Science.gov

Sample records for arc stainless steel

  1. Arc characteristics of submerged arc welding with stainless steel wire

    NASA Astrophysics Data System (ADS)

    Li, Ke; Wu, Zhi-sheng; Liu, Cui-rong; Chen, Feng-hua

    2014-08-01

    The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carried out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.

  2. Submerged arc fillet welds between mild steel and stainless steel

    SciTech Connect

    Kotecki, D.J.; Rajan, V.B.

    1997-02-01

    Submerged arc fillet welds between mild steel and Type 304 stainless steel, made with ER309L wire, may contain no ferrite and be at risk of hot cracking, or they may be sufficiently diluted that they transform to martensite with both hot cracking risk and low ductility. This situation is most prevalent when direct current electrode positive (DCEP) polarity is used and when the flange is the mild steel part of the T-joint. A flux that adds chromium to the weld can somewhat alleviate this tendency. Direct current electrode negative (DCEN) polarity greatly reduces this tendency by limiting dilution. Fillet weld compositions and dilutions are obtained for a number of welding conditions and fluxes.

  3. Modeling of Linear Gas Tungsten Arc Welding of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Maran, P.; Sornakumar, T.; Sundararajan, T.

    2008-08-01

    A heat and fluid flow model has been developed to solve the gas tungsten arc (GTA) linear welding problem for austenitic stainless steel. The moving heat source problem associated with the electrode traverse has been simplified into an equivalent two-dimensional (2-D) transient problem. The torch residence time has been calculated from the arc diameter and torch speed. The mathematical formulation considers buoyancy, electromagnetic induction, and surface tension forces. The governing equations have been solved by the finite volume method. The temperature and velocity fields have been determined. The theoretical predictions for weld bead geometry are in good agreement with experimental measurements.

  4. Research on the activating flux gas tungsten arc welding and plasma arc welding for stainless steel

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-10-01

    A systematic study of the effects of activating flux in the weld morphology, arc profile, and angular distortion and microstructure of two different arc welding processes, namely, Gas Tungsten Arc Welding (GTAW) and Plasma Arc Welding (PAW), was carried out. The results showed that the activating fluxes affected the penetration capability of arc welding on stainless steel. An increase in energy density resulting from the arc constriction and anode spot reduction enhanced the penetration capability. The Depth/Width (D/W) ratio of the weld played a major role in causing angular distortion of the weldment. Also, changes in the cooling rate, due to different heat source characteristics, influenced the microstructure from the fusion line to the centre of the weld.

  5. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  6. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  7. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  8. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  9. Stainless steel

    SciTech Connect

    Lula, R.A.

    1985-01-01

    This book discusses the stainless steels for high-strength, heat-resistant or corrosion-resistant applications. It is a treatment of the properties and selection of stainless steels. Up-to-date information covers physical, mechanical and chemical properties of all stainless grades, including the new ferritic and duplex grades. The book covers physical metallurgy as well as processing and service characteristics, including service in corrosive environments. It deals with wrought and cast stainless steels and reviews fabrication from cold-forming to powder metallurgy.

  10. Stainless steel submerged arc weld fusion line toughness

    SciTech Connect

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M.

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  11. Thermocapillary and arc phenomena in stainless steel welding

    SciTech Connect

    Pierce, S.W.; Olson, D.L.; Burgardt, P.

    1999-02-01

    This investigation characterized the effects of power level and Gaussian heat source size on thermocapillary-induced weld shape and estimated the relative influence of various possible arc phenomena in determining weld shape. Welds made with the CTAW process were compared with similar ones made with a conduction-mode EBW process and the differences were related to arc effects. Evidence of thermocapillary flow was readily apparent in both the GTA welds and the conduction-mode EB welds and was qualitatively similar in both. The similarity between the results obtained with the two processes serves to demonstrate that thermocapillary convection is the dominant factor in heat-to-heat weld shape variability. However, a similar one-to-one correspondence between welds produced with the two processes does not exist. Especially at high power, the EB welds showed stronger thermocapillary convection than the GTA welds. One important arc factor that limits thermocapillary flow in ar welds appears to be an increase in arc size with arc length and arc current. A non-Gaussian arc power distribution in GTAW seems to be most important in limiting the fluid flow. Apparently, the arc power distribution is more nearly rectangular in shape for an argon gas arc. At higher currents, above 200 A, plasma shear force may also be an important contributor to weld shape development. The conduction-mode EB welds demonstrate that thermocapillary flow reversal probably does not occur in welds made with a simple Gaussian heat source. The complex shape behavior is likely a result of an arc effect such as plasma shear.

  12. Use of plasma arc welding process to combat hydrogen metallic disbonding of austenitic stainless steel claddings

    SciTech Connect

    Alexandrov, O.A. ); Steklov, O.I.; Alexeev, A.V. )

    1993-11-01

    A separation type crack, metallic disbonding, occurred between austenitic stainless steel weld metal cladding and 2 1/4Cr-1Mo base metal in the hydrodesulfurizing reactor of an oil refining plant. For stainless steel cladding, the submerged arc welding (SAW) process with a strip electrode is usually applied, but the authors experimented with the plasma arc welding (PAW) process with hot wire electrode for the cladding. The metallic disbonding is considered to be attributed to hydrogen accumulation at the transition zone and has been generally studied on a laboratory scale using an autoclave. The authors used a electrolytic hydrogen charging technique for the sake of experimental simplicity and made a comparison with the results for gaseous hydrogen charging. The main conclusions obtained were follows: The PAW stainless steel weld metal cladding is more resistant to metallic disbonding with the PAW process is explained by the desirable microstructure and properties of the first layer of weld metal at the transition zone. Electrolytic hydrogen charging pretty well reproduces the results of autoclave gas phase charging.

  13. Thermocapillary and arc phenomena in stainless steel welds

    SciTech Connect

    Pierce, S.W.

    1993-10-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  14. Underwater wet flux-cored arc welding development of stainless steel and nickel-based materials

    SciTech Connect

    Findlan, S.J.; Frederick, G.J.

    1995-12-31

    The inaccessibility and high radiation fields of components in the lower two thirds of a reactor pressure vessel (RPV) has generated the need for an automated underwater wet welding process to address repair applications. Mechanical methods presently employed for this type of repair application produce crevices, which promote concerns of intergranular stress corrosion cracking (IGSCC), crevice corrosion and pitting. To address these concerns, the EPRI Repair and Replacement Applications Center (RRAC) has developed underwater wet flux-cored arc welding (FCAW) technology for the welding of stainless steel and nickel based materials. The benefits of underwater wet welding include: (1) provides a permanent repair; (2) offers crevice-five conditions; (3) reduces future inspection requirements (4) eliminates the potential for ``loose parts`` (5) can be performed in a timely approach. Underwater wet shielded metal arc welding (SMAW) has been successfully used to repair components in radiation areas of the upper section of the RPV, although this process is a manual operation and is impractical for remote applications. The developmental work at the EPRI RRAC is directed towards remote repair applications of nickel-based and stainless steel components, which are inaccessible with normal manual repair techniques, e.g., access hole covers. The flux-cored arc welding process (FCAW) was considered a viable option for underwater development, due to the ease of automation, out of position welding proficiency and self-shielding capabilities.

  15. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  16. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu

    2011-01-17

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  17. THE REMOVAL OF CARBON/BEUTERIUM FROM STAINLESS STEEL AND TUNGSTEN BY TRANSFERRED-ARC CLEANING

    SciTech Connect

    K. J. HOLLIS; R. G. CASTRO; ET AL

    2001-04-01

    Tungsten and stainless steel samples have been contaminated with deuterium and carbon to simulate deposited layers in magnetic-confinement fusion devices. Deuterium and carbon were co-deposited onto the sample surfaces using a deuterium plasma seeded with varying amounts of deuterated methane. Deuterium was also implanted into the samples in an accelerator to simulate hydrogen isotope ion implantation conditions in magnetic confinement fusion devices. Cathodic arc, or transferred-arc (TA) cleaning was employed to remove the deposits from the samples. The samples were characterized by ion beam analysis both before and after cleaning to determine deuterium and carbon concentrations present. The deuterium content was greatly reduced by the cleaning thus demonstrating the possibility of using the TA cleaning technique for removing deuterium and/or tritium from components exposed to D-T fuels. Removal of surface layers and significant reduction of subsurface carbon concentrations was also observed.

  18. Fracture properties of a neutron-irradiated stainless steel submerged arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The ability of stainless steel cladding to increase the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws depends greatly on the properties of the irradiated cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged arc, single-wire, oscillating-electrode method. Three layers of cladding provided a thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. Specimens were taken from near the base plate-cladding interface and also from the upper layers. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to a fluence of 2 x 10/sup 23/ neutrons/m/sup 2/ (>1 MeV). 10 refs., 16 figs., 4 tabs.

  19. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  20. Surface preparation effects on GTA (gas tungsten arc) weld penetration in JBK-75 stainless steel

    SciTech Connect

    Campbell, R.D.; Heiple, C.R.; Sturgill, P.L.; Robertson, A.M.; Jamsay, R.

    1989-01-01

    The results of a study are reported here on the effects of surface preparation on the shape of GTA welds on JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface (weld groove) preparation produced substantial changes in the penetration characteristics and welding behavior of this alloy. Increased and more consistent weld penetration (higher d/w ratios) along with improved arc stability and less arc wander result from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any improvement in penetration. Abrasive treatments roughen the surface, increase the surface area, and increase the surface oxide thickness. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension driven fluid flow pattern in the weld pool. Similar results were observed with changes in filler wire surface oxide thickness, caused by changes in wire production conditions. 15 refs., 14 figs., 4 tabs.

  1. Microsegregation in high-molybdenum austenitic stainless steel laser beam and gas tungsten arc welds

    SciTech Connect

    Kujanpaeae, V.P.; David, S.A.

    1986-01-01

    An austenitic stainless steel with 6% molybdenum (thickness 6 mm) was welded using laser beam (LB) and gas tungsten arc (GTA) processes at various welding speeds. Depending on the welding speed the primary dendrite spacing ranged from 12 to 17 ..mu..m and from 2 to 7 ..mu..m for the GTA and LB welds, respectively. Extensive segregation of molybdenum was observed in the GTA welds. The segregation ratio for molybdenum, C/sub ID//C/sub D/, was found to be 1.9 in the GTA weld, and 1.2 in the LB weld. Distribution of iron, chromium and nickel was found nearly uniform in both welds. A recovered microstructure was observed after a post-weld annealing heat treatment. Annealing had a profound effect on the molybdenum segregation ratio in the laser weld. The critical pitting temperature (CPT) determined by a standard test was 55/sup 0/C for welds made using both processes, whereas it was 75/sup 0/C for the base metal. Upon homogenization the CPT of the laser beam weld increased to the base metal value, while that of the gas tungsten arc weld remained at 60/sup 0/C.

  2. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel.

    PubMed

    Laforest, Guylaine; Duchesne, Josée

    2006-07-31

    Electric arc furnace dust (EAFD) is a toxic waste product made in the remelting of scrap steel. The results of a Toxicity Characteristic Leaching Procedure (TCLP) conducted on a sample of EAFD originating from the remelting of stainless steel scrap showed that the total Cr and Cr (VI) liquor concentrations (9.7 and 6.1 mg/L, respectively) exceeded the Toxicity Characteristic Regulatory Level (TCRL). The EAFD showed a complex heterogeneous mineralogy with spinel minerals group predominance. A sequential extractions method has permitted the determination of the amount of available metals (potentially mobile component) from the EAFD as follows: Cr (3%), Ni (6%), Pb (49%) and Zn (40%). Solubility controls on Cr, Pb, Zn and Ni were identified in the EAFD. This means that the Cr, Pb, Zn and Ni concentrations in solution were controlled by the solubility of some phases from EAFD. The concentrations of Ni and Zn, which are metals not regulated by TCRL were below 0.41 and 1.3 mg/L, respectively. The solubility control on Pb was sufficient to decrease its concentration (<0.24 mg/L) to a level below the TCRL. However, the control on Cr was not sufficient to decrease its concentration (between 117 and 331 mg/L) to below the TCRL.

  3. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  4. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  5. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  6. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding

    PubMed Central

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-01

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities. PMID:28787947

  7. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.

    PubMed

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-29

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.

  8. Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Saha, Saptarshi; Mukherjee, Manidipto; Pal, Tapan Kumar

    2015-03-01

    The present study elaborately explains the effect of welding parameters on the microstructure, texture, and mechanical properties of gas metal arc welded AISI 304 austenitic stainless steel sheet (as received) of 4 mm thickness. The welded joints were prepared by varying welding speed (WS) and current simultaneously at a fixed heat input level using a 1.2-mm-diameter austenitic filler metal (AISI 316L). The overall purpose of this study is to investigate the effect of the variation of welding conditions on: (i) Microstructural constituents using optical microscope and transmission electron microscope; (ii) Micro-texture evolution, misorientation distributions, and grain boundaries at welded regions by measuring the orientation data from electron back scattered diffraction; and (iii) Mechanical properties such as hardness and tensile strength, and their correlation with the microstructure and texture. It has been observed that the higher WS along with the higher welding current (weld metal W1) can enhance weld metal mechanical properties through alternation in microstructure and texture of the weld metal. Higher δ-ferrite formation and high-angle boundaries along with the <101> + <001> grain growth direction of the weld metal W1 were responsible for dislocation pile-ups, SFs, deformation twinning, and the induced martensite with consequent strain hardening during tensile deformation. Also, fusion boundary being the weakest link in the welded structure, failure took place mainly at this region.

  9. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel.

    PubMed

    Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T

    2016-10-01

    Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Environmental cracking behavior of submerged arc-welded supermartensitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Srinivasan, P. Bala; Sharkawy, S. W.; Dietzel, W.

    2004-04-01

    Supermartensitic stainless steel welds produced by submerged are welding were assessed for their microstructure and properties. Slow strain rate tests conducted on these specimens revealed that both the parent material and the weld metals are susceptible to cracking under conditions of hydrogen (H) charging.

  11. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  12. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    NASA Astrophysics Data System (ADS)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  13. Effect of Auxiliary Preheating of the Filler Wire on Quality of Gas Metal Arc Stainless Steel Claddings

    NASA Astrophysics Data System (ADS)

    Shahi, Amandeep S.; Pandey, Sunil

    2008-02-01

    Weld cladding is a process for producing surfaces with good corrosion resistant properties by means of depositing/laying of stainless steels on low-carbon steel components with an objective of achieving maximum economy and enhanced life. The aim of the work presented here was to investigate the effect of auxiliary preheating of the solid filler wire in mechanized gas metal arc welding (GMAW) process (by using a specially designed torch to preheat the filler wire independently, before its emergence from the torch) on the quality of the as-welded single layer stainless steel overlays. External preheating of the filler wire resulted in greater contribution of arc energy by resistive heating due to which significant drop in the main welding current values and hence low dilution levels were observed. Metallurgical aspects of the as welded overlays such as chemistry, ferrite content, and modes of solidification were studied to evaluate their suitability for service and it was found that claddings obtained through the preheating arrangement, besides higher ferrite content, possessed higher content of chromium, nickel, and molybdenum and lower content of carbon as compared to conventional GMAW claddings, thereby giving overlays with superior mechanical and corrosion resistance properties. The findings of this study not only establish the technical superiority of the new process, but also, owing to its productivity-enhanced features, justify its use for low-cost surfacing applications.

  14. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    PubMed

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (<0.01 to ≈ 1% or <0.1 to ≈ 10 microg ml(-1)) and Ni2+ (<0.01 to ≈ 0.2% or <0.1 to ≈ 2 mg ml(-1)) ions were found in biological buffer media, but amounts were highly dependent on pH and the

  15. Effect of welding conditions on microstructure and properties of type 316L stainless steel submerged arc cladding

    SciTech Connect

    Murugan, N.; Parmar, R.S.

    1997-05-01

    Mathematical models were developed using response surface methodology for studying the direct and interaction effects of submerged arc welding parameters on stainless steel cladding geometry. The process parameters obtained from those models were employed to clad IS:2062 structural steel plate of 20-mm thickness using 316L stainless steel wire of 3.15-mm diameter. A low dilution of 22.57% was achieved in the cladding. Dilution was low when both voltage and welding speed were either high or low. Requirements of carbon and ferrite contents in the cladding were met by achieving low dilution in a single layer as well as multilayer cladding. The hardness of the existing martensitic structures at the intermediate mixed zones in overlays was below 400 VHN, which was attributed to the lower carbon content in the cladding. The solidification modes were found to be austenitic, ferritic, and austenitic and ferritic. The microstructure was found to be mainly cellular or cellular dendritic. The measured ferrite contents of cladding were well within their corresponding predicted values. The cladding possessed good ductility and resistance to intergranular corrosion.

  16. Charpy toughness and tensile properties of a neutron irradiated stainless steel submerged-arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The possibility of stainless steel cladding increasing the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws is highly dependent upon the irradiated properties of the cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged-arc, single-wire, oscillating electrode method. Three layers of cladding were applied to provide a cladding thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. There was considerable dilution of the type 309 in the first layer of cladding as a result of excessive melting of the base plate. Specimens for the irradiation study were taken from near the base plate/cladding interface and also from the upper layers of cladding. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to neutron fluences of 2 x 10/sup 23/ n/m/sup 2/ (E > 1 MeV). When irradiated, both types 308 and 309 cladding showed a 5 to 40% increase in yield strength accompanied by a slight increase in ductility in the temperature range from 25 to 288/sup 0/C. All cladding exhibited ductile-to-brittle transition behavior during impact testing.

  17. Dilution control in single-wire stainless steel submerged arc cladding

    SciTech Connect

    Kotecki, D.J.

    1996-02-01

    An experimental study of the effects of bead-to-bead stepover, wire size, wire feed speed, voltage, flux chromium content, and polarity on dilution and ferrite in single-wire submerged arc cladding of ER309L on mild steel plate is described. Low dilution was found to be promoted by reduced stepover, reduced wire feed speed, and DC electrode negative polarity. Use of a high-chromium flux can broaden the tolerance for dilution, providing an austenitic deposit free of martensite, and containing at least 4 FN for assurance of freedom from hot cracking over a broader range of dilutions.

  18. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  19. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  20. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    SciTech Connect

    Malik, Hitendra K.; Singh, Omveer; Dahiya, Raj P.

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  1. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Singh, Omveer; Dahiya, Raj P.

    2015-08-01

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N2 and 30% H2 gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  2. Dilution control in single-wire stainless steel submerged arc cladding

    SciTech Connect

    Kotecki, D.J., Ogborn, J.S.

    1994-12-31

    Work by Jackson and others has shown that dilution of single weld beads can be controlled to a limited extent by choice of welding parameters in single wire submerged arc overlay. Inquiries from fabricators about limiting dilution in single-wire submerged arc cladding continue to be received. Accordingly, a procedure development program was undertaken to provide technical support to fabricators. A table, with a lead screw for accurately and reproducibly indexing the stepover from bead to bead, was constructed. Overlays, at least eight beads wide, were deposited on 1-in. thick mild steel using ER309L wire, in sizes 1/8, 3/32, and 5/64- in. More than 50 different cladding conditions have been examined. A number of overlays were made with 1/8 in. wire at 80 ipm wire feed speed (about 16.5 lb/h deposition rate), DCEP, with a chromium-compensating flux. Voltage, tilt of the electrode back towards the previous bead, and stepover were principle variables. In single-wire submerged arc cladding with ER309L, stepover is a very important variable in determining dilution and ferrite. However, if too little stepover is used, lack of fusion of the overlay with the base metal results. Use of DCEN can be helpful in limiting dilution and obtaining ferrite, but many fluxes do not perform well on DCEN. A chromium-adding flux designed for DCEN can be of assistance in limiting dilution and obtaining ferrite over a broader range of stepovers. Quantitative dilution data are presented for a variety of single-layer overlay conditions.

  3. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  4. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  5. High Nitrogen Stainless Steel

    DTIC Science & Technology

    2011-07-19

    Hydrogen Embrittlement in Steel by the Increment Loading Technique. Fractography: After the stress-life fatigue tests, the fracture surface morphology...study was conducted to clarify the mechanical properties and stress corrosion cracking (SCC) resistance of high nitrogen stainless steel (HNSS) plates...Corrosion Cracking 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  6. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  7. The determination of micro-arc plasma composition and properties of nanoparticles formed during cathodic plasma electrolysis of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.

    2017-05-01

    This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.

  8. Stainless steel tanks

    SciTech Connect

    Hagen, T.

    1995-12-31

    There is currently no recognized code or standard for the design, fabrication and construction of atmospheric and low pressure stainless steel tanks. At the present time these tanks are being designed to individual specifications, manufacturers standards or utilizing other codes and standards that may not be entirely applicable. Recognizing the need, the American Petroleum Institute will be publishing a new appendix to the API STD 650 Standard which will cover stainless steel tanks. The new Appendix was put together by a Task Group of selected individuals from the API Subcommittee of Pressure Vessels and Tanks from the Committee on Refinery Equipment. This paper deals with the development and basis of the new appendix. The new appendix will provide a much needed standard to cover the material, design, fabrication, erection and testing requirements for vertical, cylindrical, austenitic stainless steel aboveground tanks in nonrefrigerated service.

  9. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  10. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-12-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  11. Development of a carburizing stainless steel alloy

    SciTech Connect

    Wert, D.E. )

    1994-06-01

    A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

  12. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    PubMed Central

    Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2016-01-01

    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions. PMID:28773875

  13. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water.

    PubMed

    Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A

    2016-09-03

    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance-a mixture of Cr(3+) enriched with Cr₂O₃ and Cr-hydroxide in inner and Fe(3+) oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  14. Recommended Stainless Steel Welding Procedures for Corps of Engineers Construction.

    DTIC Science & Technology

    Two stainless steel welding methods are investigated for potential use in Corps of Engineers construction. The methods-gas tungsten-arc welding ( GTAW ...electron microscopy. Results show that GTAW and SMAW provide sound welds in the two stainless steels tested. Moreover, using low-carbon electrodes and

  15. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  16. Parametric Optimization Of Gas Metal Arc Welding Process By Using Grey Based Taguchi Method On Aisi 409 Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam

    2016-10-01

    Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.

  17. Gravitational effects on the weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding of 304 stainless steel and Al-4 wt% Cu alloy.

    PubMed

    Kang, Namhyun; Singh, Jogender; Kulkarni, Anil K

    2004-11-01

    Effects of gravitational acceleration were investigated on the weld pool shape and microstructural evolution for 304 stainless steel and Al-4wt% Cu alloy. Effects of welding heat source were investigated by using laser beam welding (LBW) and gas tungsten arc welding (GTAW). As the gravitational level was increased from low gravity (LG approximately 1.2 g) to high gravity (HG approximately 1.8 g) using a NASA KC-135 aircraft, the weld pool shape for 304 stainless steel was influenced considerably during GTAW. However, insignificant change in the microstructure and solute distribution was observed at gravitational levels between LG and HG. The GTAW on Al-4 wt% Cu alloy was used to investigate the effect of gravitational orientation on the weld solidification behavior. Gravitational orientation was manipulated by varying the welding direction with respect to gravity vector; that is, by welding upward opposing gravity ( ||-U) and downward with gravity ( ||-D) on a vertical weld piece and welding perpendicular to gravity (perpendicular) on a horizontal weld piece. Under the same welding conditions, a larger primary dendrite spacing in the ||-U weld was observed near the weld pool surface and the fusion boundary than in the case of perpendicular or ||-D welds. The ||-D weld exhibited different solidification morphology and abnormal S shape of solidification rate curve during its growth. For 304 stainless steel GTAW, significant effects of gravitational orientation were observed on the weld pool shape that was associated with weld surface morphology and convection flow. However, the weld pool shape for LBW was mostly constant with respect to the gravitational orientation.

  18. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  19. Stainless steel decontamination manipulators

    SciTech Connect

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions).

  20. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  1. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  2. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  3. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    SciTech Connect

    Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W.; Jabbari, H.

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  4. Effect of Bias Voltage on the Fatigue Life of Martensitic Stainless Steel with TiN Film Coated Using Arc Ion Plating Method

    NASA Astrophysics Data System (ADS)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    To investigate the effect of TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. A 2-μm-thick TiN film was deposited onto the substrate surface under bias voltage of four kinds: VB = 0, -60, -160 and -260 V. For VB = 0, -160 V and -260 V, the fatigue limit increased. The highest fatigue limit of σmax = 900 MPa was obtained for VB = -160 V. But some samples for VB = -260 V showed the decrease of fatigue limit due to film delamination during the fatigue test. For VB = -60 V, the fatigue limit was unchanged by coating. As a result of a coating property analysis, the following conclusions were obtained. Fatigue crack propagation was almost independent of the bias voltage. Fatigue crack initiated from the subsurface in the substrate and the crack initiation behavior depended on the film property of the adhesion, residual stress, elastic modulus, and the film's hardness depended on the bias voltage especially for low fatigue stress level.

  5. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  6. Plating on stainless steel alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1981-09-11

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate.

  7. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  8. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-02-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  9. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  10. Thermal Linear Expansion of Nine Selected AISI Stainless Steels

    DTIC Science & Technology

    1978-04-01

    stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recoended values Include the...point of the stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recommended values...Stainless Steel..................................26 8. AISI 410 Stainless Steel..................................29 9. AISI 430 Stainless Steel

  11. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  12. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  13. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  14. Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using Kriging model and GA

    NASA Astrophysics Data System (ADS)

    Gao, Zhongmei; Shao, Xinyu; Jiang, Ping; Cao, Longchao; Zhou, Qi; Yue, Chen; Liu, Yang; Wang, Chunming

    2016-09-01

    It is of great significance to select appropriate welding process parameters for obtaining optimal weld geometry in hybrid laser-arc welding. An integrated optimization approach by combining Kriging model and GA is proposed to optimize process parameters. A four-factor, five-level experiment using Taguchi L25 is conducted considering laser power (P), welding current (A), distance between laser and arc (D) and traveling speed (V). Kriging model is adopted to approximate the relationship between process parameters and weld geometry, namely depth of penetration (DP), bead width (BW) and bead reinforcement (BR). The constructed Kriging model was used for parameters optimization by GA to maximize DP, minimize BW and ensure BR at a desired value. The effects of process parameters on weld geometry are analyzed. Microstructure and micro-hardness are also discussed. Verification experiments demonstrate that the obtained optimum values are in good agreement with experimental results.

  15. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  16. Flux formation for underwater wet flux-cored arc welding of nickel-based and austenitic stainless steels

    SciTech Connect

    Findlan, S.J.; Frederick, G.J.

    1993-08-17

    A flux formulation is described for underwater wet flux-cored arc welding, said flux formulation being free of halogen-containing components and having the following composition: 40-80%: Rutile, Titania (TiO[sub 2]), 0-30%: Zirconium oxide (ZrO[sub 2]), 0-10%: Silicon oxide (SiO[sub 2]), 0-5%: Potassium titanate (K[sub 2]O/TiO[sub 3] at ratio of 3:1). 0-30%: Lithium silicate (Li[sub 2]SiO[sub 3]), 0-15%: Lithium carbonate (Li[sub 2]CO[sub 3]), provided that the sum of the contents of lithium silicate (Li[sub 2]SiO[sub 3]) and lithium carbonate (Li[sub 2]CO[sub 3]) be no less than 10%.

  17. Occupational asthma due to gas metal arc welding on mild steel.

    PubMed Central

    Vandenplas, O.; Dargent, F.; Auverdin, J. J.; Boulanger, J.; Bossiroy, J. M.; Roosels, D.; Vande Weyer, R.

    1995-01-01

    Occupational asthma has been documented in electric arc welders exposed to manual metal arc welding on stainless steel. A subject is described who developed late and dual asthmatic reactions after occupational-type challenge exposure to gas metal arc welding on uncoated mild steel. PMID:7597679

  18. Corrosion evaluation of stainless steel root weld shielding

    SciTech Connect

    Gorog, M.; Sawyer, L.A.

    1999-07-01

    The effect of five shielding methods for gas tungsten arc root pass welds, on the corrosion resistance of stainless steel was evaluated in two laboratory solutions. The first experiment was performed in 6% ferric chloride solution, a test designed to corrode stainless steel. The second experiment was performed in a simulated paper machine white water solution that contained hydrogen peroxide. Argon shielding produced excellent results by maintaining corrosion resistance in both solutions. Nitrogen purging and flux coated TIG rod techniques produced variable results. Paste fluxes and welding without shielding are not recommended for root protection. They performed very poorly with the welds corroding in both tests.

  19. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  20. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  1. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  2. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    PubMed Central

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets – titanium, self-ligating stainless steel, and conventional stainless steel – using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's “t” test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets. PMID:23066253

  3. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study.

    PubMed

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-08-01

    The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's "t" test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets.

  4. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  5. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  6. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  7. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  8. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  9. Stainless Steels’ Resistance to Hydroerosion,

    DTIC Science & Technology

    1980-07-30

    Omel’chenko, engineer, S. L. Millichenko, A. G. Aleksandrov, Candidates of Technical Sciences Thanks to a high corrosion resistance stainless steels have...has great significance. The resistance to hydroerosion of several of the most common types of stainless steels which have roughly the same corrosion ...the failure is first localized in the ferrite phase and occurs by means of plastic deformation and the development of fatigue micro- cracks both

  10. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  11. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  12. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  13. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  14. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  15. Aging degradation of cast stainless steel

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  16. Welding Behavior of Free Machining Stainless Steel

    SciTech Connect

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  17. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect

    Chin-An Wang; Chin, B.A.; Grossbeck, M.L.

    1992-12-31

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  18. Casting Stainless-Steel Models Around Pressure Tubes

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Micol, John R.

    1992-01-01

    Survivability of thin-wall stainless-steel tubing increased to nearly 100 percent. Improves state of art in pressure-model castings and reduces cost associated with machining complete model from stainless-steel blank.

  19. Casting Stainless-Steel Models Around Pressure Tubes

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Micol, John R.

    1992-01-01

    Survivability of thin-wall stainless-steel tubing increased to nearly 100 percent. Improves state of art in pressure-model castings and reduces cost associated with machining complete model from stainless-steel blank.

  20. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  1. Corrosion Resistance of Stainless Steels in Biodiesel

    NASA Astrophysics Data System (ADS)

    Román, Alejandra S.; Méndez, Claudia M.; Ares, Alicia E.

    The aim of this work was to study the corrosion behavior of stainless steels in biodiesel of vegetal origin, at room temperature, evaluating its properties according to the differences in the structures (austenitic, ferritic and austenitic — ferritic) and compositions of the materials. The biodiesel employed was obtained by industrially manufactured based on soybean oil as main raw material. The stainless steels used as samples for the tests were: AISI 304L, Sea Cure and Duplex 2205. For obtaining the desired data potentiodynamic polarization and weight loss trials were carried out. These studies were complemented by observations using an optical microscope. The weight loss study allowed the identification of low corrosion rates to the three stainless steels studied.

  2. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  3. Friction Drilling of Stainless Steels Pipes

    SciTech Connect

    Fernandez, A.; Lopez de Lacalle, L. N.; Lamikiz, A.

    2011-01-17

    This work describes the experimental study of the friction drilling process in stainless steel by means of an optimization of the machining conditions. For such purpose austenitic stainless steel with different thicknesses were analyzed through controlled tests at different rotation speeds and feed rates. On one hand, the torque and the thrust force were computed and monitorized. On the other hand, the dimensional tolerances of the holes were evaluated, mainly the accuracy of the hole diameter and the burr thickness at different depths. Another topic of interest inherent to this special technique is the temperature level reached during the friction process which is crucial when it comes to development of microstructural transformations.

  4. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  5. 77 FR 64545 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... COMMISSION Drawn Stainless Steel Sinks From China Scheduling of the final phase of countervailing duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of drawn stainless steel... merchandise as ``drawn stainless steel sinks with single or multiple drawn bowls, with or without drain...

  6. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  7. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  8. 77 FR 1504 - Stainless Steel Wire Rod From India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in the... antidumping duty order on stainless steel wire rod From India would be likely to lead to continuation or... contained in USITC Publication 4300 (January 2012), entitled Stainless Steel Wire Rod From...

  9. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  10. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  11. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... drawn stainless steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized Tariff... notification of a preliminary determinations by Commerce that imports of drawn stainless steel sinks from...

  12. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  13. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American Stainless... subzone status for activity related to the manufacturing and distribution of stainless steel at...

  14. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  15. Laser Rewelding of 304L Stainless Steel.

    SciTech Connect

    Maguire, Michael Christopher; Rodelas, Jeffrey

    2016-11-01

    Laser welding of 304L stainless steel during component fabrication has been found to alter the chemical composition of the steel due to material evaporation. During repair or rework, or during potential reuse/ rewelding of certain components, the potential exists to alter the composition to the extent that the material becomes prone to solidification cracking. This work aims to characterize the extent of this susceptibility in order to make informed decisions regarding rewelding practice and base metal chemistry allowances.

  16. Nickel-free austenitic stainless steels for medical applications

    PubMed Central

    Yang, Ke; Ren, Yibin

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels. PMID:27877320

  17. Colorimetric values of esthetic stainless steel crowns.

    PubMed

    Hosoya, Yumiko; Omachi, Koichi; Staninec, Michal

    2002-01-01

    The colorimetric values of two different kinds of esthetic stainless steel crowns were measured and compared with the colorimetric values of primary anterior teeth in Japanese children. The colorimetric values of resin composite-faced stainless steel crowns (Kinder Krown) and epoxy-coated stainless steel crowns (White Steel Crown) were measured with a color difference meter. The Commission Internationale de Eclairage L*, a*, b*, and delta E*ab values and Munsell value, chroma, and hue were calculated. The data were compared with previously reported colorimetric values of Japanese primary anterior teeth measured with the same color difference meter used in this study. Compared to Japanese primary anterior teeth, Kinder Krown Pedo I and Pedo II showed much higher L* values and lower hue; on the other hand, White Steel Crown showed much higher L*, a*, b* values, much higher value and chroma, and much lower hue. Color analysis revealed that the colors of the White Steel Crown and Kinder Krown Pedo I were substantially different from the color of Japanese primary anterior teeth. The color difference between Pedo II crowns and Japanese primary anterior teeth was relatively high, but the color of Pedo II might be acceptable for clinical use.

  18. Nickel-free duplex stainless steels

    SciTech Connect

    Wang, J.; Uggowitzer, P.J.; Magdowski, R.; Speidel, M.O.

    1998-12-04

    It is well known that nitrogen-alloying in steel produces a variety of exceptional properties such as high strength, high ductility and, eventually, resistance to stress corrosion cracking. High-nitrogen steels (HNS), therefore, have recently been developed to enhance the strength and corrosion resistance of stainless steels. However, due to a low solubility of nitrogen in a liquid steel under atmospheric pressure, the production of such high-nitrogen alloys needs high-pressure facilities that cause an extra cost. A possible route of developing high-nitrogen alloys under atmospheric pressure is to choose a duplex microstructure, where the amount of austenite and ferrite phase is nearly equal. A much lower nitrogen content is needed to maintain a 50% austenite phase compared with the necessary addition of nitrogen to reach a 100% austenitic microstructure. In addition, duplex stainless steels (DSS) with 40--60% ferrite can significantly improve the SCC-resistance. The objective of this work was to develop a new group of nickel-free, high strength and corrosion resistant DSS. Nickel was completely replaced by nitrogen in order to enhance SCC resistance and reduce the alloying element cost. The microstructure, mechanical properties, corrosion resistance and cost analysis of new alloys are investigated in comparison with some commercial stainless steels.

  19. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  20. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  1. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  2. Proof Testing Of Stainless-Steel Bolts

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng H.; Hendrickson, James A.; Bamford, Robert M.

    1992-01-01

    Report describes study of development of method for nondestructive proof testing of bolts made of A286 stainless steel. Based on concept that the higher load bolt survives, the smaller the largest flaw and, therefore, the longer its fatigue life after test. Calculations and experiments increase confidence in nondestructive proof tests.

  3. Fabrication of stainless steel foil utilizing chromized steel strip

    NASA Astrophysics Data System (ADS)

    Loria, Edward A.

    1980-10-01

    Stainless steel foil has properties which are, in many respects, unmatched by alternative thin films. The high strength to weight ratio and resistance to corrosion and oxidation at elevated temperatures are generally advantageous. The aerospace and automotive industries have used Type 430 and 304 foil in turbine engine applications. Foil around 2 mils (5.1 × 10-3 cm) thick has been appropriate for the recuperator or heat exchanger and this product has also been used in honeycomb and truss-core structures. Further, such foil has been employed as a wrap to protect tool steel parts from contamination during heat treating. A large part of the high cost of producing stainless steel foil by rolling is due to the complicated and expensive rolling mill and annealing equipment involved. A method will be described which produces (solid) stainless steel foil from chromized (coated) steel which can be cheaper than the conventional processing stainless steel, such as Type 430, from ingot to foil. Also, the material is more ductile and less work hardenable during processing to foil and consequently intermediate annealing treatments are eliminated and scrap losses minimized.

  4. Stress corrosion cracking of stainless steels

    NASA Astrophysics Data System (ADS)

    Hehemann, R. F.

    1985-11-01

    The similarities and differences in the stress corrosion cracking response of ferritic and austenitic stainless steels in chloride solutions will be examined. Both classes of materials exhibit a cracking potential: similar transient response (to loading) of the potential in open circuit tests or the current in potentiostatic tests and similar enrichment of chromium and depletion of iron in the film associated with localized corrosion processes. The ferritic steels are more resistant to localized corrosion than are the austenitic steels, which is responsible for the difference in the influence of prior thermal and mechanical history on cracking susceptibility of the two types of steel. Similarities in the fractography of stress corrosion cracks and those produced by brittle delayed failure during cathodic charging of the ferritic steels indicate that hydrogen embrittlement is involved in the failure process.

  5. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect

    Barnhouse, E.J.; Lippold, J.C.

    1998-12-01

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  6. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    NASA Astrophysics Data System (ADS)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  7. The stainless steel beneficial reuse integrated demonstration

    SciTech Connect

    Boettinger, W.L.; Lutz, R.N.

    1994-12-31

    Process water heat exchangers at SRS contains over 95% 304 stainless steel which could be recycled back to DOE in a ``controlled release`` manner, that is, the radioactive scrap metal (RSM) could be reprocessed into new reusable products for return to DOE for use within the DOE Complex. In 1994, a demonstration was begun to recycle recycle contaminated stainless steel by melting 60 tons of RSM and refabricating it into containers for long-term temporary storage. The demonstration covers the entire recycle chain; the melting and the fabrication are to be done through subcontracts with private industry. Activity level of RSM to be supplied to industry is less than one curie total; the average specific activity level of the cobalt-60 which will be imbedded in the final products was estimated to be 117 pico curies per gram (4.31 becquerels/gram).

  8. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect

    Lee Phillips, Nathaniel Steven

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  9. Weldability of Additive Manufactured Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  10. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect

    Polak, J. . Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno . Academy of Sciences); Degallaix, S. . Lab. de Mecanique de Lille); Kruml, T. . Academy of Sciences)

    1993-12-15

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  11. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  12. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  13. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  14. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  15. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  16. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels.

  17. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  18. The use of stainless steel crowns.

    PubMed

    Seale, N Sue

    2002-01-01

    The stainless steel crown (SSC) is an extremely durable restoration with several clear-cut indications for use in primary teeth including: following a pulpotomy/pulpectomy; for teeth with developmental defects or large carious lesions involving multiple surfaces where an amalgam is likely to fail; and for fractured teeth. In other situations, its use is less clear cut, and caries risk factors, restoration longevity and cost effectiveness are considerations in decisions to use the SSC. The literature on caries risk factors in young children indicates that children at high risk exhibiting anterior tooth decay and/or molar caries may benefit by treatment with stainless steel crowns to protect the remaining at-risk tooth surfaces. Studies evaluating restoration longevity, including the durability and lifespan of SSCs and Class II amalgams demonstrate the superiority of SSCs for both parameters. Children with extensive decay, large lesions or multiple surface lesions in primary molars should be treated with stainless steel crowns. Because of the protection from future decay provided by their feature of full coverage and their increased durability and longevity, strong consideration should be given to the use of SSCs in children who require general anesthesia. Finally, a strong argument for the use of the SSC restoration is its cost effectiveness based on its durability and longevity.

  19. Impact Testing of Stainless Steel Materials

    SciTech Connect

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.

  20. SRS stainless steel beneficial reuse program

    SciTech Connect

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  1. Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    DTIC Science & Technology

    2015-04-14

    of such alkali compounds in the gas metal welding arc, the GMAW process generates significantly lower emission of Cr(VI) compared to SMAW. This was...79 7.1.2 Updated Status of Filler Metal Development...Analysis Based on Filler Metal Costs .................................. 83 7.2 Stainless Steel Welding in Locations with Limited Access to

  2. Character of laser-glazed, plasma-sprayed zirconia coatings on stainless steel substrata

    NASA Technical Reports Server (NTRS)

    Fischman, G. S.; Chen, C. H.; Rigsbee, J. M.; Brown, S. D.

    1985-01-01

    Partially stabilized zirconia was applied as coatings to 316L stainless steel substrata using an 80-kw arc-plasma unit. Some of these coating-substrate systems were subsequently glazed using a 10 kw CO2 continuous-wavelength laser. SEM was used to characterize the microstructures of the coatings and coating-substrate interfaces. Results are reported and discussed.

  3. Character of laser-glazed, plasma-sprayed zirconia coatings on stainless steel substrata

    NASA Technical Reports Server (NTRS)

    Fischman, G. S.; Chen, C. H.; Rigsbee, J. M.; Brown, S. D.

    1985-01-01

    Partially stabilized zirconia was applied as coatings to 316L stainless steel substrata using an 80-kw arc-plasma unit. Some of these coating-substrate systems were subsequently glazed using a 10 kw CO2 continuous-wavelength laser. SEM was used to characterize the microstructures of the coatings and coating-substrate interfaces. Results are reported and discussed.

  4. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ..., (9) permanent magnet iron-chromium-cobalt alloy stainless strip, (10) certain electrical resistance....020 percent or less. The product is manufactured by means of vacuum arc remelting, with inclusion... trademark of the Arnold Engineering Company. Certain electrical resistance alloy steel is also excluded from...

  5. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  6. Aging degradation of cast stainless steel

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich ..cap alpha..' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by ..cap alpha..' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450/sup 0/C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed.

  7. Characterization of thermal aging of duplex stainless steel by SQUID

    SciTech Connect

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-08-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging.

  8. A Stem Analysis of Two Rapidly Solidified Stainless Steels.

    DTIC Science & Technology

    1980-03-25

    slightly faster rate than the 303 stainless steel powder and therefore few usable specimens were obtained by electropolishing . The unsuccessful...CONCLUSIONS Rapid solidification processing of a high- sulphur austenitic type 303 stainless steel produces a significant refinement in the...A STEM ANALYSTS OF TWO RAPIDLY SOLIDIFIED STAINLESS STEELS . (U) UN D MAR 80 T F KELLY, J B VANDER SANDE NOBOI-76-C-0171 UNLSSFE7Minrnc UNCLASSIFIED

  9. Stainless steel leaches nickel and chromium into foods during cooking.

    PubMed

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-02

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  10. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    PubMed Central

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  11. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  12. Fracture mechanism of borated stainless steel

    SciTech Connect

    He, J.Y.; Soliman, S.E.; Baratta, A.J.; Balliett, T.A.

    2000-05-01

    The mechanical properties and fracture mechanism of irradiated and unirradiated boron containing Type 304 stainless steel are studied. Four different batches with different boron weight percentages are used. One of these batches was manufactured by a conventional wrought technique, while the others were manufactured by a powder metallurgy technique. The irradiated specimens were subjected to a fluence level of 5 x 10{sup 19} or 1 {times} 10{sup 21} n/m{sup 2}. The mechanical and fracture tests were performed at temperatures of 233, 298, and 533 K. No significant effects on the mechanical properties or fracture behavior were observed as a result of neutron irradiation and/or temperature. The ductility and toughness of the borated steel were found to decrease with increasing boron content. The effect of boride on void nucleation and linkage was found to play an important role in the fracture behavior of borated steel.

  13. 77 FR 58355 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China... Department'') initiated antidumping and countervailing duty investigations of drawn stainless steel sinks... countervailing duty determination.\\2\\ \\1\\ See Drawn Stainless Steel Sinks From the People's Republic of...

  14. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  15. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    PubMed

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts).

  16. Biomonitoring of genotoxic exposure among stainless steel welders.

    PubMed

    Knudsen, L E; Boisen, T; Christensen, J M; Jelnes, J E; Jensen, G E; Jensen, J C; Lundgren, K; Lundsteen, C; Pedersen, B; Wassermann, K

    1992-05-16

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environmental monitoring of welding fumes and selected metal oxides, biomonitoring of chromium and nickel in serum and urine and mutagenic activity in urine, and evaluation of semen quality were also done. Manual metal arc (MMA) welding and tungsten inert gas (TIG) welding were the dominant welding processes. A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA-AAF)-induced UDS was lower in 23 never-smoking welders than in 19 unexposed never-smokers. Smoking was a confounding factor resulting in significantly higher CA, SCE, NA-AAF binding to DNA and mutagenic activity in urine. Age was also a confounder: CA, SCE, NA-AAF binding to DNA and UDS increased significantly with age. No significant correlation between SCE and CA or between CA and UDS was found. UDS decreased significantly with increasing lymphocyte count and a higher lymphocyte count was seen in MMA welders than in reference persons and in smokers than in non-smokers. Differences in the composition among lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding with MMA is recommended.

  17. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... COMMISSION [Investigation Nos. 701-TA-376 and 379 and 731-TA-788, 790-793 (Second Review)] Stainless Steel... stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate... steel plate from Belgium and South Africa and/or the antidumping duty orders on stainless steel...

  18. Fusion welding of a modern borated stainless steel

    SciTech Connect

    Robino, C.V.; Cieslak, M.J.

    1997-01-01

    Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendritic eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.

  19. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  20. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  1. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  2. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  3. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture....

  4. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drawn Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in... (April 2012), entitled Drawn Stainless Steel Sinks from China: Investigation Nos. 701-TA-489 and...

  5. Descaling: Removal of Heat-Treat Scale from Stainless Steels,

    DTIC Science & Technology

    Several panels of 17-7 PH stainless steels were cleaned by various procedures and heat-treated to the TH 1050 condition. The cleaning procedre which... 1050 and examined for harmful effects. The preferred procedure for producing clean scale-free heat-treated stainless steel parts was to treat the parts

  6. Coating method enables low-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Seaman, F. D.

    1965-01-01

    Gold coated stainless steel tubes containing insulated electrical conductors are brazed at a low temperature to a copper coated stainless steel sealing block with a gold-copper eutectic. This produces an effective seal without using flux or damaging the electrical conductors.

  7. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  8. New Method For Joining Stainless Steel to Titanium

    NASA Technical Reports Server (NTRS)

    Emanuel, W. H.

    1982-01-01

    In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations, forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

  9. THE CLEANING OF 303 STAINLESS STEEL

    SciTech Connect

    Shen, T H

    2004-04-20

    The sulfur found on the surfaces of stainless steel 303 (SS303) after nitric acid passivation originated from the MnS inclusions in the steel. The nitric acid attacked and dissolved these MnS inclusions, and redeposited micron-sized elemental sulfur particles back to the surface. To develop an alternative passivation procedure for SS303, citric and phosphoric acids have been evaluated. The experimental results show neither acid causes a significant amount of sulfur deposit. Thus, these two acids can be used as alternatives to nitric acid passivation for NIF applications. For SS303 previously passivated by nitric acid, NaOH soak can be used as a remedial cleaning process to effectively remove the sulfur deposits.

  10. Corrosion resistance and antithrombogenic behavior of La and Nd ion implanted stainless steels

    SciTech Connect

    Jing, F. J.; Jin, F. Y.; Liu, Y. W.; Wan, G. J.; Liu, X. M.; Zhao, X. B.; Fu, R. K. Y.; Leng, Y. X.; Huang, N.; Chu, Paul K.

    2006-09-15

    Lanthanide ions such as lanthanum (La) and neodymium (Nd) were implanted into 316 stainless steel samples using metal vapor vacuum arc to improve the surface corrosion resistance and antithrombogenic properties. X-ray photoelectron spectroscopy shows that lanthanum and neodymium exist in the +3 oxidation state in the surface layer. The corrosion properties of the implanted and untreated control samples were investigated utilizing electrochemical tests and our results show that La and Nd implantations enhance the surface corrosion resistance. In vitro activated partial thromboplastin time (APTT) tests were used to evaluate the antithrombogenic properties. The APTT time of the implanted samples was observed to be prolonged compared to that of the unimplanted stainless steel control. La and Nd ion implantations can be used to improve the surface corrosion resistance and biomedical properties of 316 stainless steels.

  11. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  12. Attachment of Shiga toxigenic Escherichia coli to stainless steel.

    PubMed

    Rivas, Lucia; Fegan, Narelle; Dykes, Gary A

    2007-04-01

    Shiga toxigenic Escherichia coli (STEC) are important foodborne pathogens causing gastrointestinal disease worldwide. Bacterial attachment to food surfaces, such as stainless steel may lead to cross contamination of foods and subsequent foodborne disease. A variety of STEC isolates, including E. coli O157:H7/H- strains, were grown in planktonic (broth) and sessile (agar) culture, following which initial attachment to stainless steel was determined using epifluorescence microscopy. Experiments were performed to determine whether the number of bacteria attached to stainless steel differed between STEC strains and between the two modes of growth. No relationship was found between STEC strains and the number of bacteria attached to stainless steel. Five STEC strains, including one non-toxigenic O157 isolate, attached in significantly greater (p<0.05) numbers to stainless steel following growth in planktonic culture compared to sessile culture. In contrast, two clinical strains of O157:H7 attached in significantly greater (p<0.05) numbers following growth in sessile culture compared to planktonic culture. Thirteen out of twenty E. coli strains showed no significant difference (p>0.05) in attachment when grown in planktonic or sessile culture. The change of interfacial free energy between the bacterial strains and stainless steel was calculated and the influence of free energy in attachment was determined. Although a significant variation (p<0.05) in free energy values was found between STEC strains, no correlation was found between free energy values and bacterial counts on stainless steel. In addition, no correlation was also found between bacterial hydrophobicity and surface charge values or production of surface structures (type I fimbriae or flagella) (previously determined) with the number of bacteria attached to stainless steel. The results of this study suggest that different growth conditions (planktonic and sessile) can influence the attachment of STEC to

  13. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  14. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  15. Antibacterial polyelectrolyte micelles for coating stainless steel.

    PubMed

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-08

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications.

  16. Weld Properties of a Free Machining Stainless Steel

    SciTech Connect

    J. A. Brooks; S. H. Goods; C. V. Robino

    2000-08-01

    The all weld metal tensile properties from gas tungsten arc and electron beam welds in free machining austenitic stainless steels have been determined. Ten heats with sulfur contents from 0.04 to 0.4 wt.% and a wide range in Creq/Nieq ratios were studied. Tensile properties of welds with both processes were related to alloy composition and solidification microstructure. The yield and ultimate tensile strengths increased with increasing Creq/Nieq ratios and ferrite content, whereas the ductility measured by RA at fracture decreased with sulfur content. Nevertheless, a range in alloy compositions was identified that provided a good combination of both strength and ductility. The solidification cracking response for the same large range of compositions are discussed, and compositions identified that would be expected to provide good performance in welded applications.

  17. Effect of PTA Hardfaced Interlayer Thickness on Ballistic Performance of Shielded Metal Arc Welded Armor Steel Welds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2013-03-01

    Ballistic performance of armor steel welds is very poor due to the usage of low strength and low hardness austenitic stainless steel fillers, which are traditionally used to avoid hydrogen induced cracking. In the present investigation, an attempt has been made to study the effect of plasma transferred arc hardfaced interlayer thickness on ballistic performance of shielded metal arc welded armor steel weldments. The usefulness of austenitic stainless steel buttering layer on the armor grade quenched and tempered steel base metal was also considered in this study. Joints were fabricated using three different thickness (4, 5.5, and 7 mm) hardfaced middle layer by plasma transferred arc hardfacing process between the top and bottom layers of austenitic stainless steel using shielded metal arc welding process. Sandwiched joint, in addition with the buttering layer served the dual purpose of weld integrity and ballistic immunity due to the high hardness of hardfacing alloy and the energy absorbing capacity of soft backing weld deposits. This paper will provide some insight into the usefulness of austenitic stainless steel buttering layer on the weld integrity and plasma transferred arc hardfacing layer on ballistic performance enhancement of armor steel welds.

  18. Assessment of thermal embrittlement of cast stainless steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1994-05-01

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ``predicted lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented.

  19. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  20. Global stainless steel cycle exemplifies China's rise to metal dominance.

    PubMed

    Reck, Barbara K; Chambon, Marine; Hashimoto, Seiji; Graedel, T E

    2010-05-15

    The use of stainless steel, a metal employed in a wide range of technology applications, has been characterized for 51 countries and the world for the years 2000 and 2005. We find that the global stainless steel flow-into-use increased by more than 30% in that 5 year period, as did additions to in-use stocks. This growth was mainly driven by China, which accounted for almost half of the global growth in stainless steel crude production and which tripled its flow into use between 2000 and 2005. The global stainless steel-specific end-of-life recycling rate increased from 66% (2000) to 70% (2005); the landfilling rate was 22% for both years, and 9% (2000) to 12% (2005) was lost into recycled carbon and alloy steels. Within just 5 years, China passed such traditionally strong stainless steel producers and users as Japan, USA, Germany, and South Korea to become the dominant player of the stainless steel industry. However, China did not produce any significant stainless steel end-of-life flows in 2000 or 2005 because its products-in-use are still too new to require replacements. Major Chinese discard flows are expected to begin between 2015 and 2020.

  1. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  2. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  3. 76 FR 1599 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... International Trade Administration Stainless Steel Bar From Brazil: Final Results of Antidumping Duty... results of its administrative review of the antidumping duty order on stainless steel bar from Brazil. The... stainless steel bar (SSB) from Brazil. See Stainless Steel Bar From Brazil: Preliminary Results of...

  4. Stress corrosion cracking of type 304L stainless steel core shroud welds.

    SciTech Connect

    Chung, H. M.; Park, J.-H.; Sanecki, J. E.; Zaluzec, N. J.; Yu, M. S.; Yang, T. T.

    1999-10-26

    Microstructural analyses by advanced metallographic techniques were conducted on mockup welds and a cracked BWR core shroud weld fabricated from Type 304L stainless steel. heat-affected zones of the shroud weld and mockup shielded-metal-arc welds were free of grain-boundary carbide, martensite, delta ferrite, or Cr depletion near grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the welds were significantly contaminated by fluorine and oxygen which migrate to grain boundaries. Significant oxygen contamination promotes fluorine contamination and suppresses classical thermal sensitization, even in Type 304 steels. Results of slow-strain-rate tensile tests indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of Type 304L stainless steel core shroud welds.

  5. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  6. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  7. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  8. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  9. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    DTIC Science & Technology

    2013-06-01

    most of the commercially available metallic materials, in particular steels (including stainless steels ), super alloys, aluminum alloys, etc., can...REPORT Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel 14. ABSTRACT 16...Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel Report Title ABSTRACT A conventional gas metal

  10. Nickel release from nickel-plated metals and stainless steels.

    PubMed

    Haudrechy, P; Foussereau, J; Mantout, B; Baroux, B

    1994-10-01

    Nickel release from nickel-plated metals often induces allergic contact dermatitis, but, for nickel-containing stainless steels, the effect is not well-known. In this paper, AISI 304, 316L, 303 and 430 type stainless steels, nickel and nickel-plated materials were investigated. 4 tests were performed: patch tests, leaching experiments, dimethylglyoxime (DMG) spot tests and electrochemical tests. Patch tests showed that 96% of the patients were intolerant to Ni-plated samples, and 14% to a high-sulfur stainless steel (303), while nickel-containing stainless steels with a low sulfur content elicited no reactions. Leaching experiments confirmed the patch tests: in acidic artificial sweat, Ni-plated samples released about 100 micrograms/cm2/week of nickel, while low-sulfur stainless steels released less than 0.03 microgram/cm2/week of nickel, and AISI 303 about 1.5 micrograms/cm2/week. Attention is drawn to the irrelevance of the DMG spot test, which reveals Ni present in the metal bulk but not its dissolution rate. Electrochemical experiments showed that 304 and 316 grades remain passive in the environments tested, while Ni-plated steels and AISI 303 can suffer significant cation dissolution. Thus, Ni-containing 304 and 316 steels should not induce contact dermatitis, while 303 should be avoided. A reliable nitric acid spot test is proposed to distinguish this grade from other stainless steels.

  11. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  12. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  13. Automatic Welding of Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    To determine if the use of automatic welding would allow reduction of the radiographic inspection requirement, and thereby reduce fabrication costs, a series of welding tests were performed. In these tests an automatic welder was used on stainless steel tubing of 1/2, 3/4, and 1/2 inch diameter size. The optimum parameters were investigated to determine how much variation from optimum in machine settings could be tolerate and still result in a good quality weld. The process variables studied were the welding amperes, the revolutions per minute as a function of the circumferential weld travel speed, and the shielding gas flow. The investigation showed that the close control of process variables in conjunction with a thorough visual inspection of welds can be relied upon as an acceptable quality assurance procedure, thus permitting the radiographic inspection to be reduced by a large percentage when using the automatic process.

  14. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  15. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  16. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  17. [Study on biocompatibility of MIM 316L stainless steel].

    PubMed

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  18. 76 FR 87 - Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Foreign-Trade Zones Board Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and Carbon Steel Products) Calvert, AL Pursuant to its authority under the Foreign-Trade Zones Act... establish a special- purpose subzone at the stainless and carbon steel products manufacturing facility...

  19. Stainless steel-zirconium alloy waste forms

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-07-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ``noble`` nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation.

  20. Stainless steel anodes for alkaline water electrolysis and methods of making

    SciTech Connect

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  1. Evaluation of stainless steels for their resistance to intergranular corrosion

    NASA Astrophysics Data System (ADS)

    Korostelev, A. B.; Abramov, V. Ya.; Belous, V. N.

    1996-10-01

    Austenitic stainless steels are being considered as structural materials for first wall/blanket systems in the International Thermonuclear Reactor (ITER). The uniform corrosion of stainless steels in water is well known and is not a critical issue limiting its application for the ITER design. The sensitivity of austenitic steels to intergranular corrosion (IGC) can be estimated rather accurately by means of calculation methods, considering structure and chemical composition of steel. There is a maximum permissible carbon content level, at which sensitization of stainless steel is eliminated: K = Cr eff - αC eff, where α-thermodynamic coefficient, Cr eff-effective chromium content (regarding molybdenum influence) and C eff-effective carbon content (taking into account nickel and stabilizing elements). Corrosion tests for 16Cr11Ni3MoTi, 316L and 316LN steel specimens, irradiated up to 2 × 10 22 n/cm 2 fluence have proved the effectiveness of this calculation technique for determination of austenitic steels tendency to IGC. This method is directly applicable in austenitic stainless steel production and enables one to exclude complicated experiments on determination of stainless steel susceptibility to IGC.

  2. Significance of Delta Ferrite Content to Fatigue Crack Growth Resistance of Austenitic Stainless Steel Weld Deposits

    DTIC Science & Technology

    1978-03-01

    Compositions of AISI Type 308 Shielded Metal Arc Weld Series With Variable Delta Ferrite Content NRL Weld Delta Ferrite T Chemical Composition (wt%) b Code...3 NRL Report201 Significance of Delta Ferrite Content to Fatigue Crack Growth Resistance of Austentic Stainless Steel We!d Deposits J, R. HAWTHORNE...RIults for the preirradlatlon (as-welded) condition show that delta ferrite content a’id tempera. ture variations in the ranges studied do not exert

  3. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  4. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  5. Nafion coated stainless steel for anti-biofilm application.

    PubMed

    Zhong, Li Juan; Pang, Li Qing; Che, Li Ming; Wu, Xue E; Chen, Xiao Dong

    2013-11-01

    Biofilms can adhere to most surfaces and have caused a wide range of problems in various industrial processes as well as daily life activities. In this work, the anti-biofilm ability of Nafion-coated stainless steel surface was investigated and our results showed that stainless steel discs coated with 1% Nafion can significantly reduce E. coli adhesion. Nafion has a large amount of negatively charged sulphonate groups, and the findings of this study suggest that the negative surface charge can greatly reduce bacterial adhesion through increasing the electrostatic repulsion between negatively charged bacterial cells and Nafion coated stainless steel surface. The roughness of coated and uncoated stainless steel discs made no significant differences while the hydrophobic of the discs increased after coated with Nafion.

  6. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  7. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  8. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  9. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  10. Systems design of high performance stainless steels II. Prototype characterization

    NASA Astrophysics Data System (ADS)

    Campbell, C. E.; Olson, G. B.

    2000-10-01

    Within the framework of a systems approach, the design of a high performance stainless steel integrated processing/structure/property/performance relations with mechanistic computational models. Using multicomponent thermodynamic and diffusion software platforms, the models were integrated to design a carburizable, secondary-hardening, martensitic stainless steel for advanced gear and bearing applications. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing and tempering responses, achieving a case hardness of R c 64 in the secondary-hardened condition without case primary carbides. Comparison with a commercial carburizing stainless steel demonstrated the advantage of avoiding primary carbides to resist quench cracking associated with a martensitic start temperature gradient reversal. Based on anodic polarization measurements and salt-spray testing, the prototype composition exhibited superior corrosion resistance in comparison to the 440C stainless bearing steel, which has a significantly higher alloy Cr concentration.

  11. Electrolytic etching process provides effective bonding surface on stainless steel

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Electrolytic etching process prepares surfaces of a stainless steel shell for reliable, high strength adhesive bonding to dielectric materials. The process uses a 25 percent aqueous solution of phosphoric acid.

  12. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  13. 27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF WASHINGTON, MISSOURI. VIEW LOOKING NORTH TOWARD VAULT OF THE TWELVE APOSTLES - Stone Hill Winery, 401 West Twelfth Street, Hermann, Gasconade County, MO

  14. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  15. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  16. Corrosion fatigue of surgical stainless steel in synthetic physiological solution.

    PubMed

    Cahoon, J R; Holte, R N

    1981-03-01

    Fatigue tests conducted both in air and synthetic physiological solution show that the fatigue strength of surgical stainless steel in synthetic physiological solution is about 10% lower than the strength in air for a given endurance level. It is proposed that surgical stainless steel which is normally passive in physiological solution suffers corrosion fatigue because of susceptibility to crevice corrosion which occurs at extrusions and intrusions (crevices) on the surface thereby shortening the crack initiation time and the fatigue life.

  17. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  18. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  19. Decomposition of energetic chemicals contaminated with iron or stainless steel.

    PubMed

    Chervin, Sima; Bodman, Glenn T; Barnhart, Richard W

    2006-03-17

    Contamination of chemicals or reaction mixtures with iron or stainless steel is likely to take place during chemical processing. If energetic and thermally unstable chemicals are involved in a manufacturing process, contamination with iron or stainless steel can impact the decomposition characteristics of these chemicals and, subsequently, the safety of the processes, and should be investigated. The goal of this project was to undertake a systematic approach to study the impact of iron or stainless steel contamination on the decomposition characteristics of different chemical classes. Differential scanning calorimetry (DSC) was used to study the decomposition reaction by testing each chemical pure, and in mixtures with iron and stainless steel. The following classes of energetic chemicals were investigated: nitrobenzenes, tetrazoles, hydrazines, hydroxylamines and oximes, sulfonic acid derivatives and monomers. The following non-energetic groups were investigated for contributing effects: halogens, hydroxyls, amines, amides, nitriles, sulfonic acid esters, carbonyl halides and salts of hydrochloric acid. Based on the results obtained, conclusions were drawn regarding the sensitivity of the decomposition reaction to contamination with iron and stainless steel for the chemical classes listed above. It was demonstrated that the most sensitive classes are hydrazines and hydroxylamines/oximes. Contamination of these chemicals with iron or stainless steel not only destabilizes them, leading to decomposition at significantly lower temperatures, but also sometimes causes increased severity of the decomposition. The sensitivity of nitrobenzenes to contamination with iron or stainless steel depended upon the presence of other contributing groups: the presence of such groups as acid chlorides or chlorine/fluorine significantly increased the effect of contamination on decomposition characteristics of nitrobenzenes. The decomposition of sulfonic acid derivatives and tetrazoles

  20. Stress corrosion cracking of austenitic stainless steel core internal welds.

    SciTech Connect

    Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

    1999-04-14

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

  1. Comparison of titanium and Robinson stainless steel stapes piston prostheses.

    PubMed

    Lippy, William H; Burkey, John M; Schuring, Arnold G; Berenholz, Leonard P

    2005-09-01

    Although stainless steel stapes prostheses have generally been considered magnetic resonance imaging safe, there is concern that this may change with the development of more powerful imaging systems. The objective of the study was to determine whether a titanium piston stapes prosthesis would be audiometrically and surgically equivalent to a Robinson stainless steel piston for stapedectomy. Retrospective chart review. Private otology practice. In all, 50 patients underwent stapedectomy with a Gyrus titanium piston prosthesis. These patients were matched on the basis of age and preoperative bone-conduction scores with patients who underwent stapedectomy with a Robinson stainless steel piston prosthesis. Audiometric results are analyzed, and surgical complications noted. There was no significant difference between groups in hearing improvement or postoperative air-bone gap. The mean four-frequency hearing improvement was 27.7 dB for the stainless steel group and 27.8 dB for the titanium group. The mean postoperative air-bone gap was 2.65 dB for the stainless steel group and 2.60 for the titanium group. Neither group had a surgical complication. The titanium stapes prosthesis is a good alternative to a stainless steel prosthesis.

  2. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  3. Performance of ferritic stainless steels for automobile muffler corrosion

    SciTech Connect

    Tarutani, Y.; Hashizume, T.

    1995-11-01

    Corrosion behavior of ferritic stainless steels was studied in artificial exhaust gas condensates containing corrosive ions such as Cl{sup {minus}} and SO{sub 3}{sup 2{minus}}. Continuous immersion tests in flasks and Dip and Dry tests by using the alternate corrosion tester with a heating system clarified the effects of chromium and molybdenum additions on the corrosion resistance of a ferritic stainless steel in the artificial exhaust gas condensates. Effects of surface oxidation on the corrosion behavior were investigated in a temperature range of 573K to 673K. Oxidation of 673K reduced the corrosion resistance of the ferritic stainless steels in the artificial environment of the automobile muffler. Particulate matter deposited on the muffler inner shell from the automobile exhaust gas was also examined. Deposited particulate matter increased the corrosion rate of the ferritic stainless steel. Finally, the authors also investigated the corrosion of the automobile mufflers made of Type 436L ferritic stainless steel with 18% chromium-1.2% molybdenum after 24 months, in Japan. The sets of results clarified that Type 436L ferritic stainless steel as the material for the automobile muffler exhibited acceptable corrosion resistance.

  4. Low-temperature creep of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  5. Microstructure, Properties and Weldability of Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Ma, Li; Hu, Shengsun; Shen, Junqi

    2017-01-01

    The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.

  6. Qualification of large diameter duplex stainless steel girth welds intended for low temperature service

    SciTech Connect

    Prosser, K.; Robinson, A.G.; Rogers, P.F.

    1996-12-31

    British Gas recently had a requirement to fabricate some UNS31803 duplex stainless steel pipework for an offshore topsides process plant. The pipework had a maximum diameter of 600mm, with a corresponding wall thickness of 18mm, and it was designed to operate at a minimum temperature of {minus}40 C. There is a lack of published toughness data for girth welds in duplex stainless steel at this thickness and minimum design temperature. Additionally, toughness requirements for girth welds in current pipework and pressure vessel codes are based on experience with carbon steels. As a result, a program of work has been carried out to study the Charpy, CTOD and wide plate toughness of girth welds in 22%Cr duplex stainless steel pipework. The welds were produced using a typical gas tungsten arc/gas metal arc pipework fabrication procedure. In addition, non-destructive evaluation trials have been carried out on a deliberately defective weld using radiography and ultrasonics. It was demonstrated that double wall single image {gamma}-radiography, single wall single image and panoramic X-radiography, and conventional shear wave ultrasonics were all able to detect planar root defects varying from 3 to 7mm in depth. There was good agreement between the sizes recorded by ultrasonics and those measured from macrosections. Small scale mechanical tests demonstrated that welds with overmatching tensile properties, and low temperature toughness properties which were acceptable to specification, could be produced. Wide plate tests demonstrated that defect size calculations from BS PD7493 were conservative.

  7. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect

    Hochanadel, Patrick W; Lienert, Thomas J; Martinez, Jesse N; Martinez, Raymond J; Johnson, Matthew Q

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  8. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    PubMed Central

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  9. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect

    Hochanadel, Patrick W; Lienert, Thomas J; Martinez, Jesse N; Johnson, Matthew Q

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  10. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  11. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  12. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  13. Joining of high-nitrogen stainless steel by capacitor discharge welding

    SciTech Connect

    Simmons, J.W.; Wilson, R.D.

    1996-06-01

    The effectiveness of nitrogen as an interstitial strengthening agent has led to the development of a new class of austenitic stainless steels -- high-nitrogen alloys defined by their nitrogen contents. Unlike most alloying elements, nitrogen has a very limited solubility in liquid iron-based alloys at atmospheric pressure. Therefore, high-nitrogen stainless steels presents unique challenges since the nonequilibrium nature of the material results in loss of nitrogen from the fusion and partially melted zones during welding procedures typically utilized for stainless steels, such as gas tungsten arc welding (GTAW). Loss of nitrogen from the molten base metal can result in severe weld porosity and reduced solid-solution strengthening. In this study, rapid solidification joining of a high-nitrogen stainless steel by capacitor discharge welding resulted in complete retention of the nonequilibrium level of nitrogen in the material, which is responsible for the alloy`s high strength. Joining of the high-nitrogen material using optimized welding parameters produced virtually porosity-free welds with joint efficiencies greater than 95% and no heat-affected zone. Optimization of welding parameters was aided by the use of a computer-based data collection system, which allows for a systematic analysis of the effect of welding parameters on weld properties.

  14. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  15. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  16. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  17. Micro-electrospray with stainless steel emitters.

    PubMed

    Shui, Wenqing; Yu, Yanling; Xu, Xuejiao; Huang, Zhenyu; Xu, Guobing; Yang, Pengyuan

    2003-01-01

    The physical processes underlying micro-electrospray (micro-ES) performance were investigated using a stainless steel (SS) emitter with a blunt tip. Sheathless micro-ES could be generated at a blunt SS tip without any tapering or sanding if ESI conditions were optimized. The Taylor cone was found to shrink around the inner diameter of the SS tubing, which permitted a low flow rate of 150 nL/min for sheathless microspray on the blunt tip (100 microm i.d. x 400 microm o.d.). It is believed that the wettability and/or hydrophobicity of SS tips are responsible for their micro-ES performance. The outlet orifice was further nipped to reduce the size of the spray cone and limit the flow rate to 50-150 nL/min, resulting in peptide detection down to attomole quantities consumed per spectrum. The SS emitter was also integrated into a polymethylmethacrylate microchip and demonstrated satisfactory performance in the analysis and identification of a myoglobin digest.

  18. Creep cavitation in 304 stainless steel

    SciTech Connect

    Chen, I.W.; Argon, A.S.

    1981-01-01

    Creep cavitation in 304 stainless steel at 0.5 T/sub m/ was investigated. Two specially developed techniques were used to study the nucleation and growth of grain-boundary cavities. It was found that cavities nucleated heterogeneously throughout the creep history and those observed were well in their growth stage. Comparison of these observations with the theory for cavity nucleation requires that a high interfacial stress be present. Experiments suggest that such stress concentrations are present in the early stages of boundary sliding, and in additional transients associated with intermittent sliding of boundaries throughout the creep life. It was found that microstructural variations such as those caused by twins which strongly affect initial particle densities on boundaries can alter cavitation behavior drastically. Our results also show that wedge cracks are the result of accelerated linking of growing cavities in the triple point region of stress concentration and are not a separate phenomenon. Furthermore, at higher strain rates growth of cavities can be accelerated by grain boundary sliding. Lastly, evidence is given to support the view that in engineering alloys which contain complex phas constitutents particularly along grain-boundaries, cavitation in long term service is likely to be caused by cavities nucleated in connection with a prior cold forming operation. 15 figures.

  19. Corrosion of stainless steel during acetate production

    SciTech Connect

    Qi, J.S.; Lester, G.C.

    1996-07-01

    Corrosion of types 304, 304L, 316, and 316L stainless steel (SS) during the esterification of acetic acid and alcohol or glycol ether was investigated. The catalyst for this reaction, sulfuric acid or para-toluene sulfonic acid (PTSA), was shown to cause more corrosion on reactor equipment than CH{sub 3}COOH under the process conditions commonly practiced in industry. The corrosive action of the catalyst occurred only in the presence of water. Thus, for the batch processes, corrosion occurred mostly during the initial stage of esterification, where water produced by the reaction created an aqueous environment. After water was distilled off, the corrosion rate declined to a negligible value. The corrosion inhibitor copper sulfate, often used in industrial acetate processes, was found to work well for a low-temperature process (< 95 C) such as in production of butyl acetate, but it accelerated corrosion in the glycol ether acetate processes where temperatures were > 108 C. Process conditions that imparted low corrosion rates were determined.

  20. Characterization of stainless steel 304 tubing

    SciTech Connect

    Sunwoo, A.J.; Brooks, M.A.; Kervin, J.E.

    1995-10-16

    Earlier studies have shown that stainless steel 304 (SS304) containing martensite is susceptible to hydrogen embrittlement. This generated concern regarding the structural integrity of SS304 tubing we use in the W87 pit tube. During surveillance operations, the pit tube undergoes a series of bending and straightening as it goes through a number of surveillance cycles. This motivated the study to characterize austenitic SS304 tubing obtained from Rocky Flats. The tubes continued to display structural soundness even after numerous repeated bending and straightening cycles. The minimum and maximum number of bends to failure occurred after 13 and 16 cycles, respectively. After 5 bends, both the inner and outer surfaces of the tubing showed no microcracks. When the bent tubing samples were pressurized and tested using deuterium at 74{degrees}C and at {approximately}78{degrees}C, they failed away from the bent area. Thus deuterium embrittlement of the bent SS304 tubing should not be a problem. Moreover, to increase our 95% confidence level to 5 bends, we are planning to perform at least four additional bends to failure tests.

  1. 78 FR 34644 - Stainless Steel Plate in Coils From Belgium: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Preliminary Results of... administrative review of the antidumping duty order on stainless steel plate in coils (steel plate) from Belgium...: Scope of the Order The product covered by this order is certain stainless steel plate in...

  2. From flint to stainless steel: observations on surgical instrument composition.

    PubMed Central

    Kirkup, J.

    1993-01-01

    Man's failure to extract deeply embedded thorns and arrowheads, with bare hands and teeth, stimulated 'instrument substitutes' mimicking these appendages. Evidence from primitive communities suggest animal, plant and mineral items were employed, both before and after metal became the standard material of today's armamentarium. Changing surgical instrument composition has mirrored concurrent technology and manufacturing methods both of which are reviewed. Particular significance is accorded flint, bronze, crucible steel, thermal sterilisation, nickel-plate, stainless steel and disposable plastics. The paper is based on an exhibition From Flint to Stainless Steel on display at the College. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8215156

  3. Stainless steel tube-based cell cryopreservation containers.

    PubMed

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  4. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-05-04

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  5. Stress Relaxation in Tensile Deformation of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Li, Jiaojiao; Ding, Wei; Zhao, Shuangjun; Chen, Jun

    2017-01-01

    Improved ductility by stress relaxation has been reported in different kinds of steels. The influence of stress relaxation and its parameters on the ductility of 304 stainless steel has not been established so far. Stress relaxation behavior during tensile tests at different strain rates is studied in 304 stainless steel. It is observed that stress relaxation can obviously increase the elongation of 304 stainless steel in all cases. The elongation improvement of interrupted tension reaches to 14.9% compared with monotonic tension at 0.05 s-1. Contradicting with the published results, stress drop during stress relaxation increases with strain at all strain rates. It is related with dislocation motion velocity variation and martensitic transformation.

  6. Enhancement of Stainless Steel's Mechanical Properties via Carburizing Process

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Alias, S. K.; Abdullah, B.; Hafiz Mohd Bakri, Mohd.; Hafizuddin Jumadin, Muhammad; Mat Shah, Muhammad Amir

    2016-11-01

    Carburizing process is a method to disperse carbon into the steel surface in order to enhance its mechanical properties such as hardness and wear resistance. This paper study investigates the effect of carburizing temperature to the carbon dispersion layer in stainless steel. The standard AISI 304 stainless steel was carburized in two different temperatures which were 900°C and 950°C. The effect of carbon dispersion layers were observed and the results indicated that the increasing value of the average dispersion layer from 1.30 mm to 2.74 mm thickness was found to be related to increment of carburizing holding temperature . The increment of carbon thickness layer also resulted in improvement of hardness and tensile strength of carburized stainless steel.

  7. Mechanical characteristics of welded joints between different stainless steels grades

    NASA Astrophysics Data System (ADS)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  8. Magnetic properties of stainless steels at room and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Goodell, Jennifer; Molt, Robert

    2009-07-01

    The magnetic properties of ten types of ferritic and martensitic stainless steels have been measured at room temperature and at 77 K. The steel samples studied were in the annealed state as received from the manufacturer. Our room temperature measurements indicate significantly harder magnetic properties than those quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display soft magnetic properties adequate for magnetic applications. The carbon content of the steels was found to affect the permeability and coercive force, with lower-carbon steels displaying significantly higher permeability and lower coercive force. The decrease in coercive force with reduced carbon content is attributed to fewer carbide inclusions which inhibit domain wall motion. Cooling to 77 K resulted in harder magnetic properties. Averaged over the ten steels tested the maximum permeability decreased by 8%, the coercive force increased by 14%, and the residual and saturation flux densities increased by 4% and 3%, respectively. The change in coercive force when cooled is comparable to the theoretical prediction for iron, based on a model of domain wall motion inhibited by inclusions. The modest changes of the magnetic properties indicate that the stainless steels can still be used in magnetic applications at very low temperatures.

  9. Microstructure and high temperature properties of the dissimilar weld between ferritic stainless steel and carbon steel

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Kil; Hong, Seung Gab; Kang, Ki Bong; Kang, Chung Yun

    2009-10-01

    Dissimilar joints between STS441, a ferritic stainless steel, and SS400, a carbon steel, were welded by GMAW (Gas Metal Arc Welding) using STS430LNb as a welding wire. The fracture behavior of the dissimilar weld was analyzed by a microstructural observation and thermo-mechanical tests. Martensite was formed at the region between SS400 and the weld metal because the Cr and Nb content in this region decreased due to the dilution of SS400 carbon steel during welding. According to results from a high temperature tensile test with a specimen aged at 900 °C, it was found that the tensile strength of the dissimilar weld at high temperature was equal to that of STS441 base metal and the formation of martensite had little influence on tensile strength of the dissimilar weld at high temperature. However, in the case of thermal fatigue resistance, the dissimilar weld had an inferior thermal fatigue life to STS441 because of the presence of martensite and the softened region around the interface between the dissimilar weld metal and SS400.

  10. [Restoration of composite on etched stainless steel crowns. (1)].

    PubMed

    Goto, G; Zang, Y; Hosoya, Y

    1990-01-01

    Object of investigation The retention of composite resin to etched stainless steel crowns was tested as a possible method for restoring primary anterior teeth. Method employed 1) SEM observation Stainless steel crowns (Sankin Manufacture Co.) were etched with an aqua resia to create surface roughness and undercut to retain the composite resin to the crowns. Etching times were 1, 2, 3, 5, 8, 10 and 20 minutes, then washed in a 70% alcohol solution using an ultrasonic washer and dried. A total of 96 etched samples and non etched control samples were observed through the scanning electron microscope (Hitachi 520). 2) Shear bond strength test Stainless steel crowns were etched in an aqua resia from 1 to 20 minutes, then washed and dried. Composite resin (Photo Clearfil A, Kuraray Co.) with the bonding agent was placed on the crowns and the shear bond strength was tested in 56 samples using an Autograph (DCS-500, Shimazu). Results 1) SEM observation showed that the etching surface of stainless steel crowns created surface roughness and undercut. The most desirable surface was obtained in the 3 to 5 minute etching time specimens. 2) The highest bond strength was obtained in a 3 minute etching specimen. It was 42.12 MPa, although 29.26 MPa in mean value. Conclusion Etching with an aqua resia increased the adherence of composite resin to the surface of stainless steel crowns.

  11. Antibacterial effect of silver nanofilm modified stainless steel surface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  12. Work of adhesion of dairy products on stainless steel surface

    PubMed Central

    Bernardes, Patrícia Campos; Araújo, Emiliane Andrade; dos Santos Pires, Ana Clarissa; Queiroz Fialho Júnior, José Felício; Lelis, Carini Aparecida; de Andrade, Nélio José

    2012-01-01

    The adhesion of the solids presents in food can difficult the process of surface cleaning and promotes the bacterial adhesion process and can trigger health problems. In our study, we used UHT whole milk, chocolate based milk and infant formula to evaluate the adhesion of Enterobacter sakazakii on stainless steel coupons, and we determine the work of adhesion by measuring the contact angle as well as measured the interfacial tension of the samples. In addition we evaluated the hydrophobicity of stainless steel after pre-conditioning with milk samples mentioned. E. sakazakii was able to adhere to stainless steel in large numbers in the presence of dairy products. The chocolate based milk obtained the lower contact angle with stainless steel surface, higher interfacial tension and consequently higher adhesion work. It was verified a tendency of decreasing the interfacial tension as a function of the increasing of protein content. The preconditioning of the stainless steel coupons with milk samples changed the hydrophobic characteristics of the surfaces and became them hydrophilic. Therefore, variations in the composition of the milk products affect parameters important that can influence the procedure of hygiene in surface used in food industry. PMID:24031951

  13. Aging of cast duplex stainless steels in LWR systems

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400/sup 0/C reveals the formation of four different types of precipitates that are not ..cap alpha..'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300/sup 0/C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables.

  14. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  15. Precipitation in CF-8M duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Ritter, Ann M.; Cieslak, Michael J.; Savage, Warren F.

    1983-01-01

    Welds of CF-8M, a cast 316-type stainless steel which normally solidifies as primary delta-ferrite, were induced to solidify as primary austenite by the addition of nitrogen to the shielding gas used during gas tungsten arc welding. Those welds which experienced a shift in solidification mode formed eutectic ferrite during the terminal transient stage of solidification. Primary delta-ferrite and eutectic ferrite are differentiated by their location in the dendritic microstructure. The shape of the ferrite/austenite interface tends to be rounded for primary delta-ferrite and more angular for eutectic ferrite. Elemental profiles were plotted from STEM/EDS measurements across the two types of ferrite, and showed differences between the composition of the austenite immediately adjacent to the primary delta-ferrite, as opposed to the eutectic ferrite. In addition, while the primary delta-ferrite/austenite interfaces are largely devoid of precipitation, the eutectic ferrite/austenite interfaces are densely covered with small precipitates of x-phase. The mean stoichiometry of this phase has been calculated from STEM/EDS data on extraction replicas, and approximates Fe50Cr32Mo13Ni5. Intragranular inclusions were also examined and found to be complex, with most of them containing varying quantities of Mn, Si, and S.

  16. Welding stainless steels for structures operating at liquid helium temperature

    SciTech Connect

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  17. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  18. Tensile properties of the modified 13Cr martensitic stainless steels

    SciTech Connect

    Mabruri, Efendi Anwar, Moch Syaiful Prifiharni, Siska Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  19. A comparison of the performance of Zr, Zr + O and N implanted stainless steels

    SciTech Connect

    Oztarhan, A.; Brown, I.G.; Monteiro, O.; Vizir, A.; Alanyalyoglu, T.A.

    1998-12-31

    The authors have carried out some exploratory investigations of the efficacy of Zr ion implantation and Zr+O co-implantation for enhancement of the tribology and corrosion characteristics of 316-L stainless steel. A broad-beam vacuum arc based ion implanter was used for the metal and metal+gas implantations. Implantation dose was in the range (10{sup 16}--10{sup 17}) cm{sup {minus}2}, and the ion energy was typically about 100 keV. The highly polished stainless steel substrates were tested for their wear and friction behavior with a pin-on-disk apparatus, for their hardness with an ultra micro hardness tester, and their corrosion performance were determined by potentiodynamic polarization measurements. Wear and friction behavior of the implanted samples against UHMWPE disk samples were also examined.

  20. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    USDA-ARS?s Scientific Manuscript database

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  1. Aluminum and stainless steel tubes joined by simple ring and welding process

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.

  2. Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

    DTIC Science & Technology

    2010-03-01

    AFRL-RX-WP-TP-2010-4149 EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR AIRCRAFT LANDING GEAR...March 2010 – 01 March 2010 4. TITLE AND SUBTITLE EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR...Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on

  3. Evaluation of Additive Manufacturing for Stainless Steel Components

    SciTech Connect

    Peter, William H.; Lou, Xiaoyuan; List, III, Frederick Alyious; Webber, David

    2016-09-01

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainless steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.

  4. Practical handbook of stainless steels and nickel alloys

    SciTech Connect

    Lamb, S.

    1999-07-01

    This new handbook is an up-to-date technical guide to the grades, properties, fabrication characteristics, and applications of stainless steels and nickel alloys. The individual chapters were written by industry experts and focus on the key properties and alloy characteristics important in material selection and specification as well as the practical factors that influence the development and application of these materials. The contents include: alloy grades and their welding and fabrication characteristics and their application; monel metal; iron-based and nickel-based alloys; ferritic, austenitic, superaustenitic, and martensitic stainless steels; hastelloys; alloys 20, G, and 825; AOD and new refining technology; duplex stainless steels; 6-Mo alloys; corrosion-resistant castings; specification cross-reference tables; trade names; hardness conversions; list of common abbreviations.

  5. Guided growth by a stainless-steel tubular plate.

    PubMed

    Lin, Tung-Yi; Kao, Hsuan-Kai; Li, Wei-Chun; Yang, Wen-E; Chang, Chia-Hsieh

    2013-07-01

    Guided growth using titanium tension band plates is an advancement in the correction of angular deformity. We applied two-hole stainless-steel one-third tubular plates for the same purpose. There were 14 deformities around the knees in eight children, mean age 10.8 years at operation. The success rate was 92.9% (13/14). The average correction rate per month was 0.59° in the femur and 0.65° in the tibia. No premature physeal arrest, overcorrection, or rebound phenomenon was observed. A stainless-steel plate is a safe and effective option for guided growth surgery in countries where only stainless-steel plates are available.

  6. Wastewater minimization at a stainless steel manufacturing facility

    SciTech Connect

    Hayward-Browne, A.; Ackroyd, D.S.; Dave, B.B.

    1996-08-01

    As the environmental regulations associated with discharging water from industrial installations become increasingly more stringent and water in some areas becomes more scarce, water costs, both for purchase and disposal, become increasingly more expensive. So the importance of reusing and recycling water is heightened. This paper investigates the desire of a stainless steel manufacturing plant to improve the final product surface quality. Simple upgrading of the once-through rinsing process would have presented operational problems for the on-site effluent treatment plant and exceeded site discharge limits. A more innovative approach was sought. Explained are the stages taken to audit the plant, the initial work in proposing water recycle options and a computer modeling methodology for predicting water chemistry and economics. In conclusion, the stainless steel manufacturer discusses the implementation of the recycle project. Not only are the operational demands met, but the recycle option actually provides a return on investment to the stainless steel manufacturer rather than an additional cost.

  7. Variation and optimization of acid-dissolved aluminum content in stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, Le-chen; Bao, Yan-ping; Wang, Min; Zhang, Chao-jie

    2016-04-01

    As a key step in secondary refining, the deoxidation process in clean stainless steel production is widely researched by many scholars. In this study, vacuum oxygen decarburization (VOD) deoxidation refining in a 40-t electric arc furnace + VOD + ingot casting process was analyzed and optimized on the basis of Al deoxidation of stainless steel and thermodynamic equilibrium reactions between the slag and steel. Under good stirring conditions in VOD, the deoxidation reaction reaches equilibrium rapidly, and the oxygen activity in the bulk steel is controlled by the slag composition and Al content. A basicity of 3-5 and an Al content greater than 0.015wt% in the melt resulted in an oxygen content less than 0.0006wt%. In addition, the dissolved oxygen content decreased slightly when the Al content in the steel was greater than 0.02wt%. Because of the equilibrium of the Si-O reaction between the slag and steel, the activity of SiO2 will increase while the Si content increases; thus, the Si content should be lowered to enable the formation of a high-basicity slag. A high-basicity, low-Al2O3 slag and an increased Si content will reduce the Al consumption caused by SiO2 reduction.

  8. Radiation embrittlement of manganese-stabilized martensitic stainless steel

    SciTech Connect

    Gelles, D.S.; Hu, W.L.

    1986-12-01

    Fractographic examination has been performed on selected Charpy specimens of manganese stabilized martensitic stainless steels in order to identify the cause of irradiation embrittlement. Embrittlement was found to be partly due to enhanced failure at grain boundaries arising from precipitation. Microstructural examination of a specimen irradiated at higher temperature has demonstrated the presence of Fe-Cr-Mn chi phase, a body centered cubic intermetallic phase known to cause embrittlement. This work indicated that manganese stabilized martensitic stainless steels are prone to intermetallic phase formation which is detrimental to mechanical properties.

  9. Transmission electron microscopy of undermined passive films on stainless steel

    SciTech Connect

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L.; Ryan, M.P.

    1999-06-01

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  10. Isothermal and Cyclic Aging of 310S Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Parrens, Coralie; Lacaze, Jacques; Malard, Benoit; Dupain, Jean-Luc; Poquillon, Dominique

    2017-06-01

    Unusual damage and high creep strain rates have been observed on components made of 310S stainless steel subjected to thermal cycles between room temperature and 1143 K (870 °C). Microstructural characterization of such components after service evidenced high contents in sigma phase which formed first from δ-ferrite and then from γ-austenite. To get some insight into this microstructural evolution, isothermal and cyclic aging of 310S stainless steel has been studied experimentally and discussed on the basis of numerical simulations. The higher contents of sigma phase observed after cyclic agings than after isothermal treatments are clearly associated with nucleation triggered by thermal cycling.

  11. Comparison of carbon fiber and stainless steel root canal posts.

    PubMed

    Purton, D G; Payne, J A

    1996-02-01

    This in vitro study compared physical properties of root canal posts made of carbon fiber-reinforced epoxy resin with those of stainless steel posts. Three-point bending tests were used to derive the transverse modulus of elasticity of the posts. Resin composite cores on the posts were subjected to tensile forces to test the bonds between the cores and posts. Carbon fiber posts appeared to have adequate rigidity for their designed purpose. The bond strength of the resin composite cores to the carbon fiber posts was significantly less than that to the stainless steel posts.

  12. Passive Films Formed on Stainless Steels in Phosphate Buffer Solution

    NASA Astrophysics Data System (ADS)

    Méndez, Claudia Marcela; Burgos, Rodrigo Elvio; Bruera, Florencia; Ares, Alicia Esther

    The behaviour of passive films formed on directionally solidified stainless steels, 18Cr10N2Mo0.08C, 18Cr14N8Mo0.03C and 18Cr10Ni8Mo0.08C, in different areas that were formed during solidification (columnar, columnar-to-equiaxed transition (CET) and equiaxed) was studied using electrochemical testing in Na2HPO4 with / without NaCl. The behavior of stainless steel in the presence of phosphate chlorides is the best compared to non-chloride phosphate.

  13. The use of titanium and stainless steel in fracture fixation.

    PubMed

    Hayes, J S; Richards, R G

    2010-11-01

    The use of metal in fracture fixation has demonstrated unrivalled success for many years owing to its high stiffness, strength, biological toleration and overall reliable function. The most prominent materials used are electropolished stainless steel and commercially pure titanium, along with the more recent emergence of titanium alloys. Despite the many differences between electropolished stainless steel and titanium, both materials provide a relatively predictable clinical outcome, and offer similar success for fulfilling the main biomechanical and biological requirements of fracture fixation despite distinctive differences in implant properties and biological responses. This article explores these differences by highlighting the limitations and advantages of both materials, and addresses how this translates to clinical success.

  14. Microstructure and texture of Nb + Ti stabilized ferritic stainless steel

    SciTech Connect

    Yan Haitao Bi Hongyun; Li Xin; Xu Zhou

    2008-12-15

    The microstructure, texture and grain boundary character distribution of Nb + Ti stabilized ferritic stainless steel were analyzed using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The addition of alloying elements such as Ti and Nb to ferritic stainless steel causes the formation of TiN, NbC and Fe{sub 2}Nb. The textures of cold rolled samples were dominated by the {alpha}-fiber, while the textures of annealed samples exhibit a very strong {gamma}-fiber. The changes in texture are closely related to the grain boundary characteristics.

  15. Calculations of Stainless Steel-Aluminum Alloy Clad Forming Limit

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Zhang, Peng

    Base on the Hosford's higher order yield criteria, the forming limit diagram of clad was developed with M-K theory at the positive strain ratio. The relationship of forming limit with thickness ratio, thickness irregular coefficient and the exponent of yield function were analyzed. The result show that the forming limit of clad material is between those of its component materials, and increases with the rising of stainless steel thickness ratio and the thickness irregular coefficient. So the forming limit can be improved by increase the stainless steel thickness ratio and improve the surface condition of the clad materials.

  16. Ozone decay on stainless steel and sugarcane bagasse surfaces

    NASA Astrophysics Data System (ADS)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  17. 78 FR 4383 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... International Trade Administration Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty... the antidumping duty order on stainless steel bar (SSB) from Brazil. The period of review (POR) is... Antidumping Duty Administrative Review: Stainless Steel Bar from Brazil'' dated concurrently with this...

  18. 76 FR 76437 - Certain Welded Stainless Steel Pipe From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... COMMISSION Certain Welded Stainless Steel Pipe From Korea and Taiwan Determination On the basis of the record... revocation of the antidumping duty orders on certain welded stainless steel pipe from Korea and Taiwan would... Publication 4280 (December 2011), entitled Certain Welded Stainless Steel Pipe from Korea and...

  19. 76 FR 28809 - Stainless Steel Plate From Belgium; Termination of Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... COMMISSION Stainless Steel Plate From Belgium; Termination of Five-Year Review AGENCY: United States... review concerning the countervailing duty order on stainless steel plate from Belgium (75 FR 30777 and 75... its full five-year review of the countervailing duty order concerning stainless steel plate...

  20. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  1. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  2. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  3. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  4. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... COMMISSION Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On the.... 1675(c)), that revocation of the countervailing duty order on stainless steel plate from South Africa and revocation of the antidumping duty orders on stainless steel plate from Belgium, Korea,...

  5. 77 FR 39735 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...)] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines Determination On the basis...)), that revocation of the antidumping duty orders on stainless steel butt-weld pipe fittings From Italy... the Commission are contained in USITC Publication 4337 (June 2012), entitled Stainless Steel...

  6. 77 FR 3231 - Certain Stainless Steel Wire Rods From India: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Stainless Steel Wire Rods From India: Continuation of Antidumping Duty Order AGENCY: Import Administration... antidumping duty order on certain stainless steel wire rods from India would likely lead to continuation or... reviews of the antidumping duty order on certain stainless steel wire rods (``wire rods'') from...

  7. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... COMMISSION [Investigation Nos. 701-TA-376 and 379 and 731-TA-788, 790-793 (Second Review)] Stainless Steel... countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY:...

  8. 77 FR 60673 - Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping...'') preliminarily determines that drawn stainless steel sinks (``drawn sinks'') from the People's Republic of China... unfinished, regardless of type of finish, gauge, or grade of stainless steel. Mounting clips,...

  9. 75 FR 64709 - Stainless Steel Plate in Coils From Belgium: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Notice of Rescission of... ``Opportunity to Request Administrative Review'' of the antidumping duty order on stainless steel plate in coils... of an administrative review of the antidumping duty order on stainless steel plate in coils...

  10. 76 FR 31588 - Stainless Steel Plate in Coils From Belgium: Rescission of Countervailing Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium: Rescission of Countervailing... countervailing duty (``CVD'') order on stainless steel plate in coils from Belgium. See Antidumping or... initiating an administrative review of the CVD order on stainless steel plate in coils from Belgium...

  11. 77 FR 39467 - Stainless Steel Bar From India: Final Results of the Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... International Trade Administration Stainless Steel Bar From India: Final Results of the Antidumping Duty... the administrative review of the antidumping duty order on stainless steel bar from India. The review..., 2012, the Department published Stainless Steel Bar From India: Preliminary Results and...

  12. 78 FR 7395 - Stainless Steel Bar From India: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... International Trade Administration Stainless Steel Bar From India: Preliminary Results of Antidumping Duty... the antidumping duty order on stainless steel bar (SSB) from India. The period of review (POR) is... Review: Stainless Steel Bar from India'' dated concurrently with this notice (``Preliminary...

  13. 77 FR 18211 - Drawn Stainless Steel Sinks From the People's Republic of China: Initiation of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... International Trade Administration Drawn Stainless Steel Sinks From the People's Republic of China: Initiation...'') petition concerning imports of drawn stainless steel sinks from the People's Republic of China (``PRC... Antidumping and Countervailing Duties Against Drawn Stainless Steel Sinks from the People's Republic of...

  14. 76 FR 18518 - Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of... stainless steel sheet and strip in coils from Mexico. The period of review is July 1, 2009, through June 30... American Stainless, and AK Steel Corporation (collectively ``petitioners''), we are now rescinding...

  15. 76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Forged Stainless Steel Flanges From India: Notice of Rescission of... stainless steel flanges from India. The period of review is February 1, 2010, through January 22, 2011... stainless steel flanges from India. See Antidumping or Countervailing Duty Order, Finding, or...

  16. 75 FR 39663 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... International Trade Administration Stainless Steel Bar From Brazil: Final Results of Antidumping Duty... of its administrative review of the antidumping duty order on certain stainless steel bar from Brazil... results of its administrative review of the antidumping duty order on certain stainless steel bar...

  17. 75 FR 67689 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... International Trade Administration Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty... antidumping duty order on certain stainless steel bar from Brazil. The review covers one producer/ exporter of... Department published in the Federal Register an antidumping duty order on certain stainless steel bar...

  18. The Cold Gas-Dynamic Spray and Characterization of Microcrystalline Austenitic Stainless Steel

    DTIC Science & Technology

    2014-09-01

    DYNAMIC SPRAY AND CHARACTERIZATION OF MICROCRYSTALLINE AUSTENITIC STAINLESS STEEL by Jonathan F. Schiel September 2014 Thesis Advisor: Luke...MICROCRYSTALLINE AUSTENITIC STAINLESS STEEL 5. FUNDING NUMBERS DWAM31009 6. AUTHOR(S) Jonathan F. Schiel 7. PERFORMING ORGANIZATION NAME(S...spray process applied to the deposition of stainless steel coatings. Cold spray deposition is a relatively new process utilized to create corrosion

  19. 75 FR 32503 - Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... COMMISSION Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan Determinations On the basis...)), that revocation of the antidumping duty orders on stainless steel wire rod from Italy, Japan, Korea... contained in USITC Publication 4154 (May 2010), entitled Stainless Steel Wire Rod from Italy, Japan, Korea...

  20. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... 564 (Third Review)] Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY... antidumping duty orders on stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan. SUMMARY: The... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to...

  1. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy, Japan... antidumping duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and...

  2. 75 FR 30434 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Commission. ACTION: Institution of five-year reviews concerning the countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from... determine whether revocation of the countervailing duty orders on stainless steel plate from Belgium and...

  3. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe... injured or threatened with material injury by reason of LTFV imports of welded stainless steel...

  4. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  5. Welding properties of thin steel sheets by laser-arc hybrid welding: laser focused arc welding

    NASA Astrophysics Data System (ADS)

    Ono, Moriaki; Shinbo, Yukio; Yoshitake, Akihide; Ohmura, Masanori

    2003-03-01

    Laser-arc hybrid welding combines the laser and arc welding processes to provide advantages not found in either. This process can weld lapped steel sheets that have a larger gap than is possible with laser welding. Blowholes form when lap-welding zinc-coated steel sheets because of the zinc that is vaporized. The laser-arc hybrid welding process can lap-weld zinc-coated steel sheets without causing blowholes. The welding speed of laser-arc hybrid welding is nearly equivalent to that of laser welding. Laser-arc hybrid welding produces high-quality lap joints and is ideal for assembly welding of automotive parts.

  6. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  7. Electrochemically induced annealing of stainless-steel surfaces

    NASA Astrophysics Data System (ADS)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  8. No genotoxicity of a new nickel-free stainless steel.

    PubMed

    Montanaro, L; Cervellati, M; Campoccia, D; Prati, C; Breschi, L; Arciola, C R

    2005-01-01

    Stainless steel is a metallic alloy largely employed in orthopedics, maxillofacial surgery and orthodontic therapy. However, the presence in its composition of a high quantity of nickel, an agent known to trigger toxic, allergic and cancerogenous responses in humans, is cause of some concern. In this study, we have investigated the in vitro mutagenicity and genotoxicity of a new nickel-free stainless steel, namely P558, in comparison to the conventional stainless steel AISI 316L. The cytogenetic effects were evaluated by studying the frequency of Sister Chromatid Exchanges (SCE) and chromosomal aberrations. Ames test was performed to detect the mutagenic activity. Both P558 and AISI 316L did not cause any significant increase in the average number of SCE and in chromosomal aberrations, either with or without metabolic activation. Furthermore, the Ames test showed that the extracts of both P558 and of AISI 316L are not mutagenic. Overall, these findings prove that P558 is devoid of genotoxicity and mutagenicity. The present results, together with other previous interesting observations that P558 promotes osseointegration, suggest that this new nickel-free stainless steel can represent a better alternative to other conventional steel alloys.

  9. Bactericidal behavior of Cu-containing stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  10. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  11. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  12. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  13. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    PubMed Central

    Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837

  14. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  15. Fatigue crack growth and fracture toughness properties of 304 stainless steel pipe for LNG transmission

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyun; Kim, Cheol-Man; Kim, Woo-Sik; Kho, Young-Tai

    2001-11-01

    The fatigue crack growth rate and fracture toughness tests of type 304 stainless steel were studied over a temperature range of -162°C to room temperature. Girth weld metal specimens were fabricated using a combination of gas-tungsten-arc-welding and shielded-metal-arc-welding. The seam weld metal was made with submerged arc welding. Fatigue crack growth rate tests were conducted using compact tension specimens in accordance with ASTM E647. Fracture toughness was evaluated through CTOD tests with three point bend specimens. The CTOD values were affected by crack orientation with respect to the rolling direction, but orientation had no influence on fatigue crack growth rates. The fatigue crack growth rates and the CTOD values decreased with decreasing test temperature.

  16. Localized corrosion of stainless steels in ammonium chloride solutions

    SciTech Connect

    Forsen, O.; Aromaa, J.; Tavi, M.; Virtanen, J.

    1997-05-01

    Ammonium chloride deposition is a well-known problem in oil refining. When these deposits form in a moist environment, they are corrosive to carbon steel. When unexpected corrosion problems are faced, the material is often changed to alloys like stainless steels (SS). Electrochemical measurements were used to study the corrosion resistance of SS in ammonium chloride environments with different chloride contents and at different temperatures.

  17. 37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  18. Stainless steels with improved strength for service at 760 C and above

    SciTech Connect

    Swindeman, R.W.

    1998-03-01

    An evaluation was undertaken of modified 25Cr-20Ni stainless steels and a modified 20Cr-25Ni-Nb stainless steel for advanced energy applications at 760 C (1,400 F) and higher. It was found that good fabricability, strength, and ductility could be produced in the modified steels. Stress rupture data to beyond 10,000 h showed that the strengths of the modified steels were more than double that for type 310H stainless steel.

  19. Transuranic contamination of stainless steel in nitric acid

    NASA Astrophysics Data System (ADS)

    Kerry, Timothy; Banford, Anthony W.; Thompson, Olivia R.; Carey, Thomas; Schild, Dieter; Geist, Andreas; Sharrad, Clint A.

    2017-09-01

    Stainless steels coupons have been exposed to transuranic species in conditions representative of those found in a spent nuclear fuel reprocessing plant. Stainless steel was prepared to different surface finishes and exposed to nitric acid of varying concentrations containing 237Np, 239Pu or 243Am for one month at 50 °C. Contamination by these transuranics has been observed on all surfaces exposed to the solution through the use of autoradiography. This technique showed that samples held in 4 M HNO3 bind 2-3 times as much radionuclide as those held in 10.5 M HNO3. It was also found that the polished steel surfaces generally took up more transuranic contamination than the etched and ;as received; steel finishes. The extent of corrosion on the steel surfaces was found, by scanning electron microscopy, to be greater in solutions containing Np and Pu in comparison to that observed from contact with Am containing solutions, indicating that redox activity of transuranics can influence the mechanism of stainless steel corrosion.

  20. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    SciTech Connect

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.

  1. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  2. Effect of sulfur and oxygen on weld penetration of high-purity austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Aidun, D. K.; Martin, S. A.

    1997-08-01

    Convective flow during arc welding depends upon the surface tension gradient (dy/dT, Marangoni flow), buoyancy, arc drag force, electromagnetic force, shielding gas, and the viscosity of the melt. The Marangoni and the buoyancy-driven flow are the major factors in controlling weld penetration in ferrous alloys, especially austenitic stainless steels such as 304 and 316. Small variations in the concentration of surfactants, such as sulfur and oxygen, in stainless steels cause significant changes in the weld penetration and depth/width (D/W) ratio of the fusion zone. Gas-tungsten arc (GTA) welds were done on low- and high-sulfur 304 and 316 heats using pure argon and argon/oxygen shielding gases. Also, laser beam (LB) welds were done on the 304 and 316 heats using pure argon as the shielding gas. Increase in the sulfur content decreased the D/W ratio for the GTA 304 welds using pure argon, but for the case of LB 304 welds the results were the opposite. For the GTA 316 welds and LB 316 welds, increase in sulfur increased the D/W ratio of the fusion zone. Oxygen increased the D/W ratio of both the 304 and 316 GTA welds.

  3. Behavior of stainless steels in pressurized water reactor primary circuits

    NASA Astrophysics Data System (ADS)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-08-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  4. Graphene Nanoplatelets Based Protective and Functionalizing Coating for Stainless Steel.

    PubMed

    Mondal, Jayanta; Kozlova, Jekaterina; Sammelselg, Väino

    2015-09-01

    Stainless steel is the most widely used alloy for many industrial and everyday applications, and protection of this alloy substrate against corrosion is an important industrial issue. Here we report a promising application of graphene oxide and graphene nanoplatelets as effective corrosion inhibitors for AISI type 304 stainless steel alloy. The graphene oxide and graphene coatings on the stainless steel substrates were prepared using spin coating techniques. Homogeneous and complete surface coverage by the graphene oxide and graphene nanoplatelets were observed with a high-resolution scanning electron microscope. The corrosion inhibition ability of these materials was investigated through measurement of open circuit potential and followed by potentiodymamic polarization analysis in aqueous sodium chloride solution before and after a month of immersion. Analyzed result exhibits effective corrosion inhibition for both substrates coated with graphene oxide or graphene nanoplatelets by increasing corrosion potential, pitting potential and decreasing passive current density. The corrosion inhibition ability of the coated substrates has not changed even after the long-term immersion. The result showed both graphene materials can be used as an effective corrosion inhibitor for the stainless steel substrates, which would certainly increase lifetime the substrate. However, long-term protection ability of the graphene coated susbtsrate showed somewhat better inhibition performance than the ones coated with graphene oxide.

  5. Stainless Steel Crown Placement Utilizing the Hall Technique

    DTIC Science & Technology

    2017-03-23

    FROM: 59 MDW/SGVU SUBJECT: Professional Presentation Approval 8 MAR 2017 1. Your paper, entitled Stainless Steel Crown Placement Utilizing the Hall...Lenox Pointe NE, Atlanta, GA 30324; 23-25 MAR 20 17 D 11e. OTHER (Describe: name of meeting, city, state, and date of meeting.) 12. EXPECTED DATE

  6. Battery and fuel cell electrodes containing stainless steel charging additive

    DOEpatents

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  7. Metal release from stainless steel in biological environments: A review.

    PubMed

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2015-03-29

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized.

  8. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  9. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  10. Brazing of Stainless Steel to Various Aluminum Alloys in Air

    NASA Astrophysics Data System (ADS)

    Liu, Shuying; Suzumura, Akio; Ikeshoji, Toshi-Taka; Yamazaki, Takahisa

    Brazing of a stainless steel to various aluminum alloys was carried out using an Al-Si filler metal and a fluoride-active flux in air. The brazeability was remarkably different by the aluminum alloys and the brazing conditions. It was considered that the differences were originated with the compositions of base metals and the filler metal, the solidus temperature and the partially melting behavior of the aluminum alloys, and the behavior of the surface oxide film layers of both base metals. On the other hand, the obstruction of brazeability was identified as the rapid reaction between the aluminum alloys and the brazing filler metal, which makes the molten brazing filler metal disappear at the joining interface before the wetting occurs to the stainless steel. Taking this phenomena into consideration, it was attempted to make previous wetting of the brazing filler to the stainless steel before brazing to the aluminum alloys. This method provided the successful brazed joints for the most combinations of the stainless steel and the aluminum alloys.

  11. Laves intermetallics in stainless steel-zirconium alloys

    SciTech Connect

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-05-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni){sub 2+x}, have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni){sub 23}Zr{sub 6} during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy.

  12. Electroless nickel plating on stainless steels and aluminum

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  13. Method of forming dynamic membrane on stainless steel support

    NASA Technical Reports Server (NTRS)

    Gaddis, Joseph L. (Inventor); Brandon, Craig A. (Inventor)

    1988-01-01

    A suitable member formed from sintered, powdered, stainless steel is contacted with a nitrate solution of a soluble alkali metal nitrate and a metal such as zirconium in a pH range and for a time sufficient to effect the formation of a membrane of zirconium oxide preferably including an organic polymeric material such as polyacrylic acid.

  14. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  15. Cataract Section Across Temporary Stainless-Steel Sutures

    PubMed Central

    MacDonald, R. Keith

    1965-01-01

    The purpose of the technique described was to combine the advantages of a cleanedged Graefe-knife incision with those of safety and near-perfect apposition offered by preplaced sutures: a preliminary to cataract extraction. Uncuttable preplaced 2-mm. stainless steel sutures were finally replaced after completion of the incision by attached braided silk for closure purposes. PMID:14291461

  16. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-12-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  17. Immobilization of mesoporous silica particles on stainless steel plates

    NASA Astrophysics Data System (ADS)

    Pasqua, Luigi; Morra, Marco

    2017-03-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  18. Quantitative measurement and modeling of sensitization development in stainless steel

    SciTech Connect

    Bruemmer, S.M.; Atteridge, D.G.

    1992-09-01

    The state-of-the-art to quantitatively measure and model sensitization development in austenitic stainless steels is assessed and critically analyzed. A modeling capability is evolved and validated using a diverse experimental data base. Quantitative predictions are demonstrated for simple and complex thermal and thermomechanical treatments. Commercial stainless steel heats ranging from high-carbon Type 304 and 316 to low-carbon Type 304L and 316L have been examined including many heats which correspond to extra-low-carbon, nuclear-grade compositions. Within certain limits the electrochemical potentiokinetic reactivation (EPR) test was found to give accurate and reproducible measurements of the degree of sensitization (DOS) in Type 304 and 316 stainless steels. EPR test results are used to develop the quantitative data base and evolve/validate the quantitative modeling capability. This thesis represents a first step to evolve methods for the quantitative assessment of structural reliability in stainless steel components and weldments. Assessments will be based on component-specific information concerning material characteristics, fabrication history and service exposure. Methods will enable fabrication (e.g., welding and repair welding) procedures and material aging effects to be evaluated and ensure adequate cracking resistance during the service lifetime of reactor components. This work is being conducted by the Oregon Graduate Institute with interactive input from personnel at Pacific Northwest Laboratory.

  19. 304L stainless steel resistance to cesium chloride

    SciTech Connect

    Graves, C.E.

    1998-08-27

    B and W Hanford Company have two Oak Ridge National Laboratory (ORNL) Type 4 canisters filled with cesium chloride (CsCl) originally produced at WESF (Waste Encapsulation and Storage Facility). These canisters are constructed of 304L stainless steel per drawing ORNL 970-294. Instead of removing the CsCl from the Type 4 canisters and repacking into an Inner Capsule, it is intended (for ALARA, schedule and cost purposes) that the Type 4 canisters be decontaminated (scrubbed) and placed [whole] inside a Type ``W`` overpack. The overpack is constructed from 316L stainless steel. Several tests have been run by Pacific Northwest National Laboratory (PNNL) over the. years documenting the corrosion compatibility of 316L SS with CsCl (Bryan 1989 and Fullam 1972). However, no information for 304L SS compatibility is readily available. This document estimates the corrosion resistance of 304L stainless steel in a WESF CsCl environment as it compares with that of 316L stainless steel.

  20. 73. View of line of stainless steel coolant storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of line of stainless steel coolant storage tanks for bi-sodium sulfate/water coolant solution at first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2016-12-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  2. Plastic plus stainless-steel fibers make resilient, impermeable material

    NASA Technical Reports Server (NTRS)

    Smirra, J. R.

    1965-01-01

    Plastic material combined with stainless-steel fibers and molded under heat and pressure into a desired configuration is both soft enough to deform under a load and resilient enough to return to its original shape when the load is removed.

  3. Materials data handbook: Stainless steel alloy A-286

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  4. Nanoparticle treated stainless steel filters for metal vapor sequestration

    SciTech Connect

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  5. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  6. [The question of nickel release from stainless steel cooking pots].

    PubMed

    Vrochte, H; Schätzke, M; Dringenberg, E; Wölwer-Rieck, U; Büning-Pfaue, H

    1991-09-01

    For three items of foods (rhubarb, spinach, sauerkraut) the possible release of nickel (by means of AAS) was analysed, a release which may be caused by a possible corrosive effect of the concerned (oxalic-, milk-, vinegar-) acids (as well as common salt) within a normal domestic food-preparation. For this analysis stainless steel cooking pots of different manufacturers, various types and in a representative selection and quantity were taken into consideration; the detailed analyses were extended so far that clear statistical evaluations were possible. This method complies regulations for accuracy to determine traces of heavy metal. For all three analysed food-stuffs an identical result was reached that no nickel release from the stainless steel cooking pots into the food was found. Differences of the various stainless steel cooking pots with regard to their surfaces' quality or their origin (manufacturers) were not yielded, either. All detected concentrations of nickel are within the reach of the natural nickel content of the analysed food-stuffs and their amount is even much lower than other food's content of nickel. This leads up to the conclusion that the former view of a possible nickel release of stainless steel cooking pots has to be revised because these assumptions were not confirmed in the presented results of this analysis and therefore have to be regarded as not correct.

  7. 6. DETAIL OF STAINLESS STEEL VISCERA CHUTE IN SOUTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF STAINLESS STEEL VISCERA CHUTE IN SOUTHEAST CORNER OF LEVEL4; ENTRAILS WERE DROPPED INTO CHUTE, THEN PASSED THROUGH THE FLOOR TO THE GUT SHANTY ON LEVEL 3 TO BE SORTED AND CLEANED - Rath Packing Company, Hog Dressing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  8. 2. GENERAL VIEW OF STAINLESS STEEL SMOKEHOUSES ON LEVEL 6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF STAINLESS STEEL SMOKEHOUSES ON LEVEL 6, LOOKING EAST; SMOKEHOUSE UNITS WERE BUILT BY DRYING SYSTEMS COMPANY, DIVISION OF MICHIGAN OVEN COMPANY, MORTON GROVE, ILLINOIS - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  9. Simulation Computation of 430 Ferritic Stainless Steel Solidification

    NASA Astrophysics Data System (ADS)

    Pang, Ruipeng; Li, Changrong; Wang, Fuming; Hu, Lifu

    The solidification structure of 430 ferritic stainless steel has been calculated in the solidification process by using 3D-CAFE model under the condition of water cooling. The calculated results consistent with those obtained from experiment. Under watercooling condition, the solidification structure consists of chilled layer, columnar grain zone, transition zone and equiaxed grain zone.

  10. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  11. New equation of state for stainless steel 347

    SciTech Connect

    Boettger, J.C.

    1993-12-01

    A new SESAME equation of state (EOS) for stainless steel 347 has been generated using the computer program GRIZZLY, and has been added to the SESAME EOS library as material number 4271. This new EOS is superior to its predecesser (material number 4270) in several respects.

  12. Phase formation at bonded vanadium and stainless steel interfaces

    SciTech Connect

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 {mu}m thick was present at the interface. This layer grew to about 50 {mu}m thick during heat treatment at 1000{degrees}C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the {omega} phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000{degrees}C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be {omega} phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000{degrees}C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the {omega} phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications.

  13. 76 FR 13357 - Stainless Steel Sheet and Strip in Coils From Mexico; Correction Notice to Amended Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico; Correction Notice to... administrative review for stainless steel sheet and strip in coils from Mexico. See Stainless Steel Sheet and.... See Stainless Steel Sheet and Strip in Coils from Mexico; Final Results of Antidumping...

  14. Sigma phase morphologies in cast and aged super duplex stainless steel

    SciTech Connect

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-08-15

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  15. Fusion welding of advanced borated stainless steels. Final report: CRADA No. CR1042

    SciTech Connect

    Robino, C.V.; Cieslak, M.J.

    1994-02-01

    This work addressed two major areas concerning joining of advanced borated stainless steels. These areas included the development of a understanding of the physical metallurgy of borated stainless steels and the development of welding processes and post-weld heat treatments for these alloys. Differential thermal analysis experiments were conducted on ten heats of borated stainless steel to determine the transformation temperatures and melting behavior of the alloys. On-heating solidus temperatures were measured for all of the alloys and were used to define the temperatures associated with the fusion line during welding. Isothermal heat treatments designed to evaluate the effects of elevated temperature exposures on the toughness of the borated grades were conducted. These tests were used to determine if significant changes in the microstructure or mechanical properties of weld heat-affected zones (HAZ) occur. Specifically, the tests addressed the solid-state region of the HAZ. The test matrix included a variety of alloy compositions and thermal exposures at temperatures near the on-heating solidus (as determined by the DTA experiments). Welding experiments designed to assess the mechanical properties and microstructure of gas-tungsten arc and electron beam welds were conducted.

  16. Study on Thermal Physical Properties of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Fang, Dong; Jun-mao, Qie; Hao-hua, Deng

    The DIL402C thermal dilatometer and STA449C thermal analyzer were employed to test the linear expansion and contraction coefficient, CP and DSC curve of 304 stainless steel. The result showed that the linear expansion coefficient range was 20.9700×10-6˜21.5712×10-6 and the linear contraction coefficient range was 21.2528×10-6˜21.9471×10-6. The linear expansion and contraction coefficient were higher than other steel grade, so the 304 stainless steel belonged to the crack sensitive steel. Because of the crystal phase transformation occurred during the 1000˜1400 °C,the curve of CP fluctuated obviously and the defects of casting blank occurred easily. Chosen 1414°C as the liquidus temperature of 304 stainless steel based on the analysis results of DSC. The curve of DSC was unsmooth during 1450˜1100°C, the crystal phase transformation occurs and thermal stability of slab was inferior.When the initial solidified shell formed in this temperature range,the thickness of the shell would be nonuniform and the surface defects occurred more easily.

  17. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  18. Mathematical Modeling of Weld Bead Geometry, Quality, and Productivity for Stainless Steel Claddings Deposited by FCAW

    NASA Astrophysics Data System (ADS)

    Gomes, J. H. F.; Costa, S. C.; Paiva, A. P.; Balestrassi, P. P.

    2012-09-01

    In recent years, industrial settings are seeing a rise in the use of stainless steel claddings. The anti-corrosive surfaces are made from low cost materials such as carbon steel or low alloy steels. To ensure the final quality of claddings, however, it is important to know how the welding parameters affect the process's outcome. Beads should be defect free and deposited with the desired geometry, with efficiency, and with a minimal waste of material. The objective of this study then is to analyze how the flux-cored arc welding (FCAW) parameters influence geometry, productivity, and the surface quality of the stainless steel claddings. It examines AISI 1020 carbon steel cladded with 316L stainless steel. Geometry was analyzed in terms of bead width, penetration, reinforcement, and dilution. Productivity was analyzed according to deposition rate and process yield, and surface quality according to surface appearance and slag formation. The FCAW parameters chosen included the wire feed rate, voltage, welding speed, and contact-tip-workpiece distance. To analyze the parameters' influences, mathematical models were developed based on response surface methodology. The results show that all parameters were significant. The degrees of importance among them varied according to the responses of interest. What also proved to be significant was the interaction between parameters. It was found that the combined effect of two parameters significantly affected a response; even when taken individually, the two might produce little effect. Finally, the development of Pareto frontiers confirmed the existence of conflicts of interest in this process, suggesting the application of multi-objective optimization techniques to the sequence of this study.

  19. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  20. Stainless steel valves with enhanced performance through microstructure optimization

    NASA Astrophysics Data System (ADS)

    Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.

    2017-08-01

    Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.

  1. Evaluation of the wear properties of high interstitial stainless steels

    SciTech Connect

    Tylczak, J.H.; Rawers, J.C.; Alman, D.E.

    2007-04-01

    Adding carbon to high nitrogen steels increases interstitial concentrations over what can be obtained with nitrogen addition alone. This can results in an increase in hardness, strength, and wear resistance. The alloys produced for this study were all based on commercially available high-nitrogen Fe-18Cr-18Mn stainless steel. This study is the first significant wear study of these new high interstitial nitrogen-carbon stainless steel alloys. Wear tests included: scratch, pin-on-disk abrasion, dry sand/rubber wheel abrasion, impeller impact, and jet erosion. Increasing interstitial concentration increased strength and hardness and improved wear resistance under all test conditions. The results are discussed in terms of overall interstitial alloy concentration.

  2. Achievement of a superpolish on bare stainless steel

    NASA Astrophysics Data System (ADS)

    Howells, Malcolm R.; Casstevens, John M.

    1997-11-01

    We report the achievement of a superpolished surface, suitable for x-ray reflection, on bare stainless steel. The rms roughness obtained on various samples varied from 2.2 to 4.2 angstroms, as measured by an optical profiler with a bandwidth 0.29 - 100 mm-1. The type 17-4 PH precipitation-hardening stainless steel used to make the mirrors is also capable of ultrastability and has good manufacturability. This combination of properties makes it an excellent candidate material for mirror substrates. We describe the successful utilization of this type of steel in making elliptical-cylinder mirrors for a soft-x-ray microprobe system at the Advanced Light Source, and discuss possible reasons for its unusual stability and polishability.

  3. Achievement of a superpolish on bare stainless steel

    SciTech Connect

    Howells, M.R.; Casstevens, J.

    1997-08-01

    We report the achievement of a superpolished surface, suitable for x-ray reflection, on bare stainless steel. The rms roughness obtained on various samples varied from 2.2 to 4.2 {angstrom}, as measured by an optical profiler with a bandwidth 0.29-100 mm{sup -1}. The type 17-4 PH precipitation-hardening stainless steel used to make the mirrors is also capable of ultrastability and has good manufactureability. This combination of properties makes it an excellent candidate material for mirror substrates. We describe the successful utilization of this type of steel in making elliptical-cylinder mirrors for a soft-x-ray microprobe system at the Advanced Light Source, and discuss possible for its unusual stability and polishability.

  4. Aging degradation of cast stainless steels: Effects on mechanical properties

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1987-06-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water operating conditions. Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 290/sup 0/C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J/sub IC/, and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The fracture toughness results are consistent with the Charpy-impact data, i.e., the relative reduction in J/sub IC/ is similar to the relative decrease in impact energy. The ferrite content and concentration of C in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and Mo-containing CF-8M steels are most susceptible to embrittlement. Weakening of the ferrite/austenite phase boundaries by carbide precipitates has a significant effect on the kinetics and extent of embrittlement of the high-carbon CF-8 and CF-8M steels, particularly after aging at temperatures greater than or equal to400/sup 0/C. The influence of N content and distribution of ferrite on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 450/sup 0/C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel.

  5. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel.

    PubMed

    Zhang, Dan; Ren, Ling; Zhang, Yang; Xue, Nan; Yang, Ke; Zhong, Ming

    2013-05-01

    To evaluate the possibility of an alternative to the traditional orthodontic stainless steel implants, the antibacterial activity against Porphyromonas gingivalis (P. gingivalis) and the related cytotoxicity of a type 304 Cu bearing antibacterial stainless steel were studied. The results indicated that the antibacterial stainless steel showed excellent antibacterial property against P. gingivalis, compared with the control steel (a purchased medical grade 304 stainless steel). Compared to the control steel, there were fewer bacteria on the surface of the antibacterial stainless steel, with significant difference in morphology. The cytotoxicities of the antibacterial stainless steel to both MG-63 and KB cells were all grade 1, the same as those of the control steel. There were no significant differences in the apoptosis rates on MG-63 and KB cells between the antibacterial stainless steel and the control steel. This study demonstrates that the antibacterial stainless steel is possible to reduce the incidence of implant-related infections and can be a more suitable material for the micro-implant than the conventional stainless steel in orthodontic treatment.

  6. Hardness analysis of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  7. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  8. Wetting Properties of Liquid Lithium on Stainless Steel and Enhanced Stainless Steel Surfaces

    NASA Astrophysics Data System (ADS)

    Fiflis, P.; Xu, W.; Raman, P.; Andruczyk, D.; Ruzic, D. N.; Curreli, D.

    2012-10-01

    Research into lithium as a first wall material has proven its ability to effectively getter impurities and reduce recycling of hydrogen ions at the wall. Current schemes for introducing lithium into a fusion device consist of lithium evaporators, however, as these devices evolve from pulsed to steady state, new methods will need to be employed such as the LIMIT concept of UIUC, or thin flowing film lithium walls. Critical to their implementation is understanding the interactions of liquid lithium with various surfaces. One such interaction is the wetting of materials by lithium, which may be characterized by the contact angle between the lithium and the surface. Experiments have been performed at UIUC into the contact angle of liquid lithium with a given surface, as well as methods to increase it. To reduce the oxidation rate of the droplets, the experiments were performed in vacuum, using a lithium injector to deposit drops on each surface. Among the materials investigated are stainless steel, both untreated and coated with a diamond like carbon (DLC) layer, molybdenum, and boronized molybdenum. The contact angle and its dependence on temperature is measured.

  9. Robust Passivation of Martensitic Stainless Steel for Water Cleaning Compatibility

    NASA Astrophysics Data System (ADS)

    Prater, Walter; Chung, Wendy; Loop, Ken; Powell, Mark; Shatz, Tom

    Corrosion of hardened martensitic stainless steels used in magnetic disk drives is problematic because the rusting surface becomes a source of particulate contamination that can compromise the operational performance and reliability of the file. Corrosion of the stainless steels can be initiated by either atmospheric moisture or during aqueous based cleaning of the parts that typically occurs during their manufacturing steps or prior to file build. Aqueous based cleaning is commonplace since CFC cleaning solvents are losing favor because they are expensive and are discouraged by the EPA for their environmentally "unfriendly" nature. Passivation of the stainless stees can be accomplished by thermal treatment or chemical means, using nitric acid. Four techniques (1 thermal and 3 chemical) were evaluated in this study on two base materials, 440C and X105CrMo17. Natural passivation initiated by abrasive polishing was also tested. Corrosion tests were performed on specimens made of 440C and X105CrMo17 rails, the martensitic type, using electropotential in a basic electrolyte and electropotential in an acidic electrolyte. To understand the importance of metallurgical, physical and chemical variables and how they could influence the rail's corrosion resistance, three measurements were taken: 1. Grain size and carbide distribution using EDS. 2. Surface morphology. 3. Auger electron spectroscopy to determine the iron/chrome ratio and the chrome oxide layer thickness. When properly done, thermal and chemical passivation are excellent methods to make martensitic stainless steels corrosion resistant and water cleanable. Natural passivation when initiated by abrasive polishing does not perform well. Passivation is imparted to the stainless steel by the high chromium/low iron content at the surface and by a thin, chrome oxide layer at the surface.

  10. Stainless Steel Cladding Of Structural Steels By CO2 Laser Welding Techniques

    NASA Astrophysics Data System (ADS)

    Ludovico, A.; Daurelio, G.; Arcamone, O.

    1989-01-01

    Steel cladding processes are usually performed in different ways: hot roll cladding, strip cladding, weld cladding, explosion forming. For the first time, a medium power (2 KW c.w.) CO2 laser was used to clad structural steels (Fe 37C), 3 and 5 mm thick, with austenitic stainless steels (AISI 304 and AISI 316), 0.5 and 1.5 mm thick. The cladding technique we have developed uses the laser penetration welding process.

  11. Surface modifications of nitrogen-plasma-treated stainless steels

    NASA Astrophysics Data System (ADS)

    Gröning, P.; Nowak, S.; Schlapbach, L.

    1993-03-01

    Using X-ray photoelectron spectroscopy (XPS) and optical microscopy we have investigated the chemical composition and the morphology of stainless steel surfaces after low-pressure nitrogen-plasma treatment. AISI 440C and AISI 316L steels were treated at room temperature and at 600°C in an electron cyclotron resonance (ECR)N 2 plasma with different negative RF-bias potentials (in the range of 0 to 200 V). The formation of CrN on the steel surface was observed at high treatment temperature as well as at room temperature. Already at room temperature, a bias higher than 20 V results in preferential Fe sputtering and the formation of a surface rich in CrN. At high temperature ( T = 600°C) treatment the N 2 plasma changes the morphology of the steel surface completely, etching in some crystallographic orientation increases the roughness of the surface dramatically. The segregation of Cr, Mo, Mn, and Si forms a top surface layer with practically no Fe. To obtain pure CrN on the steel surface a negative bias is necessary to remove Mn and Si compounds from the surface. Since CrN has a NaCl structure like TiN with a lattice mismatch of only 2.1%, we believe that a N 2 plasma treatment improves the adhesion of TiN coatings on stainless steels, by the formation of a CrN interface compound.

  12. Infectivity of scrapie prions bound to a stainless steel surface.

    PubMed Central

    Zobeley, E.; Flechsig, E.; Cozzio, A.; Enari, M.; Weissmann, C.

    1999-01-01

    BACKGROUND: The transmissible agent of Creutzfeldt-Jakob disease (CJD) is not readily destroyed by conventional sterilization and transmissions by surgical instruments have been reported. Decontamination studies have been carried out thus far on solutions or suspensions of the agent and may not reflect the behavior of surface-bound infectivity. MATERIALS AND METHODS: As a model for contaminated surgical instruments, thin stainless-steel wire segments were exposed to scrapie agent, washed exhaustively with or without treatment with 10% formaldehyde, and implanted into the brains of indicator mice. Infectivity was estimated from the time elapsing to terminal disease. RESULTS: Stainless steel wire (0.15 x 5 mm) exposed to scrapie-infected mouse brain homogenate and washed extensively with PBS retained the equivalent of about 10(5) LD50 units per segment. Treatment with 10% formaldehyde for 1 hr reduced this value by only about 30-fold. CONCLUSIONS: The model system we have devised confirms the anecdotal reports that steel instruments can retain CJD infectivity even after formaldehyde treatment. It lends itself to a systematic study of the conditions required to effectively inactivate CJD, bovine spongiform encephalopathy, and scrapie agent adsorbed to stainless steel surfaces such as those of surgical instruments. PMID:10448646

  13. Reducing tool wear when machining austenitic stainless steels

    SciTech Connect

    Magee, J.H.; Kosa, T.

    1998-07-01

    Austenitic stainless steels are considered more difficult to machine than carbon steels due to their high work hardening rate, large spread between yield and ultimate tensile strength, high toughness and ductility, and low thermal conductivity. These characteristics can result in a built-up edge or excessive tool wear during machining, especially when the cutting speed is too high. The practical solution is to lower the cutting speed until tool life reaches an acceptable level. However, lower machining speed negatively impacts productivity. Thus, in order to overcome tool wear at relatively high machining speeds for these alloys, on-going research is being performed to improve cutting fluids, develop more wear-resistant tools, and to modify stainless steels to make them less likely to cause tool wear. This paper discusses compositional modifications to the two most commonly machined austenitic stainless steels (Type 303 and 304) which reduced their susceptibility to tool wear, and allowed these grades to be machined at higher cutting speeds.

  14. Ferritic, martensitic, and precipitation hardening stainless steel laser weldings

    NASA Astrophysics Data System (ADS)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Panagopoulos, Christos N.; Tundo, Corrado

    1998-07-01

    Even if many steels and alloys have been welded on the last years, nowadays there are some other stainless steel alloys that need a further comprehension when they have to be welded. Typically these alloys are martensitic and precipitation hardening ones that still present some problems to be weld, i.e. hot cracks, fragile beads, an excessive grain size and other surface defects. In this work some martensitic stainless steels of which a AISI 420B, a AISI 440C and a AISI 630 have been studied. The last one is always with a martensitic structure but, in particular, some interesting mechanical properties are reached by a precipitation hardening process. This research has experimented and studied the mechanical and technological properties of the welds obtained on the above cited AISI 420B, AISI 440C and AISI 630, welded by 1.5 kW CO2 laser. The results have also been compared with the ones obtained on ferritic stainless steels AISI 430 and 430F. A technological characterization of the welds has followed as metallographic tests and evaluations, microhardness, tensile and fatigue tests.

  15. The properties and fracture behavior of ion plasma sprayed TiN coating on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Orlova, Dina V.; Goncharenko, Igor M.; Danilov, Vladimir I.; Lobach, Maxim I.; Danilova, Lidiya V.; Shlyakhova, Galina V.

    2015-10-01

    The wear resistance and fracture behavior of ion plasma sprayed TiN coating were studied; the results are presented. The coating was applied to the stainless steel substrate using a vacuum arc method. The samples were tested by active loading. With varying coating thickness, its characteristics were found to change. Multiple cracking would occur in the deformed sample, with fragment borders aligned normal to the extension axis.

  16. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  17. Market Opportunities for Austenitic Stainless Steels in SO2 Scrubbers

    NASA Astrophysics Data System (ADS)

    Michels, Harold T.

    1980-10-01

    Recent U.S. federal legislation has created new opportunities for SO2 scrubbers because all coals, even low-sulfur western coals, will probably require scrubbing to remove SO2 from gaseous combustion products. Scrubbing, the chemical absorption of SO2 by vigorous contact with a slurry—usually lime or limestone—creates an aggressive acid-chloride solution. This presents a promising market for pitting-resistant austenitic stainless steels, but there is active competition from rubber and fiberglass-lined carbon steel. Since the latter are favored on a first-cost basis, stainless steels must be justified on a cost/performance or life-cost basis. Nickel-containing austenitic alloys are favored because of superior field fabricability. Ferritic stainless steels have little utility in this application because of limitations in weldability and resulting poor corrosion resistance. Inco corrosion test spools indicate that molybdenum-containing austenitic alloys are needed. The leanest alloys for this application are 316L and 317L. Low-carbon grades of stainless steel are specified to minimize corrosion in the vicinity of welds. More highly alloyed materials may be required in critical areas. At present, 16,000 MW of scrubber capacity is operational and 17,000 MW is under construction. Another 29,000 MW is planned, bringing the total to 62,000 MW. Some 160,000 MW of scrubber capacity is expected to be placed in service over the next 10 years. This could translate into a total potential market of 80,000 tons of alloy plate for new power industry construction in the next decade. Retrofitting of existing power plants plus scrubbers for other applications such as inert gas generators for oil tankers, smelters, municipal incinerators, coke ovens, the pulp and paper industry, sulfuric acid plants, and fluoride control in phosphoric acid plants will add to this large market.

  18. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  19. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-02-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  20. Fracture Behaviour of Type 304LN Stainless Steel and its Welds

    SciTech Connect

    Dubey, J.S.; Chakravartty, J.K.; Singh, P.K.; Banerjee, S.

    2006-07-01

    SA312 type 304LN stainless steel material, having closer control over impurities and inclusion content, is the intended piping material in the Advanced Heavy Water Reactors. Deformation, fatigue and fracture behaviour of this material and its weldments have been characterized at ambient temperature and at 558 K. The details of the fractographic investigations and stretch zone width measurements are also discussed. The base metals shows high initiation toughness (>500 kJ/m{sup 2}) and large tearing modulus at ambient and operating temperatures. Shielded Metal Arc Welding (SMAW) weld metal shows much much reduced initiation toughness and tearing resistance in comparison to base metal and Gas Tungsten Arc Welding (GTAW) welds. This is attributed to larger density of second phase inclusions in the SMAW weld metal. SZW measurements give a good alternate estimate of the toughness of the materials. Fatigue crack growth rate in SMAW weld metal was found to be comparable to base metal at higher load ratios. (authors)

  1. Cathodic properties of different stainless steels in natural seawater

    SciTech Connect

    Johnsen, R.; Bardal, E.

    1985-05-01

    The cathodic properties of a number of stainless steels, which were exposed to natural seawater flowing at 0 to 2.5 m/s and polarized to potentials from -300 to -950 mV SCE, have been studied. The current density development at constant potential and the free corrosion potential during the exposure time were recorded continuously. At the end of the exposure period, after approximately 28 to 36 days of exposure, polarization curves were determined. After one to three weeks of exposure, depending on the water velocity, microbiological activity on the surface caused an increase in the current density requirement of the specimen. An explanation for the mechanism behind the current density increase caused by slime production from marine bacteria may be increased exchange current density, i/sub 0/. There was no measurable calcareous deposit on the stainless steel surfaces at the end of the exposure periods.

  2. Emissivity of sodium wetted and oxidized Type 304 stainless steel

    SciTech Connect

    Haines, N.L.; Craig, R.E.; Forsyth, D.R.; Novendstern, E.H.

    1980-01-01

    The emissivity of sodium wetted and oxidized Type 304 stainless steel was determined to provide data for calculating the heat flow through Liquid Metal Fast Breeder Reactor (LMFBR) reflector plates, located above the sodium pool, to the reactor closure head. An emissivity experiment using a Type 304 stainless steel specimen was performed in an inerted glovebox. Relatively high oxygen concentrations of 10,000 and 50 vppm were used in the argon/oxygen mixtures to reduce reaction time. Following wetting and oxidation, the specimen was heated to a maximum temperature of 450/sup 0/C and the emissivity of the oxidized coating was calculated. Results indicate that the emissivity of the coating ranged from 0.55 to 0.92.

  3. Interaction of cobalt with a stainless steel oxide surface

    SciTech Connect

    Taylor, J.B. )

    1991-01-01

    The deposition of radioactive cobalt ions from aqueous solutions in the pH range from 1 to 12 onto the internal surface of a stainless steel vessel or pipework can lead to the buildup of tenacious surface activity. For liquid streams of low specific activity (measured in becquerels per millilitre), the surface activity buildup may create a more dominant gamma radiation field than the activity suspended in the liquid. Failure to adequately predict this buildup for an operational nuclear plant can lead to an underestimate of potential gamma dose rates. This may lead to an economic penalty if additional shielding or other protective measures are necessary following plant operation. A theoretical method of determining the cobalt mass/activity deposition from aqueous liquor onto stainless steel is outlined in this paper. A validation of the method is given, and the limits of its application are discussed.

  4. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  5. Long-Term Underground Corrosion of Stainless Steels

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2007-03-01

    In 1970, the National Institute of Standards and Technology (NIST) implemented the most ambitious and comprehensive long-term corrosion behavior test to date for stainless steels in soil environments. Over thirty years later, one of the six test sites was targeted to research subsurface contamination and transport processes in the vadose and saturated zones. This research directly applies to environmental management operational corrosion issues and long term stewardship scientific needs for understanding the behavior of waste forms and their near-field contaminant transport of chemical and radiological contaminants at nuclear disposal sites. This paper briefly describes the ongoing research and the corrosion analysis results of the stainless steel plate specimens recovered from the partial recovery of the first test site.

  6. Kinetic evaluation of intergranular fracture in austenitic stainless steels

    SciTech Connect

    Simonen, E.P.; Bruemmer, S.M.

    1995-12-31

    A second, higher-dose threshold exists for irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in non-oxidizing environments. The data supporting this concept have stimulated interest in the mechanical aspects of intergranular (IG) fracture. Cracking in a non-oxidizing environment suggests that mechanically-induced IG fracture may play an important role in the IASCC mechanism under these conditions. Radiation alters deformation processes in austenitic alloys and may influence the fracture mode during either in-situ or post-irradiation straining. Radiation effects that must be considered include radiation strengthening, radiation creep and radiation-induced flow localization. The present evaluation relates these radiation-induced phenomena to IG fracture relevant to IASCC. The evaluation indicates that radiation strengthening retards matrix deformation and allows intergranular fracture to occur at higher stresses and lower temperatures than expected for unirradiated stainless steel.

  7. Stainless steel porous substrates produced by tape casting

    NASA Astrophysics Data System (ADS)

    Mercadelli, Elisa; Gondolini, Angela; Pinasco, Paola; Sanson, Alessandra

    2017-01-01

    In this work the technological issues related to the production of tape cast large-area porous stainless steel supports for Solid Oxide Fuel Cells (SOFC) applications were carefully investigated. The slurry formulation was optimized in terms of amount and nature of the organic components needed: rice starch and polymethyl metacrylate were found to be, respectively, the most suitable pore former and binder because easily eliminated during the thermal treatment in reducing atmosphere. The compatibility of the binder system chosen with the most widely used solvents for screen printing inks was also evaluated. Finally the influence of the sintering temperature and of the refractory supports to be used during the thermal treatments onto the production of porous stainless steel supports was discussed. The whole process optimization allows to produce flat, crack-free metallic substrate 900-1000 μm thick, dimensions up to 5×5 cm and with a tailored porosity of 40% suitable for SOFCs application.

  8. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  9. Characterization of Austenitic Stainless Steels Deformed at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Calmunger, Mattias; Chai, Guocai; Eriksson, Robert; Johansson, Sten; Moverare, Johan J.

    2017-10-01

    Highly alloyed austenitic stainless steels are promising candidates to replace more expensive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterization, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 673 K (400 °C) up to 973 K (700 °C). The materials showed different ductility at elevated temperatures which increased with increasing nickel content. The dominating deformation mechanism was planar dislocation-driven deformation at elevated temperature. Deformation twinning was also a noticeable active deformation mechanism in the heat-resistant austenitic alloys during tensile deformation at elevated temperatures up to 973 K (700 °C).

  10. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  11. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-09-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  12. Lifetest investigations with stainless steel/water heat pipes

    NASA Astrophysics Data System (ADS)

    Muenzel, W. D.; Kraehling, H.

    Life tests were conducted on water heat pipes, made from four different alloys of stainless steel, at operation temperatures of 120, 160, 220, and 320 C in a reflux boiler mode for more than 20,000 hr. Other parameters varied during the tests included capillary structure, pretreatment and cleaning of the components, additional oxidation of the inner surface, filling procedures, amoung of liquid change, the number of ventings, and the duration of the reaction runs. The best results were obtained with pipes containing stainless steels with molybdenum alloy additions and with carbon contents of greater than 0.03%; with components which formed a protective surface layer; with the use of double-distilled water that had been ultrasonically degassed; with repeated ventings during the initial reaction run of 500 hr minimum duration; and with the addition of gaseous oxygen into the heat pipe during the reaction run with subsequent venting.

  13. Surface treatment and corrosion behaviour of austenitic stainless steel biomaterial

    NASA Astrophysics Data System (ADS)

    Oravcová, M.; Palček, P.; Zatkalíková, V.; Tański, T.; Król, M.

    2017-02-01

    In this article results from corrosion behaviour of austenitic stainless steel AISI 316L after different surface treatments are published. “As received” surface and surface after grinding resulted in lower resistance to pitting corrosion in physiological solution than electrochemically polished in H3PO4+H2SO4+H2O. Electropolishing also improved the surface roughness in comparison with the “as received” surface. Deposition of Al2O3 nanometric ALD coating improves the corrosion resistance of stainless steel in chloride-containing environment by shifting the breakdown potential toward more positive values. This oxide coating not only improves the corrosion resistance but it also affects the wettability of the surface, resulting in hydrophobic surface.

  14. Duplex stainless steels for the pulp and paper industry

    SciTech Connect

    Alfonsson, E.; Olsson, J.

    1999-07-01

    The metallurgy and corrosion resistance of duplex stainless steel, particularly with regards to applications in the pulp and paper industry, are described. Practical experiences from pressure vessel installations in cooking plants and bleach plants as well as from non-pressurized items in different parts along the fiber line, are given. The paper also reviews corrosion test results presented previously and compares these with recent test data and the practical experiences. Though most of the installations have been successful, some cases of corrosion attacks on duplex stainless steel have been reported, although these are very limited in number: one digester, one calorifier, two pulp storage towers, and two bleach plant filter washers, of a total of more than 700 identified installations.

  15. Corrosion behavior of stainless steel-zirconium alloy waste forms.

    SciTech Connect

    Abraham, D. P.

    1999-01-13

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The baseline waste form for spent fuels from the EBR-II reactor is a stainless steel-15 wt.% zirconium (SS-15Zr) alloy. This article briefly reviews the microstructure of various SS-Zr waste form alloys and presents results of immersion corrosion and electrochemical corrosion tests performed on these alloys. The electrochemical tests show that the corrosion behavior of SS-Zr alloys is comparable to those of other alloys being considered for the Yucca Mountain geologic repository. The immersion tests demonstrate that the SS-Zr alloys are resistant to selective leaching of fission product elements and, hence, suitable as candidates for high-level nuclear waste forms.

  16. Corrosion testing of stainless steel-zirconium metal waste form.

    SciTech Connect

    Abraham, D. P.

    1998-12-14

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposition of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms contain irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel-15 wt% zirconium (SS-15Zr) alloy. This article presents microstructure and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosion, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms are successful at the immobilization and retention of fission products and show potential for acceptance as high-level nuclear waste forms.

  17. New hermetic sealing material for vacuum brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  18. STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES

    SciTech Connect

    Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

    2010-02-01

    Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

  19. Characterization of Austenitic Stainless Steels Deformed at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Calmunger, Mattias; Chai, Guocai; Eriksson, Robert; Johansson, Sten; Moverare, Johan J.

    2017-07-01

    Highly alloyed austenitic stainless steels are promising candidates to replace more expensive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterization, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 673 K (400°C) up to 973 K (700°C). The materials showed different ductility at elevated temperatures which increased with increasing nickel content. The dominating deformation mechanism was planar dislocation-driven deformation at elevated temperature. Deformation twinning was also a noticeable active deformation mechanism in the heat-resistant austenitic alloys during tensile deformation at elevated temperatures up to 973 K (700°C).

  20. Failure Assessment of Stainless Steel and Titanium Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury A.

    2012-01-01

    Following successful application of Coulomb-Mohr and interaction equations for evaluation of safety margins in Albemet 162 brazed joints, two additional base metal/filler metal systems were investigated. Specimens consisting of stainless steel brazed with silver-base filler metal and titanium brazed with 1100 Al alloy were tested to failure under combined action of tensile, shear, bending and torsion loads. Finite Element Analysis (FEA), hand calculations and digital image comparison (DIC) techniques were used to estimate failure stresses and construct Failure Assessment Diagrams (FAD). This study confirms that interaction equation R(sub sigma) + R(sub tau) = 1, where R(sub sigma) and R(sub t u) are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in stainless steel and titanium brazed joints.

  1. Sensitization and IGSCC susceptibility prediction in stainless steel pipe weldments

    SciTech Connect

    Atteridge, D.G.; Simmons, J.W.; Li, Ming; Bruemmer, S.M.

    1991-11-01

    An analytical model, based on prediction of chromium depletion, has been developed for predicting thermomechanical effects on austenitic stainless steel intergranular stress corrosion cracking (IGSCC) susceptibility. Model development and validation is based on sensitization development analysis of over 30 Type 316 and 304 stainless steel heats. The data base included analysis of deformation effects on resultant sensitization development. Continuous Cooling sensitization behavior is examined and modelled with and without strain. Gas tungsten are (GTA) girth pipe weldments are also characterized by experimental measurements of heat affected zone (HAZ) temperatures, strains and sensitization during/after each pass; pass by pass thermal histories are also predicted. The model is then used to assess pipe chemistry changes on IGSCC resistance.

  2. Stainless steel mesh-acrylic cranioplasty.

    PubMed

    Tysvaer, A T; Hovind, K H

    1977-03-01

    Twenty-four steel mesh-acrylic plates have been used for repair of skull defects in 1970-73. Three plates had to be removed due to complications, two due to infection and one due to an allergic reaction. The plate is easy to mould, strong, and light. The cosmetic results are excellent.

  3. Effect of Welding Consumables on Fatigue Performance of Shielded Metal Arc Welded High Strength, Q&T Steel Joints

    NASA Astrophysics Data System (ADS)

    Magudeeswaran, G.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2009-02-01

    Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to their high strength-to-weight ratio and high hardness. These steels are prone to hydrogen-induced cracking in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel consumables to weld the above steel was the only remedy because of higher solubility for hydrogen in austenitic phase. Recent studies proved that high nickel steel and low hydrogen ferritic steel consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the effect of welding consumables on high cycle fatigue properties of high strength, Q&T steel joints. Three different consumables namely (i) austenitic stainless steel, (ii) low hydrogen ferritic steel, and (iii) high nickel steel have been used to fabricate the joints by shielded metal arc (SMAW) welding process. The joints fabricated using low hydrogen ferritic steel electrodes showed superior fatigue properties than other joints.

  4. SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS

    DOEpatents

    Beaver, R.J.; Cherubini, J.H.

    1963-05-14

    A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)

  5. Surface nanocrystallization of stainless steel for reduced biofilm adherence

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Davis, Elisabeth M.; Hodges, Robert S.; Irvin, Randall T.; Li, D. Y.

    2008-08-01

    Stainless steel is one of the most common metallic biomedical materials. For medical applications, its resistance to the adherence of biofilms is of importance to the elimination or minimization of bacterial infections. In this study, we demonstrate the effectiveness of a process combining surface nanocrystallization and thermal oxidation (or a recovery heat treatment in air) for reducing the biofilm's adherence to stainless steel. During this treatment, a target surface was sandblasted and the resultant dislocation cells in the surface layer were turned into nanosized grains by a subsequent recovery treatment in air. This process generated a more protective oxide film that blocked the electron exchange or reduced the surface activity more effectively. As a result, the biofilm's adherence to the treated surface was markedly minimized. A synthetic peptide was utilized as a substitute of biofilms to evaluate the adhesion between a treated steel surface and biofilms using an atomic force microscope (AFM) through measuring the adhesive force between the target surface and a peptide-coated AFM tip. It was shown that the adhesive force decreased with a decrease in the grain size of the steel. The corresponding surface electron work function (EWF) of the steel was also measured, which showed a trend of variation in EWF with the grain size, consistent with corresponding changes in the adhesive force.

  6. 77 FR 13631 - Drawn Stainless Steel Sinks From China; Institution and Scheduling of Preliminary Phase...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drawn Stainless Steel Sinks From China; Institution and Scheduling of Preliminary Phase... the United States is materially retarded, by reason of imports from China of drawn stainless...

  7. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  8. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  9. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  10. Laser surface modification of 316L stainless steel.

    PubMed

    Balla, Vamsi Krishna; Dey, Sangeetha; Muthuchamy, Adiyen A; Janaki Ram, G D; Das, Mitun; Bandyopadhyay, Amit

    2017-02-28

    Medical grade 316L stainless steel was laser surface melted (LSM) using continuous wave Nd-YAG laser in argon atmosphere at 1 and 5 mm/s. The treated surfaces were characterized using electron backscatter diffraction to study the influence of top surface crystallographic orientation and type of grain boundaries on corrosion resistance, wettability, and biocompatibility. The laser scan velocity was found to have a marginal influence on the surface roughness and the type of grain boundaries. However, the crystal orientation density was found to be relatively high in 1 mm/s samples. The LSM samples showed a higher concentration of {101} and {123} planes parallel to the sample surface as well as a higher fraction of low-angle grain boundaries. The LSM samples were found to exhibit better surface wettability and enhanced the viability and proliferation of human fetal osteoblast cells in vitro when compared to the untreated samples. Further, the corrosion protection efficiency of 316L stainless steel was improved up to 70% by LSM in as-processed condition. The increased concentration of {101} and {123} planes on surfaces of LSM samples increases their surface energy, which is believed to be responsible for the improved in vitro cell proliferation. Further, the increased lattice spacing of these planes and high concentration of low-energy grain boundaries in LSM samples would have contributed to the better in vitro corrosion resistance than untreated 316L stainless steel. Our results indicate that LSM can be a potential treatment option for 316L stainless steel-based biomedical devices to improve biocompatibility and corrosion resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  11. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  12. An improved method for stainless steel wire mesh cranioplasty.

    PubMed

    Forni, C; Pagni, C A

    1985-07-01

    A method for stainless steel wire mesh cranioplasty is described. The method has proved simple and quick. Cosmetic results have been very good and no complications have been observed so far. This method seems particularly suitable in very large skull defects. It seems to reduce the incidence of the major complications of the wire mesh cranioplasties, viz. lifting of the margins, depression of the prosthetic vault and electrolytic interference with the circulating fluids.

  13. Survey on Metals Contained in Stainless Steel Kitchenware and Tableware.

    PubMed

    Shiozawa, Yuu; Haneishi, Nahoko; Suzuki, Kumi; Ogimoto, Mami; Takanashi, Mayu; Tomioka, Naoko; Uematsu, Yoko; Monma, Kimio

    2017-01-01

    Stainless steel kitchenware and tableware on sale in Japan were investigated. Surface elemental composition ratios of 172 samples were analyzed by the fluorescence X-ray method. High levels of manganese (9.59-20.03%)were detected in 17 samples. This finding was confirmed by ICP analysis. Next, we conducted migration tests. Samples conformed to the Italian Specific Migration Limits. Moreover, lead and antimony were not detected in these samples, in accordance with the Japanese Food Sanitation Law.

  14. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  15. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  16. Characterization of Submerged-Arc and Gas-Metal-Arc Weldments in HY-100 Steel.

    DTIC Science & Technology

    1983-12-01

    RD-R14i 939 CHARACTERIZATION OF SUBMERGED-ARC AND GAS-METAL-ARC / WELDMENTS IN HY-IBB STEEL (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R E THERRIEN DEC...100 Steel 6. PIERFORMING ORG. REPORT NUM11ER I.7. AUTHOW) 11. CONTRACT OR GRANT NuMMER(.) Alfred E. Therrien _O P O R ME E E T R J C .T S’ .~ S...weld toughness in submerged arc welded (SAW) 4- HY-100 steel weldments precludes this process from large 4. scale HY-100 shipbuilding production

  17. 76 FR 34964 - Stainless Steel Bar From India: Partial Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... FR 5559 (February 1, 2011). On February 28, 2011, Venus Wire Industries Pvt. Ltd (``Venus'') and... review of Venus, Ambica Steels Limited (``Ambica''), Atlas Stainless Corporation (``Atlas Stainless..., Chandan, Facor, Grand Foundry, India Steel, Meltroll, Mukand, Sindia Steels, Snowdrop and Venus....

  18. 75 FR 973 - Certain Welded Stainless Steel Pipes From the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... International Trade Administration Certain Welded Stainless Steel Pipes From the Republic of Korea: Preliminary... administrative review of the antidumping duty order on certain welded stainless steel pipes (WSSP) from the... review covers one respondent, SeAH Steel Corporation (SeAH). We preliminarily determine that sales...

  19. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C.

    2016-04-01

    The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  20. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  1. Thermo-mechanical behavior of stainless steel knitted structures

    NASA Astrophysics Data System (ADS)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  2. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  3. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  4. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    SciTech Connect

    Li, D.; Korinko, P.; Spencer, W.; Stein, E.

    2016-09-15

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. Conventional passivation processes using chemical and electrochemical means are usually insufficient to passivate tritium containment vessels and piping. Previous work demonstrated that both nitric acid and citric acid passivation on stainless steel would not prevent the catalyzed isotope exchange reaction H2 + D2 → 2HD, while electropolishing passivation resulted in surfaces that did not catalyze this hydrogen isotope exchange. The current vendor for surface passivation treatment, Tek-Vac Industries Inc., provided the best passivation technology for the stainless steel components used at SRTE. However, this vendor recently built gas sample bottles that failed to meet site criteria and has since ceased operations. The loss of this vendor created a source gap, as well as a knowledge gap. A practical and reliable robust process to develop tritium passive surfaces is needed.

  5. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  6. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  7. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  8. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  9. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-28

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  10. Surface interactions of cesium and boric acid with stainless steel

    SciTech Connect

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction.

  11. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  12. Electrochemical-induced dissolution of stainless steel files.

    PubMed

    Amaral, C C F; Ormiga, F; Gomes, J A C P

    2015-02-01

    To investigate the effectiveness of the dissolution process when hand stainless steel files are polarized in solutions containing chloride and fluoride to promote their dissolution. Redox curves and anodic polarization curves were obtained to determine the conditions necessary for the dissolution of stainless steel endodontic files. Anodic polarization of sizes 20 and 30 files was performed, and a t-test (P < 0.05) was used to compare the weight loss, the time of dissolution and the electrical charge generated by both groups of files. Fragments were polarized in simulated root canals to evaluate the dissolution process. After the tests, a size 10 K-file was used to verify the possibility of bypassing the fragment. Radiographic analysis of the simulated canals was used before and after the tests to verify fragment dissolution. A progressive consumption of the sizes 20 and 30 files was observed with total polarization times of 7.0 and 9.0 min, respectively. Files with the larger diameters exhibited greater weight loss, longer times of dissolution and generated a greater electrical charge during the active dissolution process (t-test, P < 0.05). After 60 min, the anodic polarization of file fragments in simulated root canals resulted in their partial dissolution. A 60-min anodic polarization of stainless steel K-file fragments in simulated root canals resulted in their partial dissolution. The fragments could be bypassed after the test. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  14. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  15. Compatibility Assessment of Advanced Stainless Steels in Sodium

    SciTech Connect

    Pawel, Steven J

    2012-01-01

    Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni), NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 or 700 C for 100 and 400 h as a screening test for compatibility. Using weight change, tensile testing, and metallographic analysis, HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was found susceptible to substantial decarburization at 700 C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each one between 500 and 650 C, the other between 565 and 725 C at a flow rate of about 1.5 cm/s. Changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructure changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these exposure conditions.

  16. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  17. Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration

    SciTech Connect

    Au, M.

    2003-02-05

    Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle mode dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.

  18. EFFECT OF MINOR ADDITIONS OF HYDROGEN TO ARGON SHIELDING GAS WHEN WELDING AUSTENITIC STAINLESS STEEL WITH THE GTAW PROCESS

    SciTech Connect

    CANNELL, G.R.

    2004-12-15

    This paper provides the technical basis to conclude that the use of hydrogen containing shielding gases during welding of austenitic stainless steels will not lead to hydrogen induced cracking (HIC) of the weld or weld heat affected zone. Argon-hydrogen gas mixtures, with hydrogen additions up to 35% [1], have been successfully used as the shielding gas in gas tungsten arc welding (GTAW) of austenitic stainless steels. The addition of hydrogen improves weld pool wettability, bead shape control, surface cleanliness and heat input. The GTAW process is used extensively for welding various grades of stainless steel and is preferred when a very high weld quality is desired, such as that required for closure welding of nuclear materials packages. The use of argon-hydrogen gas mixtures for high-quality welding is occasionally questioned, primarily because of concern over the potential for HIC. This paper was written specifically to provide a technical basis for using an argon-hydrogen shielding gas in conjunction with the development, at the Savannah River Technology Center (SRTC), of an ''optimized'' closure welding process for the DOE standardized spent nuclear fuel canister [2]. However, the basis developed here can be applied to other applications in which the use of an argon-hydrogen shielding gas for GTAW welding of austenitic stainless steels is desired.

  19. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  20. New research progressing of surface modification of medical 316L stainless steels

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Ba, Dechun; Wang, Qing; Guo, Deyu

    2013-12-01

    316L stainless steels are widely used in clinical and medical fields because of their comprehensive performance. This paper analyses the current development situation and major existing problems of medical 316L stainless steels. The new methods and research achievement of surface modification in recent years are described in detail. It indicates that surface modification is an effective way to solve clinical application problems, and provides new opportunities for medical 316L stainless steels in medical applications.

  1. Exposure to stainless steel welding fumes and lung cancer: a meta-analysis.

    PubMed Central

    Sjögren, B; Hansen, K S; Kjuus, H; Persson, P G

    1994-01-01

    Stainless steel welding is associated with exposure to metals including hexavalent chromium and nickel. This study is a meta-analysis of five studies of stainless steel welders and the occurrence of lung cancer. Asbestos exposure and smoking habits have been taken into account. The calculated pooled relative risk estimate was 1.94 with a 95% confidence interval of 1.28-2.93. This result suggests a causal relation between exposure to stainless steel welding and lung cancer. PMID:8199684

  2. Evaluation of stainless steel cladding for use in current design LWRs. Final report

    SciTech Connect

    Strasser, A.; Santucci, J.; Lindquist, K.; Yario, W.; Stern, G.; Goldstein, L.; Joseph, L.

    1982-12-01

    The design of stainless steel-clad LWR fuel and its performance at steady-state, transient, and accident conditions were reviewed. The objective was to evaluate the potential benefits and disadvantages of substituting stainless steel-clad fuel for the currently used Zircaloy-clad fuel. For a large, modern PWR, the technology and the fuel-cycle costs of stainless steel- and Zircaloy-clad fuels were compared.

  3. Stainless steel and silicon direct interface synthesis: Chemical bonding effects

    NASA Astrophysics Data System (ADS)

    Cox, Michael J.

    Planar stainless steel/stainless steel interfaces, with and without a titanium interlayer and silicon/silicon interfaces have been produced in an ultra high vacuum (UHV) diffusion bonding/deposition instrument. Interface synthesis was accomplished by diffusion bonding two substrates after subjecting the substrate surfaces to a variety of pre-bonding treatments including heat treating, ion-beam sputter cleaning and thin film deposition. Chemical characterization was performed in situ by Auger electron spectroscopy (AES) prior to deposition and/or bonding and ex situ by energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Additionally, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study interfaces before and after bonding. Diffusion bonding behavior of stainless steel depends strongly on the chemistry of the surfaces to be bonded. Very smooth, mechanically polished and lapped substrates would bond completely in UHV in 1 hour at 1000°C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion beam cleaning. No voids were observed in these bonded interfaces as studied by TEM and the strength was equal to the unbonded bare material. When an electron beam deposited, 200 A titanium interlayer was added to the stainless steel interface, while bonding under the same conditions, mechanical tensile testing resulted in very low strength when compared with that of chemically clean stainless steel interfaces. Analytical inspection of the interfaces, performed with EELS, EDS, and convergent beam electron diffraction (CBED) coupled with images from TEM and SEM, showed the reason for the significantly reduced strength is a result of limited contact area and delamination between titanium carbide particles precipitated in the interface. Silicon wafers bicrystals were synthesized by bonding two single-crystal substrates. Silicon wafers were

  4. Gas tungsten arc and shielded metal arc welding of carbon steel to chromium-nickel steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-2103-ASME-1 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc and shielded metal arc welding of carbon steels (P-1-1) to 300 series Cr-Ni steels (P-8-1), in thickness range 0.25 to 2 in.; filler metals are ERNiCr-3 (F-43) (GTAW) and ENiCrFe-3 (F-43) (SMAW); shielding gas is argon (GTAW).

  5. Tensile behavior of irradiated manganese-stabilized stainless steel

    SciTech Connect

    Klueh, R.L.

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  6. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  7. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    PubMed

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments.

  8. Fabrication of stainless steel spherical anodes for use with boat-mounted boom electroshocker

    USGS Publications Warehouse

    Martinez, Patrick J.; Tiffan, Kenneth F.

    1992-01-01

    A frugal method of fabricating spherical anodes from stainless steel mixing bowls is presented. We believe that the purported mechanical disadvantages of using spherical electrodes are largely unfounded.

  9. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media

    PubMed Central

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-01-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott–Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  10. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  11. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1999-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  12. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1999-03-02

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  13. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  14. CO2 laser welding of AISI 321stainless steel

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Hamdani, A. H.; Akhter, R.

    2014-06-01

    CO2 laser welding of AISI 321austenitic stainless steel has been carried out. Bead on plate welds on 2 mm thick steel were performed with 450W CO2 laser at speeds ranging from 200 to 900 mm/min. It was observed that weld depth and width was decreased with increasing the speed at constant laser power. Butt welds on different sheet thickness of 1, 2 and 2.5 mm were performed with laser power of 450 W and at speed 750, 275 and 175 mm/min, respectively. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy and SEM. The austenite/delta ferrite microstructure was reported in the welded zone. The microhardness and tensile strength of the welded joints were measured and found almost similar to base metal due to austenitic nature of steel.

  15. Sensitization and tunneling corrosion of austenitic type 347 stainless steel

    SciTech Connect

    Teodoro, C.A.; Wolynec, S.

    1998-02-01

    Sensitization of type 347 (UNS S34700) austenitic stainless steel (SS) samples removed from forged bars was investigated using the electrochemical potentiokinetic reactivation (EPR) method and the weight-loss technique of ASTM A 262, Practice B., A normal and a low-carbon steel were investigated. After solution-annealing at 1,050 C, the two steels were submitted to sensitization treatments at 550 C, 670 C, 790 C, and 910 C for times varying from 1 h to 130 h. The steel with normal carbon content also was solution-annealed at 1.140 C and submitted to the same sensitization treatments for times varying from 1 h to 62 h. Correlation between results obtained by the two techniques was very poor. The lack of correlation was ascribed to tunneling corrosion, which is typical of forged steels, in addition to intergranular corrosion resulting from sensitization. The electrochemical test was most sensitive to corrosion by sensitization. The Practice B test did not discriminate between the two types of attack. The steel solution-annealed at higher temperature was more susceptible to sensitization.

  16. The interaction between nitride uranium and stainless steel

    NASA Astrophysics Data System (ADS)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  17. Chromium in biological samples from low-level exposed stainless steel and mild steel welders

    SciTech Connect

    Bonde, J.P.; Christensen, J.M. )

    1991-07-01

    Occupational exposure to hexavalent chromium is of concern because of the carcinogenic action of this metal. The purpose of this study was to evaluate internal exposure to chromium in welders who were exposed to low levels of chromium. Chromium in urine, blood, and seminal fluid was determined among 60 welders and 45 referents. The concentration of chromium in urine and blood did not change across a workshift or across a 3-wk break in exposure. However, stainless-steel and mild-steel welders who were exposed to low levels of chromium and steel welders who were mildly exposed had significantly increased levels of chromium in post-shift urine (mean 2.1 nmol/mmol creatinine (standard deviation (SD) = 1.0) and 1.3 nmol/mmol creatinine (SD = 0.5), respectively) compared with referents (mean 0.7 nmol/mmol creatinine (SD = 0.3)). Pre-shift blood chromium concentrations showed a similar variation between exposed workers and referents. Subgroups of stainless-steel welders had very high levels of chromium in seminal fluid. This finding may, however, be explained by nonoccupational factors and, therefore, warrants further study. Attention should focus on the potential risk of delayed health effects among stainless-steel and mild-steel welders who heretofore were not thought to be at risk from chromium exposure.

  18. Pitting and crevice corrosion of stainless steels in ammonium chloride solutions

    SciTech Connect

    Forsen, O.; Aromaa, J.; Virtanen, J.; Tavi, M.

    1995-09-01

    Carbon steel is the most commonly used construction material in oil refining. Ammonium chloride deposition is a well known problem in oil refining. When these deposits form in a moist environment, they are corrosive to carbon steel. When unexpected corrosion problems are faced the material is often changed zn to alloys like stainless steels. The main drawback of stainless steels is that they are prone to different forms of localized corrosion, especially in the presence of halides. In this paper the use of electrochemical measurements to study the corrosion resistance of stainless steels is discussed.

  19. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels.

  20. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  1. Moessbauer measurements of microstructural change in aged duplex stainless steel

    SciTech Connect

    Kirihigashi, A.; Sakamoto, N.; Yamaoka, T.; Nasu, S.

    1995-08-01

    A duplex stainless steel (ASME SA351 CF8M) has usually been manufactured by a continuous casting technique. It consists of a paramagnetic austenite phase and a ferromagnetic ferrite phase. It has been known that the ferrite phase decomposition occurs in this steel after aging between 300 and 450 C. As a result of phase decomposition, a Fe-rich phase and a Cr-rich phase are produced in the ferrite phase. It is difficult to detect the phase decomposition even by not only optical microscopy but also transmission electron microscopy, since the decomposed structure is very fine. However, Moessbauer measurements that can detect the magnetic hyperfine field of magnetic substance may detect the microstructural change. An averaged magnetic hyperfine field increases in the ferrite phase, due to the production of the Fe-rich phase which has high magnetic hyperfine field. Therefore, the authors investigated the phase decomposition of the duplex stainless steel caused by aging, utilization Moessbauer spectroscopy which has capability of detecting this structural change in the atomic level quantitatively. The authors also investigated the potential of backscattering Moessbauer method for NDE technique.

  2. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  3. Barnacle cement: An etchant for stainless steel 316L?

    PubMed

    Sangeetha, R; Kumar, R; Doble, M; Venkatesan, R

    2010-09-01

    Localized corrosion of stainless steel beneath the barnacle-base is an unsolved issue for the marine industry. In this work, we clearly bring out for the first time the role of the barnacle cement in acting as an etchant, preferentially etching the grain boundaries, and initiating the corrosion process in stainless steel 316L. The investigations include structural characterization of the cement and corroded region, and also chemical characterization of the corrosion products generated beneath the barnacle-base. Structural characterization studies using scanning electron microscopy (SEM) reveals the morphological changes in the cement structure across the interface of the base-plate and the substrate, modification of the steel surface by the cement and the corrosion pattern beneath the barnacle-base. Fourier transform infrared spectroscopy (FTIR) of the corrosion products show that they are composed of mainly oxides of iron thereby implying that the corrosion is aerobic in nature. A model for the etching and corrosion mechanism is proposed based on our observations.

  4. Barnacle cement: an etchant for stainless steel 316L?

    PubMed

    Sangeetha, R; Kumar, R; Doble, M; Venkatesan, R

    2010-09-01

    Localized corrosion of stainless steel beneath the barnacle-base is an unsolved issue for the marine industry. In this work, we clearly bring out for the first time the role of the barnacle cement in acting as an etchant, preferentially etching the grain boundaries, and initiating the corrosion process in stainless steel 316L. The investigations include structural characterization of the cement and corroded region, and also chemical characterization of the corrosion products generated beneath the barnacle-base. Structural characterization studies using scanning electron microscopy (SEM) reveals the morphological changes in the cement structure across the interface of the base-plate and the substrate, modification of the steel surface by the cement and the corrosion pattern beneath the barnacle-base. Fourier transform infrared spectroscopy (FTIR) of the corrosion products show that they are composed of mainly oxides of iron thereby implying that the corrosion is aerobic in nature. A model for the etching and corrosion mechanism is proposed based on our observations.

  5. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    SciTech Connect

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V. . Dept. de Ingenieria Quimica y Nuclear); Lacoste, G. )

    1994-03-01

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  6. Osteogenic ability of Cu-bearing stainless steel.

    PubMed

    Ren, Ling; Wong, Hoi Man; Yan, Chun Hoi; Yeung, Kelvin W K; Yang, Ke

    2015-10-01

    A newly developed copper-bearing stainless steel (Cu-SS) by directly immobilizing proper amount of Cu into a medical stainless steel (317L SS) during the metallurgical process could enable continuous release of trace amount of Cu(2+) ions, which play the key role to offer the multi-biofunctions of the stainless steel, including the osteogenic ability in the present study. The results of in vitro experiments clearly demonstrated that Cu(2+) ions from Cu-SS could promote the osteogenic differentiation by stimulating the Alkaline phosphatase enzyme activity and the osteogenic gene expressions (Col1a1, Opn, and Runx2), and enhancing the adhesion and proliferation of osteoblasts cultured on its surface. The in vivo test further proved that more new bone tissue formed around the Cu-SS implant with more stable bone-to-implant contact in comparison with the 317L SS. In addition, Cu-SS showed satisfied biocompatibility according to the results of in vitro cytotoxicity and in vivo histocompatibility, and its daily released amount of Cu(2+) ions in physiological saline solution was at trace level of ppb order (1.4 ppb/cm(2) ), which is rather safe to human health. Apart from these results, it was also found that Cu-SS could inhibit the happening of inflammation with lower TNF-α expression in the bone tissue post implantation compared with 317L SS. In addition to good biocompatibility, the overall findings demonstrated that the Cu-SS possessed obvious ability of promoting osteogenesis, indicating a unique application advantage in orthopedics.

  7. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  8. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGES

    Byun, T. S.; Yang, Y.; Overman, N. R.; ...

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  9. Systems design of high-performance stainless steels

    NASA Astrophysics Data System (ADS)

    Campbell, Carelyn Elizabeth

    A systems approach has been applied to the design of high performance stainless steels. Quantitative property objectives were addressed integrating processing/structure/property relations with mechanistic models. Martensitic transformation behavior was described using the Olson-Cohen model for heterogeneous nucleation and the Ghosh-Olson solid-solution strengthening model for interfacial mobility, and incorporating an improved description of Fe-Co-Cr thermodynamic interaction. Coherent Msb2C precipitation in a BCC matrix was described, taking into account initial paraequilibrium with cementite. Using available SANS data, a composition dependent strain energy was calibrated and a composition independent interfacial energy was evaluated to predict the critical particle size versus the fraction of the reaction completed as input to strengthening theory. Multicomponent Pourbaix diagrams provided an effective tool for evaluating oxide stability; constrained equilibrium calculations correlated oxide stability to Cr enrichment in the oxide film to allow more efficient use of alloy Cr content. Multicomponent solidification simulations provided composition constraints to improve castability. Using the Thermo-Calc and DICTRA software packages, the models were integrated to design a carburizing, secondary-hardening martensitic stainless steel. Initial characterization of the prototype showed good agreement with the design models and achievement of the desired property objectives. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing response, achieving a case hardness of Rsb{c} 64 in the secondary-hardened condition without case primary carbides. Decarburization experiments suggest that the design core toughness objective (Ksb{IC} = 65 MPasurdm) can be achieved by reducing the core carbon level to 0.05 weight percent. To achieve the core toughness objective at high core strength levels requires further analysis of an

  10. Microanalytical evaluation of a prototype stainless bearing steel

    NASA Astrophysics Data System (ADS)

    Kinkus, T. J.; Olson, G. B.

    1992-04-01

    A novel bearing steel composition intended for a space shuttle main engine turbopump application has been designed by computer-aided thermodynamic modelling. Property objectives for the martensitic stainless steel are a doubling of KIC toughness and KISCC stress-corrosion resistance relative to existing bearing steels. The composition is designed to achieve sufficient refinement of M 2C carbides to provide the required hardness of RC = 60 at 0.30C, and to achieve a high stability austenite dispersion for transformation toughening. Microanalytical study of the prototype steel of composition Fe-22.5Co-12Cr-8.5Ni- 0.3Mo-0.25V-0.30C has tested key model predictions. STEM microanalysis of extracted Cr and CrMo carbides was used to evaluate solution treatment response between 1100 and 1150°C. Atom-probe microanalysis was employed to measure compositions of fine M 2C carbides in cryogenically-formed martensitic material tempered at 500°C to a slightly c raged condition promoting high toughness. The observed composition of (Cr 0.88Mo 0.03V 0.03Fe 0.06) 2 C 0.92 lies between computed values corresponding to coherent and incoherent equilibrium. The prototype steel exceeds the design toughness objectives, giving a KIC toughness of 47 MPa √ m at RC = 60.4 hardness.

  11. Electron Microscopy Study of Stainless Steel Radiation Damage Due to Long-Term Irradation by Alpha Particles Emitted From Plutonium

    SciTech Connect

    Unlu, Kenan; Rios-Martinez, Carlos; Saglam, Mehmet; Hart, Ron R.; Shipp, John D.; Rennie, John

    1998-04-16

    Radiation damage and associated surface and microstructural changes produced in stainless steel encapsulation by high-fluence alpha particle irradiations from weapons-grade plutonium of 316-stainless steel are being investigated.

  12. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  13. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  14. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  15. Evaluation of tantalum 316 stainless steel transition joints

    NASA Technical Reports Server (NTRS)

    Stoner, D. R.

    1972-01-01

    Tubular transition joints providing a metallurgically bonded connection between tantalum and 316 stainless steel pipe sections were comparatively evaluated for durability under thermal cycling conditions approximating the operation of a SNAP-8 mercury boiler. Both coextruded and vacuum brazed transition joints of 50mm (2 inch) diameter were tested by thermal cycling 100 times between 730 C and 120 C(1350 F and 250 F) in a high vacuum environment. The twelve evaluated transition joints survived the full test sequence without developing leaks, although liquid penetrant bond line indications eventually developed in all specimens. The brazed transition joints exhibited the best dimensional stability and bond line durability.

  16. Portable probe to measure sensitization of stainless steel

    DOEpatents

    Park, Jang Y.

    1979-01-01

    An electrochemical cell for making field measurements of metals such as stainless steel comprises a cylinder containing a reservoir of an electrolyte, a reference electrode, a capillary tube connecting the electrolyte to the surface of the metal to be measured and another electrode in electrical contact with the electrolyte. External connections from the reference electrode, the other electrode, and the sample to a measuring device provide means for maintaining the potential of the electrolyte while sweeping the potential difference between the electrolyte and the metal. Such a sweep enables the determination of a current-voltage characteristic that is a measure of sensitization in the metal.

  17. AM363 martensitic stainless steel: A multiphase equation of state

    NASA Astrophysics Data System (ADS)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  18. General and Localized Corrosion of Borated Stainless Steels

    SciTech Connect

    T.E. Lister; Ronald E. Mizia; A.W. Erickson; T.L. Trowbridge; B. S. Matteson

    2008-03-01

    The Transportation, Aging and Disposal (TAD) canister-based system is being proposed to transport and store spent nuclear fuel at the Monitored Geologic Repository (MGR) located at Yucca Mountain, Nevada. The preliminary design of this system identifies borated stainless steel as the neutron absorber material that will be used to fabricate fuel basket inserts for nuclear criticality control. This paper discusses corrosion test results for verifying the performance of this material manufactured to the requirements of ASTM A887, Grade A, under the expected repository conditions.

  19. Electroformation of Giant Unilamellar Vesicles on Stainless Steel Electrodes

    PubMed Central

    2017-01-01

    Giant unilamellar vesicles (GUVs) are well-established model systems for studying membrane structure and dynamics. Electroformation, also referred to as electroswelling, is one of the most prevalent methods for producing GUVs, as it enables modulation of the lipid hydration process to form relatively monodisperse, defect-free vesicles. Currently, however, it is expensive and time-consuming compared with other methods. In this study, we demonstrate that 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine GUVs can be prepared readily at a fraction of the cost on stainless steel electrodes, such as commercially available syringe needles, without any evidence of lipid oxidation or hydrolysis. PMID:28393132

  20. Equation of state and electrical conductivity of stainless steel.

    SciTech Connect

    Desjarlais, Michael Paul; Mattsson, Thomas Kjell Rene

    2004-11-01

    Warm dense matter is the region in phase space of density and temperature where the thermal, Fermi, and Coulomb energies are approximately equal. The lack of a dominating scale and physical behavior makes it challenging to model the physics to high fidelity. For Sandia, a fundamental understanding of the region is of importance because of the needs of our experimental HEDP programs for high fidelity descriptive and predictive modeling. We show that multi-scale simulations of macroscopic physical phenomena now have predictive capability also for difficult but ubiquitous materials such as stainless steel, a transition metal alloy.

  1. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  2. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  3. Microchemical evolution of neutron-irradiated stainless steel

    SciTech Connect

    Brager, H.R.; Garner, F.A.

    1980-04-01

    The precipitates that develop in AISI 316 stainless steel during irradiation play a dominant role in determining the dimensional and mechanical property changes of this alloy. This role is expressed primarily in a large change in matrix composition that alters the diffusional properties of the alloy matrix and also appears to alter the rate of acceptance of point defects at dislocations and voids. The major elemental participants in the evolution have been identified as nickel, silicon, and carbon. The exceptional sensitivity of this evolution to many variables accounts for much of the variability of response exhibited by this alloy in nominally similar irradiations.

  4. ISS-SIMS Surface Characterization of Smut on Stainless Steel

    DTIC Science & Technology

    1979-10-01

    spectrometry 2 ’ 3 and 4secondary ion mass spectrometry. This dual method uses a low energy noble gas ion beam (1-3 KeV) in ultra high vacuum to probe...reference spectra are shown in Figure 3 for 304 stainless steel sputtered clean by positive ions. This data is from scattering of neon ions at 2500 volts...and scattering of helium ions also at 2500 volts. In the neon scattering spectra only chromium and iron are visible. Nickel may be observed by spectrum

  5. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  6. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  7. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  8. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  9. Aluminum nanocomposites having wear resistance better than stainless steel

    SciTech Connect

    An, Linan; Qu, Jun; Luo, Jinsong; Fan, Yi; Zhang, Ligong; Liu, Jinling; Xu, Chengying; Blau, Peter Julian

    2011-01-01

    Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al2O3 nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite.

  10. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  11. An advanced cavitation resistant austenitic stainless steel for pumps

    SciTech Connect

    McCaul, C.

    1996-10-01

    Cavitation damage is a chronic problem leading to impaired pump performance, and eventual failure in a wide range of industrial applications. Pump manufacturers recognize that cavitation damage can be minimized by utilizing advanced hydraulic designs and employing new state-of-the-art materials. The materials solution is particularly attractive because it does not involve detailed engineering studies, new pattern equipment, or long lead times. This paper traces the development, over the past decade, of a new class of cavitation resistant stainless steels. The properties and engineering characteristics of these alloys are described, and several initial field applications are discussed.

  12. Preliminary Microstructural Characterization of Gadolinium-Enriched Stainless Steels for Spent Nuclear Fuel Baskets (title change from A)

    SciTech Connect

    DUPONT,J.N.; ROBINO,CHARLES V.; STEPHENS JR.,JOHN J.; MCCONNELL,PAUL E.; MIZIA,R.; BRANAGAN,D.

    2000-07-24

    Gadolinium (Gd) is a very potent neutron absorber that can potentially provide the nuclear criticality safety required for interim storage, transport, and final disposal of spent nuclear fuel. Gd could be incorporated into an alloy that can be fabricated into baskets to provide structural support, corrosion resistance, and nuclear criticality control. In particular, Gd alloyed with stainless steel has been identified as a material that may fulfill these functional requirements. However, no information is available in the open literature that describes the influence of Gd on the microstructure and resultant mechanical properties of stainless steels alloyed with Gd. Such information is vital for determination of the suitability of these types of alloys for the intended application. Characterization of Gd-stainless steel (Gd-SS) alloys is also necessary for an American Society for Testing and Materials (ASTM) material specification, subsequent code approval by the American Society of Mechanical Engineers (ASME), and regulatory approval by the Nuclear Regulatory Commission for subsequent use by the nuclear industry. The Department of Energy National Spent Nuclear Fuel Program at Idaho National Engineering and Environmental Laboratory has commissioned Lehigh University and Sandia National Laboratories to characterize the properties of a series of Gd-SS alloys to assess their suitability for the spent fuel basket application. Preliminary microstructural characterization results are presented on Gd stainless steels. Small gas tungsten arc buttons were prepared by melting 316L stainless steel with 0.1 to 10 wt.% Gd. These samples were characterized by light optical and electron optical microscopy to determine the distribution of alloying elements and volume fraction of Gd-rich phase. The results acquired to date indicate that no Gd is dissolved in the austenite matrix. Instead, the Gd was present as an interdendritic constituent, and the amount of the Gd-rich constituent

  13. Mechanical Property Data 15-5PH (H1025) Stainless Steel Alloy: Hot-Rolled Plate.

    DTIC Science & Technology

    1984-05-01

    fatigue data of unnotched 15 - 5PH stainless steel (H1025, longitudinal). - ~ ~ 5 l5PH Stumhuts Sisa Pmae. Csinuutae M al 110 -- R*01,Kf-3.0 R.T. 100 1.00...40 - 00 Lsishii. of. cruam Figure 2. Axial load fatigue data of notched 15 -SPH stainless steel (H1025, longitudinal). 3 I 20 15 - 5PH Stainless Stee...600 020 ; I I a -ALI AT 4W4C002 100 TO0 6W 30O 0 4 -5 0 07 Ufetime, Nw Cycles Figure 4. Axial load fatigue data of notched 15 - 5PH stainless steel

  14. Degradation of mechanical properties of stainless steel cladding due to neutron irradiation and thermal aging

    SciTech Connect

    Haggag, F.M.

    1994-09-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288{degrees}C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect following neutron irradiation at 288{degrees}C to a fluence of 5 X 10{sup 19} neutrons/cm{sup 2} (>1 MeV) was a 22% reduction in the USE and a 29{degrees}C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125{degrees}C) and no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J{sub {kappa}}) much more than did thermal aging alone. However, irradiation slightly decreased the tearing modulus but no reduction was caused by thermal aging alone. The effects of long-term thermal exposure times (20,000 and 50,000 h) will be investigated when the specimens become available. Also, long-term thermal exposure of the three-wire cladding as well as type 308 stainless steel weld materials at 343{degrees}C is in progress.

  15. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds

    SciTech Connect

    Shah Hosseini, H. Shamanian, M.; Kermanpur, A.

    2011-04-15

    The microstructure and mechanical properties of Inconel 617/310 austenitic stainless steel dissimilar welds were investigated in this work. Three types of filler materials, Inconel 617, Inconel 82 and 310 austenitic stainless steels were used to obtain dissimilar joint using the gas tungsten arc welding process. Microstructural observations showed that there was no evidence of any possible cracking in the weldments achieved by the nickel-base filler materials. The welds produced by 617 and 310 filler materials displayed the highest and the lowest ultimate tensile strength and total elongation, respectively. The impact test results indicated that all specimens exhibited ductile fracture. Among the fillers, Inconel 617 exhibited superlative fracture toughness (205 J). The mechanical properties of the Inconel 617 filler material were much better than those of other fillers. - Research Highlights: {yields} A fine dendritic structure was seen for the Inconel 617 weld metal. {yields} A number of cracks were initiated when the 310 SS filler metal was used. {yields} All welded samples showed ductile fracture. {yields} The Inconel 617 filler material presents the optimum mechanical properties.

  16. Microstructure and Properties of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, G. Y.; Lei, M. K.

    2017-01-01

    Plasma source nitriding is a relatively new nitriding technology which can overcome those inherent shortcomings associated with conventional direct current plasma nitriding technology such as the arcing surface damage, the edging effect and the hollow cathode effect. There is considerable study on the properties of nitrided samples for laboratorial scale plasma source nitriding system; however, little information has been reported on the industrial-scale plasma source nitriding system. In this work, AISI 316 austenitic stainless steel samples were nitrided by an industrial-scale plasma source nitriding system at various nitriding temperatures (350, 400, 450 and 500 °C) with a floating potential. A high-nitrogen face-centered-cubic phase (γN) formed on the surface of nitrided sample surface. As the nitriding temperature was increased, the γN phase layer thickness increased, varying from 1.5 μm for the lowest nitriding temperature of 350 °C, to 30 μm for the highest nitriding temperature of 500 °C. The maximum Vickers microhardness of the γN phase layer with a peak nitrogen concentration of 20 at.% is about HV 0.1 N 15.1 GPa at the nitriding temperature of 450 °C. The wear and corrosion experimental results demonstrated that the γN phase was formed on the surface of AISI 316 austenitic stainless steel by plasma source nitriding, which exhibits not only high wear resistance, but also good pitting corrosion resistance.

  17. Modeling the Ferrite-Austenite Transformation in the Heat-Affected Zone of Stainless Steel Welds

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1997-12-01

    The diffusion-controlled ferrite-austenite transformation in stainless steel welds was modeled. An implicit finite-difference analysis that considers multi-component diffusion was used. The model was applied to the Fe-Cr-Ni system to investigate the ferrite- austenite transformation in the heat-affected zone of stainless steel weld metal. The transformation was followed as a function of time as the heat-affected zone was subjected to thermal cycles comparable to those experienced during gas-tungsten arc welding. The results showed that the transformation behavior and the final microstructural state are very sensitive to the maximum temperature that is experienced by the heat-affected zone. For high maximum exposure temperatures ({approximately} 1300{degree} C), the ferrite formation that occurs at the highest temperatures is not completely offset by the reverse ferrite dissolution at lower temperatures. As a result, for high temperature exposures there is a net increase in the amount of ferrite in the microstructure. It was also found that if compositional gradients are present in the initial ferrite and austenite phases, the extent of the transformation is impacted.

  18. Chromium nitride films on stainless steel as bipolar plate for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Fu, Yu; Xu, Jun; Lin, Guoqiang; Hou, Ming

    A series of chromium nitride films are prepared on stainless steel substrates by pulsed bias arc ion plating (PBAIP) at different N 2 flow rate as bipolar plates for proton exchange membrane fuel cell (PEMFC). The film chemical composition and phase structure are characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). The characterization results indicate that the nitrogen content of deposited films varies from 0.28 to 0.50, and the phase structure changes from mixtures of Cr + Cr 2N, pure Cr 2N through Cr 2N + CrN, to pure CrN. The interfacial contact resistance between samples and carbon paper is measured by Wang's method, and a minimum value of 5.8 mΩ cm 2 is obtained under 1.2 MPa compaction force. The anticorrosion property is examined by potentiodynamic test in the simulated corrosive circumstance of the PEMFC under 25 °C, and the lowest corrosive current density of 5.9 × 10 -7 A cm -2 is obtained at 0.6 V (vs. SCE). Stainless steel substrates coated by the film with lowest contact resistance are chosen as the bipolar plates to assemble cells. An average voltage value of 0.62 V is achieved at 500 mA cm -2, which is close to that of the cell with Ag-plated bipolar plates.

  19. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  20. Microstructure and Properties of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, G. Y.; Lei, M. K.

    2016-11-01

    Plasma source nitriding is a relatively new nitriding technology which can overcome those inherent shortcomings associated with conventional direct current plasma nitriding technology such as the arcing surface damage, the edging effect and the hollow cathode effect. There is considerable study on the properties of nitrided samples for laboratorial scale plasma source nitriding system; however, little information has been reported on the industrial-scale plasma source nitriding system. In this work, AISI 316 austenitic stainless steel samples were nitrided by an industrial-scale plasma source nitriding system at various nitriding temperatures (350, 400, 450 and 500 °C) with a floating potential. A high-nitrogen face-centered-cubic phase (γN) formed on the surface of nitrided sample surface. As the nitriding temperature was increased, the γN phase layer thickness increased, varying from 1.5 μm for the lowest nitriding temperature of 350 °C, to 30 μm for the highest nitriding temperature of 500 °C. The maximum Vickers microhardness of the γN phase layer with a peak nitrogen concentration of 20 at.% is about HV 0.1 N 15.1 GPa at the nitriding temperature of 450 °C. The wear and corrosion experimental results demonstrated that the γN phase was formed on the surface of AISI 316 austenitic stainless steel by plasma source nitriding, which exhibits not only high wear resistance, but also good pitting corrosion resistance.