compatible elements in some magmas, and 87Sr/86Sr decreases from 0.7041 to 0.7039 with increasing Rb (8-27 ppm). Hornblende and phlogopite in mafic arc plutonic xenoliths promote rapid digestion by lowering solidus temperatures and such melts amplify the chemical overprint in contaminated magmas, but partially melted gabbroic and troctolitic xenoliths lacking hydrous minerals are widespread at the TSPC, and many mafic magmas contain micro-xenolithic plutonic crystal clots derived from such lithologies that volumetrically rival the true phenocryst assemblage. Among the implications of these observations is that long-lived arc volcanoes may extensively recycle their own plutonic roots. [1] Huppert HH and Sparks RSJ (1985) E.P.S.Lett., 74, 371-386. [2] Dungan et al. (1986) J. Geophys. Res., 91, 5999-6028. [3] Philpotts AR and Asher PM (1993) J. Petrol., 34, 1029-1058. [4] Heliker C (1995) J. Volc. Geoth. Res., 6, 115-135. [5] Reiners et al. (1995) Geology, 23, 563-566. [6] Spera FJ and Bohrson WA (2001) J. Petrol., 42, 999-1018. [7] Grove et al. (1988) Contrib. Min. Petrol., 99, 320-343. [8] Dungan et al. (2001) J. Petrol., 42, 555-626.

  10. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  11. Motion through syntactic frames.

    PubMed

    Feist, Michele I

    2010-04-01

    The introduction of Talmy's (1985, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the fact of motion in motion verbs, while a second class, S-languages, tends to encode manner. In the experimental literature, it was reasoned that speakers may be expected to extend novel verbs in accordance with the lexicalization patterns of their native languages. However, the results regarding this prediction are mixed. In this paper, I examine the interplay between the meaning encoded in the motion verb itself and the meaning encoded in the motion description construction, offering a Gricean explanation for co-occurrence patterns and, by extension, for the mixed results. I then explore the implications of this argument for research on possible language effects on thought in this domain.

  12. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  13. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Lee, C.; Manga, M.

    2012-12-01

    The position of active volcanism relative to the trench in arcs depends on melt focusing processes within the mantle wedge and the geometric parameters of subduction. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where backarc extension dominates, exhibit a more stationary front in time relative to the trench. In addition, crustal indices of magmatism as measured by the ratio of trace elements La/Yb or isotopes 87}Sr/{86Sr covary with arc front migration (e.g., Haschke et al., 2002). Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust. Thickening proceeds through intrusive as well as extrusive volcanism, modulated by tectonics and surface erosion. Migration rate is set by the mantle melt flux into the crust, which decreases as thickening occurs. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop an analytic model of this process that produces migration rates consistent with published data and explains arc fronts that do not move (dominated by extension, such as in the case of intra-oceanic arcs). We present new geochemical and age data from the Peninsular Ranges Batholith that are also consistent with

  14. Root hydrotropism: an update.

    PubMed

    Cassab, Gladys I; Eapen, Delfeena; Campos, María Eugenia

    2013-01-01

    While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.

  15. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  16. Measurement of visual motion

    SciTech Connect

    Hildreth, E.C.

    1984-01-01

    This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.

  17. Disk Luminosity Function Based on the Lowell Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Kim, Mee-Jeong; Lee, Sang-Gak

    1991-12-01

    Disk stellar luminosity function has been derived with stars in the Lowell Proper Motion Survey which contains about 9000 stars with mu => 0.27" of arc/yr, 8 < m_pg < 17 and with bright stars in the Smithsonian Astrophysical Observatory (SAO) Star Catalogue. Luminosity function has been obtained with stars within 20 pc by Luyten's mean absolute magnitudes method using Reduced Proper Motion Diagram to select disk stars. Magnitudes and colors, in the SAO Star Catalogue as well as in the Lowell Proper Motion Survey have been transformed to the UBV system from the published UBV data. It has been found that stars which have higher proper motion than the original limit of the proper motion survey are missed, when the relation between the absolute magnitude and reduced proper motion is applied to sample stars without considering the dispersion in magnitude. Correction factors for missing stars have been estimated according to their limits of proper motion which are dependent on the absolute magnitude. Resulting lumi- nosity function shows Wielen's dip at M_B ~ 10, and systematic enhancement of stars on the average of about delta log Phi(M_B) ~ 0.2 compared with Luyten's luminosity function.

  18. arcControlTower: the System for Atlas Production and Analysis on ARC

    NASA Astrophysics Data System (ADS)

    Filipčič, Andrej; ATLAS Collaboration

    2011-12-01

    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  19. Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs

    SciTech Connect

    Katsaounis, A. )

    1993-09-01

    For control of welding underwater robotic systems, the arc characteristics and the heat quotation in cathode, arc column and anode (weld) were measured in GTAW with argon and helium shielding gas using the calorimetric method. The measurements were performed mainly in a pressure chamber. The pressure, the current and the arc length were varied from 0.1-6.0 MPa, 50-300 A and 2-11 mm, respectively. It was observed that the welding voltage is strongly dependent on system pressure for both shielding gases and an explicit minimum voltage/current was obtained for the argon arc characteristics at approximately 100 A. Furthermore, the field strength and the heat emission from the arc column increased exponentially with the pressure. A simple relation was developed to predict heat emission from the arc column and, consequently, for the arc efficiency. In addition, a calculation model for engineering use was derived based on the Ellenbaas-Heller equation to calculate the-heat flux from the arc to the weld (for both gases).

  20. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  1. A mathematical model of the structure and evolution of small scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1990-01-01

    A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.

  2. 351 New Common Proper-Motion Pairs from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Caballero, Rafael

    2012-01-01

    This paper presents 351 previously uncataloged pairs with separation under 100 arcseconds and proper motion over 70 milliseconds of arc/year. These pairs are the result of an extensive study that started with 96,205 candidate pairs from the Sloan Digital Survey (SDSS). Different criteria explained in the paper are applied to increase the probability of a physical bound between the components.

  3. GUI for studying the parameters influence of the electric arc model for a three-phase electric arc furnace

    NASA Astrophysics Data System (ADS)

    Ghiormez, L.; Prostean, O.; Panoiu, M.; Panoiu, C.

    2017-01-01

    This paper presents an analysis regarding the modeling of the behavior for a three-phase electric arc furnace installation. Therefore, a block diagram is implemented in Simulink that represents the modeling of the entire electric arc furnace installation. This block diagram contains also the modeling of the electric arc which is the element that makes the electric arc furnace behaving as a nonlinear load. The values for the model parameters of the electric arc furnace installation are like the ones from the real installation taken into consideration. Other model parameters are the electric arc model ones. In order to study the influence of the parameters of the electric arc models, it is developed a Matlab program that contains the graphical user interfaces. These interfaces make connection with the models of the electric arc implemented in Simulink. The interfaces allow the user to modify parameters for each of the electric arc model. Current and voltage of the electric arc are the variables taken into account to study the influence of the parameters on the electric arc models. Waveforms for voltage and current of the electric arc are illustrated when a parameter of the model is modified in order to analyze the importance of this parameter on the electric arc model. Also, for each of the models is presented the voltage-current characteristic of the electric arc because this characteristic gives information about the behavior of the electric arc furnace installation.

  4. TH-C-BRD-08: Reducing the Effect of Respiratory Motion On the Delivered Dose in Proton Therapy Through Proper Field Angle Selection

    SciTech Connect

    Matney, J; Park, P; Court, L; Zhu, X; Li, H; Mohan, R; Liu, W; Dong, L

    2014-06-15

    Purpose: This work investigated a novel planning strategy of selecting radiotherapy beam angles that minimizes the change in water equivalent thickness (dWET) during respiration in order to reduce the effects of respiratory motion in passively scattered proton therapy (PSPT). Methods: In a clinical trial treating locally-advanced lung cancer with proton therapy, 2–4 co-planar beams were previously selected by dosimetrists in the design of physician-approved PSPT treatment plans. The authors identified a cohort of patients in which respiratory motion affected the planned PSPT dose delivery. For this cohort, this work analyzed dWET during respiration over a 360 degree arc of potential treatment angles around the patient: the dWET was defined as the difference in WET between the full-exhale (T50) and full-inhale (T0) phases of the simulation 4DCT. New PSPT plans were redesigned by selecting new beam angles that demonstrated significant reduction in the value of dWET. Between the T50 and T0 phases, the root-mean-square deviation of dose and the change in dose-volume histogram curves (dAUC) for anatomical structures were calculated to compare the original to dWET reduction plans. Results: To date, three plans were retrospectively redesigned based on dWET analysis. In the dWET reduction plan, the root mean square dose (T50-T0) was reduced by 15–35% and the DVH dAUC values were reduced by more than 60%.The PSPT plans redesigned by selecting appropriate field angles to minimize dWET demonstrated less dosimetric variation due to respiration. Conclusion: We have introduced the use of a new metric to quantify respiratory motion in proton therapy: dWET. The use of dWET allows us to minimize the impact of respiratory motion of the entire anatomy in the beam path. This work is a proof of principle that dWET could suggest field angles in proton therapy that are more robust to the effects of respiratory motion.

  5. The Composition of Water-Rich Components in the Sources of Back Arc and Arc Magmas

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Hauri, E. H.

    2007-12-01

    Arc and back-arc basin basalts are distinguished by geochemical signatures that are a complex function of the composition of crustal inputs form the subducting plate and the internal "factory" processes that extract materials from the slab and distribute them across the mantle wedge. Here, we use a global data set of basaltic melts from back arcs and arcs to examine relationships between four elements thought to be primary constituents of slab- derived materials: H2O, Na2O, K2O, and Cl. We use the methods of Kelley et al. (2006), coupled with recent constraints on mantle/melt DH2O and DCl (Hauri et al., 2006) to constrain concentrations of these elements in the mantle source, which compare directly with compositional models of the mantle and the slab-derived component beneath the Mariana trough (Stolper & Newman, 1994). The Mariana trough samples define linear trends in Na2O/H2O (1), K2O/H2O (0.2), and Cl/H2O (0.03) consistent with mixing between these two components. Four other back-arc basins (Sumisu, Central Lau, Manus, and E. Scotia) also fall along this trend in Na2O/H2O and K2O/H2O, suggesting that slab additions to most back-arc mantle sources have common major element characteristics. The Valu Fa Ridge segment of the southern Lau basin, however, trends away from other back arcs towards lower Na2O/H2O (0.1) and K2O/H2O (0.08). Such lower ratios are generally characteristic of arc sources in the Marianas and other arcs (e.g., Na2O/H2O=0.5-0.05), but also appear to be distinct for specific arc volcanoes. In back arcs, Cl may also be affected by late-stage magmatic assimilation of seawater, which drives up Cl/H2O and obscures primary trends, although some central Lau basin samples do point towards a mixing array coincident with the Mariana trough. Mariana arc sources have higher H2O and Cl concentrations than the Mariana trough, and indicate overall lower, but volcano-specific, Cl/H2O (0.02-0.01). In terms of these major-element constituents, arc volcanoes

  6. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  7. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  8. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    NASA Astrophysics Data System (ADS)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  9. SIRTF/IRS cryogenic grating drive mechanism (ARC second positioning at 4 K)

    NASA Technical Reports Server (NTRS)

    Kubitschek, Michael J.

    1991-01-01

    The requirements, design, and test results of a grating drive mechanism for the Infrared Spectrograph (IRS) science instrument on the proposed superfluid helium-cooled Space Infrared Telescope Facility (SIRTF) are described. The IRS grating drive mechanism, tested in the fall of 1989, satisfied all performance requirements in vacuum at 4 K. Measured mechanism performance included: 1.4 arc sec root-mean-square (rms) error positioning resolution; 2.2 arc sec rms position repeatability error, less than 10 millijoules/deg dissipated power; and 170 deg angular range of travel. Mechanisms that precisely position optical elements at very low cryogenic temperatures (at/below 4 K) are vital to the operating success of a number of proposed infrared scientific instruments like those in SIRTF.

  10. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.

    PubMed

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.

  11. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  12. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  13. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  14. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  15. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  16. Back-arc basin basalt systematics

    NASA Astrophysics Data System (ADS)

    Taylor, Brian; Martinez, Fernando

    2003-05-01

    The Mariana, east Scotia, Lau, and Manus back-arc basins (BABs) have spreading rates that vary from slow (<50 mm/yr) to fast (>100 mm/yr) and extension axes located from 10 to 400 km behind their island arcs. Axial lava compositions from these BABs indicate melting of mid-ocean ridge basalt (MORB)-like sources in proportion to the amount added of previously depleted, water-rich, arc-like components. The arc-like end-members are characterized by low Na, Ti and Fe, and by high H 2O and Ba/La; the MORB-like end-members have the opposite traits. Comparisons between basins show that the least hydrous compositions follow global MORB systematics and an inverse correlation between Na8 and Fe8. This is interpreted as a positive correlation between the average degree and pressure of mantle melting that reflects regional variations in mantle potential temperatures (Lau/Manus hotter than Mariana/Scotia). This interpretation accords with numerical model predictions that faster subduction-induced advection will maintain a hotter mantle wedge. The primary compositional trends within each BAB (a positive correlation between Fe8, Na8 and Ti8, and their inverse correlation with H 2O(8) and Ba/La) are controlled by variations in water content, melt extraction, and enrichments imposed by slab and mantle wedge processes. Systematic axial depth (as a proxy for crustal production) variations with distance from the island arc indicate that compositional controls on melting dominate over spreading rate. Hydrous fluxing enhances decompression melting, allowing depleted mantle sources just behind the island arc to melt extensively, producing shallow spreading axes. Flow of enriched mantle components around the ends of slabs may augment this process in transform-bounded back-arcs such as the east Scotia Basin. The re-circulation (by mantle wedge corner flow) to the spreading axes of mantle previously depleted by both arc and spreading melt extraction can explain the greater depths and thinner

  17. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  18. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2005-03-15

    Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.

  19. Fluid simulation of carbon arc plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Raitses, Yevgeny; Kaganovich, Igor

    2016-09-01

    An arc discharge using graphite electrodes is known to produce carbon nanomaterials, e.g. nanotubes and fullerenes. In order to understand where and how such nanomaterials are synthesized, the plasma properties inside the arc discharge must be characterized. The mechanism of the carbon arc plasma is as follows. Carbon particles evaporate from the graphite anode, which is mainly heated by the electrons. Carbon atoms and ions condensate and form a deposit on the cathode, from which the electrons are thermionically emitted. A one-dimensional fluid model is developed to study the characteristics of the carbon arc plasma in atmospheric pressures. Sheath models for the anode and cathode are coupled to the fluid simulation to obtain the material temperature and sheath potential. In the model, thermal nonequilibrium is assumed and atomic carbon, dimer, and trimer are considered. A typical operating condition of a carbon arc plasma is discharge voltage of 20 V, discharge current of 60 A, the electron radius of 6 to 12 mm, and background pressure of 500 Torr. Transition from low to high ablation mode is obtained from the simulations with a smaller electrode radius and with a larger discharge current, which agrees with experimental observations. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  20. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  1. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  2. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.

  3. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  4. Welding torch with arc light reflector

    NASA Astrophysics Data System (ADS)

    Gordon, Stephen S.

    1986-12-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  5. Channel model for AC electric arc

    NASA Astrophysics Data System (ADS)

    Larsen, H. L.

    1993-06-01

    This report contains the results from calculations of free-burning AC electric arcs in argon. In order to calculate the arc current and arc voltage, the external electric circuit must be taken into consideration. The external circuit is modeled by an equivalent circuit consisting of an ideal AC voltage source, a loss resistance, and an inductance. The qualitative behavior of the current-voltage characteristic is in agreement with observed characteristics, but experimental data are necessary in order to check whether the calculated power loss is reasonable. Non-symmetry was modeled by introducing different anode and cathode falls in the two half periods. An attempt at taking into account different cathode current densities in the two half periods, depending on whether the electrode or silicon melt is cathode, did not give satisfactory results. Thermionic emission was assumed in both half periods, but this may not be the right mechanism when the silicon melt is cathode. The time delay of the AC arc compared to the DC case is modeled by a time constant. It was shown that this preset time constant must be in agreement with the mean 'mechanical' relaxation time in the arc in order to fulfill the energy balance. By updating the time constant until this is achieved, the time constant is eliminated as a parameter that must be chosen a priori.

  6. Arc Conductance and Flow Velocity Affected by Transient Recovery Voltage

    NASA Astrophysics Data System (ADS)

    Fukuoka, Reo; Ishikawa, Yuya; Ono, Seisui; Sato, Ken; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    Recently, the stable supply of electric power is indispensable. The GCB (Gas Circuit Breaker) can prevent the spread of the fault current. However, it should have the reliability more. Therefore the GCB has been researched for performance improvement of the arc interruption of abnormal fault current without the fail. Therefore, it is important to prevent the breakdown such as the re-ignition and thermal re-ignition of arc after the arc interruption. It is necessary to reduce the arc conductance in order to prevent the re-ignition of arc. The arc conductance is derived from the temperature distribution and the volume of the arc. The temperature distribution of the arc is formed by convection. In this research, the arc conductance and flow velocity affected by transient recovery voltage are elucidated. The flow rate and temperature distribution of the arc is calculated with changing transient recovery voltage. In addition, the arc conductance is calculated in order to know the extinguish arc ability. As a result, when the transient recovery voltage increases, the probability of re-ignition increases. Therefore, the arc temperature and the arc conductance were increased.

  7. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  8. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  9. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  10. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  11. Body Motion and Graphing.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy

    1998-01-01

    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  12. Naive Conceptions of Motion.

    ERIC Educational Resources Information Center

    McCloskey, Michael

    Two experiments were conducted to characterize the system of beliefs that make up the naive impetus theory of motion and to determine what effects physics instruction has on students' conceptions of motion. Thirteen college students were asked to solve several quantitative problems and were interviewed about their answers in the first experiment.…

  13. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  14. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  15. Gravisensing in flax roots - results from STS-107

    NASA Astrophysics Data System (ADS)

    Hasenstein, K. H.; Scherp, P.; Ma, Z.

    The goal of the experiment "magnetophoretic induction of curvature in roots" (MICRO) on STS-107 was the induction of curvature in roots by high-gradient magnetic fields (HGMF) in microgravity. The scientific objectives included investigating the growth/curvature pattern in response to a HGMF, the determination of amyloplasts as gravisensing/curvature-inducing structures, and a study of the effects of HGMF and microgravity on the plant cytoskeleton. Flax seeds were germinated in orbit in specially designed seed cassettes. The seeds were oriented so that the emerging roots grew away from the cassette. The magnetic system consisted of ferro-magnetic wedges, magnetized by permanent NdFeB magnets (coercivity > 32k Oe). The HGMF that results from the transition from the high magnetic field density at the wedge tips to air repels diamagnetic amyloplasts. As a result of the previously demonstrated internal displacement of the amyloplasts, the roots were expected to curve as if gravistimulated. Despite successful germination (>90%), the growth rate of the seedlings was significantly lower than comparable controls. Despite the slower growth rate, root curvature was enhanced and initiated earlier than in ground controls. The results indicate that microgravity-grown roots exhibit higher sensitivity for the HGMF than ground controls. The enhanced sensitivity of root curvature in microgravity suggests that the root gravisensing system responds to the displacement of amyloplasts. In the absence of gravity, the higher sensitivity might result from intracellular motion, which in microgravity is likely to be stronger than on the ground.

  16. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  17. Applying Soft Arc Consistency to Distributed Constraint Optimization Problems

    NASA Astrophysics Data System (ADS)

    Matsui, Toshihiro; Silaghi, Marius C.; Hirayama, Katsutoshi; Yokoo, Makot; Matsuo, Hiroshi

    The Distributed Constraint Optimization Problem (DCOP) is a fundamental framework of multi-agent systems. With DCOPs a multi-agent system is represented as a set of variables and a set of constraints/cost functions. Distributed task scheduling and distributed resource allocation can be formalized as DCOPs. In this paper, we propose an efficient method that applies directed soft arc consistency to a DCOP. In particular, we focus on DCOP solvers that employ pseudo-trees. A pseudo-tree is a graph structure for a constraint network that represents a partial ordering of variables. Some pseudo-tree-based search algorithms perform optimistic searches using explicit/implicit backtracking in parallel. However, for cost functions taking a wide range of cost values, such exact algorithms require many search iterations. Therefore additional improvements are necessary to reduce the number of search iterations. A previous study used a dynamic programming-based preprocessing technique that estimates the lower bound values of costs. However, there are opportunities for further improvements of efficiency. In addition, modifications of the search algorithm are necessary to use the estimated lower bounds. The proposed method applies soft arc consistency (soft AC) enforcement to DCOP. In the proposed method, directed soft AC is performed based on a pseudo-tree in a bottom up manner. Using the directed soft AC, the global lower bound value of cost functions is passed up to the root node of the pseudo-tree. It also totally reduces values of binary cost functions. As a result, the original problem is converted to an equivalent problem. The equivalent problem is efficiently solved using common search algorithms. Therefore, no major modifications are necessary in search algorithms. The performance of the proposed method is evaluated by experimentation. The results show that it is more efficient than previous methods.

  18. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  19. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  20. Improving a scissor-action couch for conformal arc radiotherapy and radiosurgery.

    PubMed

    Li, Kaile; Yu, Cedric X; Ma, Lijun

    2004-01-01

    We have developed a method to improve the setup accuracy of a Varian Clinac 6/100 couch for delivering conformal arc therapy using a tertiary micro multileaf collimator (MLC) system. Several immobilization devices have been developed to improve the mechanical stability and isocenter alignment of the couch: turn-knob harnesses, double-track alignment plates, and a drop-in rod that attaches the couch to the concrete floor. These add-on components minimize the intercomponent motion of the couch's scissor elevator, which allows consistent treatment setup. The accuracy of our isocenter couch alignment is an improvement over the above devices, within 1 mm of their accuracy. The couch has been used with over 15 patients and with over 50 modulated conformal arc treatment deliveries at our institution.

  1. Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.

    1991-01-01

    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.

  2. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  3. Understanding the Evolution of the Scotia Arc

    NASA Astrophysics Data System (ADS)

    Maldonado, Andrés.; Dalziel, Ian; Leat, Philip T.

    2013-07-01

    An international 3-day meeting in which participants discussed geodynamic and multidisciplinary topics related to the evolution of the Scotia Arc was held at the Andalucía Institute of Earth Sciences (Spanish Research Council (CSIC)/University of Granada (UGR)) in Granada, Spain. The Scotia Arc encompasses southern South America, the Antarctic Peninsula, and the intervening part of the Southern Ocean including the South Georgia and South Orkney crustal blocks and the volcanically active South Sandwich Arc. It is a region of critical importance because of its role as a developing ocean gateway during Eocene-Miocene times and because of its impact on global ocean circulation, with possible importance for Paleogene-Neogene paleoenvironmental change, early phases of development of Antarctic ice sheets, gene flow, and resulting biodiversity.

  4. APPARATUS AND METHOD FOR ARC WELDING

    DOEpatents

    Noland, R.A.; Stone, C.C.

    1960-05-10

    An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

  5. A micro-computed tomography study of the negotiation and anatomical feature in apical root canal of mandibular molars.

    PubMed

    Min, Yi; Ma, Jing-Zhi; Shen, Ya; Cheung, Gary Shun-Pan; Gao, Yuan

    2016-11-01

    The aim of this study was to investigate the clinical negotiation of various apical anatomic features of the mandibular first molars in a Chinese population using micro-computed tomography (micro-CT). A total of 152 mandibular first molars were scanned with micro-CT at 30 µm resolution. The apical 5 mm of root canal (ARC) was reconstructed three dimensionally and classified. Subsequently, the access cavity was prepared with the ARC anatomy blinded to the operator. The ARC was negotiated with a size 10 K file with or without precurve. Information on the ability to obtain a reproducible glide path was recorded. The anatomical classification of ARC was Type I with 68.45% in mandibular first molars. The negotiation result of ARC with Category i was 387 canals (74.00%). With a bent negotiating file, 96 canals were negotiated, including 88 reproducible glide paths (Category ii) and 8 irregular glide paths (Category iii). About 7.65% canals could not be negotiated with patency successfully (Category iv). The statistical analyze shown the anatomic feature of ARC had effect on the negotiation of ARC (p < 0.05). In conclusion, ARC anatomic variations had a strong potential impact on the negotiation. The category of negotiation in ARC would be helpful in the using of NiTi rotary instruments. Negotiation of ARC to the working length with patency should be careful and skillful because of the complexities of ARC. SCANNING 38:819-824, 2016. © 2016 Wiley Periodicals, Inc.

  6. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  7. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy

    PubMed Central

    Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong

    2016-01-01

    Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199

  8. Nonlinear identification of the total baroreflex arc.

    PubMed

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna

    2015-12-15

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This "Uryson" model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure.

  9. Magnesium isotope geochemistry in arc volcanism

    PubMed Central

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  10. Nonlinear identification of the total baroreflex arc

    PubMed Central

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru

    2015-01-01

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This “Uryson” model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure. PMID:26354845

  11. Commissioning and quality assurance of Dynamic WaveArc irradiation.

    PubMed

    Sato, Sayaka; Miyabe, Yuki; Takahashi, Kunio; Yamada, Masahiro; Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Yokota, Kenji; Kaneko, Shuji; Mizowaki, Takashi; Monzen, Hajime; Hiraoka, Masahiro

    2015-03-08

    A novel three-dimensional unicursal irradiation technique "Dynamic WaveArc" (DWA), which employs simultaneous and continuous gantry and O-ring rotation during dose delivery, has been implemented in Vero4DRT. The purposes of this study were to develop a commissioning and quality assurance procedure for DWA irradiation, and to assess the accuracy of the mechanical motion and dosimetric control of Vero4DRT. To determine the mechanical accuracy and the dose accuracy with DWA irradiation, 21 verification test patterns with various gantry and ring rotational directions and speeds were generated. These patterns were irradiated while recording the irradiation log data. The differences in gantry position, ring position, and accumulated MU (EG, ER, and EMU, respectively) between the planned and actual values in the log at each time point were evaluated. Furthermore, the doses delivered were measured using an ionization chamber and spherical phantom. The constancy of radiation output during DWA irradiation was examined by comparison with static beam irradiation. The mean absolute error (MAE) of EG and ER were within 0.1° and the maximum error was within 0.2°. The MAE of EMU was within 0.7 MU, and maximum error was 2.7 MU. Errors of accumulated MU were observed only around control points, changing gantry, and ring velocity. The gantry rotational range, in which EMU was greater than or equal to 2.0 MU, was not greater than 3.2%. It was confirmed that the extent of the large differences in accumulated MU was negligibly small during the entire irradiation range. The variation of relative output value for DWA irradiation was within 0.2%, and this was equivalent to conventional arc irradiation with a rotating gantry. In conclusion, a verification procedure for DWA irradiation was designed and implemented. The results demonstrated that Vero4DRT has adequate mechanical accuracy and beam output constancy during gantry and ring rotation.

  12. Axial Presentations of Regular Arcs on Mn

    PubMed Central

    Morse, Marston

    1972-01-01

    THEOREM 1. Let Mn be a Riemannian manifold of class Cm, m > 0. On Mn let g be a simple compact, sensed, regular arc whose local coordinates are functions of class Cm of the algebraic arc length s, measured along g from a prescribed point of g. There then exists a presentation (F: U, X) [unk] [unk]Mn such that g [unk] X, and each point p(s) of g is represented in the euclidean domain U by coordinates (x1,...,xn) = (s,0,...,0). PMID:16592036

  13. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  14. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  15. Ion source based on the cathodic arc

    DOEpatents

    Sanders, D.M.; Falabella, S.

    1994-02-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

  16. Ion source based on the cathodic arc

    DOEpatents

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  17. Plasma distribution of cathodic ARC deposition system

    SciTech Connect

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G.

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  18. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  19. How roots respond to gravity.

    PubMed

    Evans, M L; Moore, R; Hasenstein, K H

    1986-12-01

    Current knowledge about the mechanisms of plant root response to gravity is reviewed. The roles of the columella region and amyloplasts in the root cap are examined. Results of experiments related to gravistimulation in corn roots with and without root caps are explained. The role of auxin, abscisic acid, and calcium also are examined.

  20. Geochemical differences between along-arc and across-arc volcanics in west-central Nicaragua

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Freundt, Armin; Wörner, Gerhard; Kutterolf, Steffen

    2012-04-01

    The La Paz Centro - Malpaisillo Lineament (LPML) in west-central Nicaragua is a north-south striking, 20 km long chain of maars and cinder cones, which intersects the northwest-southeast striking main volcanic front. A tectonic control of LPML volcanism is likely but only evident for the Malpaisillo fissure at the northern end of the LPML. Previous work demonstrated geochemical variations implying changes in mantle-source composition (i.e., added slab components) along the Central American Volcanic Arc at spatial scales of some 10's of kilometers. Our study of the LPML shows that minor but systematic changes also occur across the arc within 20 km distance. Variations in trace element ratios such as Zr/Nb, Ba/Th, Ba/La, Th/Zr, U/La and La/Yb along the LPML, i.e. across the volcanic front indicate little change in the degree of partial melting but an increase particularly in the hemipelagic sediment component in the mantle source from the fore arc towards the arc front, followed by a decrease behind the arc. Interestingly, the slab component is most prominent just in front of the arc. About 60 km southeast of the LPML, the Nejapa-Miraflores volcanic and tectonic lineament, which marks a 20 km north-south offset in the arc, differs substantially from the LPML. There is a wide scatter in incompatible trace element ratios indicating a heterogeneous mantle source at small spatial scales (c. 1 km). This mantle heterogeneity may represent vertical rather than across-arc variations and is probably related to the arc offset, because in the absence of such offset at the LPML mantle source conditions vary much less but more systematically.

  1. Visualizing motion in video

    NASA Astrophysics Data System (ADS)

    Brown, Lisa M.; Crayne, Susan

    2000-05-01

    In this paper, we present a visualization system and method for measuring, inspecting and analyzing motion in video. Starting from a simple motion video, the system creates a still image representation which we call a digital strobe photograph. Similar to visualization techniques used in conventional film photography to capture high-speed motion using strobe lamps or very fast shutters, and to capture time-lapse motion where the shutter is left open, this methodology creates a single image showing the motion of one or a small number of objects over time. Based on digital background subtraction, we assume that the background is stationary or at most slowing changing and that the camera position is fixed. The method is capable of displaying the motion based on a parameter indicating the time step between successive movements. It can also overcome problems of visualizing movement that is obscured by previous movements. The method is used in an educational software tool for children to measure and analyze various motions. Examples are given using simple physical objects such as balls and pendulums, astronomical events such as the path of the stars around the north pole at night, or the different types of locomotion used by snakes.

  2. The effect of plasma on solar cell array arc characteristics

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.; Tyree, E.

    1984-01-01

    The influence from the ambient plasma on the arc characteristics of a negatively biased solar cell array was investigated. The arc characteristics examined were the peak current during an arc, the decay time as the arc terminates, and the charge lost during the arc. These arc characteristics were examined in a nitrogen plasma with charge densities ranging from 15,000 to 45,000 cu cm. Background gas pressures ranged from 8x1,000,000 to 6x100,000 torr. Over these ranges of parameters no significant effect on the arc characteristics were seen. Arc characteristics were also examined for three gas species: helium, nitrogen and argon. The helium arcs have higher peak currents and shorter decay times than nitrogen and argon arcs. There are slight differences in the arc characteristics between nitrogen and argon. These differences may be caused by the differences in mass of the respective species. Also, evidence is presented for an electron emission mechanism appearing as a precursor to solar array arcs. Occassionally the plasma generator could be turned off, and currents could still be detected in the vacuum system. When these currents are presented, arcs may occur.

  3. Characterization of Submerged-Arc and Gas-Metal-Arc Weldments in HY-100 Steel.

    DTIC Science & Technology

    1983-12-01

    RD-R14i 939 CHARACTERIZATION OF SUBMERGED-ARC AND GAS-METAL-ARC / WELDMENTS IN HY-IBB STEEL (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R E THERRIEN DEC...100 Steel 6. PIERFORMING ORG. REPORT NUM11ER I.7. AUTHOW) 11. CONTRACT OR GRANT NuMMER(.) Alfred E. Therrien _O P O R ME E E T R J C .T S’ .~ S...weld toughness in submerged arc welded (SAW) 4- HY-100 steel weldments precludes this process from large 4. scale HY-100 shipbuilding production

  4. Motion Recognition and Modifying Motion Generation for Imitation Robot Based on Motion Knowledge Formation

    NASA Astrophysics Data System (ADS)

    Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori

    A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.

  5. Inflation and cyclotron motion

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-01-01

    We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying unconventional dispersion relations.

  6. Generalized compliant motion primitive

    NASA Astrophysics Data System (ADS)

    Backes, Paul G.

    1994-08-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  7. Dosimetric Impact of the Interplay Effect During Stereotactic Lung Radiation Therapy Delivery Using Flattening Filter-Free Beams and Volumetric Modulated Arc Therapy

    SciTech Connect

    Ong, Chin Loon; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-07-15

    Purpose: We investigated the dosimetric impact of the interplay effect during RapidArc stereotactic body radiation therapy for lung tumors using flattening filter-free (FFF) beams with different dose rates. Methods and Materials: Seven tumors with motion ≤20 mm, treated with 10-MV FFF RapidArc, were analyzed. A programmable phantom with sinusoidal longitudinal motion (30-mm diameter “tumor” insert; period = 5 s; individualized amplitude from planning 4-dimensional computed tomography) was used for dynamic dose measurements. Measurements were made with GafChromic EBT III films. Plans delivered the prescribed dose to 95% of the planning target volume, created by a 5-mm expansion of the internal target volume. They comprised 2 arcs and maximum dose rates of 400 and 2400 MU/min. For 2400 MU/min plans, measurements were repeated at 3 different initial breathing phases to model interplay over 2 to 3 fractions. For 3 cases, 2 extra plans were created using 1 full rotational arc (with contralateral lung avoidance sector) and 1 partial arc of 224° to 244°. Dynamic and convolved static measurements were compared by use of gamma analysis of 3% dose difference and 1 mm distance-to-agreement. Results: For 2-arc 2400 MU/min plans, maximum dose deviation of 9.4% was found in a single arc; 7.4% for 2 arcs (single fraction) and <5% and 3% when measurements made at 2 and 3 different initial breathing phases were combined, simulating 2 or 3 fractions. For all 7 cases, >99% of the area within the region of interest passed the gamma criteria when all 3 measurements with different initial phases were combined. Single-fraction single-arc plans showed higher dose deviations, which diminished when dose distributions were summed over 2 fractions. All 400 MU/min plans showed good agreement in a single fraction measurement. Conclusion: Under phantom conditions, single-arc and single-fraction 2400 MU/min FFF RapidArc lung stereotactic body radiation therapy is susceptible to interplay

  8. Recovery of motion parameters from distortions in scanned images

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1997-01-01

    Scanned images, such as those produced by the scanning-laser ophthalmoscope (SLO), show distortions when there is target motion. This is because pixels corresponding to different image regions are acquired sequentially, and so, in essence, are slices of different snapshots. While these distortions create problems for image registration algorithms, they are potentially useful for recovering target motion parameters at temporal frequencies above the frame rate. Stetter, Sendtner and Timberlake measured large distortions in SLO images to recover the time course of rapid horizontal saccadic eye movements. Here, this work is extended with the goal of automatically recovering small eye movements in two dimensions. Eye position during the frame interval is modeled using a low dimensional parametric description, which in turn is used to generate predicted distortions of a reference template. The input image is then registered to the distorted template using normalized cross correlation. The motion parameters are then varied, and the correlation recomputed, to find the motion which maximizes the peak value of the correlation. The location and value of the correlation maximum are determined with sub-pixel precision using biquadratic interpolation, yielding eye position resolution better than 1 arc minute. This method of motion parameter estimation is tested using actual SLO images as well as simulated images. Motion parameter estimation might also be applied to individual video lines in order to reduce pipeline delays for a near real-time system.

  9. Large-scale deformation related to the collision of the Aleutian Arc with Kamchatka

    USGS Publications Warehouse

    Gesit, Eric L.; Scholl, David W.

    1994-01-01

    The far western Aleutian Island Arc is actively colliding with Kamchatka. Westward motion of the Aleutian Arc is brought about by the tangential relative motion of the Pacific plate transferred to major, right-lateral shear zones north and south of the arc. Early geologic mapping of Cape Kamchatka (a promontory of Kamchatka along strike with the Aleutian Arc) revealed many similarities to the geology of the Aleutian Islands. Later studies support the notion that Cape Kamchatka is the farthest west Aleutian “island” and that it has been accreted to Kamchatka by the process of arc-continent collision. Deformation associated with the collision onshore Kamchatka includes gravimetrically determined crustal thickening and formation of a narrow thrust belt of intensely deformed rocks directly west of Cape Kamchatka. The trend of the thrust faults is concave toward the collision zone, indicating a radial distribution of maximum horizontal compressive stress. Offshore, major crustal faults trend either oblique to the Kamchatka margin or parallel to major Aleutian shear zones. These offshore faults are complex, accommodating both strike-slip and thrust displacements as documented by focal mechanisms and seismic reflection data. Earthquake activity is much higher in the offshore region within a zone bounded to the north by the northernmost Aleutian shear zone and to the west by an apparent aseismic front. Analysis of focal mechanisms in the region indicate that the present-day arc-continent “contact zone” is located directly east of Cape Kamchatka. In modeling the dynamics of the collision zone using thin viscous sheet theory, the rheological parameters are only partially constrained to values of n (the effective power law exponent) ≥ 3 and Ar(the Argand number) ≤ 30. These values are consistent with a forearc thermal profile of Kamchatka, previously determined from heat flow modeling. The thin viscous sheet modeling also indicates that onshore thrust faulting

  10. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters.

    PubMed

    Sothmann, Thilo; Gauer, Tobias; Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail-which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were

  11. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters

    PubMed Central

    Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were

  12. Conditions for coherent-synchrotron-radiation-induced microbunching suppression in multibend beam transport or recirculation arcs

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.; Di Mitri, S.; Douglas, D.; Li, R.; Tennant, C.

    2017-02-01

    The coherent synchrotron radiation (CSR) of a high-brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in beam phase space degradation. On one hand, CSR can perturb electron transverse motion in dispersive regions along the beam line and possibly cause emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching instability. For transport arcs, several schemes have been proposed to suppress the CSR-induced emittance growth. Correspondingly, a few scenarios have been introduced to suppress CSR-induced microbunching instability, which however mostly aim for linac-based machines. In this paper we provide sufficient conditions for suppression of CSR-induced microbunching instability along transport or recirculation arcs. Examples are presented with the relevant microbunching analyses carried out by our developed semianalytical Vlasov solver [C.-Y. Tsai, D. Douglas, R. Li, and C. Tennant, Linear microbunching analysis for recirculation machines, Phys. Rev. ST Accel. Beams 19, 114401 (2016), 10.1103/PhysRevAccelBeams.19.114401]. The example lattices include low-energy (˜100 MeV ) and high-energy (˜1 GeV ) recirculation arcs, and medium-energy compressor arcs. Our studies show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. Beam current dependences of maximal CSR microbunching gains are also demonstrated, which should help outline a beam line design for different scales of nominal currents. We expect this analysis can shed light on the lattice design approach that aims to control the CSR-induced microbunching.

  13. A demonstration of motion base design alternatives for the National Advanced Driving Simulator

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.; Sinacori, John B.; Laforce, Soren; Miller, James C.; Cook, Anthony

    1992-01-01

    A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended.

  14. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  15. Automated Variable-Polarity Plasma-Arc Welding

    NASA Technical Reports Server (NTRS)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  16. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.

  17. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  18. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    SciTech Connect

    Jiang, R; Zhan, L; Osei, E

    2015-06-15

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use.

  19. SU-E-T-187: Feasibility Study of Stereotactic Liver Radiation Therapy Using Multiple Divided Partial Arcs in Volumetric Modulated Arc Therapy

    SciTech Connect

    Lin, Y; Ozawa, S; Tsegmed, U; Nakashima, T; Shintaro, T; Ochi, Y; Kawahara, D; Kimura, T; Nagata, Y

    2014-06-01

    Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantry rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.

  20. Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment

    PubMed Central

    Bedford, James L.; Fast, Martin F.; Nill, Simeon; McDonald, Fiona M.A.; Ahmed, Merina; Hansen, Vibeke N.; Oelfke, Uwe

    2015-01-01

    Background and purpose The latency of a multileaf collimator (MLC) tracking system used to overcome respiratory motion causes misalignment of the treatment beam with respect to the gross tumour volume, which may result in reduced target coverage. This study investigates the magnitude of this effect. Material and methods Simulated superior–inferior breathing motion was used to construct histograms of isocentre offset with respect to the gross tumour volume (GTV) for a variety of tracking latencies. Dose distributions for conformal volumetric modulated arc therapy (VMAT) arcs were then calculated at a range of offsets and summed according to these displacement histograms. The results were verified by delivering the plans to a Delta4 phantom on a motion platform. Results In the absence of an internal target margin, a tracking latency of 150 ms reduces the GTV D95% by approximately 2%. With a margin of 2 mm, the same drop in dose occurs for a tracking latency of 450 ms. Lung V13Gy is unaffected by a range of latencies. These results are supported by the phantom measurements. Conclusions Assuming that internal motion can be modelled by a rigid translation of the patient, MLC tracking of conformal VMAT can be effectively accomplished in the absence of an internal target margin for substantial breathing motion (4 s period and 20 mm peak–peak amplitude) so long as the system latency is less than 150 ms. PMID:26277856

  1. Projectile Motion with Mathematica.

    ERIC Educational Resources Information Center

    de Alwis, Tilak

    2000-01-01

    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  2. Projectile Motion Details.

    ERIC Educational Resources Information Center

    Schnick, Jeffrey W.

    1994-01-01

    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  3. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  4. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  5. Motion Sickness: First Aid

    MedlinePlus

    ... soon as the motion stops. The more you travel, the more easily you'll adjust to being ... at least 30 to 60 minutes before you travel. Expect drowsiness as a side effect. Consider scopolamine ( ...

  6. A Projectile Motion Bullseye.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  7. Motion Alters Color Appearance

    PubMed Central

    Hong, Sang-Wook; Kang, Min-Suk

    2016-01-01

    Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098

  8. Explanations of Superluminal Motion

    NASA Astrophysics Data System (ADS)

    Scheuer, P. A. G.

    Recent developments in models of core-jet sources with apparent superluminal motions are reviewed. Emphasis is given to new versions of the so-called "Christmas tree" model and the relativistic beaming model.

  9. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling.

    PubMed

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B; LoSasso, Thomas; Mageras, Gig

    2016-03-01

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds' degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%-8%. For a lung plan, areas of high local dose differences (>4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  10. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling.

    PubMed

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B; LoSasso, Thomas; Mageras, Gig

    2016-03-08

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds' degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%-8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  11. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; ...

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  12. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  13. Cheaper Custom Shielding Cups For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1992-01-01

    New way of making special-purpose shielding cups for gas/tungsten arc welding from hobby ceramic greatly reduces cost. Pattern machined in plastic. Plaster-of-paris mold made, and liquid ceramic poured into mold. Cost 90 percent less than cup machined from lava rock.

  14. Neural-Network Modeling Of Arc Welding

    NASA Technical Reports Server (NTRS)

    Anderson, Kristinn; Barnett, Robert J.; Springfield, James F.; Cook, George E.; Strauss, Alvin M.; Bjorgvinsson, Jon B.

    1994-01-01

    Artificial neural networks considered for use in monitoring and controlling gas/tungsten arc-welding processes. Relatively simple network, using 4 welding equipment parameters as inputs, estimates 2 critical weld-bead paramaters within 5 percent. Advantage is computational efficiency.

  15. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  16. F-Layer Polar Cap Arcs.

    DTIC Science & Technology

    1987-09-01

    the electric fields. The particles may also be accelerated; they typically have a * higher range of energies than that of their solar ,.-.., wind ...spread F masking in the ionogram indicates the presence of structured irregularities in the arcs. Irregularities also cause dmplitude scintillation. and

  17. Remote electrical arc suppression by laser filamentation.

    PubMed

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-02

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.

  18. Signal Analysis of Gas Tungsten Arc Welds

    NASA Technical Reports Server (NTRS)

    Eagar, T. W.

    1985-01-01

    Gas tungsten arc welding is a process in which the input parameters such as current, voltage and travel speed, can be easily controlled and/or monitored. However, weld quality is not solely a function of these parameters. An adaptive method of observing weld quality is desired to improve weld quality assurance. The use of dynamic electrical properties of the welding arc as a weld quality monitor was studied. The electrical properties of the arc are characterized by the current voltage transfer function. The hardware and software necessary to collect the data at a maximum rate of 45 kHz and to allow the off-line processing of this data are tested. The optimum input current waveform is determined. Bead-on-plate welds to observe such characteristics of the weld as the fundamental frequency of the puddle are studied. Future work is planned to observe changes of the arc response with changes in joint geometry, base metal chemistry, and shielding gas composition are discussed.

  19. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  20. Arc tracking of cables for space applications

    NASA Technical Reports Server (NTRS)

    Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.

    1995-01-01

    The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.

  1. Evaluation of the clinical usefulness of modulated arc treatment

    NASA Astrophysics Data System (ADS)

    Lee, Young Kyu; Jang, Hong Seok; Kim, Yeon Sil; Choi, Byung Ock; Kang, Young-Nam; Nam, Sang Hee; Park, Hyeong Wook; Kim, Shin Wook; Shin, Hun Joo; Lee, Jae Choon; Kim, Ji Na; Park, Sung Kwang; Kim, Jin Young

    2015-07-01

    The purpose of this study is to evaluate the clinical usefulness of modulated arc (mARC) treatment techniques. The mARC treatment plans for non-small-cell lung cancer (NSCLC) patients were made in order to verify the clinical usefulness of mARC. A pre-study was conducted to find the best plan condition for mARC treatment, and the usefulness of the mARC treatment plan was evaluated by comparing it with other Arc treatment plans such as tomotherapy and RapidArc plans. In the case of mARC, the optimal condition for the mARC plan was determined by comparing the dosimetric performance of the mARC plans developed by using various parameters, which included the photon energy (6 MV, 10 MV), the optimization point angle (6°- 10°intervals), and the total number of segments (36 - 59 segments). The best dosimetric performance of mARC was observed at a 10 MV photon energy, a point angle 6 degrees, and 59 segments. The treatment plans for the three different techniques were compared by using the following parameters: the conformity index (CI), homogeneity index (HI), the target coverage, the dose to the OARs, the number of monitor units (MU), the beam on time, and the normal tissue complication probability (NTCP). As a result, the three different treatment techniques showed similar target coverages. The mARC plan had the lowest V20 (volume of lung receiving > 20 Gy) and MU per fraction compared with both the RapidArc and the tomotherapy plans. The mARC plan reduced the beam on time as well. Therefore, the results of this study provide satisfactory evidence that the mARC technique can be considered as a useful clinical technique for radiation treatment.

  2. Uranium ARC Fission Reactor for Space Power and Propulsion

    DTIC Science & Technology

    1992-03-01

    thruster or MHD accelerator/generator. Uranium arc technology is being developed for use in space nuclear thermal and electric propulsion reactors. In...specific impulse propulsion or ultrahigh temperature power conversion. Fission events in the nuclear arc plasma provide for additional dissociation and...I Technical Objectives 3 2. URANIUM ARC FISSION REACTOR CONCEPT AND NUCLEAR -AUGMENTED THRUSTER CONCEPT 4 2.1 Physics Basis 4 2.2 Uranium Arc

  3. The Tertiary Arc Chain in the Western Pacific

    NASA Astrophysics Data System (ADS)

    Honza, E.

    1991-02-01

    The arcs bordering the Pacific Plate on the Western and Southwestern Pacific rim are reconstructed since their initiation in the Eocene and Oligocene. They occur in a zone forming an arc chain from the Western Pacific tropics to the eastern margin of Australia. They are the Bonin, Mariana, Yap, Palau, Halmahera, North New Guinea-West Melanesia, Solomon, Vanuatu, and Tonga-Kermadec Arcs, designated here the Tertiary Arc Chain. They are associated with the formation and consumption of backarc basins. Reversals of arc polarity and episodic subduction has occurred in some of them. The Tertiary Arc Chain is characterized by four major stages in its evolution which can be seen characteristically in some of the arcs. The first stage is the occurrence of the arc chain from the middle Eocene to earliest Oligocene. The second stage is the formation of the backarc basins from the early to late Oligocene. The third stage is the occurrence of double arcs on the inner side of the arc chain in the early to middle Miocene and the fourth stage is the reversal of arc polarities due to collisions since the late Miocene. The backarc basins associated with the arcs of the Tertiary Arc Chain have fixed limits of duration in their evolution. The backarc basins initially form 15 million years after the initiation of the volcanic arc. Several to 10 million years after the initial opening, backarc spreading terminates. Approximately 20 million years after the cessation of the backarc spreading, a second phase of opening occurs in the backarc region. In the case of arc collision, reversal of the arc polarity occurs if there is oceanic crust on the backarc side, and opening of a backarc basin occurs within several million years. These occurrences and durations have a variation of ca. 3-5 million years.

  4. H2O and CO2 in magmas from the Mariana arc and back arc systems

    NASA Astrophysics Data System (ADS)

    Newman, Sally; Stolper, Edward; Stern, Robert

    2000-05-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith from Agrigan (Mariana arc). Glass rims of submarine arc lavas contain 0.3-1.9 wt % H2O, and CO2 is below detection limits. Where they could be compared, glass inclusions in arc phenocrysts contain more H2O than their host glasses; most arc glasses and phenocryst inclusions contain no detectable CO2, with the exception of those from a North Hiyoshi shoshonite, which contains 400-600 ppm. The glass inclusions from the Agrigan xenolith contain 4-6% H2O, and CO2 is below the detection limit. Glasses from the cross-chain lavas are similar to those from the arc: H2O contents are 1.4-1.7 wt %, and CO2 is below detection limits. Volatile contents in Mariana trough lava glass rims are variable: 0.2-2.8 wt % H2O and 0-300 ppm CO2. Glass inclusions from trough phenocrysts have water contents similar to the host glass, but they can contain up to 875 ppm CO2. Volatile contents of melt inclusions from trough and arc lavas and from the xenolith imply minimum depths of crystallization of ~1-8 km. H2O and CO2 contents of Mariana trough glasses are negatively correlated, indicating saturation of the erupting magma with a CO2-H2O vapor at the pressure of eruption (~400 bars for these samples), with the vapor ranging from nearly pure CO2 at the CO2-rich end of the glass array to nearly pure H2O at the H2O-rich end. Degassing of these magmas on ascent and eruption leads to significant loss of CO2 (thereby masking preeruptive CO2 contents) but minimal disturbance of preeruptive H2O contents. For

  5. Load-Point Compliance for the Arc Bend-Arc Support Fracture Toughness Specimen

    DTIC Science & Technology

    1990-03-01

    co TECHNICAL REPORT ARCCB-TR-900 11(N LOAD-POINT COMPLIANCE FOR THE ARC BEND-ARC SUPPORT FRACTURE TOUGHNESS SPECIMEN FRANCIS I. BARATTA JOSEPH A...ORG. REPORT NUMBER 7. AUTHOR(@) 1. CONTRACT OR GRANT NUMBER(@) Francis I. Baratta , Joseph A. Kapp, and David S. Saunders (See Reverse) 9. PERFORMING...CLASSIFICATION OF THIS PAGEhan Date Entered) 7. AUTHORS (CONT’D) Francis I. Baratta U.S. Army Materials Technology Laboratory Watertown, MA 02172

  6. The arc arises: The links between volcanic output, arc evolution and melt composition

    NASA Astrophysics Data System (ADS)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of

  7. Electric-arc synthesis of soot with high content of higher fullerenes in parallel arc

    NASA Astrophysics Data System (ADS)

    Dutlov, A. E.; Nekrasov, V. M.; Sergeev, A. G.; Bubnov, V. P.; Kareev, I. E.

    2016-12-01

    Soot with a relatively high content of higher fullerenes (C76, C78, C80, C82, C84, C86, etc.) is synthesized in a parallel arc upon evaporation of pure carbon electrodes. The content of higher fullerenes in soot extract amounts to 13.8 wt % when two electrodes are simultaneously burnt in electric-arc reactor. Such a content is comparable with the content obtained upon evaporation of composite graphite electrodes with potassium carbonate impurity.

  8. Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas

    SciTech Connect

    Lagerwaard, Frank J. Meijer, Otto W.M.; Hoorn, Elles A.P. van der; Verbakel, Wilko; Slotman, Ben J.; Senan, Suresh

    2009-06-01

    Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sized VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.

  9. Radiation of long and high power arcs

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  10. The Plio Quaternary Ambon arc, Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Honthaas, Christian; Maury, René C.; Priadi, Bambang; Bellon, Hervé; Cotten, Joseph

    1999-01-01

    Plio-Quaternary lavas and granites have been collected from Ambon, Seram, Kelang, Haruku, Saparua, Ambelau and Banda Api islands, Eastern Indonesia. They include low-K calc-alkaline basalts, andesites, dacites and rhyolites and high-K calc-alkaline andesites, dacites, rhyolites and granites. All these rocks present the usual chemical characteristics of island-arc magmas. The high-K suite of Ambon is mostly represented by cordierite-bearing dacites (known as ambonites) and granites. Low-K and high-K magmas were emplaced in neighbouring islands or even in the same island (Ambon), often concomitantly, during two magmatic pulses at 5-3.2 Ma and 2.3-1 Ma, respectively. We propose that the low-K suite results from the evolution of basaltic magmas derived from mantle melting above the Western Irian Jaya plate which subducts along the Seram trough. Intermediate and acidic rocks of the high-K suite (e.g. ambonites) are thought to derive from low-K mafic magmas through massive assimilation of the Seram-Ambon continental crust, as originally proposed by Van Bemmelen in 1949. The timing of magmatic events and the geochemical features of the studied lavas are clearly different from those of the southern part of the Banda arc, in which the low-K suite is lacking. In agreement with earlier seismic evidence for two different slabs subducting beneath the Seram-Ambon continental block and beneath the southern Banda arc (from Wetar to Manuk), respectively, we propose to recognise a new Plio-Quaternary island arc, i.e. the Ambon arc, extending west-east from Ambelau to the Banda Archipelago active low-K volcanoes through Kelang, southwestern Seram, Ambon, Haruku and Saparua.

  11. Interaction of Komatiitic Liquids With Archean Arcs

    NASA Astrophysics Data System (ADS)

    Kerrich, R.

    2006-12-01

    New, and compilations of, high precision data for 3.0 to 2.7 Ga komatiites of the Superior province show positive normalized anomalies of Nb relative to Th-La, and Nb/Th>8. These features are present in Al- undepleted (AUK) and Al-depleted komatiites(ADK) screened for minimal alteration and absence of crustal contamination. AUK possess positive Zr(Hf)/Sm anomalies, whereas ADK counterparts have negative anomalies. For AUK, positive (Nb,Zr)/REE anomalies are interpreted as oceanic lithosphere processed through a dehydration-dominated subduction zone and recycled into the mantle source of plumes. For ADK, HFSE/REE anomalies may reflect recycled oceanic lithosphere processed through a melt(TTG)-dominated subduction zone, melting of a plume with residual majorite garnet at >400 km, or some combination. Both AUK and ADK are associated with anhydrous intraplate plume-related magmas, based on field associations and Ti/V. A new compositional type of Neoarchean intraoceanic low-K (Ce) tholeiitic arc basalt has been identified. These are characterized by a spectrum of negative to positive (Nb,Ta,Zr,Hf)/REE anomalies, but systematic negative Ti/REE anomalies, where Nb antivaries with Zr/Nb, and Ni>300ppm. This type differs from low-K arc tholeiites of Archean and Phanerozoic age variably associated with andesites, dacites, rhyolites, and characterized by systematic negative anomalies of (Nb,Ta,P,Ti)/REE, with Ni<250ppm. The new type tholeiites are consistent with a model of earlier komatiitic liquids that stalled in, and fertilized, upper mantle. As an arc migrated through composite upper mantle, hydrous melting generated a basalt compositional spectrum from subdued AUK-like to classic arc-like HFSE/REE anomalies. Alternatively, contemporaneous AUK liquids leaked through a slab into the sub-arc mantle wedge, hybridizing with wedge peridotite melts.

  12. Theory of the arc discharge in air blast breakers

    SciTech Connect

    Vogel, H.F.

    1980-08-01

    The complete set of equations obtaining in the arc's length element are given. The arc length is determined when the external circuit equations are closed by an expression for the arc inductance as a function of the radius and length, in addition to our relationships for the radius and voltage gradients.

  13. Arc-Jet Power Supply And Starting Circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.

    1988-01-01

    Power efficiency high, current regulated, and starting automatic. New circuit for starting arc jets and controlling them in steady operation capable of high power efficiency and constructed in lightweight form. Feedback control system keeps arc-jet current nearly constant, once arc struck by starting pulse. Circuit made of commercially available components. Design capable of high power efficiency.

  14. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and... for arc welding and cutting, and are of a capacity capable of safely handling the maximum...

  15. Dry and wet arc track propagation resistance testing

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.

  16. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  17. The investigation of carbon nitride films prepared at various arc currents by vacuum cathode arc method

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Xia, Lifang

    2002-08-01

    The carbon nitride films have been prepared in the arc currents range of 20-60 A at the Ar/N2 atmosphere of 50/400 sccm by the vacuum cathode arc deposition method. The properties of the films were characterized by x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and nanoindentation. The N concentration showed a maximum of 35 at% at 20 A and decreased gradually with the arc currents. The films below 40 A consisted of linear polymeric-like component and sp2 graphitic cluster. With the increasing of the arc current from 20 to 40 A, the ID/IG rose and the photoluminescence (PL) fell gradually, which resulted from the development of the sp2 graphitic phase and the decrease of the polymeric-like phase. As a result, the CC bonds increased and sp3CN and sp2CN decreased. Above 40 A, with the increasing of arc currents, ID/IG fell and the PL increased gradually, which reflected the decreasing of sp2 graphitic phase and the modification of C and N atoms in sp2 cluster. The CC bonds and sp3CN fell and the sp2CN rose. The nanohardness of films showed increasing tendency with the arc currents. The variation of the relative ratio and the average energy of N-containing species and C-containing species at the atmosphere would be responsible for the change in the properties of films.

  18. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    SciTech Connect

    Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.

    2014-07-14

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.

  19. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Hornbach, Matthew J.; Le Friant, Anne; Ishizuka, Osamu; Stroncik, Nicole; Adachi, Tatsuya; Aljahdali, Mohammed; Boudon, Georges; Breitkreuz, Christoph; Fraass, Andrew; Fujinawa, Akihiko; Hatfield, Robert; Jutzeler, Martin; Kataoka, Kyoko; Lafuerza, Sara; Maeno, Fukashi; Martinez-Colon, Michael; McCanta, Molly; Morgan, Sally; Palmer, Martin R.; Saito, Takeshi; Slagle, Angela; Stinton, Adam J.; Subramanyam, K. S. V.; Tamura, Yoshihiko; Talling, Peter J.; Villemant, Benoit; Wall-Palmer, Deborah; Wang, Fei

    2012-08-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to <0.07 W/m2 at distances >15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.

  20. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, M.; Hornbach, M. J.; Le Friant, A.; Ishizuka, O.; Stroncik, N.

    2012-12-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to < 0.07 W/m2 at distances > 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present day volcanism is confined to the region with the highest heat flow.

  1. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Hornbach, Matt; Le Friant, Anne; Ishizuka, Osamu

    2014-05-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to < 0.07 W/m2 at distances > 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present day volcanism is confined to the region with the highest heat flow.

  2. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  3. Grass Roots Project Evaluation.

    ERIC Educational Resources Information Center

    Wick, John W.

    Some aspects of a grass roots evaluation training program are presented. The program consists of two elements: (1) a series of 11 slide/tape individualized self-paced units, and (2) a six-week summer program. Three points of view on this program are: (1) University graduate programs in quantitative areas are usually consumed by specialists; (2)…

  4. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3)…

  5. Root hair sweet growth

    PubMed Central

    Velasquez, Silvia M; Iusem, Norberto D

    2011-01-01

    Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development. PMID:21918376

  6. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  7. The Roots Of Alienation

    ERIC Educational Resources Information Center

    Bronfenbrenner, Urie

    1973-01-01

    Alienation in our society takes several forms--withdrawal, hostility, or efforts to reform. The author traces the roots of alienation to our neglect of many of the needs of children, particularly their need for interaction with adults. Among his many recommendations are: modified work schedules to permit more time with children and systems for…

  8. Increasing deforestation at the Arc of Deforestation in Brazil

    NASA Astrophysics Data System (ADS)

    Silva, Maria Elisa; Pereira, Gabriel; Rocha, Rosmeri

    2013-04-01

    In this study we investigated the impact on regional climate due to the deforestation of Amazonian region. The deforestation was applied specifically to the area at the edge of the Amazonian region in Brazil, named Arc of Deforestation, where the deforestation actually occurs. The numerical experiments were conducted with the regional climate model RegCM3, used by many scientific groups around the world. The simulations performed by the model were conducted for the Brazil's central-southeast region rainy season, which can be defined between October and March. Each rainy season was separately simulated, being July-1st always the first day and March-31th the last one. Some alterations were made in the model specifications in order to better simulate the climate over South America. Land cover information was updated by more recent data. The older data compiled for 1992 was replaced by that compiled for 2005 (GLCC2005). Besides the global coverage updating, Cerrado information over Brazil obtained from the Brazilian Environmental Ministry was included to cover information. Based on results from others studies, carried out to South America, we changed the root and total soil layers depth, they were enlarged to 3.0 and 4.5 meters, respectively. This change can provide more humidity to the atmosphere and then increase the amount of convective precipitation. The spatial and time resolution considered for all simulations were, respectively, 50 km and 30 min. The domain was defined considering the South America region centered in 55W e 22S, with 160 and 120 points in longitudinal and latitudinal directions, respectively. The vertical resolution was described by 18 levels. The convective precipitation was computed by Grell scheme. Initial and boundary conditions were defined by Reanalysis I dataset. Sea surface temperature was those compiled by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and was obtained from their Web site. Spatial patterns of simulated air temperature at low

  9. PROMOTIONS: PROper MOTION Software

    NASA Astrophysics Data System (ADS)

    Caleb Wherry, John; Sahai, R.

    2009-05-01

    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  10. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results

  11. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition.

    ERIC Educational Resources Information Center

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  12. Image motion compensation by area correlation and centroid tracking of solar surface features

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  13. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose.

    PubMed

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-21

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required

  14. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  15. Optimization of the output and efficiency of a high power cascaded arc hydrogen plasma source

    SciTech Connect

    Vijvers, W. A. J.; Gils, C. A. J. van; Goedheer, W. J.; Meiden, H. J. van der; Veremiyenko, V. P.; Westerhout, J.; Lopes Cardozo, N. J.; Rooij, G. J. van; Schram, D. C.

    2008-09-15

    The operation of a cascaded arc hydrogen plasma source was experimentally investigated to provide an empirical basis for the scaling of this source to higher plasma fluxes and efficiencies. The flux and efficiency were determined as a function of the input power, discharge channel diameter, and hydrogen gas flow rate. Measurements of the pressure in the arc channel show that the flow is well described by Poiseuille flow and that the effective heavy particle temperature is approximately 0.8 eV. Interpretation of the measured I-V data in terms of a one-parameter model shows that the plasma production is proportional to the input power, to the square root of the hydrogen flow rate, and is independent of the channel diameter. The observed scaling shows that the dominant power loss mechanism inside the arc channel is one that scales with the effective volume of the plasma in the discharge channel. Measurements on the plasma output with Thomson scattering confirm the linear dependence of the plasma production on the input power. Extrapolation of these results shows that (without a magnetic field) an improvement in the plasma production by a factor of 10 over where it was in van Rooij et al. [Appl. Phys. Lett. 90, 121501 (2007)] should be possible.

  16. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  17. Integrated primary flight display: the sky arc

    NASA Astrophysics Data System (ADS)

    Voulgaris, Theodore J.; Metalis, Sam A.; Mobley, R. S.

    1995-05-01

    Flight instrument interpretability has been a key piloting issue because it is directly related to operator performance and inversely related to operator error. To improve interpretability we have developed the Sky Arc, a new symbology initially developed for attitude control, particularly for a helmet-mounted display. It consists of an integrated set of graphic symbols which vary in a continuous, analog fashion with changing flight parameters. The Sky Arc currently integrates, pitch, roll, heading, air speed, and terrain avoidance. The display can be integrated into a head down display, a head up display, or a helmet mounted display. In this preliminary study the usability of the Sky Arc as an attitude indicator was compared to a conventional head-up display pitch ladder symbology. The test involved six test subject pilots and a medium-fidelity simulator. The pilots were asked to fully recover from a series of unusual attitude conditions that were presented on the simulator. The time taken to recover and the correctness of the recovery procedure served as the objective evaluation measures. A Likert-type rating scale and open-ended subject matter expert opinions served as the subjective measures of evaluation. To examine whether there was a relationship between usability of the attitude indicator and difficulty of the unusual attitude, the workload levels involved in performing the unusual attitude recoveries were grouped into three levels, low, medium, and high. At each workload level there were four conditions, for a total of 12 different conditions. Each pilot was asked to recovery twice from each condition, for a total of 24 unusual attitude recovery trials. The test trials were counterbalanced and displayed in a prearranged order. No differences due to difficulty of the unusual attitude were detected. Overall, the study revealed that the Sky Arc led to generally faster recoveries than did the standard display, as well as higher subjective preference ratings

  18. Yugoslav strong motion network

    NASA Astrophysics Data System (ADS)

    Mihailov, Vladimir

    1985-04-01

    Data concerning ground motion and the response of structures during strong earthquakes are necessary for seismic hazard evaluation and the definition of design criteria for structures to be constructed in seismically active zones. The only way to obtain such data is the installation of a strong-motion instrument network. The Yugoslav strong-motion programme was created in 1972 to recover strong-motion response data used by the structural engineering community in developing earthquake resistant design. Instruments, accelerographs SMA-1 and seismoscopes WM-1, were installed in free-field stations and on structures (high-rise buildings, dams, bridges, etc.). A total number of 176 accelerographs and 137 seismoscopes have been installed and are operating in Yugoslavia. The strong-motion programme in Yugoslavia consists of five subactivities: network design, network operation, data processing, network management and research as well as application. All these activities are under the responsibility of IZIIS in cooperation with the Yugoslav Association of Seismology. By 1975 in the realisation of this project participated the CALTECH as cooperative institution in the joint American-Yugoslav cooperative project. The results obtained which are presented in this paper, and their application in the aseismic design justify the necessity for the existence of such a network in Yugoslavia.

  19. Space motion sickness

    NASA Technical Reports Server (NTRS)

    Homick, J. L.

    1979-01-01

    Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.

  20. The Particle--Motion Problem.

    ERIC Educational Resources Information Center

    Demana, Franklin; Waits, Bert K.

    1993-01-01

    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  1. Audiovisual biofeedback improves motion prediction accuracy

    PubMed Central

    Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho

    2013-01-01

    Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. Methods: An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Results: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. Conclusions: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion

  2. Monte Carlo dose verification for intensity-modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Li, X. Allen; Ma, Lijun; Naqvi, Shahid; Shih, Rompin; Yu, Cedric

    2001-09-01

    Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan, Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-III computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.

  3. Series and parallel arc-fault circuit interrupter tests.

    SciTech Connect

    Johnson, Jay Dean; Fresquez, Armando J.; Gudgel, Bob; Meares, Andrew

    2013-07-01

    While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by opening the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.

  4. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc

    NASA Astrophysics Data System (ADS)

    Wahba, M.; Mizutani, M.; Katayama, S.

    2016-07-01

    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  5. Characteristic of a triple-cathode vacuum arc plasma source.

    PubMed

    Xiang, W; Li, M; Chen, L

    2012-02-01

    In order to generate a better ion beam, a triple-cathode vacuum arc plasma source has been developed. Three plasma generators in the vacuum arc plasma source are equally located on a circle. Each generator initiated by means of a high-voltage breakdown between the cathode and the anode could be operated separately or simultaneously. The arc plasma expands from the cathode spot region in vacuum. In order to study the behaviors of expanding plasma plume generated in the vacuum arc plasma source, a Langmuir probe array is employed to measure the saturated ion current of the vacuum arc plasma source. The time-dependence profiles of the saturated current density of the triple vacuum arc plasma source operated separately and simultaneously are given. Furthermore, the plasma characteristic of this vacuum arc plasma source is also presented in the paper.

  6. Comparison of Arc Tracking Tests in Various Aerospace Environments

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hammoud, Ahmad; McCall, David

    1996-01-01

    Momentary short-circuit arcs between a polyimide insulated wire with defective insulation and another conductor may cause pyrolization of the insulation resulting in a conductive path capable of sustaining the arc. These sustained arcs may propagate along the wires or to neighboring wires leading to complete failure of the wire bundle. Wire insulation susceptibility to arc tracking may be dependent on its environment. Because all wire insulation types tested to date arc track, a test procedure has been developed to compare different insulation types with respect to their arc tracking susceptibility. This test procedure is presented along with a comparison of arc tracking in the following three environments: (1) Air at atmospheric pressure and 1 gravitational(g) force; (2) Vacuum (2.67 x 10(exp -3) Pa) and 1g, and (3) Air at atmospheric pressure and microgravity (less than 0.04g).

  7. Electric arc discharge damage to ion thruster grids

    NASA Technical Reports Server (NTRS)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  8. SAR arcs we have seen: Evidence for variability in stable auroral red arcs

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Baumgardner, Jeffrey; Wroten, Joei

    2016-01-01

    Since 1987, an all-sky airglow imaging system has operated from a site at the Millstone Hill/Haystack Observatory in Westford, MA. During the ~2.5 solar cycles from 1987 to 2014, many studies using all-sky images, in conjunction with incoherent scatter radar and satellite data, described subauroral, ionospheric disturbances observed during individual geomagnetic storms. The most prominent storm time optical feature from a subauroral site is a stable auroral red (SAR) arc. The standard use of a SAR arc's position is to locate the ionospheric footprint of the narrow plasmapause-ring current interaction region where heat conduction from the inner magnetosphere excites emission within the F layer trough. When mapped from an emission altitude of 400 km to the geomagnetic equatorial plane, SAR arcs from Millstone Hill give the location of the plasmapause at radial distances between 2 to 4.5 Earth radii. A total of 314 SAR arcs have been observed during the 27 years of imaging at Millstone Hill. We find no single morphology for all SAR arcs, but rather patterns that occasionally depart from stability in space and time. We have classified these into five categories: longevity, multiplicity, zonal structure, latitudinal inhomogeneity, and tilt with respect to geomagnetic coordinates. In each case, the implications for the inner magnetosphere sources that drive SAR arcs are explored. While individual SAR arc variability characteristics have been noted in previous studies, here we describe for the first time all five types from the same site—an aspect not yet addressed in either magnetosphere or ionosphere modeling studies.

  9. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

  10. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  11. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  12. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  13. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  14. Advances in root reinforcement experiments

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Niedda, Marcello

    2013-04-01

    Root reinforcement is considered in many situations an important effect of vegetation for slope stability. In the past 20 years many studies analyzed root reinforcement in laboratory and field experiments, as well as through modeling frameworks. Nearby the important contribution of roots to shear strength, roots are recognized to impart stabilization also through lateral (parallel to slope) redistribution of forces under tension. Lateral root reinforcement under tensile solicitations (such as in the upper part of a shallow landslide) was documented and discussed by some studies. The most common method adopted to measure lateral root reinforcement are pullout tests where roots (single or as bundle) are pulled out from a soil matrix. These conditions are indeed representative for the case where roots within the mass of a landslide slip out from the upper stable part of the slope (such in a tension crack). However, there is also the situation where roots anchored at the upper stable part of the slope slip out from the sliding soil mass. In this last case it is difficult to quantify root reinforcement and no study discussed this mechanism so far. The main objective of this study is to quantify the contribution of roots considering the two presented cases of lateral root reinforcement discussed above - roots slipping out from stable soil profile or sliding soil matrix from anchored roots-, and discuss the implication of the results for slope stability modeling. We carried out a series of laboratory experiments for both roots pullout and soil sliding mechanisms using a tilting box with a bundle of 15 roots. Both Douglas (Pseudotsuga menziesii) roots and soil were collected from the study area in Sardinia (Italy), and reconstructed in laboratory, filling the root and soil layer by layer up to 0.4 meter thickness. The results show that the ratio between pullout force and force transferred to the root during soil sliding range from 0.5 to 1. This results indicate that

  15. SU-E-T-64: A Programmable Moving Insert for the ArcCHECK Phantom for Dose Verification of Respiratory-Gated VMAT

    SciTech Connect

    Gaede, S; Jordan, K; Young, H; Mulligan, M

    2015-06-15

    Purpose: To present a customized programmable moving insert for the ArcCHECK™ phantom that can, in a single delivery, check both entrance dosimetry, while simultaneously verifying the delivery of respiratory-gated VMAT. Methods: The cylindrical motion phantom uses a computer-controlled stepping motor to move an insert inside a stationery sleeve. Insert motion is programmable and can include rotational motion in addition to linear motion along the axis of the cylinder. The sleeve fits securely in the bore of the ArcCHECK™. Interchangeable inserts, including an A1SL chamber, optically-stimulated luminescence dosimeters, radiochromic film, or 3D gels, allow this combination to be used for commissioning, routine quality assurance, and patient-specific dosimetric verification of respiratory-gated VMAT. Before clinical implementation, the effect of a moving insert on the ArcCHECK™ measurements was considered. First, the measured dose to the ArcCHECK™ containing multiple inserts in the static position was compared to the calculated dose during multiple VMAT treatment deliveries. Then, dose was measured under both sinusoidal and real-patient motion conditions to determine any effect of the moving inserts on the ArcCHECK™ measurements. Finally, dose was measured during gated VMAT delivery to the same inserts under the same motion conditions to examine any effect of various beam “on-and-off” and dose rate ramp “up-and-down”. Multiple comparisons between measured and calculated dose to different inserts were also considered. Results: The pass rate for the static delivery exceeded 98% for all measurements (3%/3mm), suggesting a valid setup for entrance dosimetry. The pass rate was not altered for any measurement delivered under motion conditions. A similar Result was observed under gated VMAT conditions, including agreement of measured and calculated dose to the various inserts. Conclusion: Incorporating a programmable moving insert within the Arc

  16. Common arc method for diffraction pattern orientation.

    PubMed

    Bortel, Gábor; Tegze, Miklós

    2011-11-01

    Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods.

  17. Catalyst and doping methods for arc graphene

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjin; Oh, InSeoup; Kang, JungHo; Park, Sungchan; Ku, Boncheol; Park, Min; Kwak, Soonjong; Khanra, Partha; Lee, Joong Hee; Jong Kim, Myung

    2014-11-01

    Nitrogen-doped graphene synthesis with ˜g scale has been accomplished using the arc discharge method. The defects formed in the synthesis process were reduced by adding various metal catalysts, among which Bi2O3 was found to be the most effective. Adding dopants to the starting materials increased the electrical conductivity of the graphene product, and the doping concentration in graphene was tuned by adjusting the amount of nitrogen dopants. A step-wise technique to fabricate graphene thin films was developed, including dispersion, separation, and filtering processes. The arc graphene can also find its potential application in supercapacitors, taking advantage of its large surface area and improved conductivity by doping.

  18. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  19. The Singing Arc:. the Oldest Memristor?

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Rossetto, Bruno

    2013-01-01

    On April 30th 2008, the journal Nature announced that the missing circuit element, postulated thirty-seven years before by Professor Leon O. Chua has been found. Thus, after the capacitor, the resistor and the inductor, the existence of a fourth fundamental element of electronic circuits called "memristor" was established. In order to point out the importance of such a discovery, the aim of this article is first to propose an overview of the manner with which the three others have been invented during the past centuries. Then, a comparison between the main properties of the singing arc, i.e. a forerunner device of the triode used in Wireless Telegraphy, and that of the memristor will enable to state that the singing arc could be considered as the oldest memristor.

  20. Hybrid Arc Cell Studies: Status Report

    SciTech Connect

    Berg J. S.

    2012-09-28

    I report on the status, at the end of FY12, of the studies of an arc cell for a hybrid synchrotron accelerating from 375 GeV/c to 750 GeV/c in momentum. Garren produced a complete lattice that gives a good outline of the structure of a hybrid synchrotron lattice. It is, however, lacking in some details: it does not maintain a constant time of flight, it lacks chromaticity correction, its cell structure is not ideal for removing aberrations from chromaticity correction, and it probably needs more space between magnets. I have begun studying cell structures for the arc cells to optimize the lattice performance and cost. I present some preliminary results for two magnets per half cell. I then discuss difficulties encountered, some preliminary attempts at resolving them, and the future plans for this work.