Arc spray process for the aircraft and stationary gas turbine industry
NASA Astrophysics Data System (ADS)
Sampson, E. R.; Zwetsloot, M. P.
1997-06-01
Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.
The effect of process parameters on Twin Wire Arc spray pattern shape
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
2015-04-20
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
The effect of process parameters on Twin Wire Arc spray pattern shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
NASA Astrophysics Data System (ADS)
Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.
2001-06-01
The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.
NASA Astrophysics Data System (ADS)
Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati
2013-06-01
Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.
Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes
NASA Technical Reports Server (NTRS)
Agapakis, John E.; Bolstad, Jon
1993-01-01
Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.
Composite-Metal-Matrix Arc-Spray Process
NASA Technical Reports Server (NTRS)
Westfall, Leonard J.
1987-01-01
Arc-spray "monotape" process automated, low in cost, and produces at high rate. Ideal for development of new metal-matrix composites. "Monotape" reproducible and of high quality. Process carried out in controlled gas environment with programmable matrix-deposition rates, resulting in significant cost saving
NASA Astrophysics Data System (ADS)
Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.
2016-03-01
In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.
NASA Astrophysics Data System (ADS)
Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun
2018-02-01
An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.
High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process
NASA Astrophysics Data System (ADS)
Tailor, Satish; Modi, Ankur; Modi, S. C.
2018-04-01
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).
Arc spray fabrication of metal matrix composite monotape
NASA Technical Reports Server (NTRS)
Westfall, L. J. (Inventor)
1985-01-01
Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape.
Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties
NASA Astrophysics Data System (ADS)
Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.
2007-12-01
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.
Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.
2018-06-01
Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.
NASA Technical Reports Server (NTRS)
Cooper, K. G.
2000-01-01
Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.
Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho
2013-11-01
We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.
Process for HIP canning of composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) metallurgy composites. The composites are made from arc sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Pulsed arc plasma jet synchronized with drop-on-demand dispenser
NASA Astrophysics Data System (ADS)
Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.
2017-04-01
This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Hagen, L.; Kokalj, D.
2017-10-01
In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.
NASA Astrophysics Data System (ADS)
Salavati, Saeid
Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of constituents' mechanical properties on the overall mechanical performance of the sandwich structures. Finite element modeling using ANSYS Structural was used to simulate the behaviour of the sandwich structures in four-point bending. The analytical and simulation results were compared with the experimental results obtained from the flexural tests.
NASA Astrophysics Data System (ADS)
Salavati, S.; Pershin, L.; Coyle, T. W.; Mostaghimi, J.
2015-01-01
Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades because of their unique mechanical and physical properties. Thermal spraying techniques have been recently introduced as a novel low-cost method for production of these structures with complex shapes. One of the potential applications of the metallic foam core sandwich structures prepared by thermal spray techniques is as heat shield devices. Open porosity in the microstructure of the coating may allow the cooling efficiency of the heat shield to be improved through the film cooling phenomenon. A modified twin wire-arc spraying process was employed to deposit high temperature resistant alloy 625 coatings with a high percentage of the open porosity. The effect of skin porosity on the mechanical properties (flexural rigidity) of the sandwich structures was studied using a four-point bending test. It was concluded from the four-point bending test results that increase in the porosity content of the coatings leads to decrease in the flexural rigidity of the sandwich panels. The ductility of the porous and conventional arc-sprayed alloy 625 coatings was improved after heat treatment at 1100 °C for 3 h.
Effect of layer thickness on the properties of nickel thermal sprayed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id
Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less
Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C
NASA Astrophysics Data System (ADS)
Dallaire, S.; Levert, H.; Legoux, J.-G.
2001-06-01
Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.
Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation
NASA Astrophysics Data System (ADS)
Valensi, F.; Pellerin, S.; Castillon, Q.; Boutaghane, A.; Dzierzega, K.; Zielinska, S.; Pellerin, N.; Briand, F.
2013-06-01
The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO2 and N2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N2 and disappears in globular transfer mode when CO2 is added. Despite the temperature increase, the electron density decreases with CO2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO2. Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account.
Anzehaee, Mohammad Mousavi; Haeri, Mohammad
2011-07-01
New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
dc-plasma-sprayed electronic-tube device
Meek, T.T.
1982-01-29
An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.
Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding
KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.
2015-01-01
Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276
Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liu, Hongwei; Sun, Sihao
2017-12-01
Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.
High velocity pulsed wire-arc spray
NASA Technical Reports Server (NTRS)
Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)
1999-01-01
Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.
Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying
NASA Astrophysics Data System (ADS)
An, Lian-Tong; Gao, Yang; Sun, Chengqi
2011-06-01
To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.
Optical Emission Studies of the NRL Plasma Torch for the Shipboard Waste Treatment Program
1999-02-26
Arc Heating of Molten Steel in a Tundish", Plasma Chemistry and Plasma Processing, Vol.14, pp.361-381,1994. [3] H. Herman, "Plasma-sprayed...Treatment", Plasma Chemistry and Plasma Processing, Vol.15, pp.677-692,1995. [5] S. Paik and H.D. Nguyen, "Numerical Modeling of Multiphase Plasma/Soil Row...Gleizes, S. Vacquie and P. Brunelot, "Modeling of the Cathode Jet of a High- Power Transferred Arc", Plasma Chemistry and Plasma Processing, Vol.13
Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.
Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G
2014-05-01
To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed.
Profiling Mild Steel Welding Processes to Reduce Fume Emissions and Costs in the Workplace
Keane, Michael J.; Siert, Arlen; Chen, Bean T.; Stone, Samuel G.
2015-01-01
To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g−1 electrode) and lowest for GMAW processes such as pulsed spray (~1.5 mg g−1) and CMT (~1 mg g−1). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g−1 (SMAW) to 0.08 mg g−1 (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g−1 (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g−1 (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed. PMID:24515891
Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J
2012-09-01
Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr 6+ ) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr 6+ fractions were measured in the fumes; fume generation rates, Cr 6+ generation rates, and Cr 6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr 6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr 6+ ranged from 69 to 7800 μg/min, and Cr 6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr 6+ (ppm) in the fume did not necessarily correlate with the Cr 6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr 6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.
Spray pattern analysis in TWAS using photogrammetry and digital image correlation
NASA Astrophysics Data System (ADS)
Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.
2018-06-01
In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.
NASA Astrophysics Data System (ADS)
Bashirzadeh, Milad
This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.
2011-03-01
deposition temperature is above 260°C (500°F), CVD Al cannot be applied to many structural alloys used in aerospace [12]. 23.3.4 Spray Deposited Cadmium...Alternatives There are several different aluminum-based coatings that can be deposited by spraying : aluminum and Al alloys , metallic-ceramic coatings...and Al - and Zn-filled polymers [12]. Thermal spray (flame or arc) is a very flexible and cost-effective process for deposition of pure
2011-03-01
deposition temperature is above 260°C (500°F), CVD Al cannot be applied to many structural alloys used in aerospace [12]. 23.3.4 Spray Deposited Cadmium...Alternatives There are several different aluminum-based coatings that can be deposited by spraying : aluminum and Al alloys , metallic-ceramic coatings...and Al - and Zn-filled polymers [12]. Thermal spray (flame or arc) is a very flexible and cost-effective process for deposition of pure
NASA Astrophysics Data System (ADS)
Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.
2008-09-01
Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.
Zinc thermal spray coatings for reinforced concrete: An AWS process standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulit, R.A.
Zinc and aluminum thermal spray coatings (TSC) have been used for lining concrete weir in Great Britain since the 1950`s to maintain the dimensions of the weir for flow control concomitant with reduced wear and erosion of the concrete surfaces. This paper reports the development and the content of the ANSI/AWS C2.20-XX standard for the application of An TSC on concrete using flame and arc spray processes. This standard is formatted as an industrial process instruction: job description; safety; feedstock materials; equipment; a step-by-step method for surface preparation, thermal spraying; quality control; repair and maintenance of surface preparation, thermal spraying;more » quality control; repair and maintenance of Zn TSC on concrete; and a Job Control Record. Job planning and training and certification requirements are presented for An TSC inspectors and thermal spray operators. Four annexes are included in the standard: (a) historical summary of Zn TSC on concrete (b) sample job control record; (c) thermal spray operator qualification; and (d) portable adhesion testing for An TSC on concrete. This standard is based on the current literature and industrial equipment, process, and practices.« less
A study of processing parameters in thermal-sprayed alumina and zircon mixtures
NASA Astrophysics Data System (ADS)
Li, Y.; Khor, K. A.
2002-06-01
A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.
A review of various nozzle range of wire arc spray on FeCrBMnSi metal coating
NASA Astrophysics Data System (ADS)
Purwaningsih, Hariyati; Rochiem, Rochman; Suchaimi, Muhammad; Jatimurti, Wikan; Wibisono, Alvian Toto; Kurniawan, Budi Agung
2018-04-01
Low Temperature Hot Corrosion (LTHC) is type of hot corrosion which occurred on 700-800°C and usually on turbine blades. So, as a result the material of turbine blades is crack and degredation of rotation efficiency. Hot corrosion protection with the use of barrier that separate substrate and environment is one of using metal surface coating, wire arc spray method. This study has a purpose to analyze the effect of nozzle distance and gas pressure on FeCrBMnSi coating process using wire arc spray method on thermal resistance. The parameter of nozzle distance and gas pressure are used, resulted the best parameter on distance 400 mm and gas pressure 3 bar which has the bond strength of 12,58 MPa with porosity percentage of 5,93% and roughness values of 16,36 µm. While the examination of thermal cycle which by heating and cooling continuously, on the coating surface is formed oxide compound (Fe3O4) which cause formed crack propagation and delamination. Beside that hardness of coating surface is increase which caused by precipitate boride (Fe9B)0,2
An Alternative Cu-Based Bond Layer for Electric Arc Coating Process
NASA Astrophysics Data System (ADS)
Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.
2011-12-01
A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.
In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina
2018-01-01
In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.
Intergranular metal phase increases thermal shock resistance of ceramic coating
NASA Technical Reports Server (NTRS)
Carpenter, H. W.
1966-01-01
Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.
Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.
2016-01-01
Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr6+, manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions. PMID:26267301
Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T
2016-01-01
Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr(6+), manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Abdulgader, M.
2013-03-01
The wire tips in twin-wire arc-spraying (TWAS) are heated in three different zones. A high-speed camera was used to observe the melting behavior, metal breakup, and particle formation under different operating conditions. In zone (I), the wire tips are melted (liquidus metal) and directly atomized in the form of smaller droplets. Their size is a function of the specific properties of the molten metal and the exerting aerodynamic forces. Zone (II) is directly beneath zone (I) and the origin of the extruded metal sheets at the wire tips. The extruded metal sheets in the case of cored wires are shorter than those observed while using solid wires. In this study, the effects of adjustable parameters and powder filling on melting behavior, particle formation, and process instability were revealed, and a comparison between solid and cored wires was made. The findings can improve the accuracy of the TWAS process modeling.
Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.
2018-01-01
By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.
Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.
2017-12-01
By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.
Planar controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxvlle, TN
2011-10-04
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-10-20
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D
2001-03-01
Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.
Spray Distribution of Boomless Nozzles: The Boomjet 5880, Radiarc and Boom Buster
James H. Miller
1990-01-01
Abstract. The patterns of spray distribution are described for three boomless nozzlesthat arc commonly used, or have promise, for forestry applications: The BoomJet5880 cluster nozzle (Spraying Systems Co.), the Radiarc (Waldrum specialties ), and the Boom Buster (Evergreen Products). Spray distribution patterns were determined using regularly...
NASA Astrophysics Data System (ADS)
Sun, Guanhong; He, Xiaodong; Jiang, Jiuxing; Sun, Yue; Zhong, Yesheng
2013-02-01
To increase the wear resistance of polymer matrix composites, alumina coatings were deposited on polymer substrates by a two-step method combining plasma spraying and micro-arc oxidation. The microstructures and phase compositions of the processed coatings were investigated for different treatment times. Uniformly distributed pores were found in addition to the presence of various coral-like structures and floccules on the surface of the coatings. The presence of α-Al2O3 and γ-Al2O3 phases was identified by XRD. The distribution of alumina was analyzed by EDS and is discussed. The maximum bond strength of the coatings was found to be 5.89 MPa. There was little thermal damage in the polymer substrates after the coatings were produced.
[Study on the fluctuation phenomena of arc plasma spraying jet].
Zhao, Wen-hua; Liu, Di; Tian, Kuo
2002-08-01
The turbulence phenomenon is one of the most attractive characteristics of a DC arc plasma spraying jet. Most of the previous investigations believe that there is a laminar flow region in core of the jet. A spectrum diagnostic system has been built up in this paper to investigate these effects with the aid of high-speed digital camera. The FFT method has been applied to the analysis on the arc voltage and light signals. The influence of the arc behavior and the power supply on the jet is full-scale. It seems that there is not a laminar flow region in core of the jet. Moreover, from the light dynamic variation graph, the jet fluctuation due to the arc voltage behavior maybe is the dominant characteristic of the jet behavior.
Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.
1995-01-01
Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.
NASA Astrophysics Data System (ADS)
Noguès, E.; Fauchais, P.; Vardelle, M.; Granger, P.
2007-12-01
In plasma spraying, the arc-root fluctuations, modifying the length and characteristics of the plasma jet, have an important influence on particle thermal treatment. These voltage fluctuations are strongly linked to the thickness of the cold boundary layer (CBL), surrounding the arc column. This thickness depends on the plasma spray parameters (composition and plasma forming gas mass flow rate, arc current, etc.) and the plasma torch design (anode-nozzle internal diameter and shape, etc.). In order to determine the influence of these different spray parameters on the CBL properties and voltage fluctuations, experiments were performed with two different plasma torches from Sulzer Metco. The first one is a PTF4 torch with a cylindrical anode-nozzle, working with Ar-H2 plasma gas mixtures and the second one is a 3MB torch with either a conical or a cylindrical anode-nozzle, working with N2-H2 plasma gas mixtures. Moreover, arc voltage fluctuations influence on particle thermal treatment was studied through the measurements of transient temperature and velocity of particles, issued from an yttria partially stabilized zirconia powder with a size distribution between 5 and 25 μm.
Keane, Michael J
2014-01-01
A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr(6+)) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr(6+) were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr(6+) emissions, and greatly reduce costs relative to SMAW.
Keane, Michael J
2014-01-01
A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr6+) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr6+ were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr6+ emissions, and greatly reduce costs relative to SMAW. PMID:25574138
Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.
1983-01-01
In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.
NASA Astrophysics Data System (ADS)
Branland, Nadege
2002-04-01
The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.
NASA Technical Reports Server (NTRS)
Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.
1995-01-01
With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.
NASA Astrophysics Data System (ADS)
Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin
2018-01-01
Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.
Deposition stress effects on thermal barrier coating burner rig life
NASA Technical Reports Server (NTRS)
Watson, J. W.; Levine, S. R.
1984-01-01
A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.
Deposition stress effects on the life of thermal barrier coatings on burner rigs
NASA Technical Reports Server (NTRS)
Watson, J. W.; Levine, S. R.
1984-01-01
A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.
Sprayed shielding of plastic-encapsulated electronic modules
NASA Technical Reports Server (NTRS)
Muller, A. N.
1969-01-01
Metallic coating directly sprayed on electronic modules provides simple and reliable lightweight protection against radio frequency interference. A plasma arc may be used. Aluminum and copper are the most effective metals.
NASA Astrophysics Data System (ADS)
Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner
2018-01-01
The highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze) were arc-sprayed using a mixture of nitrogen and 2% of hydrogen as atomizing gas and different traverse speeds. The objective was to identify the influences of the different spraying conditions, such as temperature regime and melting loss, on the resulting residual stress states and coating properties. Residual stresses were measured by the incremental hole-drilling method using ESPI. Temperature measurements were carried out by thermographic imaging. Microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive properties. Additionally, the cavitation erosion behavior was investigated to analyze cohesive coating properties. The spraying process itself was improved, which was apparent by mainly enhanced deposition efficiency and reduced surface temperatures. The amount of oxides and pores as well as the melting loss of alloying elements were reduced. Moreover, an increased cavitation erosion resistance and thus coating cohesion as well as less residual stresses were identified. The change in atomizing gas diminished the impact of the quenching stresses on the coating properties. In contrast, the adhesive strength, Young's moduli and partially the hardness were slightly reduced. With regard to materials, Ni-Al-Bronze revealed superior coating properties in comparison with Mn-Al-Bronze.
NASA Astrophysics Data System (ADS)
Luo, Xiaotao; Smith, Gregory M.; Sampath, Sanjay
2018-02-01
In this two-part study, uniaxial tensile testing was used to evaluate coating/substrate bonding and compared with traditional ASTM C633 bond pull test results for thermal spray (TS) coated steel laminates. In Part I, the rationale, methodology, and applicability of the test to high-velocity TS coatings were demonstrated. In this Part II, the method was investigated for low-velocity TS processes (air plasma spray and arc spray) on equivalent materials. Ni and Ni-5wt.%Al coatings were deposited on steel substrates with three different roughness levels and tested using both uniaxial tensile and ASTM C633 methods. The results indicate the uniaxial tensile approach provides useful information about the nature of the coating/substrate bonding and goes beyond the traditional bond pull test in providing insightful information on the load sharing processes across the interface. Additionally, this proposed methodology alleviates some of the longstanding shortcomings and potentially reduces error associated with the traditional ASTM C633 test. The mechanisms governing the load transfer between the substrate and the coating were investigated, and the influence of Al in the coating material evaluated.
NASA Astrophysics Data System (ADS)
Cannamela, Michael J., III
The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.
1982-01-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; McDonald, G.
1982-02-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
Laser Assisted Micro Wire GMAW and Droplet Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
FUERSCHBACH, PHILLIP W.; LUCK, D. L.; BERTRAM, LEE A.
2002-03-01
Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this modemore » was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.« less
Effects of plasma spray parameters on two layer thermal barrier
NASA Technical Reports Server (NTRS)
Stecura, S.
1981-01-01
The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.
Development of a new generation of high-temperature composite materials
NASA Technical Reports Server (NTRS)
Brindley, P. K.
1990-01-01
Intermetallic matrix composites proposed to meet advanced aeropropulsion requirements are discussed. The powder metallurgy fabrication process currently being used to produce these intermetallic matrix composites will be presented, as will properties of one such composite, SiC/Ti3Al+Nb. In addition, the direction of future research will be outlined, including plans for enhanced fabrication of intermetallic composites by the arc-spray technique and fiber development by the floating-zone process.
Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications
NASA Astrophysics Data System (ADS)
Korobov, Yu. S.; Nevezhin, S. V.; FiliÑpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.
2017-12-01
Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.
Practical Comparison of Cylindrical Nozzle and De Laval Nozzle for Wire Arc Spraying
NASA Astrophysics Data System (ADS)
Matz, Marc-Manuel; Aumiller, Markus
2014-12-01
In this article, two different nozzle designs (cylindrical nozzle and de Laval nozzle) are compared for use in wire arc spraying. The choice of nozzle is of particular importance because its geometry has a significant influence on the spraying result. The materials used for spraying are steel and copper. By using the de Laval atomizing gas nozzle, the aim is to improve adhesion on the one hand while reducing cost on the other. These objectives have been achieved for the most part, indicating that continued research and development in this area would be useful. Significant potential exists to optimize the efficiency of both the free gas jet and nozzle which have considerable impact on the gas velocity and thus, ultimately, on the spraying result. The measurements carried out have shown that there is a close correlation between the velocity of the gas flow and atomization of the droplets. An explanatory model for varying spraying results with different wire materials using open nozzle systems with de Laval orifice is given and confirmed. For new burner head constructions, an interaction of the atomizing gas nozzle, the contact tips, and wire materials must be considered to achieve all benefits of a de Laval nozzle.
NASA Astrophysics Data System (ADS)
Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao
2015-06-01
The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.
Choe, Hong-Bok; Lee, Han-Seung; Shin, Jun-Ho
2014-01-01
The arc thermal metal spraying method (ATMSM) provides proven long-term protective coating systems using zinc, aluminum and their alloys for steel work in a marine environment. This paper focuses on studying experimentally the anti-corrosion criteria of ATMSM on steel specimens. The effects of the types of spraying metal and the presence or absence of sealing treatment from the thermal spraying of film on the anti-corrosion performance of TMSM were quantitatively evaluated by electrochemical techniques. The results showed that ATMSM represented a sufficient corrosion resistance with the driving force based on the potential difference of more than approximately 0.60 V between the thermal spraying layer and the base substrate steel. Furthermore, it was found that the sealing treatment of specimens had suppressed the dissolution of metals, increased the corrosion potential, decreased the corrosion current density and increased the polarization resistance. Metal alloy Al–Mg (95%:5%) by mass with epoxy sealing coating led to the most successful anti-corrosion performance in these electrochemical experiments. PMID:28788271
Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.
DOT National Transportation Integrated Search
2011-09-01
This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combinat...
Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.
DOT National Transportation Integrated Search
2011-08-01
"This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combina...
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
NASA Astrophysics Data System (ADS)
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-12-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A.
2016-01-01
Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions. PMID:28773875
Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A
2016-09-03
Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance-a mixture of Cr 3+ enriched with Cr₂O₃ and Cr-hydroxide in inner and Fe 3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.
GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING
The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...
A demonstration of the antimicrobial effectiveness of various copper surfaces
2013-01-01
Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176
Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs
NASA Astrophysics Data System (ADS)
Silber, Martin; Wenzelburger, Martin; Gadow, Rainer
2007-04-01
Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.
Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James
2009-02-01
Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (<0.6 microm) fraction; analysis indicated that Cr(VI) is primarily associated with particles <0.6 microm. The conclusion of the study is that Cr(VI) concentrations vary significantly with welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active gases. A short circuit He/Ar shielded process and a pulsed axial spray Ar/O(2) process were both identified as having substantially lower Cr(VI) generation rates per unit of wire used relative to the other processes studied.
Kalita, V I; Komlev, D I; Komlev, V S; Radyuk, A A
2016-03-01
A plasma spraying process for the deposition of three-dimensional capillary-porous titanium coatings using a wire has been developed. In this process, two additional dc arcs are discharged between plasmatron and both the wire and the substrate, resulting in additional activation of the substrate and the particles, particularly by increasing their temperature. The shear strength of the titanium coating with 46% porosity is 120.6 MPa. A new procedure for estimating the shear strength of porous coatings has been developed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min
2014-07-01
During laser-arc hybrid welding, the welding direction exerts direct effects on the plasma properties, the transient behavior of the droplet, the weld pool behavior, and the temperature field. Ultimately, it will affect the welding process and the weld quality. However, the behavior of the CO2 laser+GMAW-P hybrid welding process has not been systematically studied. In this paper, the current-voltage characteristics of different welding processes were analyzed and compared. The dynamics of the droplet transfer, the plasma behavior, and the weld pool behavior were observed by using two high-speed camera systems. Moreover, an optical emission spectroscopy was applied to analyze the plasma temperature and the electron number density. The results indicated that the electrical resistance of the arc plasma reduced in the laser leading mode. For the same pulse duration, the metal transfer mode was the spray type with the laser leading arrangement. The temperature and electron density distribution showed bimodal behavior in the case of arc leading mode, while this phenomenon does not exist in the caser of laser leading mode. The double elliptic-planar distribution which conventional simulation process used was not applicable in the laser leading mode.
Coating with overlay metallic-cermet alloy systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
Thermal spray for commercial shipbuilding
NASA Astrophysics Data System (ADS)
Rogers, F. S.
1997-09-01
Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.
Sensing of metal-transfer mode for process control of GMAW (gas metal arc welding)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Smartt, H.B.
1989-01-01
One of the requirements of a sensing system for feedback control of gas metal arc welding (GMAW) is the capability to determine the metal-transfer mode. Because the operating boundary for the desired transfer mode, expressed as a function of mass input and heat input, may vary due to conditions beyond the control of the system, a means of detecting the transfer mode during welding is necessary. A series of sensing experiments was performed during which the ultrasonic emissions, audio emissions, welding current fluctuations and welding voltage fluctuations were recorded as a function of the transfer mode. In addition, high speedmore » movies (5000 frames/s) of the droplet formation and detachment were taken synchronously with the sensing data. An LED mounted in the camera was used to mark the film at the beginning and end of the data acquisition period. A second LED was pulsed at a 1 kHz rate and the pulses recorded on film and with the sensor data. Thus events recorded on the film can be correlated with the sensor data. Data acquired during globular transfer, spray transfer, and stiff spray or streaming transfer were observed to correlate with droplet detachment and arc shorting. The audio, current, and voltage data can be used to discriminate among these different transfer modes. However, the current and voltage data are also dependent on the characteristic of the welding power supply. 5 refs., 3 figs., 1 tab.« less
Scientific, technological, and economic aspects of rapid tooling by electric arc spray forming
NASA Astrophysics Data System (ADS)
Grant, P. S.; Duncan, S. R.; Roche, A.; Johnson, C. F.
2006-12-01
For the last seven years, Oxford University and Ford Motor Company personnel have been researching jointly the development of the large-scale spray forming of steel tooling capable for use in mass production, particularly for the pressing of sheet metal in automotive applications. These investigations have involved: the comprehensive microstructure and property studies, modeling of shape evolution and heat flow, realtime feedback control of tool temperature to eliminate tool distortion, high-speed imaging and particle image velocimetry of droplet deposition on three-dimensional (3D) shapes, testing of full-scale tools for different applications in the production environment, and detailed studies of the cost and time savings realized for different tooling applications. This paper provides an overview of the scientific and technical progress to date, presents the latest results, and describes the current state-of-the-art. Many of the insights described have relevance and applicability across the family of thermal spray processes and applications.
NASA Astrophysics Data System (ADS)
Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.
2017-03-01
To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.
Morphology of zirconia particles exposed to D.C. arc plasma jet
NASA Technical Reports Server (NTRS)
Zaplatynsky, Isidor
1987-01-01
Zirconia particles were sprayed into water with an arc plasma gun in order to determine the effect of various gun operating parameters on their morphology. The collected particles were examined by XRD and SEM techniques. A correlation was established between the content of spherical (molten) particles and the operating parameters by visual inspection and regression analysis. It was determined that the composition of the arc gas and the power input were the predominant parameters that affected the melting of zirconia particles.
NASA Astrophysics Data System (ADS)
Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin
2016-09-01
The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.
Development of a Catalytic Coating for a Shuttle Flight Experiment
NASA Technical Reports Server (NTRS)
Stewart, David A.; Goekcen, Tahir; Sepka, Steven E.; Leiser, Daniel B.; Rezin, Marc D.
2010-01-01
A spray-on coating was developed for use on the shuttle wing tiles to obtain data that could be correlated with computational fluid dynamics (CFD) solutions to better understand the effect of chemical heating on a fore-body heat shield having a turbulent boundary layer during planetary entry at hypersonic speed. The selection of a spray-on coating was conducted in two Phases 1) screening tests to select the catalytic coating formulation and 2) surface property determination using both arc-jet and side-arm facilities at NASA Ames Research Center. Comparison of the predicted surface temperature profile over a flat-plate with measured values obtained during arc-jet exposure (Phase I study) was used to validate the surface properties obtained during Phase II.
Analytical interpretation of arc instabilities in a DC plasma spray torch: the role of pressure
NASA Astrophysics Data System (ADS)
Rat, V.; Coudert, J. F.
2016-06-01
Arc instabilities in a plasma spray torch are investigated experimentally and theoretically thanks to a linear simplified analytical model. The different parameters that determine the useful properties of the plasma jet at the torch exit, such as specific enthalpy and speed, but also pressure inside the torch and time variations of the flow rate are studied. The work is particularly focused on the link between the recorded arc voltage and the pressure in the cathode cavity. A frequency analysis of the recorded voltage and pressure allows the separation of different contributions following their spectral characteristics and highlights a resonance effect due to Helmholtz oscillations; these oscillations are responsible for the large amplitude fluctuations of all the parameters investigated. The influence of heat transfer, friction forces and residence time of the plasma in the nozzle are taken into account, thanks to different characteristics’ times. The volume of the cathode cavity in which the cold gas is stored before entering the arc region appears to be of prime importance for the dynamics of instabilities, particularly for the non-intuitive effect that induces flow-rate fluctuations in spite of the fact that the torch is fed at a constant flow rate.
Quality Designed Twin Wire Arc Spraying of Aluminum Bores
NASA Astrophysics Data System (ADS)
König, Johannes; Lahres, Michael; Methner, Oliver
2015-01-01
After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.
NASA Astrophysics Data System (ADS)
Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng
2015-08-01
An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.
NASA Astrophysics Data System (ADS)
Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.
2017-02-01
A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.
2017-01-01
A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
Control of arc length during gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madigan, R.B.; Quinn, T.P.
1994-12-31
An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementingmore » a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.« less
Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear
NASA Astrophysics Data System (ADS)
Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.
2017-11-01
The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.
Lenling, William J.; Henfling, Joseph A.; Smith, Mark F.
1993-06-08
A method is disclosed for spray coating material which employs a plasma gun that has a cathode, an anode, an arc gas inlet, a first powder injection port, and a second powder injection port. A suitable arc gas is introduced through the arc gas inlet, and ionization of the arc gas between the cathode and the anode forms a plasma. The plasma is directed to emenate from an open-ended chamber defined by the boundary of the anode. A coating is deposited upon a base metal part by suspending a binder powder within a carrier gas that is fed into the plasma through the first powder injection port; a material subject to degradation by high temperature oxygen reactions is suspended within a carrier gas that is fed into the plasma through the second injection port. The material fed through the second injection port experiences a cooler portion of the plasma and has a shorter dwell time within the plasma to minimize high temperature oxygen reactions. The material of the first port and the material of the second port intermingle within the plasma to form a uniform coating having constituent percentages related to the powder-feed rates of the materials through the respective ports.
Venom-spraying behavior of the scorpion Parabuthus transvaalicus (Arachnida: Buthidae).
Nisani, Zia; Hayes, William K
2015-06-01
Many animals use chemical squirting or spraying behavior as a defensive response. Some members of the scorpion genus Parabuthus (family Buthidae) can spray their venom. We examined the stimulus control and characteristics of venom spraying by Parabuthus transvaalicus to better understand the behavioral context for its use. Venom spraying occurred mostly, but not always, when the metasoma (tail) was contacted (usually grasped by forceps), and was absent during stinging-like thrusts of the metasoma apart from contact. Scorpions were significantly more likely to spray when contact was also accompanied by airborne stimuli. Sprays happened almost instantaneously following grasping by forceps (median=0.23s) as a brief (0.07-0.30s, mean=0.18s), fine stream (<5° arc) that was not directed toward the stimulus source; however, rapid independent movements of the metasoma and/or telson (stinger) often created a more diffuse spray, increasing the possibility of venom contact with the sensitive eyes of potential scorpion predators. Successive venom sprays varied considerably in duration and velocity. Collectively, these results suggest that venom spraying might be useful as an antipredator function and can be modulated based on threat. Copyright © 2015 Elsevier B.V. All rights reserved.
Aerospace Robotic Implementations: An Assessment and Forecast. Phase 2,
1986-09-01
Spray Painting Robotic spray painting is a mature technology, and has been in use for several decades in places such as the automobile industry. The...to reprogrammability in applications where hard automation is too expensive for the volume. 3.2 Hybrid Circuit Assembly * Hybrid circuits require...1.1.1.2 2.1.4 Task Performed : LIGHT-STRIP ASSISTED ARC WELD DRILL,GRIND, INSPCOMPOSITES Other Comments • AUTOMOBILE TRAILING AXLEAPPL. CASPIN MANTECH
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying
NASA Astrophysics Data System (ADS)
Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre
2010-01-01
Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.
NASA Astrophysics Data System (ADS)
Singh, Ravindra Pratap
Electrostatic spraying is the process of controlled disruption of a liquid surface due to excess surface charge density. The technique has found applications in a wide range of fields from agricultural sprays to fuel injectors to colloidal thrusters for space vehicle propulsion. Over the past 20 years, the technique has been intensely studied in material processing for synthesis of ceramic and metal powders, nanoparticles and thin films. The importance of the technique lies in its simple setup, high deposition efficiency, and ambient atmosphere operation. In conventional electrostatic spraying (CESS), one uses a conducting nozzle to charge the liquid, mostly by induction charging. CESS is therefore restricted to the single jet mode of spraying which occurs at low spray currents. It lacks stability and reproducibility in the high current, multiple jet regime, which can generate much finer sprays. In flow-limited field-injection electrostatic spraying (FFESS), one uses a field-injection electrode to stably and controllably inject higher currents into the liquid, a la Fowler-Nordheim, using an otherwise insulating nozzle. This way, it is possible to stably electrospray in the multiple jet mode. In addition to producing much finer sprays, the multi-jet mode atomizes liquids at higher rates, and spreads the spray over a wider region and more uniformly than single jet sprays, thus paving way for large-area uniform thin film deposition. A simple yet comprehensive theory is formulated to describe the multi jet formation. The theory, which is based on the energy minimization principle, takes into account, for the first time, the interactions between charged jets which leads to saturation in the number of jets at high spray currents. The possibility of using an array of nozzles to obtain uniform large-area high-throughput thin film deposition is also investigated. A large number of FFESS nozzles with alternating positive and negative polarities arranged in a periodic 2-dimensional array are found to produce uniform thin films over large areas. Deposition of TiO2 and silver thin films using multi jet FFESS is studied, demonstrating great control on film morphology and properties. TiO2 thin films deposited on high-intensity discharge arc lamps are found to improve the quality of its light output. Silver thin films of high purity and conductivity, and with good adhesion, could be deposited at relatively high deposition rates and high deposition efficiency as compared to CVD techniques.
Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate
NASA Astrophysics Data System (ADS)
Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran
2018-02-01
In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.
Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit
NASA Astrophysics Data System (ADS)
Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui
2017-04-01
To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.
SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.
SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less
Generator of the low-temperature heterogeneous plasma flow
NASA Astrophysics Data System (ADS)
Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.
2018-01-01
A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.
Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges
DOT National Transportation Integrated Search
2002-03-01
Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of T...
Mapping the droplet transfer modes for an ER100S-1 GMAW electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heald, P.R.; Madigan, R.B.; Siewert, T.A.
1994-02-01
Welds were made with a 1.2-mm-diameter AWS ER100S-1 electrode using Ar-2% O[sub 2] shielding gas to map the effects of contact-tube-to-work distance (13, 19 and 25 mm), current, voltage, and wire feed rate on metal transfer. The droplet transfer modes were identified for each map by both the sound of the arc and images from a laser back-lit high-speed video system. The modes were correlated to digital records of the voltage and current fluctuations. The maps contain detailed information on the spray transfer mode, including the boundaries of drop spray, streaming spray and rotating spray modes. The metal transfer modemore » boundaries shifted with an increase in contact-tube-to-work distance. Increasing the contact-tube-to-work distance from 13 to 19 mm resulted in a 15 mm/s increase in the wire feet rate for the globular-to-drop-spray transition.« less
NASA Astrophysics Data System (ADS)
Mann, B. S.
2013-08-01
This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and titanium alloys, HPDL-treated TWAS SHS 7170 and HP-HVOF coatings, and their micrographs and X-ray diffraction analysis is reported in this article.
2006-12-01
properties Deposition Cu / Al in At% Roughness Ra (µm) Nano Hardness (GPa) Modulus (GPa) Thickness (µm) 1 Plasma ≈ 6 ≈ 12 ≈ 1.8 ≈ 89.6 ≈ 300 2... sprayed coatings of different copper to aluminum ( Cu / Al ) ratios and one cathodic arc coating. Bench level gross slip fretting experiments and post...some of Ti6Al4V disks were commercially grit blasted and then plasma sprayed with Al -bronze coatings 1 and 2, which have different Cu / Al
A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model
NASA Astrophysics Data System (ADS)
Jiang, Yongyue; Li, Li; Zhao, Zhijiang
2017-11-01
Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.
NASA Astrophysics Data System (ADS)
Hao, Shengzhi; Zhao, Limin; He, Dongyun
2013-10-01
The surface microstructure of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam (HCPEB) with long pulse duration of 200 μs was characterized by using optical microscopy, scanning electron microscopy and X-ray diffractometry. The distribution of chemical composition in modified surface layer was measured with electron probe micro-analyzer. The high temperature corrosion resistance of FeCrAl coating was tested in a saturated Na2SO4 and K2SO4 solution at 650 °C. After HCPEB irradiation, the coarse surface of arc-sprayed coating was changed as discrete bulged nodules with smooth and compact appearance. When using low energy density of 20 J/cm2, the surface modified layer was continuous entirely with an average melting depth of ˜30 μm. In the surface remelted layer, Fe and Cr elements gave a uniform distribution, while Al and O elements agglomerated particularly at the concave part between nodule structures to form α-Al2O3 phase. After high temperature corrosion tests, the FeCrAl coating treated with HCPEB of 20 J/cm2 remained a glossy surface with weight increment of ˜51 mg/cm2, decreased by 20% as compared to the initial sample. With the increasing energy density of HCPEB irradiation, the integrity of surface modified layer got segmented due to the formation of larger bulged nodules and cracks at the concave parts. For the HCPEB irradiation of 40 J/cm2, the high temperature corrosion resistance of FeCrAl coating was deteriorated drastically.
A 36,000-Year-Old Volcanic Eruption Depicted in the Chauvet-Pont d’Arc Cave (Ardèche, France)?
Nomade, Sébastien; Genty, Dominique; Sasco, Romain; Scao, Vincent; Féruglio, Valérie; Baffier, Dominique; Guillou, Hervé; Bourdier, Camille; Valladas, Hélène; Reigner, Edouard; Debard, Evelyne; Pastre, Jean–François; Geneste, Jean-Michel
2016-01-01
Among the paintings and engravings found in the Chauvet-Pont d’Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d’Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey. PMID:26745626
A 36,000-Year-Old Volcanic Eruption Depicted in the Chauvet-Pont d'Arc Cave (Ardèche, France)?
Nomade, Sébastien; Genty, Dominique; Sasco, Romain; Scao, Vincent; Féruglio, Valérie; Baffier, Dominique; Guillou, Hervé; Bourdier, Camille; Valladas, Hélène; Reigner, Edouard; Debard, Evelyne; Pastre, Jean-François; Geneste, Jean-Michel
2016-01-01
Among the paintings and engravings found in the Chauvet-Pont d'Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d'Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey.
RFID and Memory Devices Fabricated Integrally on Substrates
NASA Technical Reports Server (NTRS)
Schramm, Harry F.
2004-01-01
Electronic identification devices containing radio-frequency identification (RFID) circuits and antennas would be fabricated integrally with the objects to be identified, according to a proposal. That is to say, the objects to be identified would serve as substrates for the deposition and patterning of the materials of the devices used to identify them, and each identification device would be bonded to the identified object at the molecular level. Vacuum arc vapor deposition (VAVD) is the NASA derived process for depositing layers of material on the substrate. This proposal stands in contrast to the current practice of fabricating RFID and/or memory devices as wafer-based, self-contained integrated-circuit chips that are subsequently embedded in or attached to plastic cards to make smart account-information cards and identification badges. If one relies on such a chip to store data on the history of an object to be tracked and the chip falls off or out of the object, then one loses both the historical data and the means to track the object and verify its identity electronically. Also, in contrast is the manufacturing philosophy in use today to make many memory devices. Today s methods involve many subtractive processes such as etching. This proposal only uses additive methods, building RFID and memory devices from the substrate up in thin layers. VAVD is capable of spraying silicon, copper, and other materials commonly used in electronic devices. The VAVD process sprays most metals and some ceramics. The material being sprayed has a very strong bond with the substrate, whether that substrate is metal, ceramic, or even wood, rock, glass, PVC, or paper. An object to be tagged with an identification device according to the proposal must be compatible with a vacuum deposition process. Temperature is seldom an issue as the substrate rarely reaches 150 F (66 C) during the deposition process. A portion of the surface of the object would be designated as a substrate for the deposition of the device. By use of a vacuum arc vapor deposition apparatus, a thin electrically insulating film would first be deposited on the substrate. Subsequent layers of materials would then be deposited and patterned by use of known integrated-circuit fabrication techniques. The total thickness of the deposited layers could be much less than the 100- m thickness of the thinnest state-of-the-art self-contained microchips. Such a thin deposit could be readily concealed by simply painting over it. Both large vacuum chambers for production runs and portable hand-held devices for in situ applications are available.
UNIVERSITY OF WASHINGTON ELECTROSTATIC SCRUBBER TESTS AT A STEEL PLANT
The report gives results of a demonstration of the effectiveness of a 1700 cu m/hr (1000 acfm) University of Washington (UW) Electrostatic Spray Scrubber in controlling fine particle emissions from an electric-arc steel furnace. The two-stage portable pilot plant operates by comb...
Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen
2017-01-01
304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group. PMID:28772547
Crack-Free, Nondistorting Can For Hot Isostatic Pressing
NASA Technical Reports Server (NTRS)
Juhas, John J.
1991-01-01
New method of canning specimens made of composites of arc-sprayed and plasma-sprayed tape reduces outgassing and warping during hot isostatic pressing. Produces can having reliable, crack-free seal and thereby helps to ensure pressed product of high quality. Specimen placed in ring of refractory metal between two face sheets, also of refractory metal. Assembly placed in die in vacuum hot press, where simultaneously heated and pressed until plates become diffusion-welded to ring, forming sealed can around specimen. Specimen becomes partially densified, and fits snugly within can. Ready for further densification by hot isostatic pressing.
NASA Astrophysics Data System (ADS)
Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner
2017-01-01
Within a research project regarding cavitation erosion-resistant coatings, arc spraying was used with different traverse speeds to influence heat transfer and the resulting residual stress state. The major reason for this study is the lack of knowledge concerning the influence of residual stress distribution on mechanical properties and coating adhesion, especially with respect to heterogeneous aluminum bronze alloys. The materials used for spray experiments were the highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze). Analyses of cavitation erosion behavior were carried out to evaluate the suitability for use in marine environments. Further microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive coating properties. Residual stress distribution was measured by modified hole drilling method using electronic speckle pattern interferometry (ESPI). It was found that the highest traverse speed led to higher tensile residual stresses near the surface and less cavitation erosion resistance of the coatings. Moreover, high oxygen affinity of main alloying element aluminum was identified to severely influence the microstructures by the formation of large oxides and hence the coating properties. Overall, Mn-Al-Bronze coatings showed lower residual stresses, a more homogeneous pore and oxide distribution and less material loss by cavitation than Ni-Al-Bronze coatings.
Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method
NASA Astrophysics Data System (ADS)
Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.
2016-02-01
In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).
Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers
NASA Astrophysics Data System (ADS)
Oksa, M.; Metsäjoki, J.; Kärki, J.
2015-01-01
There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, Prabhakar; Ruka, Roswell J.
1995-01-01
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, P.; Ruka, R.J.
1995-02-14
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.
Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young
2017-01-01
An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100–700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material. PMID:28976931
Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young; Singh, Jitendra Kumar; Ismail, Mohamed A
2017-10-04
An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100-700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material.
Plasma sprayed coatings on crankshaft used steels
NASA Astrophysics Data System (ADS)
Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.
2017-08-01
Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.
Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings
NASA Astrophysics Data System (ADS)
Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.
2013-06-01
Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.
Effect of species and panel density on durability of structural flakeboard
M. W. Kelly; Eddie W. Price
1985-01-01
Structural flakeboard panels made with species of sweetgum, hickories, red oaks, white oaks, and southern pines, and with a 20 percent mixture of each species group, were subjected to a series of exposure conditions. One of the exposure conditions consisted of a Xenon arc lamp with an intermittent water spray from conventional weatherometer test equipment. Other...
Modelling of gas-metal arc welding taking into account metal vapour
NASA Astrophysics Data System (ADS)
Schnick, M.; Fuessel, U.; Hertel, M.; Haessler, M.; Spille-Kohoff, A.; Murphy, A. B.
2010-11-01
The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielińska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.
Layered growth with bottom-spray granulation for spray deposition of drug.
Er, Dawn Z L; Liew, Celine V; Heng, Paul W S
2009-07-30
The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.
Antonini, J M; Krishna Murthy, G G; Rogers, R A; Albert, R; Ulrich, G D; Brain, J D
1996-09-01
The objectives of this study were to compare different welding fumes in regard to their potential to elicit lung inflammation or injury and to examine possible mechanisms whereby welding fumes may damage the lungs. Fume was collected on filters from conventional spray [mild steel (MS-SPRAY) or stainless steel (SS-SPRAY) electrode wire] or pulsed current [mild steel (MS-PULSE) electrode wire] gas-shielded metal arc welding. Rats were given one of the three welding fume samples by intratracheal instillation (1.0 mg/100 g body wt). Other rats received a relatively inert dust (iron oxide), a pneumotoxic dust (crystalline silica), or a vehicle control (saline). Bronchoalveolar lavage (BAL) was performed 1, 7, 14, and 35 days postinstillation, and indicators of pulmonary damage [cellular differential, albumin, as well as, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), lactate dehydrogenase, and beta-n-acetyl glucosaminidase release] were assessed. One day postinstillation, some evidence of lung inflammation (more neutrophils) was observed for all particle groups, while increased BAL TNF-alpha and IL-1 beta were observed only in the SS-SPRAY and silica groups. By 14 days, lungs appeared normal among the MS-SPRAY, MS-PULSE, and iron oxide groups. At 14 and 35 days postinstillation, elevated pulmonary responses persisted for the animals exposed to silica and the SS-SPRAY welding fume. By 35 days, however, the SS-SPRAY group approached control levels, while the injury induced by silica increased. Using magnetometric estimates of welding fumes, we observed that MS-SPRAY fume was cleared from the lungs at a faster rate than the SS-SPRAY particles. We have demonstrated that the SS-SPRAY fume has more pneumotoxicity than MS fumes. This difference may reflect a greater retention of the SS-SPRAY particles in the lungs and different elemental composition of the fume. The SS-SPRAY fume also had enhanced release of TNF-alpha and IL-1 beta from lung cells soon after fume instillation. In contrast, we saw no influence of the power supply on particle size, composition, or toxicity.
Nicole M. Stark; Laurent M. Matuana
2006-01-01
The weathering of wood-plastic composites changes their appearance and/or mechanical properties. These changes can be slowed through the addition of ultraviolet absorbers and pigments. The first phase of this study examined the effect of incorporating different concentrations of an ultraviolet absorber and/or pigment into wood-flour-filled high-density polyethylene (WF...
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.
1995-06-20
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.
Keane, Michael; Stone, Samuel; Chen, Bean
2010-05-01
Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (<0.01 to ≈ 1% or <0.1 to ≈ 10 microg ml(-1)) and Ni2+ (<0.01 to ≈ 0.2% or <0.1 to ≈ 2 mg ml(-1)) ions were found in biological buffer media, but amounts were highly dependent on pH and the welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both soluble and insoluble, and that exposures to Mn species vary with specific processes and shield gases.
A New Type of Self-lubricated Thermal Spray Coatings: Liquid Lubricants Embedded in a Metal Matrix
NASA Astrophysics Data System (ADS)
Espallargas, N.; Armada, S.
2015-01-01
Oils and greases are commonly used for lubricating, rotating and sliding systems such as bearings, gears, connectors, etc. The maintenance of such lubricated systems in some applications where access is difficult (e.g., offshore wind farms and subsea equipment) increases the operational costs. In some cases, it can be thought that the use of solid lubricants (MoS2, PTFE, graphite, etc.) embedded in coatings could be a solution for such applications; however, the mechanical and dynamic conditions of most of the systems are not appropriate for solid lubricants. Despite this, solid lubricants such as PTFE and MoS2 have been largely employed in different industries, especially in those applications where liquid lubricants cannot be used and when the dynamic conditions allow for it. Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Although the use of liquid lubricants is desirable whenever it is possible, limited research has been addressed toward the development of self-lubricated coatings containing liquid lubricants. One of the main reasons for this is due to the complexity of embedding liquid lubricant reservoirs inside the coating matrix. In the present work, a new type of liquid-solid self-lubricated coatings is presented, being the matrix a metal alloy. Three thermal spray techniques used were as follows: arc-spray, plasma spray, and HVOAF. The metal matrices were two stainless steel types and liquid lubricant-filled capsules with different liquid contents were used. No degradation of the capsules during spraying was observed and the coatings containing capsules were able to keep a low coefficient of friction. The optimal performance is found for the coatings obtained at the lowest spraying temperature and velocity.
Interface characterization of Cu-Mo coating deposited on Ti-Al alloys by arc spraying
NASA Astrophysics Data System (ADS)
Bai, Shengqiang; Li, Fei; Wu, Ting; Yin, Xianglin; Shi, Xun; Chen, Lidong
2015-03-01
Cu-Mo pseudobinary alloys are promising candidates as electrode materials in CoSb3-based skutterudite thermoelectric (TE) devices for TE power generation. In this study, Cu-Mo coatings were deposited onto Ti-Al substrates by applying a dual-wire electric arc spraying coating technique. The microstructure of the surfaces, cross sections and coating interfaces were analyzed by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS). Cu-Mo coatings showed a typical banded splat with compact microstructures, and have no coarse pores nor micro-cracks. The thermal shock resistance of the Cu-Mo coating was also investigated to show good combinations with Ti-Al substrates. After 50 thermal shock cycles, there were no cracks observed at the interface. In contrast, the test of the thermal shock resistance of the Cu coating on the Ti-Al substrate was also investigated. Due to a large difference in the thermal expansion coefficients between Cu and Ti-Al alloys, the Cu coating flaked from the Ti-Al substrate completely after 10 thermal shock cycles. The contact resistivity of the Ti-Al/Cu-Mo interface was about 1.6 μΩṡcm2 and this value was unchanged after 50 thermal shock cycles, indicating the low electric resistance and high thermal stability of the Cu-Mo/Ti-Al interface.
2012-12-01
cold gas-dynamic spray process are well understood, the effects of feedstock powder microstructure and composition on the deposition process remain...The Relationship between Powder Zinc Content and Porosity .....74 5. Compositional Variability as a Side Effect of the Cold Spray Deposition Process ...to expect in cold spray deposited copper coatings based on common spray parameters. Ning et
Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists
NASA Astrophysics Data System (ADS)
Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.
1993-10-01
A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.
Characterization of a spray torch and analysis of process parameters
NASA Astrophysics Data System (ADS)
Ramasamy, R.; Selvarajan, V.
1999-07-01
Anode for a non-transferred DC plasma spray torch was designed to improve electrothermal efficiency. A theoretical calculation was made for the electrothermal efficiency in a DC plasma torch operating with argon at atmospheric pressure with power level in the range of 5.2 20 kW using energy balance equations. ANOVA for the two level factorial design was done. Plasma gas flow rate, current intensity, nozzle diameter and length were found to influence the efficiency. The efficiency was found to decrease with increase in current intensity and nozzle length and to increase with increase in nozzle diameter and gas flow rate. The overall energy balance calculations showed that the heat transfer to the plasma-forming gas decreases with increase in arc current and the same was more significant at higher flow rates. Plasma jet velocity for different flow rates, input to the torch and nozzle dimensions was calculated from the gas enthalpy. It was found that the velocity increased with increase in the power input to the torch and gas flow rate and decreased with increase in nozzle length and diameter. The current voltage characteristics of the torch operating with argon gas were studied for different gas flow rates. The Nottingham coefficients were calculated using least square method.
Liquid Coatings for Reducing Corrosion of Steel in Concrete
NASA Technical Reports Server (NTRS)
MacDowell, Louis G.; Curran, Joseph
2003-01-01
Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.
Fused Silica Surface Coating for a Flexible Silica Mat Insulation System
NASA Technical Reports Server (NTRS)
Rhodes, W. H.
1973-01-01
Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.
Plasma spraying method for forming diamond and diamond-like coatings
Holcombe, C.E.; Seals, R.D.; Price, R.E.
1997-06-03
A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.
EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION
The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...
Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application
NASA Technical Reports Server (NTRS)
Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.
1998-01-01
The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.
Bémer, D; Wingert, L; Morele, Y; Subra, I
2015-09-01
A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.
Development of a new generation of high-temperature composite materials
NASA Technical Reports Server (NTRS)
Brindley, Pamela K.
1987-01-01
There are ever-increasing demands to develop low-density materials that maintain high strength and stiffness properties at elevated temperatures. Such materials are essential if the requirements for advanced aircraft, space power generation, and space station plans are to be realized. Metal matrix composites and intermetallic matrix composites are currently being investigated at NASA Lewis for such applications because they offer potential increases in strength, stiffness, and use temperature at a lower density than the most advanced single-crystal superalloys presently available. Today's discussion centers around the intermetallic matrix composites proposed by Lewis for meeting advanced aeropropulsion requirements. The fabrication process currently being used at Lewis to produce intermetallic matrix composites will be reviewed, and the properties of one such composite, SiC/Ti3Al+Nb, will be presented. In addition, the direction of future research will be outlined, including plans for enhanced fabrication of aluminide composites by the arc spray technique and fiber development by the floating-zone process.
Kuo, Lewis J. H.; Vora, Shailesh D.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.
Kuo, L.J.H.; Vora, S.D.
1995-02-21
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.
Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating
NASA Astrophysics Data System (ADS)
Zafar, Sunny; Sharma, Apurbba Kumar
2017-03-01
Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.
NASA Astrophysics Data System (ADS)
Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji
2007-05-01
There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.
2004-11-01
Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10; Valimet H-20; and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulk-forming process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.
2005-08-01
Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process.« less
Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine
NASA Astrophysics Data System (ADS)
Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir
2017-04-01
Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.
Warm spraying-a novel coating process based on high-velocity impact of solid particles.
Kuroda, Seiji; Kawakita, Jin; Watanabe, Makoto; Katanoda, Hiroshi
2008-07-01
In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1) the critical velocity needed to form a coating can be significantly lowered by heating, (2) the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3) various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC-Co cermet and polymers are described with potential industrial applications.
NASA Astrophysics Data System (ADS)
Obrezkov, O. I.; Vinogradov, V. P.; Krauz, V. I.; Mozgrin, D. V.; Guseva, I. A.; Andreev, E. S.; Zverev, A. A.; Starostin, A. L.
2016-09-01
Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time.
Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting
NASA Astrophysics Data System (ADS)
Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang
2018-02-01
Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.
NASA Astrophysics Data System (ADS)
Ashrafizadeh, H.; McDonald, A.; Mertiny, P.
2016-02-01
Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Ahsan; Love, Norman
High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.
1994-01-01
Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.
Weyand, J.D.
1988-02-09
Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.
Weyand, John D.
1988-01-01
(1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.
TAZ-8A Alloy Increases The Thermal Endurance Of Steel
NASA Technical Reports Server (NTRS)
Waters, William J.
1990-01-01
TAZ-8A exhibits high strength at temperatures as high as 1,400 degrees F (760 degrees C) and resistance to oxidation; also exhibits excellent cyclic shock resistance between 600 and 2,000 degrees F (316 and 1,093 degrees C) and superplasticity at 1,800 degrees F (982 degrees C). Converts into fine powder and then flame-, plasma-, arc-, or wire-sprayed onto inexpensive steel substrate. Surface treatment with this alloy prolongs service life and reduces costs.
Surface hardening of titanium alloys with melting depth controlled by heat sink
Oden, Laurance L.; Turner, Paul C.
1995-01-01
A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.
Plasma spraying method for forming diamond and diamond-like coatings
Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene
1997-01-01
A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.
Quality characteristic of spray-drying egg white powders.
Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei
2013-10-01
Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.
NASA Astrophysics Data System (ADS)
Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.
2014-12-01
Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.
Diagnostics of thermal spraying plasma jets
NASA Astrophysics Data System (ADS)
Fauchais, P.; Coudert, J. F.; Vardelle, M.; Vardelle, A.; Denoirjean, A.
1992-06-01
The development of diagnostic techniques for dc plasma spraying is reviewed with attention given to the need for thick highly reproducible coatings of good quality for aeronautic and other uses. Among the techniques examined are fast cameras, laser-Doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), enthalpy probes, and emission spectroscopy. Particular emphasis is given to the effect of arc fluctuations on the spectroscopic measurements, and a method is introduced for obtaining temperature and species density of vapor clouds traveling with each particle in flight. Coating properties can be deduced from data on single particles, and statistical approaches are often unreliable without added data on surface temperature and particle velocity. Also presented is a method for deriving the temperature evolution of a cooled splat and successive layers and passes. These methods are of interest to the control of adhesion and cohesion in coatings for critical aerospace applications.
NASA Astrophysics Data System (ADS)
Qi, Y. L.; Xu, B. Y.; Cai, S. L.
2006-12-01
To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.
Plasma Spraying of Ceramics with Particular Difficulties in Processing
NASA Astrophysics Data System (ADS)
Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.
2015-01-01
Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.
Improved Orifice Plate for Spray Gun
NASA Technical Reports Server (NTRS)
Cunningham, W.
1986-01-01
Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.
Thermal Spray Maps: Material Genomics of Processing Technologies
NASA Astrophysics Data System (ADS)
Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.
2013-10-01
There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.
Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas
2015-07-01
This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.
2017-03-01
Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-11-30
The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.
Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation
1989-12-01
low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2016-07-01
Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Detection of metal-transfer mode in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.A.; Carlson, N.M.; Smartt, H.B.
1989-01-01
One of the requirements of a sensing system for feedback control of gas metal arc welding (GMAW) is the capability to detect information about the metal-transfer mode. Because the operating boundary for the desired transfer mode, expressed as a function of mass input and heat input, may vary due to conditions beyond the control of the system, a means of determining the transfer mode during welding is necessary. A series of sensing experiments is performed during which the ultrasonic emissions, audio emissions, welding current fluctuations, and welding voltage fluctuations are recorded as a function of the transfer mode. In addition,more » high speed movies (5000 frame/s) of the droplet formation and detachment are taken synchronously with the sensing data. An LED mounted in the camera is used to work the film at the beginning and end of the data acquisition period. A second LED is pulsed at a 1 kHz rate and the pulses are recorded on film and with the sensor data. Thus events observed on the film can be correlated with the sensor data. Data acquired during globular transfer, spray transfer, and stiff spray or streaming transfer are observed to correlate with droplet detachment and arc shorting. The audio, current, and voltage data can be used to discriminate among these different transfer modes. However, the current and voltage data are also dependent on the characteristics of the welding power supply. 4 refs., 5 figs.« less
Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam
2014-01-01
Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.
1995-08-01
TRl) Occupational Health and Safety Administration (OSHA) Air Quality Legislation Hexavalent Chromium and the Legislation List-of-list Chemicals and...2.2.7 2.2.8 Shielded Metal Arc Welding (SMAW) Submerged Arc Welding (SAW) Gas Metal Arc Welding (GMAW) Gas Tungsten Arc Welding ( GTAW ) Flux Core Arc... GTAW Welding Processes Advantages and Disadvantages of FCAW Welding Processes Welding Process Comparison Matrix Diagram of SMAW Welding Process
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
NASA Astrophysics Data System (ADS)
von Niessen, Konstantin; Gindrat, Malko
2011-06-01
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.
NASA Astrophysics Data System (ADS)
Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed
2017-02-01
This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.
Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei
2014-02-01
To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).
Physical characteristics of welding arc ignition process
NASA Astrophysics Data System (ADS)
Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei
2012-07-01
The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
Cold Spray for Repair of Magnesium Components
2011-11-01
powder material. Other advantages of the Cold Spray process include: It provides extremely dense coatings with virtually no inclusions or cracks ... crack on insertion of Rosan fitting and does not reclaim the mechanical properties of the Mg alloy. It is expected that the use of Cold Spray coating...Spray process include: Extremely dense coatings with virtually no inclusions or cracks . Retains properties and microstructure of initial powder
NASA Astrophysics Data System (ADS)
Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward
2011-06-01
Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic-nozzle sprays.
NASA Astrophysics Data System (ADS)
Facchini, C.; O'Dowd, C. D. D.; Danovaro, R.
2015-12-01
The processes that link phytoplankton biomass and productivity to the organic matter enrichment in sea spray aerosol are far from being elucidated and modelling predictions remain highly uncertain at the moment. While some studies have asserted that the enrichment of OM in sea spray aerosol is independent on marine productivity, others, have shown significant correlation with phytoplankton biomass and productivity (Chl-a retrieved by satellites). We present here new results illustrating a clear link between OM mass-fraction enrichment in sea spray (OMss) and both phytoplankton-biomass and Net Primary Productivity (NPP). We suggest that the OM enrichment of sea spray through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), which determine the release of celldebris, exudates and other colloidal material. This OM, through processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-drive plankton bloom termination, marine productivity and sea-spraymodification with potentially significant climate impacts.
Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying
NASA Astrophysics Data System (ADS)
Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri
2018-02-01
In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi
2016-10-01
This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
NASA Astrophysics Data System (ADS)
Rahmati, Saeed; Ghaei, Abbas
2014-02-01
Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.
[Investigation on Spray Drying Technology of Auricularia auricular Extract].
Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin
2015-07-01
To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.
Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.
Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis
2012-02-01
In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakata, K.; Tagomori, K.; Sugiyama, N.; Sasaki, S.; Shinya, Y.; Nanbu, T.; Kawashita, Y.; Narita, I.; Kuwatori, K.; Ikeda, T.; Hara, R.; Miyahara, H.
2014-01-01
Compared to conventional thermal spray coating, cold spray processing typically employs finer, smaller-diameter metal powders. Furthermore, cold-sprayed particles exhibit fewer surface oxides than thermally sprayed particles due to the absence of particle melting during spraying. For these reasons, it is important to consider the potential for dust explosions or fires during cold spray processing, for both industrial and R&D applications. This work examined the dust explosion characteristics of metal powders typically used in cold spray coating, for the purpose of preventing dust explosions and fires and thus protecting the health and safety of workers and guarding against property damage. In order to safely make use of the new cold spray technology in industrial settings, it is necessary to manage the risks based on an appropriate assessment of the hazards. However, there have been few research reports focused on such risk management. Therefore, in this study, the dust explosion characteristics of aluminum, titanium, zinc, carbonyl iron, and eutectoid steel containing chromium at 4 wt.% (4 wt.% Cr-eutectoid steel) powders were evaluated according to the standard protocols JIS Z 8818, IEC61241-2-3(1994-09) section 3, and JIS Z 8817. This paper reports our results concerning the dust explosion properties of the above-mentioned metal powders.
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1979-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.
Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre
2016-09-25
Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.
2011-03-01
From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of diagnostic tools and strategies, and experimental advances that have enabled the development of a wide range of coating structures exhibiting in numerous cases unique properties. Several examples are detailed. In this paper the following aspects are presented successively (i) the two spray techniques used for manufacturing such coatings: thermal plasma and HVOF, (ii) sensors developed for in-flight diagnostics of micrometre-sized particles and the interaction of a liquid and hot gas flow, (iii) three spray processes: conventional spraying using micrometre-sized agglomerates of nanometre-sized particles, suspension spraying and solution spraying and (iv) the emerging issues resulting from the specific structures of these materials, particularly the characterization of these coatings and (v) the potential industrial applications. Further advances require the scientific and industrial communities to undertake new research and development activities to address, understand and control the complex mechanisms occurring, in particular, thermal flow—liquid drops or stream interactions when considering suspension and liquid precursor thermal spray techniques. Work is still needed to develop new measurement devices to diagnose in-flight droplets or particles below 2 µm average diameter and to validate that the assumptions made for liquid-hot gas interactions. Efforts are also required to further develop some of the characterization protocols suitable to address the specificities of such nanostructured coatings, as some existing 'conventional' protocols usually implemented on thermal spray coatings are not suitable anymore, in particular to address the void network architectures from which numerous coatings properties are derived.
2016-06-01
Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Chin, J. S.
1986-06-01
A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.
Gu, Bing; Linehan, Brian; Tseng, Yin-Chao
2015-08-01
A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.
Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun
2015-01-01
Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no process limitation in solution viscosity when high-concentration mAb formulations are prepared from spray-dried powder reconstitution compared with concentration via the conventional ultrafiltration process. This study offers a commercially viable spray-drying process for biological bulk storage and a high-concentration mAb manufacturing option for subcutaneous administration. The outcomes of this study will benefit scientists and engineers who develop high-concentration mAb products by providing a viable manufacturing alternative. © PDA, Inc. 2015.
Spray drying formulation of amorphous solid dispersions.
Singh, Abhishek; Van den Mooter, Guy
2016-05-01
Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Patel, Anil K.; Meeks, C.
1998-01-01
This paper discusses the application of Convergent Spray Technologies (TM) Spray Process to the development and successful implementation of Marshall Convergent Coating (MCC-1) as a primary Thermal Protection System (TPS) for the Space Shuttle Solid Rocket Boosters (SRBs). This paper discusses the environmental and process benefits of the MCC-1 technology, shows the systematic steps taken in developing the technology, including statistical sensitivity studies of about 35 variables. Based on the process and post-flight successes on the SRB, it will be seen that the technology is "field-proven". Application of this technology to other aerospace and commercial programs is summarized to illustrate the wide range of possibilities.
Draut, Amy; Clift, Peter D.
2013-01-01
Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of material from the trench, forearc, arc massif, intra-arc basins, and backarc basins, and thus on how well an ancient arc terrane preserves evidence for tectonic processes such as subduction of aseismic ridges and seamounts, oblique plate convergence, and arc rifting. Forward-facing collision involves substantial recycling, melting, and fractionation of continent-derived material during and after collision, and so produces melts rich in silica and incompatible trace elements. As a result, forward-facing collision can drive the composition of accreted arc crust toward that of average continental crust.
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Perrone, A.; Silvello, A.
2014-10-01
Cold spray is a coating technology based on aerodynamics and high-speed impact dynamics. In this process, spray particles (usually 1-50 μm in diameter) are accelerated to a high velocity (typically 300-1200 m/s) by a high-speed gas (pre-heated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval-type nozzle. A coating is formed through the intensive plastic deformation of particles impacting on a substrate at a temperature below the melting point of the spray material. In the present paper the main processing parameters affecting the microstructural and mechanical behavior of metal-metal cold spray deposits are described. The effect of process parameters on grain refinement and mechanical properties were analyzed for composite particles of Al-Al2O3, Ni-BN, Cu-Al2O3, and Co-SiC. The properties of the formed nanocomposites were compared with those of the parent materials sprayed under the same conditions. The process conditions, leading to a strong grain refinement with an acceptable level of the deposit mechanical properties such as porosity and adhesion strength, are discussed.
The Role of Water Vapor and Dissociative Recombination Processes in Solar Array Arc Initiation
NASA Technical Reports Server (NTRS)
Galofar, J.; Vayner, B.; Degroot, W.; Ferguson, D.
2002-01-01
Experimental plasma arc investigations involving the onset of arc initiation for a negatively biased solar array immersed in low-density plasma have been performed. Previous studies into the arc initiation process have shown that the most probable arcing sites tend to occur at the triple junction involving the conductor, dielectric and plasma. More recently our own experiments have led us to believe that water vapor is the main causal factor behind the arc initiation process. Assuming the main component of the expelled plasma cloud by weight is water, the fastest process available is dissociative recombination (H2O(+) + e(-) (goes to) H* + OH*). A model that agrees with the observed dependency of arc current pulse width on the square root of capacitance is presented. A 400 MHz digital storage scope and current probe was used to detect arcs at the triple junction of a solar array. Simultaneous measurements of the arc trigger pulse, the gate pulse, the arc current and the arc voltage were then obtained. Finally, a large number of measurements of individual arc spectra were obtained in very short time intervals, ranging from 10 to 30 microseconds, using a 1/4 a spectrometer coupled with a gated intensified CCD. The spectrometer was systematically tuned to obtain optical arc spectra over the entire wavelength range of 260 to 680 nanometers. All relevant atomic lines and molecular bands were then identified.
Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.
2017-02-01
Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.
Development of a Self-Sluicing Pressure Leaf Filter
NASA Astrophysics Data System (ADS)
Cousineau, Bernard L.; Lumsden, J. R.
The cylindrical Kelly filter presses installed in the Ewarton Works "C" phase did not perform satisfactorily because of difficulties with head seals, locking rings, and shell retraction mechanisms. As rectification required major modifications, a concept of a press which did not require to be opened for sluicing was proposed. Test work of various sluicing and res lurrying spray arrangements was carried out, and this led to the design of a self-sluicing press which used the shell of an existing Kelly press with its main axis vertical. One press was converted by July 1972, and a development period started. Although initial operation was encouraging, effective sluicing could not be guaranteed after 30 shifts. Modifications to leaf spacing, spray rotational speed, spray slot width, feed pressure and pre-coat control by November 1973, however, allowed effective performance for all of the 800 hour canvas life. Advantages are: reduced operating and maintenance manpower, clean environment, and reduced maintenance cost. The use of 1st wash overflow for sluicing has reduced caustic soda and canvas consumption. Ewarton Works now has four converted self-sluicing presses, and arc converting five more, and Arvida Works plan the installation of one for tests on red pressing (blow-off filtration). A side benefit of the development was the study of the benefits of constant pressure overflow filtration.
Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.
Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie
2012-06-01
Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.
Spatial distribution visualization of PWM continuous variable-rate spray
USDA-ARS?s Scientific Manuscript database
Chemical application is a dynamic spatial distribution process, during which spray liquid covers the targets with certain thickness and uniformity. Therefore, it is important to study the 2-D and 3-D (dimensional) spray distribution to evaluate spraying quality. The curve-surface generation methods ...
Developments in the formulation and delivery of spray dried vaccines.
Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon
2017-10-03
Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.
NASA Astrophysics Data System (ADS)
Srinivasan, Vasudevan
Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.
Warm spraying—a novel coating process based on high-velocity impact of solid particles
Kuroda, Seiji; Kawakita, Jin; Watanabe, Makoto; Katanoda, Hiroshi
2008-01-01
In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called ‘warm spraying’ has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1) the critical velocity needed to form a coating can be significantly lowered by heating, (2) the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3) various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC–Co cermet and polymers are described with potential industrial applications. PMID:27877996
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.
Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines
NASA Astrophysics Data System (ADS)
Xiang, He Wan; Xiong, Li Zhi
1988-01-01
The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.
Modeling metal droplet sprays in spray forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muoio, N.G.; Crowe, C.T.; Fritsching, U.
1995-12-31
Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.
NASA Astrophysics Data System (ADS)
Singh, Raghuvir; Tiwari, S. K.; Mishra, Suman K.
2012-07-01
Cavitation erosion is a frequently observed phenomenon in underwater engineering materials and is the primary reason for component failure. The damage due to cavitation erosion is not yet fully understood, as it is influenced by several parameters, such as hydrodynamics, component design, environment, and material chemistry. This article gives an overview of the current state of understanding of cavitation erosion of materials used in hydroturbines, coatings and coating methodologies for combating cavitation erosion, and methods to characterize cavitation erosion. No single material property fully characterizes the resistance to cavitation erosion. The combination of ultimate resilience, hardness, and toughness rather may be useful to estimate the cavitation erosion resistance of material. Improved hydrodynamic design and appropriate surface engineering practices reduce damage due to cavitation erosion. The coatings suggested for combating the cavitation erosion encompasses carbides (WC Cr2C3, Cr3C2, 20CrC-80WC), cermets of different compositions (e.g., 56W2C/Ni/Cr, 41WC/Ni/Cr/Co), intermetallic composites, intermetallic matrix composites with TiC reinforcement, composite nitrides such as TiAlN and elastomers. A few of them have also been used commercially. Thermal spraying, arc plasma spraying, and high velocity oxy-fuel (HVOF) processes have been used commercially to apply the coatings. Boronizing, laser surface hardening and cladding, chemical vapor deposition, physical vapor deposition, and plasma nitriding have been tried for surface treatments at laboratory levels and have shown promise to be used on actual components.
Keary, Colin M; Sheskey, Paul J
2004-09-01
Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.
Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties
NASA Astrophysics Data System (ADS)
Bakan, Emine; Vaßen, Robert
2017-08-01
The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
1994-06-01
Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.
The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad
2008-01-01
The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).
Process optimization of ultrasonic spray coating of polymer films.
Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer
2013-06-11
In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.
NASA Astrophysics Data System (ADS)
Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.
2018-05-01
This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.
Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants
USDA-ARS?s Scientific Manuscript database
Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...
An anatomy of industrial robots and their controls
NASA Astrophysics Data System (ADS)
Luh, J. Y. S.
1983-02-01
The modernization of manufacturing facilities by means of automation represents an approach for increasing productivity in industry. The three existing types of automation are related to continuous process controls, the use of transfer conveyor methods, and the employment of programmable automation for the low-volume batch production of discrete parts. The industrial robots, which are defined as computer controlled mechanics manipulators, belong to the area of programmable automation. Typically, the robots perform tasks of arc welding, paint spraying, or foundary operation. One may assign a robot to perform a variety of job assignments simply by changing the appropriate computer program. The present investigation is concerned with an evaluation of the potential of the robot on the basis of its basic structure and controls. It is found that robots function well in limited areas of industry. If the range of tasks which robots can perform is to be expanded, it is necessary to provide multiple-task sensors, or special tooling, or even automatic tooling.
Selective dry etching of silicon containing anti-reflective coating
NASA Astrophysics Data System (ADS)
Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok
2018-03-01
Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.
Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding
NASA Astrophysics Data System (ADS)
Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang
2017-10-01
As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.
Oh, Ching Mien; Guo, Qiyun; Wan Sia Heng, Paul; Chan, Lai Wah
2014-07-01
In any manufacturing process, the success of producing an end product with the desired properties and yield depends on a range of factors that include the equipment, process and formulation variables. It is the interest of manufacturers and researchers to understand each manufacturing process better and ascertain the effects of various manufacturing-associated factors on the properties of the end product. Unless the manufacturing process is well understood, it would be difficult to set realistic limits for the process variables and raw material specifications to ensure consistently high-quality and reproducible end products. Over the years, spray congealing has been used to produce particulates by the food and pharmaceutical industries. The latter have used this technology to develop specialized drug delivery systems. In this review, basic principles as well as advantages and disadvantages of the spray congealing process will be covered. Recent developments in spray congealing equipment, process variables and formulation variables such as the matrix material, encapsulated material and additives will also be discussed. Innovative equipment designs and formulations for spray congealing have emerged. Judicious choice of atomizers, polymers and additives is the key to achieve the desired properties of the microparticles for drug delivery.
Multiple-Nozzle Spray Head Applies Foam Insulation
NASA Technical Reports Server (NTRS)
Walls, Joe T.
1993-01-01
Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.
Modeling and control parameters for GMAW, short-circuiting transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, G.E.; DeLapp, D.R.; Barnett, R.J.
1996-12-31
Digital signal processing was used to analyze the electrical arc signals of the gas metal arc welding process with short-circuiting transfer. Among the features extracted were arc voltage and current (both average and peak values), short-circuiting frequency, arc period, shorting period, and the ratio of the arcing to shorting period. Additionally , a Joule heating model was derived which accurately predicted the melt-back distance during each short. The short-circuiting frequency, the ratio of the arc period to short periods, and the melt-back distance were found to be good indicators for monitoring and control of stable arc conditions.
Development of Universal Portable Spray Stand for Touch-Up Process in The Automotive Paintshop
NASA Astrophysics Data System (ADS)
Fatah Muhamed Mukhtar, Muhamed Abdul; Mohideen Shahul Hameed, Rasool
2016-02-01
A spray stand is a custom-made tool used to hold the automotive body parts as well as the devices used to facilitate the operator during the Touch Up process in Paint shop production. This paper discusses about the development of Universal Portable Spray Stand (UPSS) as a tool to hold various types of automotive body parts and model of car during the painting process. The main objective of this study is to determine the effective application of UPSS at the International College of Automotive (ICAM) and also in the automotive industry. This will be helpful to add features to the current spray stand in ICAM and to add value to the spray stand based on selected criteria which are universal, portable and cost saving. In addition, study in the UPSS is also expected to bring reduction in cycle time during the touch up process, in the paint defects and in the ergonomics issues among the operators.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
Vapor Phase Deposition Using Plasma Spray-PVD™
NASA Astrophysics Data System (ADS)
von Niessen, K.; Gindrat, M.; Refke, A.
2010-01-01
Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.
Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter
2017-12-20
Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.
Developments in the formulation and delivery of spray dried vaccines
Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon
2017-01-01
ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.; Key, James F.
1993-01-01
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.
Effect of Helmholtz Oscillation on Auto-shroud for APS Tungsten Carbide Coating
NASA Astrophysics Data System (ADS)
Jin, Younggil; Choi, Sooseok; Yang, Seung Jae; Park, Chong Rae; Kim, Gon-Ho
2013-06-01
The atmospheric-pressure plasma spray (APS) of tungsten coating was performed using tungsten carbide (WC) powder by means of DC plasma torch equipped with a stepped anode nozzle as a potential method of W coating on graphite plasma-facing component of fusion reactors. This nozzle configuration allows Helmholtz oscillation mode dominating in APS arc fluctuation, and the variation of auto-shroud effect with Helmholtz oscillation characteristics can be investigated. Tungsten coating made from WC powder has lower porosity and higher tungsten purity than that made from pure tungsten powder. The porosity and chemical composition of coatings were investigated by mercury intrusion porosimetry and x-ray photoelectron spectroscopy, respectively. The purity of tungsten coating layer is increased with the increasing frequency of Helmholtz oscillation and the increasing arc current. The modulation of Helmholtz oscillation frequency and magnitude may enhance the decarburization of WC to deposit tungsten coating without W-C and W-O bond from WC powder.
NASA Technical Reports Server (NTRS)
Cain, Bruce L.
1990-01-01
The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.
The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes
NASA Astrophysics Data System (ADS)
Poon, Michael; Kesler, Olivera
2012-07-01
Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marqués, J.-L.; Schein, J.
2015-01-01
Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma.
Integration of process diagnostics and three dimensional simulations in thermal spraying
NASA Astrophysics Data System (ADS)
Zhang, Wei
Thermal spraying is a group of processes in which the metallic or ceramic materials are deposited in a molten or semi-molten state on a prepared substrate. In atmospheric plasma spray process, a thermal plasma jet is used to heat up and accelerate loading particles. The process is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated variables involved, and stochastic variability at different stages. This dissertation is aimed at understanding the in-flight particle state and plasma plume characteristics in atmospheric plasma spray process through the integration of process diagnostics and three-dimensional simulation. Effects of injection angle and carrier gas flow rate on in-flight particle characteristics are studied experimentally and interpreted through numerical simulation. Plasma jet perturbation by particle injection angle, carrier gas, and particle loading are also identified. Maximum particle average temperature and velocity at any given spray distance is systematically quantified. Optimum plasma plume position for particle injection which was observed in experiments was verified numerically along with description of physical mechanisms. Correlation of spray distance with in-flight particle behavior for various kinds of materials is revealed. A new strategy for visualization and representation of particle diagnostic results for thermal spray processes has been presented. Specifically, 1 st order process maps (process-particle interactions) have been addressed by converting the Temperature-Velocity of particles obtained via diagnostics into non-dimensional group parameters [Melting Index-Reynolds number]. This approach provides an improved description of the thermal and kinetic energy of particles and allows for cross-comparison of diagnostic data within a given process for different materials, comparison of a single material across different thermal spray processes, and detailed assessment of the melting behavior through recourse to analysis of the distributions. An additional group parameter, Oxidation Index, has been applied to relatively track the oxidation extent of metallic particles under different operating conditions. The new mapping strategies have also been proposed in circumstances where only ensemble particle diagnostics are available. Through the integration of process diagnostics and numerical simulation, key issues concerning in-flight particle status as well as the controlling physical mechanisms have been analyzed. A scientific and intellectual strategy for universal description of particle characteristics has been successfully developed.
Mendes, Luciano A; Mafra, Márcio; Rodrigues, Jhonatam C
2012-01-01
The glow-to-arc transition phenomena (arcing) observed in plasma reactors used in materials processing was studied through the arcs characteristic current and voltage waveforms. In order to capture these arcs signals, a LABVIEW™ based automated instrumentation system (ARCVIEW) was developed, including the integration of an oscilloscope equipped with proper current and voltage probes. The system also allows capturing the process parameters at the arc occurrence moments, which were used to map the arcs events conditions. Experiments in H(2)-Ar DC pulsed plasma returned signals data from 215 arcs events, which were analyzed through software routines. According to the results, an anti-arcing system should react in the time order of few microseconds to prevent most of the damage caused by the undesired arcing phenomena.
Hydrogen plasma tests of some insulating coating systems for the nuclear rocket thrust chamber
NASA Technical Reports Server (NTRS)
Current, A. N.; Grisaffe, S. J.; Wycoff, K. C.
1972-01-01
Several plasma-sprayed and slurry-coated insulating coating systems were evaluated for structural stability in a low-pressure hot hydrogen environment at a maximum heat flux of 19.6 million watts/sq meter. The heat was provided by an electric-arc plasma generator. The coating systems consisted of a number of thin layers of metal oxides and/or metals. The materials included molybdenum, nichrome, tungsten, alumina, zirconia, and chromia. The study indicates potential usefulness in this environment for some coatings, and points up the need for improved coating application techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brousseau, R.; Arnott, M.; Baldock, B.
1995-08-01
Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.
Tajber, L; Corrigan, O I; Healy, A M
2009-02-09
The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.
Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.
Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P
2018-02-01
Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.
Process stability during fiber laser-arc hybrid welding of thick steel plates
NASA Astrophysics Data System (ADS)
Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.
2018-03-01
Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.
Plasma Processes of Cutting and Welding
1976-02-01
TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, G. M.; Genzale, C. L.
The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Sourcemore » are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.« less
Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.
McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z
2013-04-01
Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (p<0.01 in all cases). Under appropriate conditions, it was possible to achieve less than 2% hemolysis, suggesting that spray drying may be a feasible option for erythrocyte biopreservation.
Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
2002-01-01
Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.
Process-based quality for thermal spray via feedback control
NASA Astrophysics Data System (ADS)
Dykhuizen, R. C.; Neiser, R. A.
2006-09-01
Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.
Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle; Nielsen, Hanne Mørck; Rantanen, Jukka; Foged, Camilla
2013-11-01
The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB). A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis. Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes. The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination.
A method for predicting optimized processing parameters for surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, J.N.; Marder, A.R.
1994-12-31
Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurementsmore » were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.« less
A simulation technique for predicting thickness of thermal sprayed coatings
NASA Technical Reports Server (NTRS)
Goedjen, John G.; Miller, Robert A.; Brindley, William J.; Leissler, George W.
1995-01-01
The complexity of many of the components being coated today using the thermal spray process makes the trial and error approach traditionally followed in depositing a uniform coating inadequate, thereby necessitating a more analytical approach to developing robotic trajectories. A two dimensional finite difference simulation model has been developed to predict the thickness of coatings deposited using the thermal spray process. The model couples robotic and component trajectories and thermal spraying parameters to predict coating thickness. Simulations and experimental verification were performed on a rotating disk to evaluate the predictive capabilities of the approach.
Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction
Fritz, Bradley K.; Hoffmann, W. Clint
2016-01-01
When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589
Digital image processing techniques for the analysis of fuel sprays global pattern
NASA Astrophysics Data System (ADS)
Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda
2017-12-01
We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.
Nano spray drying for encapsulation of pharmaceuticals.
Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi
2018-05-17
Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
From drop impact physics to spray cooling models: a critical review
NASA Astrophysics Data System (ADS)
Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron
2018-03-01
Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.
Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.
Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi
2016-11-20
In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mindivan, H.
2018-01-01
In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.
Producing Quantum Dots by Spray Pyrolysis
NASA Technical Reports Server (NTRS)
Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius
2006-01-01
An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
NASA Astrophysics Data System (ADS)
Paul, S.; Syrek-Gerstenkorn, B.
2017-01-01
Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.
Diagnostics of Thermal Spraying Plasma Jets
NASA Astrophysics Data System (ADS)
Fauchais, P.; Coudert, J. F.; Vardelle, M.; Vardelle, A.; Denoirjean, A.
D.C. thermal plasma jets are strongly affected on the one hand by the arc root fluctuations at the anode, resulting in a type of pulsed flow and enhanced turbulence, and on the other hand by the entrainment of surrounding cold gas in the plasma jet. These phenomena and the resulting temperature distributions have been studied using a wide range of diagnostic techniques including fast cameras, laser doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), Rayleigh scattering, emission spectroscopy, Schlieren photography, enthalpy probes and sampling probes. The information given by these techniques is evaluated and compared. The effect of the arc fluctuations on the spectroscopic measurements is emphasized and the possibility of using these fluctuations to determine informations on the arc behaviour and the axial velocity of the jet is presented. Optimization of plasma processing of solid particules requires information about their size and surface temperature, as well as number flux and velocity distributions at various locations in the flow field. The different statistical techniques of in-flight measurements are discussed together with their limitations. A method to determine the temperature and species density of the vapor cloud or comet travelling with each particule in flight is then presented. However, such statistical measurements present ambiguities in their interpretation, which can be adressed only by additional measurements to determine the velocity, diameter, and surface temperature of a single particule in flight. Moreover, information on single particules is required in order to understand the coating properties, which depend strongly on the way the particules flatten and solidify upon impact. A method to obtain data related to a single particule in flight and to follow the temperature evolution of the corresponding splat upon cooling is presented. The paper concludes with the description of the experimental techniques to follow the temperature evolution of the successive layers and passes. This is important because temperature distribution within coating and substrate controls the adhesion and cohesion of coatings as well as their residual stress.
Use of Iba Techniques to Characterize High Velocity Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Trompetter, W.; Markwitz, A.; Hyland, M.
Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO2/CrO3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.
Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev
2016-01-01
Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.
Corrosion behavior of magnetic ferrite coating prepared by plasma spraying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui
Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xusheng; Moon, Seoksu; Gao, Jian
Fuel atomization and vaporization process play a critical role in determining the engine combustion and emission. The primary near-nozzle breakup is the vital link between the fuel emerging from the nozzle and the fully atomized spray. In this study, the near-nozzle spray characteristics of diesel injector with different umbrella angle (UA) were investigated using high-speed X-ray phase-contrast imaging and quantitative image processing. A classic ‘dumbbell’ profile of spray width (SW) composed of three stages: opening stage, semisteady stage and closing stage. The SW peak of two-hole injectors was more than twice of that of single-hole injector at the opening andmore » closing stages, corresponding to the hollow-cone spray. This indicated the vortex flow was formed with the increase of the UA. The higher injection pressure had little influence on the SW while led to earlier breakup closer to the nozzle. Significant fuel effect on the SW at higher needle lift was found. However, this effect could be neglect at lower needle lift due to the leading role of internal flow and cavitation on the near-field spray characteristics. In addition, the morphology-based breakup process was observed, which highlighted the important effect of internal flow on the spray development. The possibility of using hollow-cone spray in diesel injector was also discussed.« less
Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System
NASA Technical Reports Server (NTRS)
Thaxton, Eric A.; Caimi, Raoul E. B.
1995-01-01
Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.
Improvement of the control of a gas metal arc welding process
NASA Astrophysics Data System (ADS)
Gött, Gregor; Schöpp, Heinz; Hofmann, Frank; Heinz, Gerd
2010-02-01
Up to now, the use of the electrical characteristics for process control is state of the art in gas metal arc welding (GMAW). The aim of the work is the improvement of GMAW processes by using additional information from the arc. Therefore, the emitted light of the arc is analysed spectroscopically and compared with high-speed camera images. With this information, a conclusion about the plasma arc and the droplet formation is reasonable. With the correlation of the spectral and local information of the plasma, a specific control of the power supply can be applied. A corresponding spectral control unit (SCU) is introduced.
Cold spray NDE for porosity and other process anomalies
NASA Astrophysics Data System (ADS)
Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.
2018-04-01
This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar surface profile information plus attenuation measurements trended with porosity. The ultrasound measurements, however, may be limited to geometries where the substrate back-wall is normal to the cold spray surface and not too thick. Eddy current showed a strong correlation with porosity. Eddy currents can also be sensitive to cracks and do not need fluid coupling to make measurements, but are not sensitive to coating thicknesses in most cases. Vickers hardness measurements also tracked well with porosity; however, these types of hardness measurements are also not sensitive to coating thickness. An NDE program may include multiple measurements.
Ji, Ran; Zheng, Ding; Zhou, Chang; Cheng, Jiang; Yu, Junsheng; Li, Lu
2017-07-18
Tungsten oxide (WO₃) is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL) for organic solar cells (OSCs). The properties of the WO₃ transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO₃ ABL exhibits low roughness, matched energy level, and high conductivity, which results in high charge transport efficiency and suppressive recombination in OSCs. As a result, compared to the OSCs based on vacuum thermal evaporated WO₃, a higher power conversion efficiency of 3.63% is reached with low-temperature ultrasonic spray pyrolysized WO₃ ABL. Furthermore, the mostly spray-coated OSCs with large area was fabricated, which has a power conversion efficiency of ~1%. This work significantly enhances our understanding of the preparation and application of low temperature-processed WO₃, and highlights the potential of large area, all spray coated OSCs for sustainable commercial fabrication.
Ji, Ran; Zheng, Ding; Zhou, Chang; Cheng, Jiang; Yu, Junsheng; Li, Lu
2017-01-01
Tungsten oxide (WO3) is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL) for organic solar cells (OSCs). The properties of the WO3 transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO3 ABL exhibits low roughness, matched energy level, and high conductivity, which results in high charge transport efficiency and suppressive recombination in OSCs. As a result, compared to the OSCs based on vacuum thermal evaporated WO3, a higher power conversion efficiency of 3.63% is reached with low-temperature ultrasonic spray pyrolysized WO3 ABL. Furthermore, the mostly spray-coated OSCs with large area was fabricated, which has a power conversion efficiency of ~1%. This work significantly enhances our understanding of the preparation and application of low temperature-processed WO3, and highlights the potential of large area, all spray coated OSCs for sustainable commercial fabrication. PMID:28773177
Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel.
Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu
2016-09-30
Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO 2 and 100% CO 2 . The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm 2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO 2 is used as a shielding gas than when 100% CO 2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous.
Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel
Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu
2016-01-01
Objectives: Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. Methods: We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. Results: The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. Conclusions: The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous. PMID:27488036
Hybrid laser arc welding: State-of-art review
NASA Astrophysics Data System (ADS)
Acherjee, Bappa
2018-02-01
Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.
Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel
NASA Astrophysics Data System (ADS)
Kutsuna, Muneharu; Chen, Liang
2003-03-01
Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).
NASA Astrophysics Data System (ADS)
Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness
2017-09-01
Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.
Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei
2010-12-01
Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.
NASA Astrophysics Data System (ADS)
Sadeghimeresht, E.; Markocsan, N.; Nylén, P.
2016-12-01
Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.
Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics
NASA Astrophysics Data System (ADS)
Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.
2008-12-01
Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.
Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray
NASA Astrophysics Data System (ADS)
Sova, A.; Papyrin, A.; Smurov, I.
2009-12-01
Influence of the ceramic particle size on the process of formation of cermet coatings by cold spray is experimentally studied. A specially developed nozzle with separate injection of ceramic and metal powders into the gas stream is used in the experiments. The results obtained demonstrate that fine ceramic powders (Al2O3, SiC) produce a strong activation effect on the process of spraying soft metal (Al, Cu) and increase deposition efficiency of the metal component of the mixture compared to the pure metal spraying. At the same time, coarse ceramic powder produces a strong erosion effect that considerably reduces coating mass growth and deposition efficiency of the metal component. It is experimentally shown that the addition of fine hard powder to soft metals as Al and Cu allows to significantly reduce the “critical” temperature (the minimum gas stagnation temperature at which a nonzero particle deposition is observed) for spraying these metals.
NASA Astrophysics Data System (ADS)
Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.
2006-12-01
The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.
NASA Astrophysics Data System (ADS)
Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.
Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.
Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.
2002-03-01
Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodesmore » on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry, anode resistance, circuit resistance, electrochemical age, and air and water permeability. Models are presented for the operation of periodically-wetted and unwetted thermal spray Zn anodes from the initial energizing of the anode to the end of its service life. The models were developed in terms of bond strength, circuit resistance, anode-concrete interfacial chemistry, electrochemical age, and anode condition. The most significant results of the research are: (1) preheating concrete surfaces prior to coating with Zn is unnecessary; (2) anodes generally fail due to loss of bond strength rather than Zn consumption; (3) Unwetted anodes fail more quickly than periodically-wetted anodes; (4) 0.47-0.60 mm (12-15 mil) anode thickness is adequate for most Oregon DOT coastal impressed current CP (ICCP) installations; (5) based on bond strength, thermal spray Zn ICCP anode service life is approximately 27 years at 0.0022 A/m2 (0.2 mA/ft2); (6) anode reaction products alter the anode-concrete interface by rejecting Ca from the cement paste, by replacing it with Zn, and by the accumulation of a Zn mineral layer that includes chloride and sulfur compounds; (7) CP system circuit resistance provides an effective means for monitoring the condition of Zn ICCP anodes as they age.« less
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
NASA Astrophysics Data System (ADS)
Hardwicke, Canan U.; Lau, Yuk-Chiu
2013-06-01
Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.
Density of Spray-Formed Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr
2008-06-01
Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditionsmore » at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.« less
Influence of Surface Finishing on the Oxidation Behaviour of VPS MCrAlY Coatings
NASA Astrophysics Data System (ADS)
Fossati, Alessio; di Ferdinando, Martina; Bardi, Ugo; Scrivani, Andrea; Giolli, Carlo
2012-03-01
CoNiCrAlY coatings were produced by means of the vacuum plasma spraying (VPS) process onto CMSX-4 single crystal nickel superalloy disk substrates. As-sprayed samples were annealed at high temperatures in low vacuum. Three kinds of finishing processes were carried out, producing three types of samples: as-sprayed, mechanically smoothed by grinding, ground and PVD coated by using aluminum targets in an oxygen atmosphere. Samples were tested under isothermal conditions, in air, at 1000 °C, and up to 5000 h. Morphological, microstructural and compositional analyses were performed on the coated samples in order to assess the high temperature oxidation behavior provided by the three different surface finishing processes. Several differences were observed: grinding operations decrease the oxidation resistance, whereas the PVD process can increase the performances over longer time with respect of the as-sprayed samples.
Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja
2014-11-07
Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimental investigation on the initial expansion stage of vacuum arc on cup-shaped TMF contacts
NASA Astrophysics Data System (ADS)
Wang, Ting; Xiu, Shixin; Liu, Zixi; Zhang, Yanzhe; Feng, Dingyu
2018-02-01
Arc behavior and measures to control it directly affect the properties of vacuum circuit breakers. Nowadays, transverse magnetic field (TMF) contacts are widely used for medium voltages. A magnetic field perpendicular to the current direction between the TMF contacts makes the arc move, transmitting its energy to the whole contact and avoiding excessive local ablation. Previous research on TMF arc behavior concentrated mainly on the arc movement and less on the initial stage (from arc ignition to an unstable arc column). A significant amount of experiment results suggest that there is a short period of arc stagnation after ignition. The duration of this arc stagnation and the arc characteristics during this stage affect the subsequent arc motion and even the breaking property of interrupters. The present study is of the arc characteristics in the initial stage. Experiments were carried out in a demountable vacuum chamber with cup-shaped TMF contacts. Using a high-speed camera, both single-point arc ignition mode and multiple-point arc ignition (MPAI) mode were observed. The experimental data show that the probability of MPAI mode occurring is related to the arc current. The influences of arc-ignition mode, arc current, and contact diameter on the initial expansion process were investigated. In addition, simulations were performed to analyze the multiple arc expansion process mechanically. Based on the experimental phenomena and simulation results, the mechanism of the arc expansion motion was analyzed.
The variable polarity plasma arc welding process: Its application to the Space Shuttle external tank
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Bayless, O. E., Jr.; Jones, C. S., III; Munafo, A. P.; Wilson, W. A.
1983-01-01
The technical history of the variable polarity plasma arc (VPPA) welding process being introduced as a partial replacement for the gas shielded tungsten arc process in assembly welding of the space shuttle external tank is described. Interim results of the weld strength qualification studies, and plans for further work on the implementation of the VPPA process are included.
iMAST Quarterly, 2007 Number 1
2007-01-01
deposit the CP Al powders . Characterization of the coatings included microstructural analysis, hardness...Aluminum on Al 7075 using Kinetic Metallization and Cold Spray Processes ”, submitted to the Journal of Thermal Spray ... processing have lead to the ability to deposit very dense coatings using the HVPC process . Aluminum, aluminum alloys , copper, stainless steel
Preparation of cellulose based microspheres by combining spray coagulating with spray drying.
Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua
2014-10-13
Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing
NASA Astrophysics Data System (ADS)
Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco
2017-10-01
Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.
Thermal sprayed composite melt containment tubular component and method of making same
Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.
2002-03-19
A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.
NASA Astrophysics Data System (ADS)
Chen, Y. G.; Yang, H.; Zhang, B. Q.; Liu, Y. L.; Yin, J. C.; Wei, W.; Zhong, Y.
2017-02-01
A novel restraint spraying-Conform (RS-C) process, which directly combines spraying with Conform to process metals in one step, has been proposed. Al-20Si alloy selected as experimental material was successfully fabricated by the RS-C process. The microstructures were dominated with fine and uniform primary silicon phases. The tensile strength and elongation to failure of the Al-20Si alloy were 204 MPa and 7.2% respectively after the RS-C process. The wear resistance of the processed Al-20Si alloy was increased significantly, about 1.7 times over the as-cast ingot. The experimental results indicate that RS-C is a promising near net shape forming technology.
1980-12-01
spray process ...... ............... .. 40 9 Etched microstructures of as-received alloys ................ 42 10 Microstructures of as...Figure 8. Schematic sketch of spray process . 40 4.5 Results and Discussion 4.5.1 Alloy Procurement The desired compositions of the deposits (after... deposited samples...................... 44 11 As- Sprayed x-ray patterns obtained on two deposits made with 34 wt % Sm and one with 30 wt % Sm powders
Automatic Control Of Length Of Welding Arc
NASA Technical Reports Server (NTRS)
Iceland, William F.
1991-01-01
Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.
NASA Astrophysics Data System (ADS)
Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam
2017-04-01
Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.
NASA Astrophysics Data System (ADS)
Zhang, Gaoming; Hung, David L. S.; Xu, Min
2014-08-01
Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.
Process for forming exoergic structures with the use of a plasma
Kelly, M.D.
1987-05-29
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system
NASA Astrophysics Data System (ADS)
Picard, Michel; Schneider, Jean-Luc; Boudon, Georges
2006-12-01
Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.
NASA Astrophysics Data System (ADS)
Ascari, Alessandro; Fortunato, Alessandro; Orazi, Leonardo; Campana, Giampaolo
2012-07-01
This paper deals with an experimental campaign carried out on AA6082 8 mm thick plates in order to investigate the role of process parameters on porosity formation in hybrid LASER-GMA welding. Bead on plate weldments were obtained on the above mentioned aluminum alloy considering the variation of the following process parameters: GMAW current (120 and 180 A for short-arc mode, 90 and 130 A for pulsed-arc mode), arc transfer mode (short-arc and pulsed-arc) and mutual distance between arc and LASER sources (0, 3 and 6 mm). Porosities occurring in the fused zone were observed by means of X-ray inspection and measured exploiting an image analysis software. In order to understand the possible correlation between process parameters and porosity formation an analysis of variance statistical approach was exploited. The obtained results pointed out that GMAW current is significant on porosity formation, while the distance between the sources do not affect this aspect.
Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters
NASA Astrophysics Data System (ADS)
Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon
2017-12-01
Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Meng; Duan, YuFeng; Zhang, TieNan
2010-09-15
The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distancemore » increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)« less
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-01-01
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed. PMID:28335425
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-03-14
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.
The feasibility study of hot cell decontamination by the PFC spray method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon
2008-01-15
The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu{sub 2}O{sub 3} powder. The spray pressure was 41 kgf/cm{sup 2}, the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm{sup 2}. From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm{sup 2} and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the collection equipment. After the termination of the decontamination test, the flexible hose was cut near a toboggan. The collection equipment that contained the spent PFC solution, vacuum cup, spray nozzle and the flexible hose was stored in a radioactive waste storage tank. A feasibility study for the PFC spray decontamination method for an application to a hot cell surface was performed. The decontamination equipment that consisted of four modules operated well in the hot cell. The collection module gathered the sprayed PFC solution. The solution was purified in the filtration or distillation modules. The main characteristic of the distillation module is the use of dry ice as a coolant. The decontamination factor of IMEF hot cell was in the range from 10 to 15. It was difficult to measure the radioactivity accurately at a given time. We, however, concluded that the PFC spray decontamination method is a promising technology. It generated a small amount of secondary waste and used a non-toxic and non-conducting material. Decontamination work was performed with a little loss of the main decontamination agent. Based on the test results, we are developing an improved PFC spray decontamination process.« less
Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj
2013-01-01
Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397
Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj
2013-01-01
The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation.
Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying
NASA Astrophysics Data System (ADS)
Shan, Yanguang
2008-10-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haid, D.A.; Fietz, W.A.
1969-06-01
The effort to scale-up the plasma-arc process to produce large solenoids and saddle coils is described. Large coils (up to 16-/sup 3///sub 4/ in. and 41-in. length) of three different configurations, helical, ''pancake'' and ''saddle,'' were fabricated using the plasma arc process.
NASA Astrophysics Data System (ADS)
Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen
2016-10-01
The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.
Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering.
Serpengüzel, A; Swindal, J C; Chang, R K; Acker, W P
1992-06-20
Two-dimensional fluorescence, lasing, and stimulated Raman scattering images of a hollow-cone nozzle spray are observed. The various constituents of the spray, such as vapor, liquid ligaments, small droplets, and large droplets, are distinguished by selectively imaging different colors associated with the inelastic light-scattering processes.
Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys
2015-06-01
MICROSTRUCTURE - PROPERTY RELATIONSHIPS FOR COLD SPRAY POWDER DEPOSITION OF Al - Cu ALLOYS by Jeremy D. Leazer June 2015 Thesis Advisor: Sarath K...basic microstructure -mechanical property relationships for cold spray deposited Al - Cu alloy coatings The microstructure of the deposited materials will...the dynamic mechanical
Liquid-Solid Self-Lubricated Coatings
NASA Astrophysics Data System (ADS)
Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.
2013-02-01
Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.
Development testing of large volume water sprays for warm fog dispersal
NASA Technical Reports Server (NTRS)
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.
1986-01-01
A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
USDA-ARS?s Scientific Manuscript database
The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....
A deep look into the spray coating process in real-time—the crucial role of x-rays
NASA Astrophysics Data System (ADS)
Roth, Stephan V.
2016-10-01
Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.
NASA Astrophysics Data System (ADS)
Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.
2014-01-01
Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.
Behavior and structure of metal vapor arc plasma between molten electrodes
NASA Astrophysics Data System (ADS)
Zanner, F. J.; Williamson, R. L.; Hareland, W. A.; Bertram, L. A.
A metal vapor arc is utilized in the industrially important vacuum arc remelting (VAR) process to produce materials by melting and resolidification which have improved structure and chemical homogeneity. Homogeneity is dependent on achieving quasi-steady conditions in the plasma because of its thermal and MHD coupling with the molten pool atop the ingot. Optimal operating conditions of low pressure (approx. = 0.01 torr) and short electrode gap (less than 15 mm) produce a diffuse arc and cathode spot behavior similar to that observed for the vacuum breaker arc. Under these conditions the arc provides a quasi-steady heat source that is considered to be the bench mark arc of the VAR process. Previous work has shown that deviation from the bench mark arc behavior can occur under production conditions, and is caused by electrode irregularities and liberation of gases such as CO from the molten pool. This study is an effort to characterize these behavioral deviations and discover operational conditions which stabilize the bench mark arc.
Inverter-based GTA welding machines improve fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammons, M.
2000-05-01
While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA powermore » sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.« less
Evaporating Spray in Supersonic Streams Including Turbulence Effects
NASA Technical Reports Server (NTRS)
Balasubramanyam, M. S.; Chen, C. P.
2006-01-01
Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.
Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.
Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi
2015-06-01
This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement
Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali
2013-01-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535
The design and scale-up of spray dried particle delivery systems.
Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David
2018-01-01
The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali
2015-09-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.
Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction
NASA Astrophysics Data System (ADS)
Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon
2017-01-01
Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.
Oxidation and particle deposition modeling in plasma spraying of Ti-6Al-4V/SiC fiber composites
NASA Astrophysics Data System (ADS)
Cochelin, E.; Borit, F.; Frot, G.; Jeandin, M.; Decker, L.; Jeulin, D.; Taweel, B. Al; Michaud, V.; Noël, P.
1999-03-01
Plasma spraying is known to be a promising process for the manufacturing of Ti/SiC long-fiber composites. However, some improvements remain for this process to be applied in an industrial route. These include: oxygen contamination of the sprayed material through that of titanium particles before and during spraying, damage to fibers due to a high level of thermal stresses induced at the spraying stage, adequate deposition of titanium-base powder to achieve a low-porosity matrix and good impregnation of the fiber array. This article deals with work that resulted in a threefold study of the process. Oxidation was studied using electron microprobe analysis of elementary particles quenched and trapped into a closed box at various given flight distances. Oxygen diffusion phenomena within the particles are discussed from a preliminary theoretical approach coupled with experimental data. Isothermal and thermomechanical calculations were made using the ABAQUS code to determine stresses arising from contact of a liquid Ti-6Al-4V particle onto a SiC fiber. On the scale of the sprayed powder flow, a two-dimensional new type of model simulating the deposition of droplets onto a substrate was developed. This new type of model is based on a lattice-gas automaton that reproduces the hydrodynamical behavior of fluids.
Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm
NASA Astrophysics Data System (ADS)
Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.
2018-05-01
A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.
Method for thermally spraying crack-free mullite coatings on ceramic-based substrates
NASA Technical Reports Server (NTRS)
Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Heidorn, Raymond W. (Inventor)
2001-01-01
A process for depositing a mullite coating on a silicon-based material, such as those used to form articles exposed to high temperatures and including the hostile thermal environment of a gas turbine engine. The process is generally to thermally spray a mullite powder to form a mullite layer on a substrate, in which the thermal spraying process is performed so that the mullite powder absorbs a sufficient low level of energy from the thermal source to prevent evaporation of silica from the mullite powder. Processing includes deposition parameter adjustments or annealing to maintain or reestablish phase equilibrium in the mullite layer, so that through-thickness cracks in the mullite layer are avoided.
Method for thermally spraying crack-free mullite coatings on ceramic-based substrates
NASA Technical Reports Server (NTRS)
Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Heidorn, Raymond W. (Inventor)
2000-01-01
A process for depositing a mullite coating on a silicon-based material, such as those used to form articles exposed to high temperatures and including the hostile thermal environment of a gas turbine engine. The process is generally to thermally spray a mullite powder to form a mullite layer on a substrate, in which the thermal spraying process is performed so that the mullite powder absorbs a sufficient low level of energy from the thermal source to prevent evaporation of silica from the mullite powder. Processing includes deposition parameter adjustments or annealing to maintain or reestablish phase equilibrium in the mullite layer, so that through-thickness cracks in the mullite layer are avoided.
Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc
NASA Astrophysics Data System (ADS)
Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin
2012-10-01
The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.
Plasma arc welding repair of space flight hardware
NASA Technical Reports Server (NTRS)
Hoffman, David S.
1993-01-01
A technique to weld repair the main combustion chamber of Space Shuttle Main Engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloy-Z, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloy-Z while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.
Guidelines in the Choice of Parameters for Hybrid Laser Arc Welding with Fiber Lasers
NASA Astrophysics Data System (ADS)
Eriksson, I.; Powell, J.; Kaplan, A.
Laser arc hybrid welding has been a promising technology for three decades and laser welding in combination with gas metal arc welding (GMAW) has shown that it is an extremely promising technique. On the other hand the process is often considered complicated and difficult to set up correctly. An important factor in setting up the hybrid welding process is an understanding of the GMAW process. It is especially important to understand how the wire feed rate and the arc voltage (the two main parameters) affect the process. In this paper the authors show that laser hybrid welding with a 1 μm laser is similar to ordinary GMAW, and several guidelines are therefore inherited by the laser hybrid process.
Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng
2017-05-01
Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon
1997-04-01
The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less
Unstable behavior of anodic arc discharge for synthesis of nanomaterials
Gershman, Sophia; Raitses, Yevgeny
2016-07-27
A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10 -3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablationmore » regime.« less
Unstable behavior of anodic arc discharge for synthesis of nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershman, Sophia; Raitses, Yevgeny
A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10 -3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablationmore » regime.« less
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Process for forming exoergic structures with the use of a plasma
Kelly, Michael D.
1989-02-21
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten, without chemically reacting in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
Dilution in single pass arc welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, J.N.; Marder, A.R.
1996-06-01
A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiencymore » can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Gabrielle L; Magnotti, Gina M; Knox, Benjamin W
Quantitative measurements of the primary breakup process in diesel sprays are lacking due to a range of experimental and diagnostic challenges, including: high droplet number density environments, very small characteristic drop size scales (~1-10 μm), and high characteristic velocities in the primary breakup region (~600 m/s). Due to these challenges, existing measurement techniques have failed to resolve a sufficient range of the temporal and spatial scales involved and much remains unknown about the primary atomization process in practical diesel sprays. To gain a better insight into this process, we have developed a joint visible and x-ray extinction measurement technique tomore » quantify axial and radial distributions of the path-integrated Sauter Mean Diameter (SMD) and Liquid Volume Fraction (LVF) for diesel-like sprays. This technique enables measurement of the SMD in regions of moderate droplet number density, enabling construction of the temporal history of drop size development within practical diesel sprays. The experimental campaign was conducted jointly at the Georgia Institute of Technology and Argonne National Laboratory using the Engine Combustion Network “Spray D” injector. X-ray radiography liquid absorption measurements, conducted at the Advanced Photon Source at Argonne, quantify the liquid-fuel mass and volume distribution in the spray. Diffused back-illumination liquid scattering measurements were conducted at Georgia Tech to quantify the optical thickness throughout the spray. By application of Mie-scatter equations, the ratio of the absorption and scattering extinction measurements is demonstrated to yield solutions for the SMD. This work introduces the newly developed scattering-absorption measurement technique and highlights the important considerations that must be taken into account when jointly processing these measurements to extract the SMD. These considerations include co-alignment of measurements taken at different institutions, identification of viable regions where the measurement ratio can be accurately interpreted, and uncertainty analysis in the measurement ratio and resulting SMD. Because the measurement technique provides the spatial history of the SMD development, it is expected to be especially informative to the diesel spray modeling community. Results from this work will aid in understanding the effect of ambient densities and injection pressures on primary breakup and help assess the appropriateness of spray submodels for engine computational fluid dynamics codes.« less
The Process of Providing Humanitarian Assistance: A Department of Defense Perspective.
1995-09-01
to issue verbal warnings and show force. The command later added cayenne pepper spray as another means of nondeadly force to be used after others...equipment • Ensure that troops know that cayenne pepper spray is not a substitute for deadly force (i.e., even if they have the spray, they are still...Consider methods of using proportionate force. • Obtain approval for the use of cayenne pepper spray before an operation starts. • Decide whether
Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.
The report gives results of a comprehensive, pilot, dry, SO2 scrubbing test program to determine the effects of process variables on SO2 removal. In the spray dryer, stoichiometric ratio, flue gas temperature approach to adiabatic saturation, and temperature drop across the spray...
Controlling in situ crystallization of pharmaceutical particles within the spray dryer.
Woo, Meng Wai; Lee, May Ginn; Shakiba, Soroush; Mansouri, Shahnaz
2017-11-01
Simultaneous solidification and in situ crystallization (or partial crystallization) of droplets within the drying chamber are commonly encountered in the spray drying of pharmaceuticals. The crystallinity developed will determine the functionality of the powder and its stability during storage. This review discusses strategies that can be used to control the in situ crystallization process. Areas covered: The premise of the strategies discussed focuses on the manipulation of the droplet drying rate relative to the timescale of crystallization. This can be undertaken by the control of the spray drying operation, by the use of volatile materials and by the inclusion of additives. Several predictive approaches for in situ crystallization control and new spray dryer configuration strategies are further discussed. Expert opinion: Most reports, hitherto, have focused on the crystallinity of the spray dried material or the development of crystallinity during storage. More mechanistic understanding of the in situ crystallization process during spray drying is required to guide product formulation trials. The key challenge will be in adapting the mechanistic approach to the myriad possible formulations in the pharmaceutical industry.
Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.
Snyder, Herman E
2012-07-01
Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.
Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka
2003-02-01
We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.
Study of thermite mixture consolidated by the cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.
2014-05-01
The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
More About Arc-Welding Process for Making Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M.; Leidecker, Henning
2005-01-01
High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.
Vacuum Deposition From A Welding Torch
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1993-01-01
Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.
Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem
2007-04-01
Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.
Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger
2012-06-01
Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.
Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie
2015-01-01
The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519
NASA Astrophysics Data System (ADS)
Wesling, V.; Schram, A.; Müller, T.; Treutler, K.
2016-03-01
Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.
Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi
2013-04-15
Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.
Ormes, James D; Zhang, Dan; Chen, Alex M; Hou, Shirley; Krueger, Davida; Nelson, Todd; Templeton, Allen
2013-02-01
There has been a growing interest in amorphous solid dispersions for bioavailability enhancement in drug discovery. Spray drying, as shown in this study, is well suited to produce prototype amorphous dispersions in the Candidate Selection stage where drug supply is limited. This investigation mapped the processing window of a micro-spray dryer to achieve desired particle characteristics and optimize throughput/yield. Effects of processing variables on the properties of hypromellose acetate succinate were evaluated by a fractional factorial design of experiments. Parameters studied include solid loading, atomization, nozzle size, and spray rate. Response variables include particle size, morphology and yield. Unlike most other commercial small-scale spray dryers, the ProCepT was capable of producing particles with a relatively wide mean particle size, ca. 2-35 µm, allowing material properties to be tailored to support various applications. In addition, an optimized throughput of 35 g/hour with a yield of 75-95% was achieved, which affords to support studies from Lead-identification/Lead-optimization to early safety studies. A regression model was constructed to quantify the relationship between processing parameters and the response variables. The response surface curves provide a useful tool to design processing conditions, leading to a reduction in development time and drug usage to support drug discovery.
A user-friendly model for spray drying to aid pharmaceutical product development.
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2017-12-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
NASA Astrophysics Data System (ADS)
Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.
2018-01-01
Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.
High-speed visualization of fuel spray impingement in the near-wall region using a DISI injector
NASA Astrophysics Data System (ADS)
Kawahara, N.; Kintaka, K.; Tomita, E.
2017-02-01
We used a multi-hole injector to spray isooctane under atmospheric conditions and observed droplet impingement behaviors. It is generally known that droplet impact regimes such as splashing, deposition, or bouncing are governed by the Weber number. However, owing to its complexity, little has been reported on microscopic visualization of poly-dispersed spray. During the spray impingement process, a large number of droplets approach, hit, then interact with the wall. It is therefore difficult to focus on a single droplet and observe the impingement process. We solved this difficulty using high-speed microscopic visualization. The spray/wall interaction processes were recorded by a high-speed camera (Shimadzu HPV-X2) with a long-distance microscope. We captured several impinging microscopic droplets. After optimizing the magnification and frame rate, the atomization behaviors, splashing and deposition, were recorded. Then, we processed the images obtained to determine droplet parameters such as the diameter, velocity, and impingement angle. Based on this information, the critical threshold between splashing and deposition was investigated in terms of the normal and parallel components of the Weber number with respect to the wall. The results suggested that, on a dry wall, we should set the normal critical Weber number to 300.
Alvarez, J.L.; Watson, L.D.
1988-01-21
An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid is sheared into small particles which are of a size and uniformity to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas. 5 figs.
NASA Astrophysics Data System (ADS)
Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun
2017-10-01
The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.
Probing topological Fermi-Arcs and bulk boundary correspondence in the Weyl semimetal TaAs
NASA Astrophysics Data System (ADS)
Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim
The relation between surface Fermi-arcs and bulk Weyl cones in a Weyl semimetal, uniquely allows to study the notion of bulk to surface correspondence. We visualize these topological Fermi arc states on the surface of the Weyl semi-metal tantalum arsenide using scanning tunneling spectroscopy. Its surface hosts 12 Fermi arcs amongst several other surface bands of non-topological origin. We detect the possible scattering processes of surface bands in which Fermi arcs are involved including intra- and inter arc scatterings and arc-trivial scatterings. Each of the measured scattering processes entails additional information on the unique nature of Fermi arcs in tantalum arsenide: their contour, their energy-momentum dispersion and its relation with the bulk Weyl nodes. We further identify a sharp distinction between the wave function's spatial distribution of topological versus trivial bands. The non-topological surface bands, which are derived from the arsenic dangling bonds, are tightly bound to the arsenic termination layer. In contrast, the Fermi-arc bands reside on the deeper tantalum layer, penetrating into the bulk, which is predominantly derived from tantalum orbitals.
Computational Modeling of Arc-Slag Interaction in DC Furnaces
NASA Astrophysics Data System (ADS)
Reynolds, Quinn G.
2017-02-01
The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.
Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca
2012-01-01
The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.
Karl, Susan M.; Oswald, P.J.; Hults, Chad P.
2015-01-01
This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.
Chamizo-Ampudia, Alejandro; Sanz-Luque, Emanuel; Llamas, Ángel; Ocaña-Calahorro, Francisco; Mariscal, Vicente; Carreras, Alfonso; Barroso, Juan B; Galván, Aurora; Fernández, Emilio
2016-10-01
Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.
2012-02-01
The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.
9 CFR 590.544 - Spray process powder; definitions and requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process powder; definitions and requirements. 590.544 Section 590.544 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS...
Summary of the Blackmo 88 spray experiment
D. R. Miller; W. E. Yendol; M. L. McManus; D. E. Anderson; K. Mierzejewski
1991-01-01
The Blackmo 88 spray trial experiment was conducted for two primary purposes: To quantify the effects of local micrometeorological processes, in and near the canopy, on the deposition patterns of aerially applied BT in a mature oak forest; To generate a data set containing simultaneous measurements of spray deposition and detailed micrometeorology, in a canopy of known...
Monitoring Coating Thickness During Plasma Spraying
NASA Technical Reports Server (NTRS)
Miller, Robert A.
1990-01-01
High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.
Intelligent Processing of Ferroelectric Thin Films
1993-09-03
the acetate precursors. The results from these experiments involving coprecipitation, hydrothermal , spray pyrolysis and freeze drying have shown that...Spray Pyrolysis (SP) D. Hydrothermal Processing (HP) The powder produced by each process was characterized by X-ray diffraction (XRD) and scanning...precursors were used as described above. Instead of ammonia solution, an oxalic acid solution was used as the3 precipitating agent. The precipitants
A Novel Nonelectrolytic Process for Chromium and Nickel Coating
2015-06-01
thermal spraying and involves similar protocols for coating an object. The process proceeds after powder is injected into a plasma jet then superheated...HVOF) High velocity oxygen fuel coating is characteristic of a thermal spray coating process , enhancing anti-corrosion and anti-wear properties of...observations due to limited metal deposition on the surface during treatment. No powder particles were produced during this RES process . a. Optical
NASA Astrophysics Data System (ADS)
Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.
2014-11-01
In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.
Automating the Fireshed Assessment Process with ArcGIS
Alan Ager; Klaus Barber
2006-01-01
A library of macros was developed to automate the Fireshed process within ArcGIS. The macros link a number of vegetation simulation and wildfire behavior models (FVS, SVS, FARSITE, and FlamMap) with ESRI geodatabases, desktop software (Access, Excel), and ArcGIS. The macros provide for (1) an interactive linkage between digital imagery, vegetation data, FVS-FFE, and...
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A
2013-12-01
The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.
2017-09-01
Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.
Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id
2014-02-24
ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine)more » and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.« less
Odors regulate Arc expression in neuronal ensembles engaged in odor processing.
Guthrie, K; Rayhanabad, J; Kuhl, D; Gall, C
2000-06-26
Synaptic activity is critical to developmental and plastic processes that produce long-term changes in neuronal connectivity and function. Genes expressed by neurons in an activity-dependent fashion are of particular interest since the proteins they encode may mediate neuronal plasticity. One such gene encodes the activity-regulated cytoskeleton-associated protein, Arc. The present study evaluated the effects of odor stimulation on Arc expression in rat olfactory bulb. Arc mRNA was rapidly increased in functionally linked cohorts of neurons topographically activated by odor stimuli. These included neurons surrounding individual glomeruli, mitral cells and transynaptically activated granule cells. Dendritic Arc immunoreactivity was also increased in odor-activated glomeruli. Our results suggest that odor regulation of Arc expression may contribute to activity-dependent structural changes associated with olfactory experience.
Analysis of large-scale tablet coating: Modeling, simulation and experiments.
Boehling, P; Toschkoff, G; Knop, K; Kleinebudde, P; Just, S; Funke, A; Rehbaum, H; Khinast, J G
2016-07-30
This work concerns a tablet coating process in an industrial-scale drum coater. We set up a full-scale Design of Simulation Experiment (DoSE) using the Discrete Element Method (DEM) to investigate the influence of various process parameters (the spray rate, the number of nozzles, the rotation rate and the drum load) on the coefficient of inter-tablet coating variation (cv,inter). The coater was filled with up to 290kg of material, which is equivalent to 1,028,369 tablets. To mimic the tablet shape, the glued sphere approach was followed, and each modeled tablet consisted of eight spheres. We simulated the process via the eXtended Particle System (XPS), proving that it is possible to accurately simulate the tablet coating process on the industrial scale. The process time required to reach a uniform tablet coating was extrapolated based on the simulated data and was in good agreement with experimental results. The results are provided at various levels of details, from thorough investigation of the influence that the process parameters have on the cv,inter and the amount of tablets that visit the spray zone during the simulated 90s to the velocity in the spray zone and the spray and bed cycle time. It was found that increasing the number of nozzles and decreasing the spray rate had the highest influence on the cv,inter. Although increasing the drum load and the rotation rate increased the tablet velocity, it did not have a relevant influence on the cv,inter and the process time. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.
2011-04-01
This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.
Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas
NASA Astrophysics Data System (ADS)
Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.
2017-02-01
Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.
NASA Astrophysics Data System (ADS)
Archibald, Reid S.
A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.
Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N
2012-04-01
The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.
NASA Astrophysics Data System (ADS)
Göhler, Daniel; Stintz, Michael
2014-08-01
Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.
[Study on Xinyueshu spray drying assisted with copovidone and its effect on powder property].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Hu, Shao-Ying; Jia, Xiao-Bin
2013-12-01
To study the application characteristics of copovidone (PVP-S630) in Xinyueshu extracts during the spray drying process, and its effect on such pharmaceutical properties as micromeritics and drug release behavior. PVP-S630 was added into Xinyueshu extracts to study on the spray drying, the effect of different dosages of PVP-S630 against the wall sticking effect of the spray drying, as well as the power property of Xinyueshu spray drying power and the dissolution in vitro behavior of the effective component of hyperoside. The results showed that PVP-S630 revealed a significant anti-wall sticking effect, with no notable change in the grain size of the spray drying power, increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior of hyperoside. It was worth further studying the application of PVP-S630 in spray drying power of traditional Chinese medicine.
No Heat Spray Drying Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beetz, Charles
No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less
Optimization of Cold Spray Deposition of High-Density Polyethylene Powders
NASA Astrophysics Data System (ADS)
Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.
2017-10-01
When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.
Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing
NASA Astrophysics Data System (ADS)
MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.
2017-04-01
Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.
Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer
NASA Astrophysics Data System (ADS)
Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore
2017-11-01
The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
NASA Astrophysics Data System (ADS)
O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto
2015-10-01
Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.
NASA Astrophysics Data System (ADS)
Liu, Shuangyu; Liu, Fengde; Zhang, Hong; Shi, Yan
2012-06-01
In this paper, CO 2 laser-metal active gas (MAG) hybrid welding technique is used to weld high strength steel and the optimized process parameters are obtained. Using LD Pumped laser with an emission wavelength of 532 nm to overcome the strong interference from the welding arc, a computer-based system is developed to collect and visualize the waveforms of the electrical welding parameters and metal transfer processes in laser-MAG. The welding electric signals of hybrid welding processes are quantitatively described and analyzed using the ANALYSATOR HANNOVER. The effect of distance between laser and arc ( DLA) on weld bead geometry, forming process of weld shape, electric signals, arc characteristic and droplet transfer behavior is investigated. It is found that arc characteristic, droplet transfer mode and final weld bead geometry are strongly affected by the distance between laser and arc. The weld bead geometry is changed from "cocktail cup" to "cone-shaped" with the increasing DLA. The droplet transfer mode is changed from globular transfer to projected transfer with the increasing DLA. Projected transfer mode is an advantage for the stability of hybrid welding processes.
Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.
Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P
2018-04-04
Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
Optimising the Encapsulation of an Aqueous Bitter Melon Extract by Spray-Drying
Tan, Sing Pei; Kha, Tuyen Chan; Parks, Sophie; Stathopoulos, Costas; Roach, Paul D.
2015-01-01
Our aim was to optimise the encapsulation of an aqueous bitter melon extract by spray-drying with maltodextrin (MD) and gum Arabic (GA). The response surface methodology models accurately predicted the process yield and retentions of bioactive concentrations and activity (R2 > 0.87). The optimal formulation was predicted and validated as 35% (w/w) stock solution (MD:GA, 1:1) and a ratio of 1.5:1 g/g of the extract to the stock solution. The spray-dried powder had a high process yield (66.2% ± 9.4%) and high retention (>79.5% ± 8.4%) and the quality of the powder was high. Therefore, the bitter melon extract was well encapsulated into a powder using MD/GA and spray-drying. PMID:28231214
Processing, Properties and Arc Jet Testing of HfB2/SiC
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Beckman, Sarah; Irby, Edward; Ellerby, Don; Gasch, Matt; Gusman, Michael
2004-01-01
Contents include the following: Background on Ultra High Temperature Ceramics - UHTCs. Summary UNTC processing: power processing, scale-up. Preliminary material properties: mechanical, thermal. Arc jet testing: flat face models, cone models. Summary.
The study on injection parameters of selected alternative fuels used in diesel engines
NASA Astrophysics Data System (ADS)
Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.
2016-09-01
The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).
Bidirectional light-scattering image processing method for high-concentration jet sprays
NASA Astrophysics Data System (ADS)
Shimizu, I.; Emori, Y.; Yang, W.-J.; Shimoda, M.; Suzuki, T.
1985-01-01
In order to study the distributions of droplet size and volume density in high-concentration jet sprays, a new technique is developed, which combines the forward and backward light scattering method and an image processing method. A pulsed ruby laser is used as the light source. The Mie scattering theory is applied to the results obtained from image processing on the scattering photographs. The time history is obtained for the droplet size and volume density distributions, and the method is demonstrated by diesel fuel sprays under various injecting conditions. The validity of the technique is verified by a good agreement in the injected fuel volume distributions obtained by the present method and by injection rate measurements.
Plasma arc welding repair of space flight hardware
NASA Technical Reports Server (NTRS)
Hoffman, David S.
1993-01-01
Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle
Lee, Changyeol; Wada, Ikuko
2017-01-01
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.
Lee, Changyeol; Wada, Ikuko
2017-06-29
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.
Watanabe, Satoshi; Kashiwagi, Rei; Matsumoto, Mutsuyoshi
2017-03-01
We discuss an alternate spray-coating technique for the direct fabrication of hydroxyapatite films using metal masks, suction-type spray nozzles and two calcification solutions of calcium hydroxide and phosphoric acid aqueous solutions. Hydroxyapatite films were formed only on the hydrophobic surface of the substrates. Scanning electron microscopy and energy dispersive X-ray spectroscopy showed that the spray-coated films consisted of hydroxyapatite nanoparticles. The Ca/P ratio was estimated to be about 1.26. X-ray diffraction patterns of the spray-coated films almost coincided with those of the hydroxyapatite powders, showing that the spray-coated films consisted of hydroxyapatite nanoparticles. Dot arrays of hydroxyapatite films at a diameter of 100 μm were formed by tuning the concentrations of calcium hydroxide and phosphoric acid aqueous solutions. This technique allows for the direct fabrication of the hydroxyapatite films without crystal growth process in hydroxyapatite precursors, the scaffolds of crystal growth such as biocompatibility SiO 2 -CaO glasses, or electrophoresis processes. By using this technique, large-area ceramic films with biocompatibility will be micropatterned with minimized material consumption, short fabrication time, and reduced equipment investments.
Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.
Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review
NASA Astrophysics Data System (ADS)
Gardon, M.; Guilemany, J. M.
2014-04-01
Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.
Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas
2015-01-01
Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539
A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240
Light extinction method on high-pressure diesel injection
NASA Astrophysics Data System (ADS)
Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.
1995-09-01
A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.
Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser
NASA Astrophysics Data System (ADS)
Kim, Taewon; Suga, Yasuo; Koike, Takashi
TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.
Producing Production Level Tooling in Prototype Timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mc Hugh, Kevin Matthew; Knirsch, J.
A new rapid solidification process machine will be able to produce eight-inch diameter by six-inch thick finished cavities at the rate of one per hour - a rate that will change the tooling industry dramatically. Global Metal Technologies, Inc. (GMTI) (Solon, OH) has signed an exclusive license with Idaho National Engineered and Environmental Laboratories (INEEL) (Idaho Falls, ID) for the development and commercialization of the rapid solidification process (RSP tooling). The first production machine is scheduled for delivery in July 2001. The RSP tooling process is a method of producing production level tooling in prototype timing. The process' inventor, Kevinmore » McHugh, describes it as a rapid solidification method, which differentiates it from the standard spray forming methods. RSP itself is relatively straightforward. Molten metal is sprayed against the ceramic pattern, replicating the pattern's contours, surface texture and details. After spraying, the molten tool steel is cooled at room temperature and separated from the pattern. The irregular periphery of the freshly sprayed insert is squared off, either by machining or, in the case of harder tool steels, by wire EDM. XX« less
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
Optimization of Robotic Spray Painting process Parameters using Taguchi Method
NASA Astrophysics Data System (ADS)
Chidhambara, K. V.; Latha Shankar, B.; Vijaykumar
2018-02-01
Automated spray painting process is gaining interest in industry and research recently due to extensive application of spray painting in automobile industries. Automating spray painting process has advantages of improved quality, productivity, reduced labor, clean environment and particularly cost effectiveness. This study investigates the performance characteristics of an industrial robot Fanuc 250ib for an automated painting process using statistical tool Taguchi’s Design of Experiment technique. The experiment is designed using Taguchi’s L25 orthogonal array by considering three factors and five levels for each factor. The objective of this work is to explore the major control parameters and to optimize the same for the improved quality of the paint coating measured in terms of Dry Film thickness(DFT), which also results in reduced rejection. Further Analysis of Variance (ANOVA) is performed to know the influence of individual factors on DFT. It is observed that shaping air and paint flow are the most influencing parameters. Multiple regression model is formulated for estimating predicted values of DFT. Confirmation test is then conducted and comparison results show that error is within acceptable level.
Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Long; Jiang, Bailing; Ge, Yanfeng
2013-05-21
Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on themore » surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.« less
Arc-textured high emittance radiator surfaces
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1991-01-01
High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.
Alvarez, Joseph L.; Watson, Lloyd D.
1989-01-01
An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid are mixed in a converging-diverging nozzle where the liquid is sheared into small particles which are of a size and uniformly to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas.
NASA Astrophysics Data System (ADS)
Rokni, M. R.; Nutt, S. R.; Widener, C. A.; Champagne, V. K.; Hrabe, R. H.
2017-08-01
In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
1998-01-01
Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.
McIntyre, Christa K; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D; Steward, Oswald; Guzowski, John F; McGaugh, James L
2005-07-26
Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the beta-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance.
McIntyre, Christa K.; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D.; Steward, Oswald; Guzowski, John F.; McGaugh, James L.
2005-01-01
Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the β-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance. PMID:16020527
Trends and problems in CdS/Cu/x/S thin film solar cells - A review
NASA Astrophysics Data System (ADS)
Martinuzzi, S.
1982-03-01
The methods currently used to fabricate CdS/CuS solar cells are reviewed, along with comparisons of the effects on performance of the various preparation techniques. Attention is given to thermal evaporation, sputter, and chemical spray formation of the CdS layers, noting that most experience is presently with the evaporative and spray processes. CuS layers are formed in dip or wet process chemiplating, electroplating, vacuum deposition in flash and sputter modes, solid state reaction, or spray deposition. Any of the CuS film techniques can be used with any of the CdS layer processes, while spraying and sputtering are noted to offer the best alternatives for industrial production. Band profiles, I-V characteristics, photocurrent levels, and capacitance-voltage characteristics are outlined for the differently formed cells, and CdS/CuS and CdZnS/CuS cells are concluded to exhibit the highest performance features. Areas of improvement necessary to bring the cells to commercial status are discussed.
Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors
NASA Astrophysics Data System (ADS)
Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar
2018-02-01
The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.
Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation.
Jensen, Ditte Marie Krohn; Cun, Dongmei; Maltesen, Morten Jonas; Frokjaer, Sven; Nielsen, Hanne Mørck; Foged, Camilla
2010-02-25
Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters. Concentration, carbohydrate excipient (trehalose, lactose and mannitol) and the ratio of NP to excipient were varied to monitor the effects on moisture content, particle morphology, particle size and powder yield. The identified optimum conditions were applied for spray drying of siRNA-loaded nanocomposite microparticles, resulting in a product with a low water content (0.78% w/w) and an aerodynamic particle diameter considered suitable for inhalation. The use of mannitol in the formulation allowed a significantly lower moisture content than trehalose and lactose. The inclusion of 50% (w/w) or higher amounts of NPs resulted in a marked change in the surface morphology of the spray-dried particles. Importantly, the integrity and biological activity of the siRNA were preserved during the spray drying process. In conclusion, the present results show that spray drying is a suitable technique for producing nanocomposite microparticles comprising siRNA-containing PLGA NPs for potential use in inhalation therapy. Copyright 2009 Elsevier B.V. All rights reserved.
Corrosion behavior of HVOF coated sheets
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Abdul-Aleem, B. J.; Khalid, M.
2003-12-01
High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.
Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow
NASA Astrophysics Data System (ADS)
Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo
2017-05-01
The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.
NASA Astrophysics Data System (ADS)
Hasan, S.; Stokes, J.
2011-01-01
High Velocity Oxy-Fuel (HVOF) has the potential to produce hydroxyapatite (HA; Bio-ceramic) coatings based on its experience with other sprayed ceramic materials. This technique should offer mechanical and biological results comparable to other thermal spraying processes, such as atmospheric plasma thermal spray, currently FDA approved for HA deposition. Deposition of HA via HVOF is a new venture especially using the Sulzer Metco Diamond Jet (DJ) process, and the aim of this article was to establish this technique's potential in providing superior HA coating results compared to the FDA-approved plasma spray technique. In this research, a Design of Experiment (DOE) model was developed to optimize the Sulzer Metco DJ HVOF process for the deposition of HA. In order to select suitable ranges for the production of HA coatings, the parameters were first investigated. Five parameters (factors) were researched over two levels namely: oxygen flow rate, propylene flow rate, air flow rate, spray distance, and powder flow rate. Coating crystallinity and purity were measured at the surface of each sample as the responses to the factors used. The research showed that propylene, air flow rate, spray distance, and powder feed rate had the largest effect on the responses, and the study aimed to find the preferred optimized settings to achieve high crystallinity and purity of percentages of up to 95%. This research found crystallinity and purity values of 93.8 and 99.8%, respectively, for a set of HVOF parameters which showed improvement compared to the crystallinity and purity values of 87.6 and 99.4%, respectively, found using the FDA-approved Sulzer Metco Atmospheric Plasma thermal spray process. Hence, a new technique for HA deposition now exists using the DJ HVOF facility; however, other mechanical and biorelated properties must also be assessed.
Dredge Mooring Study Recommended Design, Phase 2 Report
1992-05-01
processes are acceptable under this Specification: a. Shielded Metal Arc Welding (SMAW). b. Gas Tungsten-Arc Welding ( GTAW or TIG). c. Gas Metal-Arc...the GTAW process. 11.3.9.3 For welding of stainless steel pipe, the GTAW process shall be used on the root pass of open butt joints welded from one...whichever is greater, from each edge of the weld (t = wall thickness of the thickest part being welded). 11.3.11.5 Postweld heat treatment for chromium
Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.
Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla
2013-05-10
Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.
Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca
2012-01-01
The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330
Draut, Amy E.; Clift, Peter D.
2006-01-01
Sediment deposited around oceanic volcanic ares potentially provides the most complete record of the tectonic and geochemical evolution of active margins. The use of such tectonic and geochemical records requires an accurate understanding of sedimentary dynamics in an arc setting: processes of deposition and reworking that affect the degree to which sediments represent the contemporaneous volcanism at the time of their deposition. We review evidence from the modern Mariana and Tonga arcs and the ancient arc crustal section in the Lower Jurassic Talkeetna Formation of south-central Alaska, and introduce new data from the Mariana Arc, to produce a conceptual model of volcaniclastic sedimentation processes in oceanic arc settings. All three arcs are interpreted to have formed in tectonically erosive margin settings, resulting in long-term extension and subsidence. Debris aprons composed of turbidites and debris flow deposits occur in the immediate vicinity of arc volcanoes, forming relatively continuous mass-wasted volcaniclastic records in abundant accommodation space. There is little erosion or reworking of old volcanic materials near the arc volcanic front. Tectonically generated topography in the forearc effectively blocks sediment flow from the volcanic front to the trench; although some canyons deliver sediment to the trench slope, most volcaniclastic sedimentation is limited to the area immediately around volcanic centers. Arc sedimentary sections in erosive plate margins can provide comprehensive records of volcanism and tectonism spanning < 10 My. The chemical evolution of a limited section of an oceanic arc may be best reconstructed from sediments of the debris aprons for intervals up to ~ 20 My but no longer, because subduction erosion causes migration of the forearc basin crust and its sedimentary cover toward the trench, where there is little volcaniclastic sedimentation and where older sediments are dissected and reworked along the trench slope.
Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings
NASA Astrophysics Data System (ADS)
Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.
2011-01-01
In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.
In Situ Monitoring of Particle Consolidation During Low Pressure Cold Spray by Ultrasonic Techniques
NASA Astrophysics Data System (ADS)
Maev, R. Gr.; Titov, S.; Leshchynsky, V.; Dzhurinskiy, D.; Lubrick, M.
2011-06-01
This study attempts to test the viability of the examination of the cold spray process using acoustic methods, specifically in situ testing during the actual spray process itself. Multiple composites studied by flat and multi-channel transducers as well as the results of actual online measurements are presented. It is shown that the final thickness as well as the dynamics of buildup can be evaluated (including plotting rates of buildup). Cross sections of the coating thickness are also easy to obtain and show true profiles of the coating. The data can also be used to generate real estimates for nozzle speed and spray diameter. Finally, comparisons of real thickness and acoustically estimated thickness show a close linear relationship. The data clearly show that online acoustic measurement is a viable method for estimating thickness buildup.
Synthesis and Characterization of Aluminum-Nanodiamond Composite Powders by High Energy Ball Milling
2011-12-01
al , “ Cold - spray processing of high density nanocrystalline aluminum alloy 2009...2980, 1996. [21] L. Ajdelsztajn, et al , “ Cold spray deposition of nanocrystalline aluminum alloys ,” Metallurgical and Materials Transactions, vol...form the coating or deposit [9]. Figure 2. Diagram of a typical cold spray system [9] It has been proven that pure metals or composite powders
Corrosion resistant neutron absorbing coatings
Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA
2012-05-29
A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.
Corrosion resistant neutron absorbing coatings
Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor
2013-11-12
A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.
NASA Astrophysics Data System (ADS)
Ma, X.; Ruggiero, P.
2018-04-01
Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.
Automated Plasma Spray (APS) process feasibility study
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1981-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.
Development and validation of spray models for investigating diesel engine combustion and emissions
NASA Astrophysics Data System (ADS)
Som, Sibendu
Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.
Llop, Jordi; Gil, Emilio; Gallart, Montserrat; Contador, Felipe; Ercilla, Mireia
2016-03-01
Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed. The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy. Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment
NASA Astrophysics Data System (ADS)
Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang
2013-10-01
The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.
Hara, Daisuke; Nakashima, Yasuharu; Sato, Taishi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Yoshimoto, Kensei; Yoshihara, Yusuke; Nakamura, Akihiro; Nakao, Yumiko; Iwamoto, Yukihide
2016-02-01
The present study examined the bone bonding strength of diamond-structured porous titanium-alloy (Porous-Ti-alloy) manufactured using the electron beam-melting technique in comparison with fiber mesh-coated or rough-surfaced implants. Cylindrical implants with four different pore sizes (500, 640, 800, and 1000μm) of Porous-Ti-alloy, titanium fiber mesh (FM), and surfaces roughened by titanium arc spray (Ti-spray) were implanted into the distal femur of rabbits. Bone bonding strength and histological bone ingrowth were evaluated at 4 and 12weeks after implantation. The bone bonding strength of Porous-Ti-alloy implants (640μm pore size) increased over time from 541.4N at 4weeks to 704.6N at 12weeks and was comparable to that of FM and Ti-spray implants at both weeks. No breakage of the porous structure after mechanical testing was found with Porous-Ti-alloy implants. Histological bone ingrowth that increased with implantation time occurred along the inner structure of Porous-Ti-alloy implants. There was no difference in bone ingrowth in Porous-Ti-alloy implants with pore sizes among 500, 640, and 800μm; however, less bone ingrowth was observed with the 1000μm pore size. These results indicated Porous-Ti-alloy implants with pore size under 800μm provided biologically active and mechanically stable surface for implant fixation to bone, and had potential advantages for weight bearing orthopedic implants such as acetabular cups. Copyright © 2015 Elsevier B.V. All rights reserved.
Plasma spray nozzle with low overspray and collimated flow
NASA Technical Reports Server (NTRS)
Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)
1996-01-01
An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.
Towards fully spray coated organic light emitting devices
NASA Astrophysics Data System (ADS)
Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim
2014-10-01
Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.
Spray Cooling Processes for Space Applications
NASA Technical Reports Server (NTRS)
Kizito, John P.; VanderWal, Randy L.; Berger, Gordon; Tryggvason, Gretar
2004-01-01
The present paper reports ongoing work to develop numerical and modeling tools used to design efficient and effective spray cooling processes and to determine characteristic non-dimensional parametric dependence for practical fluids and conditions. In particular, we present data that will delineate conditions towards control of the impingement dynamics of droplets upon a heated substrate germane to practical situations.
ArcGIS Framework for Scientific Data Analysis and Serving
NASA Astrophysics Data System (ADS)
Xu, H.; Ju, W.; Zhang, J.
2015-12-01
ArcGIS is a platform for managing, visualizing, analyzing, and serving geospatial data. Scientific data as part of the geospatial data features multiple dimensions (X, Y, time, and depth) and large volume. Multidimensional mosaic dataset (MDMD), a newly enhanced data model in ArcGIS, models the multidimensional gridded data (e.g. raster or image) as a hypercube and enables ArcGIS's capabilities to handle the large volume and near-real time scientific data. Built on top of geodatabase, the MDMD stores the dimension values and the variables (2D arrays) in a geodatabase table which allows accessing a slice or slices of the hypercube through a simple query and supports animating changes along time or vertical dimension using ArcGIS desktop or web clients. Through raster types, MDMD can manage not only netCDF, GRIB, and HDF formats but also many other formats or satellite data. It is scalable and can handle large data volume. The parallel geo-processing engine makes the data ingestion fast and easily. Raster function, definition of a raster processing algorithm, is a very important component in ArcGIS platform for on-demand raster processing and analysis. The scientific data analytics is achieved through the MDMD and raster function templates which perform on-demand scientific computation with variables ingested in the MDMD. For example, aggregating monthly average from daily data; computing total rainfall of a year; calculating heat index for forecasting data, and identifying fishing habitat zones etc. Addtionally, MDMD with the associated raster function templates can be served through ArcGIS server as image services which provide a framework for on-demand server side computation and analysis, and the published services can be accessed by multiple clients such as ArcMap, ArcGIS Online, JavaScript, REST, WCS, and WMS. This presentation will focus on the MDMD model and raster processing templates. In addtion, MODIS land cover, NDFD weather service, and HYCOM ocean model will be used to illustrate how ArcGIS platform and MDMD model can facilitate scientific data visualization and analytics and how the analysis results can be shared to more audience through ArcGIS Online and Portal.
Pulse thermal processing of functional materials using directed plasma arc
Ott, Ronald D [Knoxville, TN; Blue, Craig A [Knoxville, TN; Dudney, Nancy J [Knoxville, TN; Harper, David C [Kingston, TN
2007-05-22
A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.
NASA Astrophysics Data System (ADS)
Inada, Yuki; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko; Nakano, Tomoyuki; Murai, Kosuke; Tanaka, Yasunori; Shinkai, Takeshi
2017-05-01
Shack-Hartmann type laser wavefront sensors were applied to gas-blasted arc discharges under current-zero phases, generated in a 50 mm-long interelectrode gap confined by a gas flow nozzle, in order to conduct a systematic comparison of electron density decaying processes for two kinds of arc-quenching gas media: air and \\text{C}{{\\text{O}}2} . The experimental results for the air and \\text{C}{{\\text{O}}2} arc plasmas showed that the electron densities and arc diameters became thinner toward the nozzle-throat inlet due to a stronger convection loss in the arc radial direction. In addition, \\text{C}{{\\text{O}}2} had a shorter electron density decaying time constant than air, which could be caused by convection loss and turbulent flow of \\text{C}{{\\text{O}}2} stronger than air.
Process Simulation of Gas Metal Arc Welding Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Paul E.
2005-09-06
ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less
Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying
2016-01-01
The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585
Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.
Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko
2015-09-01
Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.
High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays
NASA Astrophysics Data System (ADS)
Ivey, Christopher; Bravo, Luis; Kim, Dokyun
2014-11-01
A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.
Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application
NASA Astrophysics Data System (ADS)
Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain
2014-12-01
Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.
Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure
NASA Astrophysics Data System (ADS)
Mohd, S. M.; Abd, M. Z.; Abd, A. N.
2010-03-01
The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.
The Exact Art and Subtle Science of DC Smelting: Practical Perspectives on the Hot Zone
NASA Astrophysics Data System (ADS)
Geldenhuys, Isabel J.
2017-02-01
Increasingly, sustainable smelting requires technology that can process metallurgically complex, low-grade, ultra-fine and waste materials. It is likely that more applications for direct current (DC) technology will inevitably follow in the future as DC open-arc furnaces have some wonderful features that facilitate processing of a variety of materials in an open-arc open-bath configuration. A DC open-arc furnace allows for optimization and choice of chemistry to benefit the process, rather than being constrained by the electrical or physical properties of the material. In a DC configuration, the power is typically supplied by an open arc, providing relative independence and thus an extra degree of freedom. However, if the inherent features of the technology are misunderstood, much of the potential may never be realised. It is thus important to take cognisance of the freedom an operator will have as a result of the open arc and ensure that operating strategies are implemented. This extra degree of freedom hands an operator a very flexible tool, namely virtually unlimited power. Successful open-arc smelting is about properly managing the balance between power and feed, and practical perspectives on the importance of power and feed balance are presented to highlight this aspect as the foundation of proper open-arc furnace control.
Mantle Flow and Melting Processes Beneath Back-Arc Basins
NASA Astrophysics Data System (ADS)
Hall, P. S.
2007-12-01
The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.
NASA Astrophysics Data System (ADS)
Barroi, A.; Hermsdorf, J.; Prank, U.; Kaierle, S.
First results of the process development of a novel approach for a high deposition rate cladding process with minimal dilution are presented. The approach will combine the enormous melting potential of an electrical arc that burns between two consumable wire electrodes with the precision of a laser process. Separate test for the plasma melting and for the laser based surface heating have been performed. A steadily burning arc between the electrodes could be established and a deposition rate of 10 kg/h could be achieved. The laser was able to apply the desired heat profile, needed for the combination of the processes. Process problems were analyzed and solutions proposed.
In Process Measurement of Hydrogen in Welding
1986-09-01
Specimen Geometry.........40 Figure 4.8 GTAW Diffusible Hydrogen Specimen Geometry .......... 40 Figure 4.9 Schematic of Specimen Outgassing Container for... GTAW ) and gas metal arc welding (GMAW) have the lowest potentials for hydrogen pickup, while -. the flux-cored arc welding (FCAW) and submerged arc...wire during welding which is the major source of hydrogen in GMAW and GTAW . Although the FCAW process was originally considered an intrinsi- cally low
Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc
1997-01-01
This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
Emås, M; Nyqvist, H
2000-03-20
Rapidly cooled materials are often unstable as a result of changes in their physical properties due to imperfect crystallization. In the process of spray-congealing, melted material is atomized into droplets which very quickly solidify. This increases the possibility of the material crystallizing in different metastable forms. In this study it is shown that isothermal microcalorimetry can be used to observe the change in the thermodynamic state of spray-congealed carnauba wax during storage. In order to accelerate the thermodynamic change in the spray-congealed wax, three annealing procedures have been developed and compared using isothermal microcalorimetry. By means of annealing, a spray-congealed product closer to a thermodynamically stable state has been achieved.
Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L
2013-03-13
We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (<5°). The cross-linked thiol-ene coatings are solvent resistant, stable at low and high pH, and maintain superhydrophobic wetting behavior after extended exposure to elevated temperatures. We demonstrate the versatility of the spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.
Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry
NASA Astrophysics Data System (ADS)
Kannaiyan, Kumaran; Sadr, Reza
2013-11-01
Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.
NASA Technical Reports Server (NTRS)
Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.
1995-01-01
Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.
NASA Astrophysics Data System (ADS)
Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang
2011-02-01
It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).
Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings
NASA Astrophysics Data System (ADS)
Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.
2017-12-01
Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.
NASA Astrophysics Data System (ADS)
Wilhelm, G.; Gött, G.; Schöpp, H.; Uhrlandt, D.
2010-11-01
The controlled short-arc processes, variants of the gas metal arc welding (GMAW) process, which have recently been developed, are used to reduce the heat input into the workpiece. Such a process with a wire feeding speed which varies periodically, using a steel wire and a steel workpiece to produce bead-on-plate welds has been investigated. As welding gases CO2 and a mixture of Ar and O2 have been used. Depending on the gas, the properties of the plasma change, and as a consequence the weldseams themselves also differ distinctly. Optical emission spectroscopy has been applied to analyse the plasma. The radial profiles of the emission coefficients of an iron line and an argon line or an atomic oxygen line, respectively, have been determined. These profiles indicate the establishment of a metal vapour arc core which has a broader profile under CO2 but is more focused in the centre for argon. The measured iron line emission was near to its norm maximum in the case of CO2. From this fact, temperatures around 8000 K and a metal vapour molar fraction above 75% in the arc centre could be roughly estimated for this case. Estimations of the electrical conductivity and the arc field indicate that the current path must include not only the metal vapour arc core but also outer hot regions dominated by welding gas properties in the case of argon.
NASA Astrophysics Data System (ADS)
Cook, David James
The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips the oxide from the aluminum and allows for chemical bonding of the NiAl coating to the aluminum via the formation of intermetallics. By developing processing, structure, property, and performance relationships for the full process, it was possible to design a complete coating process to succeed in this application. The determination of these relationships and the underlying process physics improves reliability and instills confidence in the process.
2008-12-01
Deposition of copper by cold gas dynamic spraying : An investigation of dependence of microstructure and properties of the deposits on the...the deposition of metals, alloys , polymers, and composite powder -materials onto various substrates without significant heating of the spray powders or... Spray method is a relatively new coating method for deposition of metal, alloy , polymer, and/or composite powder material onto
2015-09-01
NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios
McGrath, Marie G; Vucen, Sonja; Vrdoljak, Anto; Kelly, Adam; O'Mahony, Conor; Crean, Abina M; Moore, Anne
2014-02-01
Dissolvable microneedles offer an attractive delivery system for transdermal drug and vaccine delivery. They are most commonly formed by filling a microneedle mold with liquid formulation using vacuum or centrifugation to overcome the constraints of surface tension and solution viscosity. Here, we demonstrate a novel microneedle fabrication method employing an atomised spray technique that minimises the effects of the liquid surface tension and viscosity when filling molds. This spray method was successfully used to fabricate dissolvable microneedles (DMN) from a wide range of sugars (trehalose, fructose and raffinose) and polymeric materials (polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose, hydroxypropylmethylcellulose and sodium alginate). Fabrication by spraying produced microneedles with amorphous content using single sugar compositions. These microneedles displayed sharp tips and had complete fidelity to the master silicon template. Using a method to quantify the consistency of DMN penetration into different skin layers, we demonstrate that the material of construction significantly influenced the extent of skin penetration. We demonstrate that this spraying method can be adapted to produce novel laminate-layered as well as horizontally-layered DMN arrays. To our knowledge, this is the first report documenting the use of an atomising spray, at ambient, mild processing conditions, to create dissolvable microneedle arrays that can possess novel, laminate layering. Copyright © 2013 Elsevier B.V. All rights reserved.
Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Malzbender, Jürgen; Wakui, Takashi; Wessel, Egbert; Steinbrech, Rolf W.
Thermal barrier coatings (TBCs) of plasma sprayed yttria stabilised zirconia (YSZ) are increasingly utilised for heat exposed components of advanced gas turbines1,2. An important reason for the application of zirconia coatings is the low thermal conductivity of this ceramic material which is further diminished in a TBC by the high concentration of spraying induced microstructural defects, e.g. crack-shaped defects between and within the spraying splats. Thus with TBCs on gas cooled turbine components stiff temperature gradients can be realised as an important prerequisite for an increased thermal efficiency of the energy conversion process.
Investigation of low cost material processes for liquid rocket engines
NASA Technical Reports Server (NTRS)
Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.
1993-01-01
The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.
DOT National Transportation Integrated Search
2003-07-01
The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....
Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Yao, Shi-Chune
2013-01-01
The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.
The Influence of Shaping Air Pressure of Pneumatic Spray Gun
NASA Astrophysics Data System (ADS)
Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo
2018-02-01
The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.
Influence of grinding on service properties of VT-22 powder applied in additive technologies
NASA Astrophysics Data System (ADS)
Zakharov, M. N.; Rybalko, O. F.; Romanova, O. V.; Gelchinskiy, B. R.; Il'inykh, S. A.; Krashaninin, V. A.
2017-01-01
Powder of titanium alloy (VT-22) produced by plasma-spraying was subjected to grinding to obtain powder with size less 100 microns. These powders were sprayed by plasma unit using two types of gases, namely, air and air with methane (spraying in water and sputtering of coating on steel support). Influence of grinding time on yield of powder of required fraction was studied. Morphology and phase composition of the grinded powder and plasma sprayed one were under investigation. In the result of experiments, it appears that the grinding time genuinely influences the chemical and phase compositions, but there is no effect on physical-processing properties. For powders after plasma spraying some changes of non-metal elements content were detected by chemical analysis. Using gaseous mixture of air and methane in plasma spraying unit leads to formation of a new phase in the powder according X-ray diffraction data.
Numerical Simulation of Droplet Breakup and Collision in the Solution Precursor Plasma Spraying
NASA Astrophysics Data System (ADS)
Shan, Y.; Coyle, T. W.; Mostaghimi, J.
2007-12-01
Finely structured ceramic coatings can be obtained by solution precursor plasma spraying. The final structure of the coating highly depends on the droplet size and velocity distribution at the injection, the evolution of the spray in the jet, and droplet breakup and collision within the spray. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. O’Rourke’s droplet collision model is used to take into account the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The effects of droplet collisions and breakup on the droplet size, velocity, and temperature distribution of the solution spray are investigated. The results indicate that droplet breakup and collision play an important role in determining the final particle size and velocity distributions on the substrate.
Experimental testing of spray dryer for control of incineration emissions.
Wey, M Y; Wu, H Y; Tseng, H H; Chen, J C
2003-05-01
The research investigated the absorption/adsorption efficiency of sulfur dioxide (SO2), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) with different Ca-based sorbents in a spray dryer during incineration process. For further improving the adsorption capacity of Ca-based sorbents, different spraying pressure and additives were carried out in this study. Experimental results showed that CaO could be used as an alternative sorbent in the spray dryer at an optimal initial particle size distribution of spraying droplet. In the spray dryer, Ca-based sorbents provided a lot of sites for heavy metals and PAHs condensing and calcium and alkalinity to react with metals to form merged species. As a result, heavy metals and PAHs could be removed from the flue gas simultaneously by condensation and adsorption. The additions of additives NaHCO3, SiO2, and KMnO4 were also found to be effective in improving the removal efficiency of these air pollutants.
[Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].
Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying
2015-01-01
A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K.
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan
2007-12-01
Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.
NASA Technical Reports Server (NTRS)
Rashid, J. M.; Freling, M.; Friedrich, L. A.
1987-01-01
The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.
Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying
2016-01-01
A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061
Study of thermite mixtures consolidated by cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, Antoine; Maines, Geoffrey; Poupart, Christian; Radulescu, Matei; Jodoin, Bertrand; Lee, Julian
2013-06-01
The present study focused on the cold gas dynamic spray process for manufacturing finely structured energetic materials with high reactivity, vanishing porosity, as well as structural integrity and arbitrary shape. The experiments have focused the reaction between the aluminum and metal oxides, such as Al-CuO and Al-MoO3 systems. To increase the reactivity, an initial mechanical activation was achieved through interrupted ball milling. The consolidation of the materials used the supersonic cold gas spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact, forming activated nano-composites in arbitrary shapes with close to zero porosity. This technique permits to retain the feedstock powder micro-structure and prevents any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
NASA Astrophysics Data System (ADS)
Sova, A.; Courbon, C.; Valiorgue, F.; Rech, J.; Bertrand, Ph.
2017-12-01
In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.