Sample records for archaebacterium pyrococcus furiosus

  1. Pyrococcus furiosus strains and methods of using same

    DOEpatents

    Lipscomb, Gina L; Farkas, Joel Andrew; Adams, Michael W. W.; Westpheling, Janet

    2015-01-06

    Provided herein are methods for transforming a Pyrococcus furiosus with a polynucleotide. In one embodiment, the method includes contacting a P. furiosus with a polynucleotide under conditions suitable for uptake of the polynucleotide by the P. furiosus, and identifying transformants at a frequency of, for instance, at least 10.sup.3 transformants per microgram DNA. Also provided are isolated Pyrococcus furiosus having the characteristics of Pyrococcus furiosus COM1, and plasmids that include an origin of replication that functions in a Pyrococcus furiosus. The plasmid is stable in a recipient P. furiosus without selection for more than 100 generations and is structurally unchanged after replication in P. furiosus for more than 100 generations.

  2. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei.

    PubMed

    Kanoksilapatham, Wirojne; González, Juan M; Maeder, Dennis L; DiRuggiero, Jocelyne; Robb, Frank T

    2004-10-01

    Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.

  3. Varied effects of Pyrococcus furiosus prefoldin and P. furiosus chaperonin on the refolding reactions of substrate proteins.

    PubMed

    Hongo, Kunihiro; Itai, Hiroshi; Mizobata, Tomohiro; Kawata, Yasushi

    2012-04-01

    Prefoldin is a molecular chaperone found in the archaeal and eukaryotic cytosol. Prefoldin can stabilize tentatively nascent polypeptide chains or non-native forms of mainly cytoskeletal proteins, which are subsequently delivered to group II chaperonin to accomplish their precise folding. However, the detailed mechanism is not well known, especially with regard to endogenous substrate proteins. Here, we report the effects of Pyrococcus furiosus prefoldin (PfuPFD) on the refolding reactions of Pyrococcus furiosus citrate synthase (PfuCS) and Aequorea enhanced green fluorescence protein (GFPuv) in the presence or absence of Pyrococcus furiosus chaperonin (PfuCPN). We confirmed that both PfuPFD and PfuCPN interacted with PfuCS and GFPuv refolding intermediates. However, the interactions between chaperone and substrate were different for each case, as was the final effect on the refolding reaction. Effects on the refolding reaction varied from passive effects such as ATP-dependent binding and release (PfuCPN towards GFPuv) and binding which leads to folding arrest (PfuPFD towards GFPuv), to active effects such as net increase in thermal stability (PfuCPN towards PfuCS) to an active improvement in refolding yield (PfuPFD towards PfuCS). We postulate that differences in molecular interactions between substrate and chaperone lead to these differences in chaperoning effects.

  4. Heterologous production of an energy-conserving carbon monoxide dehydrogenase complex in the hyperthermophile Pyrococcus furiosus

    DOE PAGES

    Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; ...

    2016-01-29

    In this study, carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na +/H + antiporter module. This complex oxidizes CO, evolves CO 2 and H 2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein wemore » used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100° C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H 2 at 80° C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.« less

  5. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  6. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase.

    PubMed

    Chandrayan, Sanjeev K; McTernan, Patrick M; Hopkins, R Christopher; Sun, Junsong; Jenney, Francis E; Adams, Michael W W

    2012-01-27

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.

  7. Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase*

    PubMed Central

    Chandrayan, Sanjeev K.; McTernan, Patrick M.; Hopkins, R. Christopher; Sun, Junsong; Jenney, Francis E.; Adams, Michael W. W.

    2012-01-01

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H2 production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production. PMID:22157005

  8. Characterization of a Fourth Tungsten-Containing Enzyme from the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Roy, Roopali; Adams, Michael W. W.

    2002-01-01

    Pyrococcus furiosus grows optimally near 100°C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S0), if present, to H2S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S0 is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S0, suggesting that it may have a role in S0 metabolism. PMID:12446645

  9. Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    Roy, Roopali; Adams, Michael W W

    2002-12-01

    Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.

  10. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation.

    PubMed

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L; Adams, Michael W W; Oger, Philippe; Charpentier, Xavier

    2016-11-08

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.

  11. Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa

    The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.

  12. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.

    PubMed

    Brown, I; Dafforn, T R; Fryer, P J; Cox, P W

    2013-12-01

    Hyperthermophilic enzymes are of industrial importance and interest, especially due to their denaturation kinetics at commercial sterilisation temperatures inside safety indicating time-temperature integrators (TTIs). The thermal stability and irreversible thermal inactivation of native extracellular Pyrococcus furiosus α-amylase were investigated using differential scanning calorimetry, circular dichroism and Fourier transform infrared spectroscopy. Denaturation of the amylase was irreversible above a Tm of approximately 106°C and could be described by a one-step irreversible model. The activation energy at 121°C was found to be 316kJ/mol. Using CD and FT-IR spectroscopy it was shown that folding and stability greatly increase with temperature. Under an isothermal holding temperature of 121°C, the structure of the PFA changes during denaturation from an α-helical structure, through a β-sheet structure to an aggregated protein. Such data reinforces the use of P. furiosus α-amylase as a labile species in TTIs. © 2013.

  13. A monomeric TIM-barrel structure from Pyrococcus furiosus is optimized for extreme temperatures.

    PubMed

    Repo, Heidi; Oeemig, Jesper S; Djupsjöbacka, Janica; Iwaï, Hideo; Heikinheimo, Pirkko

    2012-11-01

    The structure of phosphoribosyl anthranilate isomerase (TrpF) from the hyperthermophilic archaeon Pyrococcus furiosus (PfTrpF) has been determined at 1.75 Å resolution. The PfTrpF structure has a monomeric TIM-barrel fold which differs from the dimeric structures of two other known thermophilic TrpF proteins. A comparison of the PfTrpF structure with the two known bacterial thermophilic TrpF structures and the structure of a related mesophilic protein from Escherichia coli (EcTrpF) is presented. The thermophilic TrpF structures contain a higher proportion of ion pairs and charged residues compared with the mesophilic EcTrpF. These residues contribute to the closure of the central barrel and the stabilization of the barrel and the surrounding α-helices. In the monomeric PfTrpF conserved structural water molecules are mostly absent; instead, the structural waters are replaced by direct side-chain-main-chain interactions. As a consequence of these combined mechanisms, the P. furiosus enzyme is a thermodynamically stable and entropically optimized monomeric TIM-barrel enzyme which defines a good framework for further protein engineering for industrial applications.

  14. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    PubMed Central

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; Adams, Michael W. W.

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed. PMID:26543406

  15. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    DOE PAGES

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; ...

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity’s growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus , amore » member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.« less

  16. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme.

    PubMed Central

    Dong, G; Vieille, C; Zeikus, J G

    1997-01-01

    The gene encoding the Pyrococcus furiosus hyperthermophilic amylopullulanase (APU) was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a single 827-residue polypeptide with a 26-residue signal peptide. The protein sequence had very low homology (17 to 21% identity) with other APUs and enzymes of the alpha-amylase family. In particular, none of the consensus regions present in the alpha-amylase family could be identified. P. furiosus APU showed similarity to three proteins, including the P. furiosus intracellular alpha-amylase and Dictyoglomus thermophilum alpha-amylase A. The mature protein had a molecular weight of 89,000. The recombinant P. furiosus APU remained folded after denaturation at temperatures of < or = 70 degrees C and showed an apparent molecular weight of 50,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Denaturating temperatures of above 100 degrees C were required for complete unfolding. The enzyme was extremely thermostable, with an optimal activity at 105 degrees C and pH 5.5. Ca2+ increased the enzyme activity, thermostability, and substrate affinity. The enzyme was highly resistant to chemical denaturing reagents, and its activity increased up to twofold in the presence of surfactants. PMID:9293009

  17. Crystallization and X-ray diffraction analysis of a catalytic domain of hyperthermophilic chitinase from Pyrococcus furiosus

    PubMed Central

    Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi

    2006-01-01

    The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559

  18. Transcriptional and Biochemical Analysis of Starch Metabolism in the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Lee, Han-Seung; Shockley, Keith R.; Schut, Gerrit J.; Conners, Shannon B.; Montero, Clemente I.; Johnson, Matthew R.; Chou, Chung-Jung; Bridger, Stephanie L.; Wigner, Nathan; Brehm, Scott D.; Jenney, Francis E.; Comfort, Donald A.; Kelly, Robert M.; Adams, Michael W. W.

    2006-01-01

    Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these α-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-α-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of α-glucan substrates by P. furiosus. PMID:16513741

  19. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of AP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits. he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes. he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. he β -subunit determined preference for adenine or guanine nucleotides. he GP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GP for GP-dependent phosphoenolpyruvate carboxykinase and for other GP-dependent processes. ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both AP and GP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the hermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  20. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE PAGES

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.; ...

    2014-12-04

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  1. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  2. WOR5, a Novel Tungsten-Containing Aldehyde Oxidoreductase from Pyrococcus furiosus with a Broad Substrate Specificity

    PubMed Central

    Bevers, Loes E.; Bol, Emile; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2005-01-01

    WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths. The highest catalytic efficiency of WOR5 is found for the oxidation of hexanal (Vmax = 15.6 U/mg, Km = 0.18 mM at 60°C). Hexanal-incubated enzyme exhibits S = 1/2 electron paramagnetic resonance signals from [4Fe-4S]1+ (g values of 2.08, 1.93, and 1.87) and W5+ (g values of 1.977, 1.906, and 1.855). Cyclic voltammetry of ferredoxin and WOR5 on an activated glassy carbon electrode shows a catalytic wave upon addition of hexanal, suggesting that ferredoxin can be a physiological redox partner. The combination of WOR5, formaldehyde oxidoreductase, and aldehyde oxidoreductase forms an efficient catalyst for the oxidation of a broad range of aldehydes in P. furiosus. PMID:16199576

  3. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates.

    PubMed

    Zhu, Hong; Reynolds, L Bruce; Menassa, Rima

    2017-06-19

    Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.

  4. Functional reconstitution and characterization of Pyrococcus furiosus RNase P.

    PubMed

    Tsai, Hsin-Yue; Pulukkunat, Dileep K; Woznick, Walter K; Gopalan, Venkat

    2006-10-31

    RNase P, which catalyzes the magnesium-dependent 5'-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyrococcus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its k(cat) and a 170-fold decrease in K(m). In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P.

  5. Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus.

    PubMed Central

    Sun, M. M.; Tolliday, N.; Vetriani, C.; Robb, F. T.; Clark, D. S.

    1999-01-01

    In this paper, elevated pressures up to 750 atm (1 atm = 101 kPa) were found to have a strong stabilizing effect on two extremely thermophilic glutamate dehydrogenases (GDHs): the native enzyme from the hyperthermophile Pyrococcus furiosus (Pf), and a recombinant GDH mutant containing an extra tetrapeptide at the C-terminus (rGDHt). The presence of the tetrapeptide greatly destabilized the recombinant mutant at ambient pressure; however, the destabilizing effect was largely reversed by the application of pressure. Electron spin resonance (ESR) spectroscopy of a spin-label attached to the terminal cysteine of rGDHt revealed a high degree of mobility, suggesting that destabilization is due to weakened intersubunit ion-pair interactions induced by thermal fluctuations of the tetrapeptide. For both enzymes, the stabilizing effect of pressure increased with temperature as well as pressure, reaching 36-fold for rGDHt at 105 degrees C and 750 atm, the largest pressure-induced thermostabilization of an enzyme reported to date. Stabilization of both native GDH and rGDHt was also achieved by adding glycerol. Based on the kinetics of thermal inactivation and the known effects of glycerol on protein structure, a mechanism of pressure-induced thermostabilization is proposed. PMID:10338016

  6. Comparative analysis of barophily-related amino acid content in protein domains of Pyrococcus abyssi and Pyrococcus furiosus.

    PubMed

    Yafremava, Liudmila S; Di Giulio, Massimo; Caetano-Anollés, Gustavo

    2013-01-01

    Amino acid substitution patterns between the nonbarophilic Pyrococcus furiosus and its barophilic relative P. abyssi confirm that hydrostatic pressure asymmetry indices reflect the extent to which amino acids are preferred by barophilic archaeal organisms. Substitution patterns in entire protein sequences, shared protein domains defined at fold superfamily level, domains in homologous sequence pairs, and domains of very ancient and very recent origin now provide further clues about the environment that led to the genetic code and diversified life. The pyrococcal proteomes are very similar and share a very early ancestor. Relative amino acid abundance analyses showed that biases in the use of amino acids are due to their shared fold superfamilies. Within these repertoires, only two of the five amino acids that are preferentially barophilic, aspartic acid and arginine, displayed this preference significantly and consistently across structure and in domains appearing in the ancestor. The more primordial asparagine, lysine and threonine displayed a consistent preference for nonbarophily across structure and in the ancestor. Since barophilic preferences are already evident in ancient domains that are at least ~3 billion year old, we conclude that barophily is a very ancient trait that unfolded concurrently with genetic idiosyncrasies in convergence towards a universal code.

  7. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO2-based 3-hydroxypropionate production

    PubMed Central

    Hawkins, Aaron B.; Lian, Hong; Zeldes, Benjamin M.; Loder, Andrew J.; Lipscomb, Gina L.; Schut, Gerrit J.; Keller, Matthew W.; Adams, Michael W.W.; Kelly, Robert M.

    2015-01-01

    Metabolically engineered strains of the hyperthermophile Pyrococcus furiosus(Topt 95-100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO2 using enzymes from the Metallosphaera sedula (Topt73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formation catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas-liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/hr to 11 mg/L/hr, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. The results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures. PMID:25753826

  8. Expression cloning and characterization of a novel gene that encodes the RNA-binding protein FAU-1 from Pyrococcus furiosus.

    PubMed Central

    Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi

    2003-01-01

    We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic. PMID:12614195

  9. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus.

    PubMed

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.

  10. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO 2-based 3-hydroxypropionate production

    DOE PAGES

    Hawkins, Aaron B.; Lian, Hong; Zeldes, Benjamin M.; ...

    2015-06-11

    In this paper, metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T opt 95–100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO 2 using enzymes from the Metallosphaera sedula (T opt 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formationmore » catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas–liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO 2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/h to 11 mg/L/h, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. Lastly, the results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures.« less

  11. Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO 2-based 3-hydroxypropionate production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, Aaron B.; Lian, Hong; Zeldes, Benjamin M.

    In this paper, metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T opt 95–100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO 2 using enzymes from the Metallosphaera sedula (T opt 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formationmore » catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas–liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO 2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/h to 11 mg/L/h, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. Lastly, the results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures.« less

  12. Two functionally distinct NADP+-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus.

    PubMed

    Nguyen, Diep M N; Schut, Gerrit J; Zadvornyy, Oleg A; Tokmina-Lukaszewska, Monika; Poudel, Saroj; Lipscomb, Gina L; Adams, Leslie A; Dinsmore, Jessica T; Nixon, William J; Boyd, Eric S; Bothner, Brian; Peters, John W; Adams, Michael W W

    2017-09-01

    Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP + oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Hyperthermophile Protein Behavior: Partially-Structured Conformations of Pyrococcus furiosus Rubredoxin Monomers Generated through Forced Cold-Denaturation and Refolding

    PubMed Central

    Ahmed, Shubbir; Guptasarma, Purnananda

    2014-01-01

    Some years ago, we showed that thermo-chemically denatured, partially-unfolded forms of Pyrococcus furiosus triosephosphateisomerase (PfuTIM) display cold-denaturation upon cooling, and heat-renaturation upon reheating, in proportion with the extent of initial partial unfolding achieved. This was the first time that cold-denaturation was demonstrated for a hyperthermophile protein, following unlocking of surface salt bridges. Here, we describe the behavior of another hyperthermophile protein, the small, monomeric, 53 residues-long rubredoxin from Pyrococcus furiosus (PfRd), which is one of the most thermostable proteins known to man. Like PfuTIM, PfRd too displays cold-denaturation after initial thermo-chemical perturbation, however, with two differences: (i) PfRd requires considerably higher temperatures as well as higher concentrations of guanidium hydrochloride (Gdm.HCl) than PfuTIM; (ii) PfRd's cold-denaturation behavior during cooling after thermo-chemical perturbation is incompletely reversible, unlike PfuTIM's, which was clearly reversible (from each different conformation generated). Differential cold-denaturation treatments allow PfRd to access multiple partially-unfolded states, each of which is clearly highly kinetically-stable. We refer to these as ‘Trishanku’ unfolding intermediates (or TUIs). Fascinatingly, refolding of TUIs through removal of Gdm.HCl generates multiple partially-refolded, monomeric, kinetically-trapped, non-native ‘Trishanku’ refolding intermediates (or TRIs), which differ from each other and from native PfRd and TUIs, in structural content and susceptibility to proteolysis. We find that the occurrence of cold denaturation and observations of TUI and TRI states is contingent on the oxidation status of iron, with redox agents managing to modulate the molecule's behavior upon gaining access to PfRd's iron atom. Mass spectrometric examination provides no evidence of the formation of disulfide bonds, but other experiments suggest

  14. Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures

    DTIC Science & Technology

    2011-01-01

    affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pf prol (PF1343). To obtain a better enzyme for OP nerve agent...decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes ...Introduction Pyrococcus horikoshii and Pyrococcus furiosus are both hyper- thermophilic archaea, growing optimally at 98 –100◦C that were isolated from a

  15. Domains of Pyrococcus furiosus L-asparaginase fold sequentially and assemble through strong intersubunit associative forces.

    PubMed

    Garg, Dushyant K; Tomar, Rachana; Dhoke, Reema R; Srivastava, Ankit; Kundu, Bishwajit

    2015-05-01

    Here, we report the folding and assembly of a Pyrococcus furiosus-derived protein, L-asparaginase (PfA). PfA functions as a homodimer, with each monomer made of distinct N- and C-terminal domains. The purified individual domains as well as single Trp mutant of each domain were subjected to chemical denaturation/renaturation and probed by combination of spectroscopic, chromatographic, quenching and scattering techniques. We found that the N-domain acts like a folding scaffold and assists the folding of remaining polypeptide. The domains displayed sequential folding with the N-domain having higher thermodynamic stability. We report that the extreme thermal stability of PfA is due to the presence of high intersubunit associative forces supported by extensive H-bonding and ionic interactions network. Our results proved that folding cooperativity in a thermophilic, multisubunit protein is dictated by concomitant folding and association of constituent domains directly into a native quaternary structure. This report gives an account of the factors responsible for folding and stability of a therapeutically and industrially important protein.

  16. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO 2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Hong; Zeldes, Benjamin M.; Lipscomb, Gina L.

    Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO 3 – and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO 2. Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, whilemore » the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the β-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO 2-sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. Here, while further efforts to improve 3HP production by regulating gene dosage,« less

  17. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO 2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus

    DOE PAGES

    Lian, Hong; Zeldes, Benjamin M.; Lipscomb, Gina L.; ...

    2016-06-18

    Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO 3 – and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO 2. Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, whilemore » the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the β-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO 2-sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. Here, while further efforts to improve 3HP production by regulating gene dosage,« less

  18. Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C.

    PubMed

    Sekar, Narendran; Wu, Chang-Hao; Adams, Michael W W; Ramasamy, Ramaraja P

    2017-07-01

    Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus (Pf) by studying its ability to generate electricity in a two-chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m -2 and a peak power density of 225 mW m -2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio-electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419-1427. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Preliminary neutron crystallographic analysis of selectively CH3-protonated, deuterated rubredoxin from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew

    2008-01-01

    Neutron crystallography is used to locate hydrogen atoms in biological materials and can distinguish between negatively scattering hydrogen and positively scattering deuterium substituted positions in isomorphous neutron structures. Recently, Hauptman and Langs (2003) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering hydrogen atoms in the structure. Selective labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of hydrogen to deuterium atoms can be precisely controlled. We have applied methyl-selective labeling protocols to introduce (1H-delta methyl)-leucinemore » and (1H-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here we report on the production, crystallization, and preliminary neutron analysis of the selectively CH3-protonated, deuterated PfRd sample, which provided a high quality neutron data set extending to 1.75 resolution at the new LADI-III instrument at the Insititut Laue-Langevin. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of hydrogen atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.« less

  20. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus.

    PubMed

    Lian, Hong; Zeldes, Benjamin M; Lipscomb, Gina L; Hawkins, Aaron B; Han, Yejun; Loder, Andrew J; Nishiyama, Declan; Adams, Michael W W; Kelly, Robert M

    2016-12-01

    Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO 3 - and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO 2 . Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, while the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the β-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO 2 -sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. While further efforts to improve 3HP production by regulating gene dosage, improving carbon flux and optimizing bioreactor operation are needed, these results illustrate the ancillary benefits of accessory enzymes for incorporating CO 2 into 3HP production in metabolically engineered P

  1. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    PubMed

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-03

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  2. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W W

    2014-07-11

    The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane

    PubMed Central

    Egea, Pascal F.; Tsuruta, Hiro; de Leon, Gladys P.; Napetschnig, Johanna; Walter, Peter; Stroud, Robert M.

    2008-01-01

    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes. PMID:18978942

  4. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Mukund, S; Adams, M W

    1996-01-01

    Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals. PMID:8550411

  5. Purification and Molecular Characterization of the Tungsten-Containing Formaldehyde Ferredoxin Oxidoreductase from the Hyperthermophilic Archaeon Pyrococcus furiosus: the Third of a Putative Five-Member Tungstoenzyme Family

    PubMed Central

    Roy, Roopali; Mukund, Swarnalatha; Schut, Gerrit J.; Dunn, Dianne M.; Weiss, Robert; Adams, Michael W. W.

    1999-01-01

    Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100°C by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS−) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 μM) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and

  6. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus

    PubMed Central

    2013-01-01

    Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization. PMID:24053641

  7. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures

    PubMed Central

    Leferink, Nicole G. H.; Hendriks, Annemarie; Brouns, Stan J. J.; Hennemann, Hans-Georg; Dauβmann, Thomas; van der Oost, John

    2008-01-01

    There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183. PMID:18452026

  8. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    PubMed

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Michael W.; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma ismore » to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  10. The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA

    PubMed Central

    Lai, Stella M.; Lai, Lien B.; Foster, Mark P.; Gopalan, Venkat

    2014-01-01

    The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis. PMID:25361963

  11. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.

    PubMed

    Kwan, Patrick; McIntosh, Chelsea L; Jennings, David P; Hopkins, R Chris; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Jones, Anne K

    2015-10-28

    We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 °C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 °C, following short (<200 s) exposure to 14 μM O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 °C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 °C, up to 32% of the enzyme's oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states.

  12. Cold Shock of a Hyperthermophilic Archaeon: Pyrococcus furiosus Exhibits Multiple Responses to a Suboptimal Growth Temperature with a Key Role for Membrane-Bound Glycoproteins

    PubMed Central

    Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmita; Adams, Michael W. W.

    2005-01-01

    The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95°C, and at the lower end of the temperature range for significant growth, 72°C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72°C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72°C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72°C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea. PMID:15601718

  13. Tungsten Transport Protein A (WtpA) in Pyrococcus furiosus: the First Member of a New Class of Tungstate and Molybdate Transporters

    PubMed Central

    Bevers, Loes E.; Hagedoorn, Peter-Leon; Krijger, Gerard C.; Hagen, Wilfred R.

    2006-01-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein. PMID:16952940

  14. Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus▿ †

    PubMed Central

    Sevcenco, Ana-Maria; Bevers, Loes E.; Pinkse, Martijn W. H.; Krijger, Gerard C.; Wolterbeek, Hubert T.; Verhaert, Peter D. E. M.; Hagen, Wilfred R.; Hagedoorn, Peter-Leon

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope 99Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs. PMID:20562313

  15. Functional reconstitution and characterization of Pyrococcus furiosus RNase P

    PubMed Central

    Tsai, Hsin-Yue; Pulukkunat, Dileep K.; Woznick, Walter K.; Gopalan, Venkat

    2006-01-01

    RNase P, which catalyzes the magnesium-dependent 5′-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyroccocus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its kcat and a 170-fold decrease in Km. In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P. PMID:17053064

  16. Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Cheng, T. C.; Ramakrishnan, V.; Chan, S. I.

    1999-01-01

    A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number

  17. Solution 1H NMR determination of secondary structure for the three-iron form of ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    Teng, Q; Zhou, Z H; Smith, E T; Busse, S C; Howard, J B; Adams, M W; La Mar, G N

    1994-05-24

    Two-dimensional 1H NMR data have been used to make sequence-specific assignments and define the secondary structure of the three-iron form of the oxidized ferredoxin, Fd, from the hyperthermophilic archaeon Pyrococcus furiosus, Pf. Signals for at least some protons were located for 65 of the 66 amino acids in the sequence, in spite of the paramagnetic (S = 1/2) ground state, but not all could be assigned. Unassigned and missing signals could be qualitatively correlated with the expected proximity of the protons to the paramagnetic cluster. The secondary structure was deduced from qualitative analysis of the 2D nuclear Overhauser effect, which identified two antiparallel beta-sheets, one triple-stranded including Ala1-Ser5, Val39-Glu41, and Thr62-Ala66, and one double-stranded consisting of Glu26-Asn28 and Lys32-Glu34, as well as an alpha-helix involving Glu43-Glu54. Three tight type I turns are located at residues Asp7-Thr10, Pro22-Phe25, and Asp29-Gly31. Comparison with the crystal structure of Desulfovibrio gigas, Dg, Fd (Kissinger et al., 1991) reveals a very similar folding topology, although several secondary structural elements are extended in Pf relative to Dg Fd. Thus the beta-sheet involving the two termini is expanded to include the two terminal residues and incorporates a third strand from the internal loop that is lengthened by several insertions in Pf relative to Dg Fd. The double-stranded beta-sheet in the interior of Pf Fd is lengthened slightly due to a much tighter type I turn between the two strands. The helix near the C-terminus is three residues longer in Pf than in Dg Fd, as well as being shifted toward the N-terminus. The disulfide link between the two nonligating Cys residues (Cys21 and Cys48) is conserved in Pf Fd, but the link near the C-terminus is in the middle of the long alpha-helix in Pf Fd, instead of at the N-terminus of the helix as in Dg Fd. The extensions of the beta-sheets and alpha-helix increase the number of main

  18. Reinvestigation of the Steady-State Kinetics and Physiological Function of the Soluble NiFe-Hydrogenase I of Pyrococcus furiosus▿

    PubMed Central

    van Haaster, Daan J.; Silva, Pedro J.; Hagedoorn, Peter-Leon; Jongejan, Jaap A.; Hagen, Wilfred R.

    2008-01-01

    Pyrococcus furiosus has two types of NiFe-hydrogenases: a heterotetrameric soluble hydrogenase and a multimeric transmembrane hydrogenase. Originally, the soluble hydrogenase was proposed to be a new type of H2 evolution hydrogenase, because, in contrast to all of the then known NiFe-hydrogenases, the hydrogen production activity at 80°C was found to be higher than the hydrogen consumption activity and CO inhibition appeared to be absent. NADPH was proposed to be the electron donor. Later, it was found that the membrane-bound hydrogenase exhibits very high hydrogen production activity sufficient to explain cellular H2 production levels, and this seems to eliminate the need for a soluble hydrogen production activity and therefore leave the soluble hydrogenase without a physiological function. Therefore, the steady-state kinetics of the soluble hydrogenase were reinvestigated. In contrast to previous reports, a low Km for H2 (∼20 μM) was found, which suggests a relatively high affinity for hydrogen. Also, the hydrogen consumption activity was 1 order of magnitude higher than the hydrogen production activity, and CO inhibition was significant (50% inhibition with 20 μM dissolved CO). Since the Km for NADP+ is ∼37 μM, we concluded that the soluble hydrogenase from P. furiosus is likely to function in the regeneration of NADPH and thus reuses the hydrogen produced by the membrane-bound hydrogenase in proton respiration. PMID:18156274

  19. The structure of subunit E of the Pyrococcus horikoshii OT3 A-ATP synthase gives insight into the elasticity of the peripheral stalk.

    PubMed

    Balakrishna, Asha Manikkoth; Hunke, Cornelia; Grüber, Gerhard

    2012-07-13

    A(1)A(O) ATP synthases are the major energy converters of archaea. They are composed of an A(1) region that synthesizes ATP and an integral part A(O) that conducts ions. Subunit E is a component of the peripheral stalk that links the A(1) with the A(O) part of the A-ATP synthase. We have determined the crystal structure of the entire subunit E (PhE) of the Pyrococcus horikoshii OT3 A-ATP synthase at 3.6 Å resolution. The structure reveals an extended S-shaped N-terminal α-helix with 112.29 Å in length, followed by a globular head group. The S-shaped feature, common in elastic connectors and spacers, would facilitate the storage of transient elastic energy during rotary motion in the enzyme. The structure has been superimposed into the asymmetric peripheral stalks of the three-dimensional reconstruction of the Pyrococcus furiosus enzyme, revealing that the S-shaped subunit PhE fits well into the bent peripheral stalk, whereas the previously solved E subunit structure (3.1 Å resolution) of Thermus thermophilus A-ATP synthase is well accommodated in the density of the straight stator domain. The different features of the two stalk subunits are discussed in light of a novel coupling mechanism in A-ATP synthases proposed to differ from the Wankel engine of F-ATP synthases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Domain motions of Argonaute, the catalytic engine of RNA interference

    PubMed Central

    Ming, Dengming; Wall, Michael E; Sanbonmatsu, Kevin Y

    2007-01-01

    Background The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field. Results The analysis reveals low-frequency vibrations that facilitate the accommodation of RNA duplexes – an essential step in target recognition. The Pyrococcus furiosus and Aquifex aeolicus Argonaute proteins both exhibit low-frequency torsion and hinge motions; however, differences in the overall architecture of the proteins cause the detailed dynamics to be significantly different. Conclusion Overall, low-frequency vibrations of Argonaute are consistent with mechanisms within the current reaction cycle model for RNA interference. PMID:18053142

  1. Domain motions of Argonaute, the catalytic engine of RNA interference.

    PubMed

    Ming, Dengming; Wall, Michael E; Sanbonmatsu, Kevin Y

    2007-11-30

    The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field. The analysis reveals low-frequency vibrations that facilitate the accommodation of RNA duplexes - an essential step in target recognition. The Pyrococcus furiosus and Aquifex aeolicus Argonaute proteins both exhibit low-frequency torsion and hinge motions; however, differences in the overall architecture of the proteins cause the detailed dynamics to be significantly different. Overall, low-frequency vibrations of Argonaute are consistent with mechanisms within the current reaction cycle model for RNA interference.

  2. Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex.

    PubMed

    Lipscomb, Gina L; Schut, Gerrit J; Thorgersen, Michael P; Nixon, William J; Kelly, Robert M; Adams, Michael W W

    2014-01-31

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications.

  3. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960

  4. A New Perspective on Radiation Resistance Based on Deinococcus radiodurans

    DTIC Science & Technology

    2009-03-01

    Halobacterium sp. NRc-1 | Lactobacillus plantarum | Micrococcus luteus | Pyrococcus furiosus | Shewanella oneidensis | Synechocystis sp. Pcc... Lactobacillus plantarum16,47, which lacks the enzyme superoxide dismutase, and Synechocystis sp. PCC 68034 (Ref. 48) accumulated exceptionally high levels...high specificity for Mn2+, has been detected in L. plantarum , but has not been found in D. radiodurans. Manganese transport in D. radiodurans is

  5. Some Biochemical Properties of an Acido-Thermophilic Archae-Bacterium Sulfolobus Acidocaldarius

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Ohba, Masayuki; Wagaki, Takayoshi

    1984-12-01

    To elucidate the phylogenic status of archaebacteria, some basic cellular components of an acido-thermophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Poly(A) containing RNA was present in the cells, and performed the role of mRNA in a cell-free extract of reticulocyte or the archaebacteria. Poly(A) containing RNA was also found in other archaebacterial cells. The absence of cap structure was suggested in these RNAs. The cell-free protein synthesis using the archaebacterial extract was inhibited by anisomycin, a specific inhibitor for eukaryotic ribosomes. Two unique membrane-bound ATPases were detected. Based on resistance to H+-ATPase inhibitors, these enzymes seemed not to be F0F1-ATPase.

  6. Fundamentals and Bioengineering of Enzymatic Fuel Cells. Part 1. Bioengineering of Enzymes as Electrocatalysts

    DTIC Science & Technology

    2012-01-31

    assembles to form a thermostable. 3-dimensionaI supramolecular hydrogel that has aldo-keto reductase ( AKR ) activity. This is again accomplished... AKR activity, AdhD from Pyrococcus furiosus2*. The monomers are able to self-assemble into a bioactive enzymatic hydrogel that is stable to...temperatures in excess of 60 °C. AdhD is a member of the AKR superfamily that catalyzes the oxidation of secondary alcohols under basic conditions (optimum pH

  7. Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding.

    PubMed

    Okochi, Mina; Yoshida, Takao; Maruyama, Tadashi; Kawarabayasi, Yutaka; Kikuchi, Hisashi; Yohda, Masafumi

    2002-03-08

    A molecular chaperone prefoldin/GimC from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 was characterized. Pyrococcus prefoldin protected porcine heart citrate synthase from thermal aggregation whereas each subunit alone afforded little protection. It also arrested the spontaneous refolding of acid-denatured green fluorescent protein and then transferred it not only to a group II chaperonin from the hyperthermophilic archaeum Thermococcus sp. strain KS-1, but also to a group I chaperonin from the thermophilic bacterium Thermus thermophilus HB8 for subsequent ATP dependent refolding.

  8. Extensive genome rearrangements and multiple horizontal gene transfers in a population of pyrococcus isolates from Vulcano Island, Italy.

    PubMed

    White, James R; Escobar-Paramo, Patricia; Mongodin, Emmanuel F; Nelson, Karen E; DiRuggiero, Jocelyne

    2008-10-01

    The extent of chromosome rearrangements in Pyrococcus isolates from marine hydrothermal vents in Vulcano Island, Italy, was evaluated by high-throughput genomic methods. The results illustrate the dynamic nature of the genomes of the genus Pyrococcus and raise the possibility of a connection between rapidly changing environmental conditions and adaptive genomic properties.

  9. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    PubMed Central

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  10. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    NASA Astrophysics Data System (ADS)

    Michoud, Grégoire; Jebbar, Mohamed

    2016-06-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  11. Extensive Genome Rearrangements and Multiple Horizontal Gene Transfers in a Population of Pyrococcus Isolates from Vulcano Island, Italy▿ †

    PubMed Central

    White, James R.; Escobar-Paramo, Patricia; Mongodin, Emmanuel F.; Nelson, Karen E.; DiRuggiero, Jocelyne

    2008-01-01

    The extent of chromosome rearrangements in Pyrococcus isolates from marine hydrothermal vents in Vulcano Island, Italy, was evaluated by high-throughput genomic methods. The results illustrate the dynamic nature of the genomes of the genus Pyrococcus and raise the possibility of a connection between rapidly changing environmental conditions and adaptive genomic properties. PMID:18723649

  12. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  13. Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts.

    PubMed

    Alissandratos, Apostolos; Kim, Hye-Kyung; Easton, Christopher J

    2014-07-01

    The biological conversion of CO2 and H2 into formate offers a sustainable route to a valuable commodity chemical through CO2 fixation, and a chemical form of hydrogen fuel storage. Here we report the first example of CO2 hydrogenation utilising engineered whole-cell biocatalysts. Escherichia coli JM109(DE3) cells transformed for overexpression of either native formate dehydrogenase (FDH), the FDH from Clostridium carboxidivorans, or genes from Pyrococcus furiosus and Methanobacterium thermoformicicum predicted to express FDH based on their similarity to known FDH genes were all able to produce levels of formate well above the background, when presented with H2 and CO2, the latter in the form of bicarbonate. In the case of the FDH from P. furiosus the yield was highest, reaching more than 1 g L(-1)h(-1) when a hydrogen-sparging reactor design was used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui.

    PubMed

    Hatakeyama, T; Hatakeyama, T

    1990-07-06

    The complete amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui were determined. Protein HL30 was found to be acetylated at its N-terminal amino acid and shows homology to the eukaryotic ribosomal proteins YL34 from yeast and RL31 from rat. Protein HmaL5 was homologous to the protein L5 from Escherichia coli and Bacillus stearothermophilus as well as to YL16 from yeast. HmaL5 shows more similarities to its eukaryotic counterpart than to eubacterial ones.

  15. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.

  16. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Kevin M.; Schufreider, Ann K.; McGill, Melissa A.

    2010-12-17

    Research highlights: {yields} The Pyrococcus abyssi lon protease intein promotes efficient protein splicing. {yields} Inteins with mutations that interfere with individual steps of splicing do not promote unproductive side reactions. {yields} The intein splices with Lys in place of the highly conserved penultimate His. {yields} The intein is flanked by a Gly-rich region at its C terminus that may increase the efficiency of the third step of splicing, Asn cyclization coupled to peptide bond cleavage. -- Abstract: Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled tomore » ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.« less

  17. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3.

    PubMed

    Okochi, Mina; Matsuzaki, Hiroki; Nomura, Tomoko; Ishii, Noriyuki; Yohda, Masafumi

    2005-04-01

    The group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 (PhCPN) and its functional cooperation with the cognate prefoldin were investigated. PhCPN existed as a homo-oligomer in a double-ring structure, which protected the citrate synthase of a porcine heart from thermal aggregation at 45 degrees C, and did the same on the isopropylmalate dehydrogenase (IPMDH) of a thermophilic bacterium, Thermus thermophilus HB8, at 90 degrees C. PhCPN also enhanced the refolding of green fluorescent protein (GFP), which had been unfolded by low pH, in an ATP-dependent manner. Unexpectedly, functional cooperation between PhCPN and Pyrococcus prefoldin (PhPFD) in the refolding of GFP was not observed. Instead, cooperation between PhCPN and PhPFD was observed in the refolding of IPMDH unfolded with guanidine hydrochloride. Although PhCPN alone was not effective in the refolding of IPMDH, the refolding efficiency was enhanced by the cooperation of PhCPN with PhPFD.

  18. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  19. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basen, M; Schut, GJ; Nguyen, DM

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. Bymore » heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.« less

  20. The Evolution of Energy-Transducing Systems. Studies with an Extremely Halophilic Archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1997-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of bacteria, chloroplasts and mitochondria (1). Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaea (formerly called archaebacteria) are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution (2). From studies of members of all three major groups of archaea, the halophiles, methanogens and thermoacidophiles, it emerged that they possess a membrane ATPase, which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complex, and possibly a deduction of events during the early evolution of energy-transducing systems.

  1. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion ofmore » two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.« less

  2. Quantitative analysis of pyroglutamic acid in peptides.

    PubMed

    Suzuki, Y; Motoi, H; Sato, K

    1999-08-01

    A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.

  3. Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii.

    PubMed

    Pampa, K J; Madan Kumar, S; Hema, M K; Kumara, Karthik; Naveen, S; Kunishima, Naoki; Lokanath, N K

    2017-12-01

    Methyltransferases (MTs) are enzymes involved in methylation that are needed to perform cellular processes such as biosynthesis, metabolism, gene expression, protein trafficking and signal transduction. The cofactor S-adenosyl-L-methionine (SAM) is used for catalysis by SAM-dependent methyltransferases (SAM-MTs). The crystal structure of Pyrococcus horikoshii SAM-MT was determined to a resolution of 2.1 Å using X-ray diffraction. The monomeric structure consists of a Rossmann-like fold (domain I) and a substrate-binding domain (domain II). The cofactor (SAM) molecule binds at the interface between adjacent subunits, presumably near to the active site(s) of the enzyme. The observed dimeric state might be important for the catalytic function of the enzyme.

  4. Chromosome map of the thermophilic archaebacterium Thermococcus celer

    NASA Technical Reports Server (NTRS)

    Noll, K. M.; Woese, C. R. (Principal Investigator)

    1989-01-01

    A physical map for the chromosome of the thermophilic archaebacterium Thermococcus celer Vu13 has been constructed. Thirty-four restriction endonucleases were tested for their ability to generate large restriction fragments from the chromosome of T. celer. Of these, the enzymes NheI, SpeI, and XbaI yielded the fewest fragments when analyzed by pulsed-field electrophoresis. NheI and SpeI each gave 5 fragments, while XbaI gave 12. The size of the T. celer chromosome was determined from the sum of the apparent sizes of restriction fragments derived from single and double digests by using these enzymes and was found to be 1,890 +/- 27 kilobase pairs. Partial and complete digests allowed the order of all but three small (less than 15 kilobase pairs) fragments to be deduced. These three fragments were assigned positions by using hybridization probes derived from these restriction fragments. The positions of the other fragments were confirmed by using hybridization probes derived in the same manner. The positions of the 5S, 16S, and 23S rRNA genes as well as the 7S RNA gene were located on this map by using cloned portions of these genes as hybridization probes. The 5S rRNA gene was localized 48 to 196 kilobases from the 5' end of the 16S gene. The 7S RNA gene was localized 190 to 504 kilobases from the 3' end of the 23S gene. These analyses demonstrated that the chromosome of T. celer is a single, circular DNA molecule. This is the first such demonstration of the structure of an archaebacterial chromosome.

  5. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-07

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  6. The evolution of energy-transducing systems. Studies with an extremely halophilic archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1992-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of eubacteria, chloroplasts, and mitochondria. Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaebacteria are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution. From studies of members of all three major groups of archaebacteria - the halophiles, methanogens, and thermoacidophiles - it emerged that they possess a membrane ATPase which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. Amino acid sequences of critical regions of the enzyme were to be determined, as well as immunoreactions of single subunits in the search for common epitopes. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complexes, and possibly deduction of events during the early evolution of energy-transducing systems.

  7. Crystal structure of PAV1-137: a protein from the virus PAV1 that infects Pyrococcus abyssi.

    PubMed

    Leulliot, N; Quevillon-Cheruel, S; Graille, M; Geslin, C; Flament, D; Le Romancer, M; van Tilbeurgh, H

    2013-01-01

    Pyrococcus abyssi virus 1 (PAV1) was the first virus particle infecting a hyperthermophilic Euryarchaeota (Pyrococcus abyssi strain GE23) that has been isolated and characterized. It is lemon shaped and is decorated with a short fibered tail. PAV1 morphologically resembles the fusiform members of the family Fuselloviridae or the genus Salterprovirus. The 18 kb dsDNA genome of PAV1 contains 25 predicted genes, most of them of unknown function. To help assigning functions to these proteins, we have initiated structural studies of the PAV1 proteome. We determined the crystal structure of a putative protein of 137 residues (PAV1-137) at a resolution of 2.2 Å. The protein forms dimers both in solution and in the crystal. The fold of PAV1-137 is a four- α -helical bundle analogous to those found in some eukaryotic adhesion proteins such as focal adhesion kinase, suggesting that PAV1-137 is involved in protein-protein interactions.

  8. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases.

    PubMed

    Sharma, Prerna; Kaila, Pallavi; Guptasarma, Purnananda

    2016-12-01

    Diverse unrelated enzymes that adopt the beta/alpha (or TIM) barrel topology display similar arrangements of beta/alpha units placed in a radial eight-fold symmetry around the barrel's axis. The TIM barrel was originally thought to be a single structural domain; however, it is now thought that TIM barrels arose from duplication and fusion of smaller half-barrels consisting of four beta/alpha units. We describe here the design, expression and purification, as well as characterization of folding, activity and stability, of chimeras of two TIM barrel glycosyl hydrolases, made by fusing different half-barrel domains derived from an endoglucanase from Clostridium cellulolyticum, CelCCA and a beta-glucosidase from Pyrococcus furiosus, CelB. We show that after refolding following purification from inclusion bodies, the two half-barrel fusion chimeras (CelCCACelB and CelBCelCCA) display catalytic activity although they assemble into large soluble oligomeric aggregated species containing chains of mixed beta and alpha structure. CelBCelCCA displays hyperthermophile-like structural stability as well as significant stability to chemical denaturation (C m of 2.6 m guanidinium hydrochloride), whereas CelCCACelB displays mesophile-like stability (T m of ~ 71 °C). The endoglucanase activities of both chimeras are an order of magnitude lower than those of CelB or CelCCA, whereas the beta-glucosidase activity of CelBCelCCA is about two orders of magnitude lower than that of CelB. The chimera CelCCACelB shows no beta-glucosidase activity. Our results demonstrate that half-barrel domains from unrelated sources can fold, assemble and function, with scope for improvement. Pyrococcus furiosus beta-glucosidase (CelB, EC: 3.2.1.21). Clostridium cellulolyticum endoglucanase A (CelCCA, EC: 3.2.1.4). © 2016 Federation of European Biochemical Societies.

  9. Primary structures of ribosomal proteins from the archaebacterium Halobacterium marismortui and the eubacterium Bacillus stearothermophilus.

    PubMed

    Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M

    1991-06-01

    Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.

  10. Monomer structure of a hyperthermophilic β-glucosidase mutant forming a dodecameric structure in the crystal form

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Watanabe, Masahiro; Ishikawa, Kazuhiko

    2014-01-01

    One of the β-glucosidases from Pyrococcus furiosus (BGLPf) is found to be a hyperthermophilic tetrameric enzyme that can degrade cellooligosaccharides. Recently, the crystal structures of the tetrameric and dimeric forms were solved. Here, a new monomeric form of BGLPf was constructed by removing the C-terminal region of the enzyme and its crystal structure was solved at a resolution of 2.8 Å in space group P1. It was discovered that the mutant enzyme forms a unique dodecameric structure consisting of two hexameric rings in the asymmetric unit of the crystal. Under biological conditions, the mutant enzyme forms a monomer. This result helps explain how BGLPf has attained its oligomeric structure and thermostability. PMID:25005077

  11. The primary structures of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui.

    PubMed

    Hatakeyama, T; Hatakeyama, T; Kimura, M

    1988-11-21

    The complete amino acid sequences of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui were determined. The sequences were established by manual sequencing of peptides produced with several proteases as well as by cleavage with dilute HCl. Proteins L16, L23 and L33 consist of 119, 154 and 69 amino acid residues, and their molecular masses are 13,538, 16,812 and 7620 Da, respectively. The comparison of their sequences with those of ribosomal proteins from other organisms revealed that L23 and L33 are related to eubacterial ribosomal proteins from Escherichia coli and Bacillus stearothermophilus, while protein L16 was found to be homologous to a eukaryotic ribosomal protein from yeast. These results provide information about the special phylogenetic position of archaebacteria.

  12. A First Analysis of Metallome Biosignatures of Hyperthermophilic Archaea

    PubMed Central

    Cameron, Vyllinniskii; House, Christopher H.; Brantley, Susan L.

    2012-01-01

    To date, no experimental data has been reported for the metallome of hyperthermophilic microorganisms although their metal requirements for growth are known to be unique. Here, experiments were conducted to determine (i) cellular trace metal concentrations of the hyperthermophilic Archaea Methanococcus jannaschii and Pyrococcus furiosus, and (ii) a first estimate of the metallome for these hyperthermophilic species via ICP-MS. The metal contents of these cells were compared to parallel experiments using the mesophilic bacterium Escherichia coli grown under aerobic and anaerobic conditions. Fe and Zn were typically the most abundant metals in cells. Metal concentrations for E. coli grown aerobically decreased in the order Fe > Zn > Cu > Mo > Ni > W > Co. In contrast, M. jannaschii and P. furiosus show almost the reverse pattern with elevated Ni, Co, and W concentrations. Of the three organisms, a biosignature is potentially demonstrated for the methanogen M. jannaschii that may, in part, be related to the metallome requirements of methanogenesis. The bioavailability of trace metals more than likely has varied through time. If hyperthermophiles are very ancient, then the trace metal patterns observed here may begin to provide some insights regarding Earth's earliest cells and in turn, early Earth chemistry. PMID:23243390

  13. Crystallization and preliminary X-ray diffraction analysis of the CRISPR-Cas RNA-silencing Cmr complex.

    PubMed

    Osawa, Takuo; Inanaga, Hideko; Numata, Tomoyuki

    2015-06-01

    Clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNA (crRNA) and CRISPR-associated (Cas) proteins constitute a prokaryotic adaptive immune system (CRISPR-Cas system) that targets and degrades invading genetic elements. The type III-B CRISPR-Cas Cmr complex, composed of the six Cas proteins (Cmr1-Cmr6) and a crRNA, captures and cleaves RNA complementary to the crRNA guide sequence. Here, a Cmr1-deficient functional Cmr (CmrΔ1) complex composed of Pyrococcus furiosus Cmr2-Cmr3, Archaeoglobus fulgidus Cmr4-Cmr5-Cmr6 and the 39-mer P. furiosus 7.01-crRNA was prepared. The CmrΔ1 complex was cocrystallized with single-stranded DNA (ssDNA) complementary to the crRNA guide by the vapour-diffusion method. The crystals diffracted to 2.1 Å resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 75.5, b = 76.2, c = 139.2 Å, α = 90.3, β = 104.8, γ = 118.6°. The asymmetric unit of the crystals is expected to contain one CmrΔ1-ssDNA complex, with a Matthews coefficient of 2.03 Å(3) Da(-1) and a solvent content of 39.5%.

  14. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes formore » 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.« less

  15. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  16. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system

    PubMed Central

    Elmore, Joshua R.; Sheppard, Nolan F.; Ramia, Nancy; Deighan, Trace; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2016-01-01

    CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM. PMID:26848045

  17. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, J.D.; Osipiuk, J.; Pinkau, T.

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70{degrees}C culture at the lethal temperature of 92{degrees}C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88{degrees}C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, tomore » a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.« less

  18. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12.

    PubMed

    Trent, J D; Osipiuk, J; Pinkau, T

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  19. Analysis of the First Genome of a Hyperthermophilic Marine Virus-Like Particle, PAV1, Isolated from Pyrococcus abyssi▿ †

    PubMed Central

    Geslin, C.; Gaillard, M.; Flament, D.; Rouault, K.; Le Romancer, M.; Prieur, D.; Erauso, G.

    2007-01-01

    Only one virus-like particle (VLP) has been reported from hyperthermophilic Euryarchaeotes. This VLP, named PAV1, is shaped like a lemon and was isolated from a strain of “Pyrococcus abyssi,” a deep-sea isolate. Its genome consists of a double-stranded circular DNA of 18 kb which is also present at a high copy number (60 per chromosome) free within the host cytoplasm but is not integrated into the host chromosome. Here, we report the results of complete analysis of the PAV1 genome. All the 25 predicted genes, except 3, are located on one DNA strand. A transcription map has been made by using a reverse transcription-PCR assay. All the identified open reading frames (ORFs) are transcribed. The most significant similarities relate to four ORFs. ORF 180a shows 31% identity with ORF 181 of the pRT1 plasmid isolated from Pyrococcus sp. strain JT1. ORFs 676 and 678 present similarities with a concanavalin A-like lectin/glucanase domain, which could be involved in the process of host-virus recognition, and ORF 59 presents similarities with the transcriptional regulator CopG. The genome of PAV1 displays unique features at the nucleic and proteinic level, indicating that PAV1 should be attached at least to a novel genus or virus family. PMID:17449623

  20. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    PubMed

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  1. Programmable DNA-Guided Artificial Restriction Enzymes.

    PubMed

    Enghiad, Behnam; Zhao, Huimin

    2017-05-19

    Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.

  2. The removal of pyroglutamic acid from monoclonal antibodies without denaturation of the protein chains.

    PubMed

    Werner, William E; Wu, Sylvia; Mulkerrin, Michael

    2005-07-01

    Typically, the removal of pyroglutamate from the protein chains of immunoglobulins with the enzyme pyroglutamate aminopeptidase requires the use of chaotropic and reducing agents, quite often with limited success. This article describes a series of optimization experiments using elevated temperatures and detergents to denature and stabilize the heavy chains of immunoglobulins such that the pyroglutamate at the amino terminal was accessible to enzymatic removal using the thermostable protease isolated from Pyrococcus furiosus. The detergent polysorbate 20 (Tween 20) was used successfully to facilitate the removal of pyroglutamate residues. A one-step digestion was developed using elevated temperatures and polysorbate 20, rather than chaotropic and reducing agents, with sample cleanup and preparation for Edman sequencing performed using a commercial cartridge containing the PVDF membrane. All of the immunoglobulins digested with this method yielded heavy chain sequence, but the extent of deblocking was immunglobulin dependent (typically>50%).

  3. Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii.

    PubMed

    Hamilton, P T; Reeve, J N

    1985-01-01

    DNA fragments cloned from the methanogenic archaebacterium Methanobrevibacter smithii which complement mutations in the purE and proC genes of E. coli have been sequenced. Sequence analyses, transposon mutagenesis and expression in E. coli minicells indicate that purE and proC complementations result from the synthesis of M. smithii polypeptides with molecular weights of 36,697 and 27,836 respectively. The encoding genes appear to be located in operons. The M. smithii genome contains 69% A/T basepairs (bp) which is reflected in unusual codon usages and intergenic regions containing approximately 85% A/T bp. An insertion element, designated ISM1, was found within the cloned M. smithii DNA located adjacent to the proC complementing region. ISM1 is 1381 bp in length, has 29 bp terminal inverted repeat sequences and contains one major ORF encoded in 87% of the ISM1 sequence. ISM1 is mobile, present in approximately 10 copies per genome and integration duplicates 8 bp at the site of insertion. The duplicated sequences show homology with sequences within the 29 bp terminal repeat sequence of ISM1. Comparison of our data with sequences from halophilic archaebacteria suggests that 5'GAANTTTCA and 5'TTTTAATATAAA may be consensus promoter sequences for archaebacteria. These sequences closely resemble the consensus sequences which precede Drosophila heat-shock genes (Pelham 1982; Davidson et al. 1983). Methanogens appear to employ the eubacterial system of mRNA: 16SrRNA hybridization to ensure initiation of translation; the consensus ribosome binding sequence is 5'AGGTGA.

  4. Complete amino acid sequences of the ribosomal proteins L25, L29 and L31 from the archaebacterium Halobacterium marismortui.

    PubMed

    Hatakeyama, T; Kimura, M

    1988-03-15

    Ribosomal proteins were extracted from 50S ribosomal subunits of the archaebacterium Halobacterium marismortui by decreasing the concentration of Mg2+ and K+, and the proteins were separated and purified by ion-exchange column chromatography on DEAE-cellulose. Ten proteins were purified to homogeneity and three of these proteins were subjected to sequence analysis. The complete amino acid sequences of the ribosomal proteins L25, L29 and L31 were established by analyses of the peptides obtained by enzymatic digestion with trypsin, Staphylococcus aureus protease, chymotrypsin and lysylendopeptidase. Proteins L25, L29 and L31 consist of 84, 115 and 95 amino acid residues with the molecular masses of 9472 Da, 12293 Da and 10418 Da respectively. A comparison of their sequences with those of other large-ribosomal-subunit proteins from other organisms revealed that protein L25 from H. marismortui is homologous to protein L23 from Escherichia coli (34.6%), Bacillus stearothermophilus (41.8%), and tobacco chloroplasts (16.3%) as well as to protein L25 from yeast (38.0%). Proteins L29 and L31 do not appear to be homologous to any other ribosomal proteins whose structures are so far known.

  5. Electrostatic Potential Energy within a Protein Monitored by Metal Charge-Dependent Hydrogen Exchange

    PubMed Central

    Anderson, Janet S.; LeMaster, David M.; Hernández, Griselda

    2006-01-01

    Hydrogen exchange measurements on Zn(II)-, Ga(III)-, and Ge(IV)-substituted Pyrococcus furiosus rubredoxin demonstrate that the log ratio of the base-catalyzed rate constants (Δ log kex) varies inversely with the distance out to at least 12 Å from the metal. This pattern is consistent with the variation of the amide nitrogen pK values with the metal charge-dependent changes in the electrostatic potential. Fifteen monitored amides lie within this range, providing an opportunity to assess the strength of electrostatic interactions simultaneously at numerous positions within the structure. Poisson-Boltzmann calculations predict an optimal effective internal dielectric constant of 6. The largest deviations between the experimentally estimated and the predicted ΔpK values appear to result from the conformationally mobile charged side chains of Lys-7 and Glu-48 and from differential shielding of the peptide units arising from their orientation relative to the metal site. PMID:17012322

  6. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase.

    PubMed

    Varejão, Nathalia; De-Andrade, Rafael A; Almeida, Rodrigo V; Anobom, Cristiane D; Foguel, Debora; Reverter, David

    2018-02-06

    Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life.

    PubMed

    Zaramela, Livia S; Vêncio, Ricardo Z N; ten-Caten, Felipe; Baliga, Nitin S; Koide, Tie

    2014-01-01

    A plethora of non-coding RNAs has been discovered using high-resolution transcriptomics tools, indicating that transcriptional and post-transcriptional regulation is much more complex than previously appreciated. Small RNAs associated with transcription start sites of annotated coding regions (TSSaRNAs) are pervasive in both eukaryotes and bacteria. Here, we provide evidence for existence of TSSaRNAs in several archaeal transcriptomes including: Halobacterium salinarum, Pyrococcus furiosus, Methanococcus maripaludis, and Sulfolobus solfataricus. We validated TSSaRNAs from the model archaeon Halobacterium salinarum NRC-1 by deep sequencing two independent small-RNA enriched (RNA-seq) and a primary-transcript enriched (dRNA-seq) strand-specific libraries. We identified 652 transcripts, of which 179 were shown to be primary transcripts (∼7% of the annotated genome). Distinct growth-associated expression patterns between TSSaRNAs and their cognate genes were observed, indicating a possible role in environmental responses that may result from RNA polymerase with varying pausing rhythms. This work shows that TSSaRNAs are ubiquitous across all domains of life.

  8. Thermostability in rubredoxin and its relationship to mechanical rigidity

    NASA Astrophysics Data System (ADS)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  9. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.

    PubMed

    Honarmand Ebrahimi, Kourosh; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2012-11-01

    A conserved iron-binding site, the ferroxidase center, regulates the vital iron storage role of the ubiquitous protein ferritin in iron metabolism. It is commonly thought that two Fe(II) simultaneously bind the ferroxidase center and that the oxidized Fe(III)-O(H)-Fe(III) product spontaneously enters the cavity of ferritin as a unit. In contrast, in some bacterioferritins and in archaeal ferritins a persistent di-iron prosthetic group in this center is believed to mediate catalysis of core formation. Using a combination of binding experiments and isotopically labeled (57)Fe(II), we studied two systems in comparison: the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus (PfFtn) and the eukaryotic human H ferritin (HuHF). The results do not support either of the two paradigmatic models; instead they suggest a unifying mechanism in which the Fe(III)-O-Fe(III) unit resides in the ferroxidase center until it is sequentially displaced by Fe(II).

  10. Analysis of the crystal structure of an active MCM hexamer.

    PubMed

    Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J

    2014-09-29

    In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.

  11. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance.

    PubMed

    Okochi, Mina; Kanie, Kei; Kurimoto, Masaki; Yohda, Masafumi; Honda, Hiroyuki

    2008-06-01

    Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.

  12. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative.

    PubMed

    Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H

    2011-03-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.

  13. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases andmore » bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.« less

  14. MCM ring hexamerization is a prerequisite for DNA-binding

    DOE PAGES

    Froelich, Clifford A.; Nourse, Amanda; Enemark, Eric J.

    2015-09-13

    The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings to show that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in themore » hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.« less

  15. Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered β-galactosidase.

    PubMed

    Estevinho, Berta N; Samaniego, Nuria; Talens-Perales, David; Fabra, Maria José; López-Rubio, Amparo; Polaina, Julio; Marín-Navarro, Julia

    2018-08-01

    Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a β-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% lactose to a high extent. Reuse of the immobilized enzyme was limited by the stability of the β-galactosidase module, whereas the CBM2 module provided stable attachment of the hybrid enzyme to the BC support, after long incubation periods (3 h) at 75 °C. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A conserved MCM single-stranded DNA binding element is essential for replication initiation.

    PubMed

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-04-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.

  17. A conserved MCM single-stranded DNA binding element is essential for replication initiation

    PubMed Central

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-01-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001 PMID:24692448

  18. A new crystal form of a hyperthermophilic endocellulase

    PubMed Central

    Kataoka, Misumi; Ishikawa, Kazuhiko

    2014-01-01

    The hyperthermophilic glycoside hydrolase family endocellulase 12 from the archaeon Pyrococcus furiosus (EGPf; Gene ID PF0854; EC 3.2.1.4) catalyzes the hydrolytic cleavage of the β-1,4-glucosidic linkage in β-glucan in lignocellulose biomass. A crystal of EGPf was previously prepared at pH 9.0 and its structure was determined at an atomic resolution of 1.07 Å. This article reports the crystallization of EGPf at the more physiologically relevant pH of 5.5. Structure determination showed that this new crystal form has the symmetry of space group C2. Two molecules of the enzyme are observed in the asymmetric unit. Crystal packing is weak at pH 5.5 owing to two flexible interfaces between symmetry-related molecules. Comparison of the EGPf structures obtained at pH 9.0 and pH 5.5 reveals a significant conformational difference at the active centre and in the surface loops. The interfaces in the vicinity of the flexible surface loops impact the quality of the EGPf crystal. PMID:25005081

  19. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks.

    PubMed

    Orange, F; Westall, F; Disnar, J-R; Prieur, D; Bienvenu, N; Le Romancer, M; Défarge, Ch

    2009-09-01

    Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.

  20. Cloning, purification, crystallization and preliminary crystallographic analysis of a penicillin-binding protein homologue from Pyrococcus abyssi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delfosse, Vanessa; Hugonnet, Jean-Emmanuel; Sougakoff, Wladimir

    The crystallization of a hypothetical penicillin-binding protein from the archaeon P. abyssi in space group C2 by hanging-drop vapour diffusion is reported. The genome of the hyperthermophilic archaeon Pyrococcus abyssi contains a gene (pab0087) encoding a penicillin-binding protein (PBP) homologue. This sequence consists of 447 residues and shows significant sequence similarity to low-molecular-weight PBPs and class C β-lactamases. The Pab0087 protein was overexpressed, purified and crystallized. Diffraction data from two different crystal forms were collected to 2.7 and 2.0 Å resolution. Both crystals belong to space group C2, with unit-cell parameters a = 160.59, b = 135.74, c = 113.02more » Å, β = 117.36° and a = 166.97, b = 131.25, c = 189.39 Å, β = 113.81°, respectively. The asymmetric unit contains four and eight molecules, respectively, with fourfold non-crystallographic symmetry.« less

  1. The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.

    PubMed

    Castrec, Benoît; Laurent, Sébastien; Henneke, Ghislaine; Flament, Didier; Raffin, Jean-Paul

    2010-03-05

    A glycine-rich motif described as being involved in human polymerase delta proliferating cell nuclear antigen (PCNA) binding has also been identified in all euryarchaeal DNA polymerase D (Pol D) family members. We redefined the motif as the (G)-PYF box. In the present study, Pol D (G)-PYF box motif mutants from Pyrococcus abyssi were generated to investigate its role in functional interactions with the cognate PCNA. We demonstrated that this motif is not essential for interactions between PabPol D (P. abyssi Pol D) and PCNA, using surface plasmon resonance and primer extension studies. Interestingly, the (G)-PYF box is located in a hydrophobic region close to the active site. The (G)-PYF box mutants exhibited altered DNA binding properties. In addition, the thermal stability of all mutants was reduced compared to that of wild type, and this effect could be attributed to increased exposure of the hydrophobic region. These studies suggest that the (G)-PYF box motif mediates intersubunit interactions and that it may be crucial for the thermostability of PabPol D. (c) 2010 Elsevier Ltd. All rights reserved.

  2. The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. Comparison with eubacterial and eukaryotic ribosomal proteins.

    PubMed

    Kimura, J; Kimura, M

    1987-09-05

    The amino acid sequences of two ribosomal proteins, S14 and S16, from the archaebacterium Halobacterium marismortui have been determined. Sequence data were obtained by the manual and solid-phase sequencing of peptides derived from enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease as well as by chemical cleavage with cyanogen bromide. Proteins S14 and S16 contain 109 and 126 amino acid residues and have Mr values of 11,964 and 13,515, respectively. Comparison of the sequences with those of ribosomal proteins from other organisms demonstrates that S14 has a significant homology with the rat liver ribosomal protein S11 (36% identity) as well as with the Escherichia coli ribosomal protein S17 (37%), and that S16 is related to the yeast ribosomal protein YS22 (40%) and proteins S8 from E. coli (28%) and Bacillus stearothermophilus (30%). A comparison of the amino acid residues in the homologous regions of halophilic and nonhalophilic ribosomal proteins reveals that halophilic proteins have more glutamic acids, asparatic acids, prolines, and alanines, and less lysines, arginines, and isoleucines than their nonhalophilic counterparts. These amino acid substitutions probably contribute to the structural stability of halophilic ribosomal proteins.

  3. Crystallization and preliminary X-ray analysis of PH1566, a putative ribosomal RNA-processing factor from the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    PubMed Central

    Jia, Min Ze; Ohtsuka, Jun; Lee, Woo Cheol; Nagata, Koji; Tanokura, Masaru

    2006-01-01

    A putative ribosomal RNA-processing factor consisting of two KH domains from Pyrococcus horikoshii OT3 (PH1566; 25 kDa) was crystallized by the sitting-drop vapour-diffusion method using PEG 3000 as the precipitant. The crystals diffracted X-rays to beyond 2.0 Å resolution using a synchrotron-radiation source. The space group of the crystals was determined as primitive orthorhombic P212121, with unit-cell parameters a = 45.9, b = 47.4, c = 95.7 Å. The crystals contain one molecule in the asymmetric unit (V M = 2.5 Å3 Da−1) and have a solvent content of 50%. PMID:16511260

  4. Modulation of the Pyrococcus abyssi NucS Endonuclease Activity by Replication Clamp at Functional and Structural Levels*

    PubMed Central

    Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P.; Khun, Joelle; Vos, Marten H.; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier

    2012-01-01

    Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5′ and 3′ flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction. PMID:22431731

  5. Modulation of the Pyrococcus abyssi NucS endonuclease activity by replication clamp at functional and structural levels.

    PubMed

    Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P; Khun, Joelle; Vos, Marten H; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier

    2012-05-04

    Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5' and 3' flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction.

  6. Critical domain interactions for type A RNase P RNA catalysis with and without the specificity domain

    PubMed Central

    Mao, Guanzhong; Srivastava, Abhishek S.; Wu, Shiying; Kosek, David; Lindell, Magnus

    2018-01-01

    The natural trans-acting ribozyme RNase P RNA (RPR) is composed of two domains in which the catalytic (C-) domain mediates cleavage of various substrates. The C-domain alone, after removal of the second specificity (S-) domain, catalyzes this reaction as well, albeit with reduced efficiency. Here we provide experimental evidence indicating that efficient cleavage mediated by the Escherichia coli C-domain (Eco CP RPR) with and without the C5 protein likely depends on an interaction referred to as the "P6-mimic". Moreover, the P18 helix connects the C- and S-domains between its loop and the P8 helix in the S-domain (the P8/ P18-interaction). In contrast to the "P6-mimic", the presence of P18 does not contribute to the catalytic performance by the C-domain lacking the S-domain in cleavage of an all ribo model hairpin loop substrate while deletion or disruption of the P8/ P18-interaction in full-size RPR lowers the catalytic efficiency in cleavage of the same model hairpin loop substrate in keeping with previously reported data using precursor tRNAs. Consistent with that P18 is not required for cleavage mediated by the C-domain we show that the archaeal Pyrococcus furiosus RPR C-domain, which lacks the P18 helix, is catalytically active in trans without the S-domain and any protein. Our data also suggest that the S-domain has a larger impact on catalysis for E. coli RPR compared to P. furiosus RPR. Finally, we provide data indicating that the absence of the S-domain and P18, or the P8/ P18-interaction in full-length RPR influences the charge distribution near the cleavage site in the RPR-substrate complex to a small but reproducible extent. PMID:29509761

  7. Structural Analysis and Bioengineering of Thermostable Pyrococcus furiosus Prolidase for the Optimization of Organophosphorus Nerve Agent Detoxification

    DTIC Science & Technology

    2012-04-26

    in the following categories: PaperReceived TOTAL: (b) Papers published in non-peer-reviewed journals (N/A for none) Number of ... biodegradable , yet they are extremely toxic to mammals because they bind to acetyl cholinesterase and render it inactive leading to a buildup of the ...respiratory complications, respiratory failure, coma and death. OP compounds exist mainly in the form of pesticides and chemical warfare agents

  8. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain.

    PubMed

    Proudfoot, Michael; Sanders, Stephen A; Singer, Alex; Zhang, Rongguang; Brown, Greg; Binkowski, Andrew; Xu, Linda; Lukin, Jonathan A; Murzin, Alexey G; Joachimiak, Andrzej; Arrowsmith, Cheryl H; Edwards, Aled M; Savchenko, Alexei V; Yakunin, Alexander F

    2008-01-04

    We have identified a novel family of proteins, in which the N-terminal cystathionine beta-synthase (CBS) domain is fused to the C-terminal Zn ribbon domain. Four proteins were overexpressed in Escherichia coli and purified: TA0289 from Thermoplasma acidophilum, TV1335 from Thermoplasma volcanium, PF1953 from Pyrococcus furiosus, and PH0267 from Pyrococcus horikoshii. The purified proteins had a red/purple color in solution and an absorption spectrum typical of rubredoxins (Rds). Metal analysis of purified proteins revealed the presence of several metals, with iron and zinc being the most abundant metals (2-67% of iron and 12-74% of zinc). Crystal structures of both mercury- and iron-bound TA0289 (1.5-2.0 A resolution) revealed a dimeric protein whose intersubunit contacts are formed exclusively by the alpha-helices of two cystathionine beta-synthase subdomains, whereas the C-terminal domain has a classical Zn ribbon planar architecture. All proteins were reversibly reduced by chemical reductants (ascorbate or dithionite) or by the general Rd reductase NorW from E. coli in the presence of NADH. Reduced TA0289 was found to be capable of transferring electrons to cytochrome C from horse heart. Likewise, the purified Zn ribbon protein KTI11 from Saccharomyces cerevisiae had a purple color in solution and an Rd-like absorption spectrum, contained both iron and zinc, and was reduced by the Rd reductase NorW from E. coli. Thus, recombinant Zn ribbon domains from archaea and yeast demonstrate an Rd-like electron carrier activity in vitro. We suggest that, in vivo, some Zn ribbon domains might also bind iron and therefore possess an electron carrier activity, adding another physiological role to this large family of important proteins.

  9. Discovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5'-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi.

    PubMed

    Ishikawa, Ken; Watanabe, Miki; Kuroita, Toshihiro; Uchiyama, Ikuo; Bujnicki, Janusz M; Kawakami, Bunsei; Tanokura, Masaru; Kobayashi, Ichizo

    2005-07-21

    To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5'-GTAC and leave a 3'-TA overhang (5'-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90 degrees C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure.

  10. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  11. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  12. Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya.

    PubMed

    Wardle, Josephine; Burgers, Peter M J; Cann, Isaac K O; Darley, Kate; Heslop, Pauline; Johansson, Erik; Lin, Li-Jung; McGlynn, Peter; Sanvoisin, Jonathan; Stith, Carrie M; Connolly, Bernard A

    2008-02-01

    Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.

  13. Structural Features of a Hyperthermostable Endo-β-1,3-glucanase in Solution and Adsorbed on “Invisible” Particles

    PubMed Central

    Koutsopoulos, Sotirios; van der Oost, John; Norde, Willem

    2005-01-01

    Conformational characteristics and the adsorption behavior of endo-β-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133°C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature. PMID:15516527

  14. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste

    PubMed Central

    Hensley, Sarah A.; Moreira, Emily; Holden, James F.

    2016-01-01

    Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L−1 at rates of 5–36 fmol H2 cell−1 h−1 on 0.5% (wt vol−1) maltose, 0.5% (wt vol−1) tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5) in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate, and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L−1 of medium when grown on up to 70% (vol vol−1) waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep's Blood (selective for Staphylococcus, the typical cause of mastitis), and MacConkey (selective for Gram-negative enteric bacteria) agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L−1 of medium when grown on 0.1–10% (wt vol−1) spent brewery grain while P. furiosus produced < 1 mmol of H2 L−1. Twelve of 13 enzyme activities in T. paralvinellae showed significant (p < 0.05) differences across six different

  15. On the mineral core of ferritin-like proteins: structural and magnetic characterization

    NASA Astrophysics Data System (ADS)

    García-Prieto, A.; Alonso, J.; Muñoz, D.; Marcano, L.; Abad Díaz de Cerio, A.; Fernández de Luis, R.; Orue, I.; Mathon, O.; Muela, A.; Fdez-Gubieda, M. L.

    2015-12-01

    It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM

  16. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.

    PubMed

    Wang, Peng; Yang, Lijiang; Gao, Yi Qin; Zhao, Xin Sheng

    2015-09-03

    H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    PubMed

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, Parthapratim; Myles, Dean A A; Robertson, Lee

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3more » and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.« less

  19. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase.

    PubMed

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  20. An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA*

    PubMed Central

    Fischer, Susan; Maier, Lisa-Katharina; Stoll, Britta; Brendel, Jutta; Fischer, Eike; Pfeiffer, Friedhelm; Dyall-Smith, Mike; Marchfelder, Anita

    2012-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum. PMID:22767603

  1. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    PubMed

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  2. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids.

    PubMed Central

    Hoaki, T; Nishijima, M; Kato, M; Adachi, K; Mizobuchi, S; Hanzawa, N; Maruyama, T

    1994-01-01

    Three hyperthermophilic sulfur-dependent heterotrophs were isolated from a shallow submarine hydrothermal system at an inlet of Kodakara-jima island, Kagoshima, Japan. The isolates grew at 60 to 97 degrees C, with the optimum temperatures at 85 to 90 degrees C. Sensitivity to rifampin and the existence of ether lipids indicated that the isolates are hyperthermophilic archaea. Partial sequencing of the genes coding for 16S rRNA showed that the three isolates are closely related to the genus Thermococcus. They grew on proteinaceous mixtures, such as yeast extract, Casamino Acids, and purified proteins (e.g., casein and gelatin), but not on carbohydrates or organic acids as sole carbon and energy sources. Nine amino acids were essential for growth of isolate KS-1 (Thr, Leu, Ile, Val, Met, Phe, His, Tyr, and Arg). Isolate KS-2 required Lys in addition to the nine amino acids, and KS-8 required Lys instead of Tyr. In comparative studies, it was shown that Thermococcus celer DSM 2476 required 10 amino acids (Thr, Leu, Ile, Val, Met, Phe, Tyr, Trp, Lys, and Arg) while Pyrococcus furiosus DSM 3638 required only Ile and Val. The hyperthermophilic fermentative eubacterium Thermotoga neapolitana DSM 4359 did not require any amino acids for growth. Images PMID:8085828

  3. Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3.

    PubMed

    Terada, Atsushi; Honda, Takashi; Fukuhara, Hideo; Hada, Kazumasa; Kimura, Makoto

    2006-08-01

    Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA). Our earlier study revealed that RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 reconstituted RNase P activity that exhibits enzymatic properties like those of the authentic enzyme. In present study, we investigated involvement of the individual proteins in RNase P activity. Two particles (R-3Ps), in which pRNA was mixed with three proteins, PhoPop5, PhoRpp30, and PhoRpp38 or PhoPop5, PhoRpp30, and PhoRpp21 showed a detectable RNase P activity, and five reconstituted particles (R-4Ps) composed of pRNA and four proteins exhibited RNase P activity, albeit at reduced level compared to that of the reconstituted particle (R-5P) composed of pRNA and five proteins. Time-course analysis of the RNase P activities of R-4Ps indicated that the R-4Ps lacking PhoPop5, PhoRpp21, or PhoRpp30 had virtually reduced activity, while omission of PhoRpp29 or PhoRpp38 had a slight effect on the activity. The results indicate that the proteins contribute to RNase P activity in order of PhoPop5 > PhoRpp30 > PhoRpp21 > PhoRpp29 > PhoRpp38. It was further found that R-4Ps showed a characteristic Mg2+ ion dependency approximately identical to that of R-5P. However, R-4Ps had optimum temperature of around at 55 degrees C which is lower than 70 degrees C for R-5P. Together, it is suggested that the P. horikoshii RNase P proteins are predominantly involved in optimization of the pRNA conformation, though they are individually dispensable for RNase P activity in vitro.

  4. Purification, crystallization and preliminary X-ray crystallographic analysis of the archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokanath, Neratur K.; Kunishima, Naoki, E-mail: kunisima@spring8.or.jp

    2006-08-01

    The archaeal phosphoglycerate mutase PH0037 from P. horikoshii OT3 has been crystallized in space group R32, with unit-cell parameters a = 155.62, c = 230.35 Å. A 2.2 Å resolution data was collected at SPring-8 beamline BL26B1. Phosphoglycerate mutases catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways. The archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3 has been overexpressed in Escherichia coli and purified. Crystals were obtained using the oil-microbatch method at 291 K. A native data set extending to a resolution of 2.2 Å has been collected and processed in space group R32. Assuming themore » presence of a dimer in the asymmetric unit, the V{sub M} value is calculated to be 3.0 Å{sup 3} Da{sup −1}, consistent with the dynamic light-scattering experiment result, which shows a dimeric state of the protein in solution. Molecular-replacement trials using the crystal structure of Bacilllus stearothermophilus phosphoglycerate mutase as a search model did not provide a satisfactory solution, indicating substantially different structures of these two phophoglycerate mutases.« less

  5. Development of a colourimetric assay for glycosynthases.

    PubMed

    Hayes, Marc R; Bochinsky, Kevin A; Seibt, Lisa S; Elling, Lothar; Pietruszka, Jörg

    2017-09-10

    The synthesis of glycosidic structures by catalysis via glycosynthases has gained much interest due to the potential high product yields and specificity of the enzymes. Nevertheless, the characterisation and implementation of new glycosynthases is greatly hampered by the lack of high-throughput methods for reaction analysis and screening of potential glycosynthase variants. Fluoride detection, via silyl ether chemosensors, has recently shown high potential for the identification of glycosynthase mutants in a high-throughput manner, though limited by the low maximal detection concentration. In the present paper, we describe a new version of a glycosynthase activity assay using a silyl ether of p-nitrophenol, allowing fast reliable detection of fluoride even at concentrations of 4mM and higher. This improvement of detection allows not only screening and identification but also kinetic characterisation of glycosynthases and synthetic reactions in a fast microtiter plate format. The applicability of the assay was successfully demonstrated by the biochemical characterisation of the mesophilic β-glucosynthase of Abg-E358S (Rhizobium radiobacter) and psychrotolerant β-glucosynthase BglU-E377A (Micrococcus antarcticus). The limitation of hyperthermophilic glycosidases as potential glycosynthases, when using glycosyl fluoride donors, was also illustrated by the example of the putative β-galactosidase GalPf from Pyrococcus furiosus. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  7. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    PubMed Central

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080

  8. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carte, Jason; Wang, Ruiying; Li, Hong

    An RNA-based gene silencing pathway that protects bacteria and archaea from viruses and other genome invaders is hypothesized to arise from guide RNAs encoded by CRISPR loci and proteins encoded by the cas genes. CRISPR loci contain multiple short invader-derived sequences separated by short repeats. The presence of virus-specific sequences within CRISPR loci of prokaryotic genomes confers resistance against corresponding viruses. The CRISPR loci are transcribed as long RNAs that must be processed to smaller guide RNAs. Here we identified Pyrococcus furiosus Cas6 as a novel endoribonuclease that cleaves CRISPR RNAs within the repeat sequences to release individual invader targetingmore » RNAs. Cas6 interacts with a specific sequence motif in the 5{prime} region of the CRISPR repeat element and cleaves at a defined site within the 3{prime} region of the repeat. The 1.8 angstrom crystal structure of the enzyme reveals two ferredoxin-like folds that are also found in other RNA-binding proteins. The predicted active site of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity is metal-independent. cas6 is one of the most widely distributed CRISPR-associated genes. Our findings indicate that Cas6 functions in the generation of CRISPR-derived guide RNAs in numerous bacteria and archaea.« less

  9. Role of disulfide bridges in archaeal family-B DNA polymerases.

    PubMed

    Killelea, Tom; Connolly, Bernard A

    2011-06-14

    The family-B DNA polymerases obtained from the order Thermococcales, for example, Pyrococcus furiosus (Pfu-Pol) are commonly used in the polymerase chain reaction (PCR) because of their high thermostability and low error rates. Most of these polymerases contain four cysteines, arranged as two disulfide bridges. With Pfu-Pol C429-C443 forms one of the disulfides (DB1) and C507-C510 (DB2) the other. Although the disulfides are well conserved in the enzymes from the hyperthermophilic Thermococcales, they are less prevalent in euryarchaeal polymerases from other orders, and tend to be only found in other hyperthermophiles. Here, we report on the effects of deleting the disulfide bridges by mutating the relevant cysteines to serines. A variety of techniques, including differential scanning calorimetry and differential scanning fluorimetry, have shown that both disulfides make a contribution to thermostability, with DB1 being more important than DB2. However, even when both disulfides are removed, sufficient thermostability remains for normal (identical to the wild type) performance in PCR and quantitative (real-time) PCR. Therefore, polymerases totally lacking cysteine are fully compatible with most PCR-based applications. This observation opens the way to further engineering of polymerases by introduction of a single cysteine followed by appropriate chemical modification. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identification of cross-linked amino acids in the protein pair HmaL23-HmaL29 from the 50S ribosomal subunit of the archaebacterium Haloarcula marismortui.

    PubMed

    Bergmann, U; Wittmann-Liebold, B

    1993-03-23

    50S ribosomal subunits from the extreme halophilic archaebacterium Haloarcula marismortui were treated with the homobifunctional protein-protein cross-linking reagents diepoxybutane (4 A) and dithiobis(succinimidyl propionate) (12 A). The dominant product with both cross-linking reagents was identified on the protein level as HmaL23-HmaL29, which is homologous to the protein pair L23-L29 from Escherichia coli [Walleczek, J., Martin, T., Redl, B., Stöffler-Meilicke, M., & Stöffler, G. (1989) Biochemistry 28, 4099-4105] and from Bacillus stearothermophilus [Brockmöller, J., & Kamp, R. M. (1986) Biol. Chem. Hoppe-Seyler 367, 925-935]. To reveal the exact cross-linking site in HmaL23-HmaL29, the cross-linked complex was purified on a preparative scale by conventional and high-performance liquid chromatography. After endoproteolytic fragmentation of the protein pair, the amino acids engaged in cross-link formation were unambiguously identified by N-terminal sequence analysis and mass spectrometry of the cross-linked peptides. The cross-link is formed between lysine-57 in the C-terminal region of HmaL29 and the alpha-amino group of the N-terminal serine in protein HmaL23, irrespective of the cross-linking reagent. This result demonstrates that the N-terminal region of protein HmaL23 and the C-terminal domain of HmaL29 are highly flexible so that the distance between the two polypeptide chains can vary by at least 8 A. Comparison of our cross-linking results with those obtained with B. stearothermophilus revealed that the fine structure within this ribosomal domain is at least partially conserved.

  11. Molecular dynamics simulations of the Nip7 proteins from the marine deep- and shallow-water Pyrococcus species

    PubMed Central

    2014-01-01

    Background The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. Results The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. Conclusions The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners. PMID:25315147

  12. Molecular dynamics simulations of the Nip7 proteins from the marine deep- and shallow-water Pyrococcus species.

    PubMed

    Medvedev, Kirill E; Alemasov, Nikolay A; Vorobjev, Yuri N; Boldyreva, Elena V; Kolchanov, Nikolay A; Afonnikov, Dmitry A

    2014-10-15

    The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.

  13. Identification of a functional toxin-antitoxin system located in the genomic island PYG1 of piezophilic hyperthermophilic archaeon Pyrococcus yayanosii.

    PubMed

    Li, Zhen; Song, Qinghao; Wang, Yinzhao; Xiao, Xiang; Xu, Jun

    2018-05-01

    Toxin-antitoxin (TA) system is bacterial or archaeal genetic module consisting of toxin and antitoxin gene that be organized as a bicistronic operon. TA system could elicit programmed cell death, which is supposed to play important roles for the survival of prokaryotic population under various physiological stress conditions. The phage abortive infection system (AbiE family) belongs to bacterial type IV TA system. However, no archaeal AbiE family TA system has been reported so far. In this study, a putative AbiE TA system (PygAT), which is located in a genomic island PYG1 in the chromosome of Pyrococcus yayanosii CH1, was identified and characterized. In Escherichia coli, overexpression of the toxin gene pygT inhibited its growth while the toxic effect can be suppressed by introducing the antitoxin gene pygA in the same cell. PygAT also enhances the stability of shuttle plasmids with archaeal plasmid replication protein Rep75 in E. coli. In P. yayanosii, disruption of antitoxin gene pygA cause a significantly growth delayed under high hydrostatic pressure (HHP). The antitoxin protein PygA can specifically bind to the PygAT promoter region and regulate the transcription of pygT gene in vivo. These results show that PygAT is a functional TA system in P. yayanosii, and also may play a role in the adaptation to HHP environment.

  14. An extremely thermostable amylopullulanase from Staphylothermus marinus displays both pullulan- and cyclodextrin-degrading activities.

    PubMed

    Li, Xiaolei; Li, Dan; Park, Kwan-Hwa

    2013-06-01

    A gene encoding an amylopullulanase of the glycosyl hydrolase (GH) family 57 from Staphylothermus marinus (SMApu) was heterologously expressed in Escherichia coli. SMApu consisted of 639 amino acids with a molecular mass of 75.3 kDa. It only showed maximal amino acid identity of 17.1 % with that of Pyrococcus furiosus amylopullulanase in all identified amylases. Not like previously reported amylopullulanases, SMApu has no signal peptide but contains a continuous GH57N_Apu domain. It had the highest catalytic efficiency toward pullulan (k cat/K m , 342.34 s(-1) mL mg(-1)) and was extremely thermostable with maximal pullulan-degrading activity (42.1 U/mg) at 105 °C and pH 5.0 and a half-life of 50 min at 100 °C. Its activity increased to 116 % in the presence of 5 mM CaCl2. SMApu could also degrade cyclodextrins, which are resistant to the other amylopullulanases. The initial hydrolytic products from pullulan, γ-CD, and 6-O-maltooligosyl-β-CD were [6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1→]n, maltooctaose, and single maltooligosaccharide plus β-CD, respectively. The final hydrolytic products from above-mentioned substrates were maltose and glucose. These results confirm that SMApu is a novel amylopullulanase of the family GH57 possessing the cyclodextrin-degrading activity of cyclomaltodextrinase.

  15. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Ulrich, Luke; Lupa, Boguslaw

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. Inmore » common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).« less

  16. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales,more » Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).« less

  17. Heat Shock Response of Archaeoglobus fulgidus†

    PubMed Central

    Rohlin, Lars; Trent, Jonathan D.; Salmon, Kirsty; Kim, Unmi; Gunsalus, Robert P.; Liao, James C.

    2005-01-01

    The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms. PMID:16109946

  18. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed. PMID:24598756

  19. Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate.

    PubMed

    Zako, Tamotsu; Murase, Yosuke; Iizuka, Ryo; Yoshida, Takao; Kanzaki, Taro; Ide, Naoki; Maeda, Mizuo; Funatsu, Takashi; Yohda, Masafumi

    2006-11-17

    Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.

  20. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    PubMed

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  1. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less

  2. The three-dimensional structure of TrmB, a transcriptional regulator of dual function in the hyperthermophilic archaeon Pyrococcus furiosus in complex with sucrose

    PubMed Central

    Krug, Michael; Lee, Sung-Jae; Boos, Winfried; Diederichs, Kay; Welte, Wolfram

    2013-01-01

    TrmB is a repressor that binds maltose, maltotriose, and sucrose, as well as other α-glucosides. It recognizes two different operator sequences controlling the TM (Trehalose/Maltose) and the MD (Maltodextrin) operon encoding the respective ABC transporters and sugar-degrading enzymes. Binding of maltose to TrmB abrogates repression of the TM operon but maintains the repression of the MD operon. On the other hand, binding of sucrose abrogates repression of the MD operon but maintains repression of the TM operon. The three-dimensional structure of TrmB in complex with sucrose was solved and refined to a resolution of 3.0 Å. The structure shows the N-terminal DNA binding domain containing a winged-helix-turn-helix (wHTH) domain followed by an amphipathic helix with a coiled-coil motif. The latter promotes dimerization and places the symmetry mates of the putative recognition helix in the wHTH motif about 30 Å apart suggesting a canonical binding to two successive major grooves of duplex palindromic DNA. This suggests that the structure resembles the conformation of TrmB recognizing the pseudopalindromic TM promoter but not the conformation recognizing the nonpalindromic MD promoter. PMID:23576322

  3. Thermodynamics of Coupled Folding in the Interaction of Archaeal RNase P Proteins RPP21 and RPP29

    PubMed Central

    Xu, Yiren; Oruganti, Sri Vidya; Gopalan, Venkat; Foster, Mark P.

    2014-01-01

    We have used isothermal titration calorimetry (ITC) to identify and describe binding-coupled equilibria in the interaction between two protein subunits of archaeal ribonuclease P (RNase P). In all three domains of life, RNase P is a ribonucleoprotein complex that is primarily responsible for catalyzing the Mg2+-dependent cleavage of the 5′ leader sequence of precursor tRNAs during tRNA maturation. In archaea, RNase P has been shown to be composed of one catalytic RNA and up to five proteins, four of which associate in the absence of RNA as two functional heterodimers, POP5-RPP30 and RPP21-RPP29. NMR studies of the Pyrococcus furiosus RPP21 and RPP29 proteins in their free and complexed states provided evidence for significant protein folding upon binding. ITC experiments were performed over a range of temperatures, ionic strengths, pH values and in buffers with varying ionization potential, and with a folding-deficient RPP21 point mutant. These experiments revealed a negative heat capacity change (ΔCp), nearly twice that predicted from surface accessibility calculations, a strong salt dependence to the interaction and proton release at neutral pH, but a small net contribution from these to the excess ΔCp. We considered potential contributions from protein folding and burial of interfacial water molecules based on structural and spectroscopic data. We conclude that binding-coupled protein folding is likely responsible for a significant portion of the excess ΔCp. These findings provide novel structural-thermodynamic insights into coupled equilibria that enable specificity in macromolecular assemblies. PMID:22243443

  4. Domain mapping of the Rad51 paralog protein complexes

    PubMed Central

    Miller, Kristi A.; Sawicka, Dorota; Barsky, Daniel; Albala, Joanna S.

    2004-01-01

    The five human Rad51 paralogs are suggested to play an important role in the maintenance of genome stability through their function in DNA double-strand break repair. These proteins have been found to form two distinct complexes in vivo, Rad51B–Rad51C–Rad51D–Xrcc2 (BCDX2) and Rad51C–Xrcc3 (CX3). Based on the recent Pyrococcus furiosus Rad51 structure, we have used homology modeling to design deletion mutants of the Rad51 paralogs. The models of the human Rad51B, Rad51C, Xrcc3 and murine Rad51D (mRad51D) proteins reveal distinct N-terminal and C-terminal domains connected by a linker region. Using yeast two-hybrid and co-immunoprecipitation techniques, we have demonstrated that a fragment of Rad51B containing amino acid residues 1–75 interacts with the C-terminus and linker of Rad51C, residues 79–376, and this region of Rad51C also interacts with mRad51D and Xrcc3. We have also determined that the N-terminal domain of mRad51D, residues 4–77, binds to Xrcc2 while the C-terminal domain of mRad51D, residues 77–328, binds Rad51C. By this, we have identified the binding domains of the BCDX2 and CX3 complexes to further characterize the interaction of these proteins and propose a scheme for the three-dimensional architecture of the BCDX2 and CX3 paralog complexes. PMID:14704354

  5. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance.

    PubMed

    Matsumi, Rie; Manabe, Kenji; Fukui, Toshiaki; Atomi, Haruyuki; Imanaka, Tadayuki

    2007-04-01

    We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.

  6. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.

    PubMed

    Campbell, Elliot; Wheeldon, Ian R; Banta, Scott

    2010-12-01

    Cofactor specificity in the aldo-keto reductase (AKR) superfamily has been well studied, and several groups have reported the rational alteration of cofactor specificity in these enzymes. Although most efforts have focused on mesostable AKRs, several putative AKRs have recently been identified from hyperthermophiles. The few that have been characterized exhibit a strong preference for NAD(H) as a cofactor, in contrast to the NADP(H) preference of the mesophilic AKRs. Using the design rules elucidated from mesostable AKRs, we introduced two site-directed mutations in the cofactor binding pocket to investigate cofactor specificity in a thermostable AKR, AdhD, which is an alcohol dehydrogenase from Pyrococcus furiosus. The resulting double mutant exhibited significantly improved activity and broadened cofactor specificity as compared to the wild-type. Results of previous pre-steady-state kinetic experiments suggest that the high affinity of the mesostable AKRs for NADP(H) stems from a conformational change upon cofactor binding which is mediated by interactions between a canonical arginine and the 2'-phosphate of the cofactor. Pre-steady-state kinetics with AdhD and the new mutants show a rich conformational behavior that is independent of the canonical arginine or the 2'-phosphate. Additionally, experiments with the highly active double mutant using NADPH as a cofactor demonstrate an unprecedented transient behavior where the binding mechanism appears to be dependent on cofactor concentration. These results suggest that the structural features involved in cofactor specificity in the AKRs are conserved within the superfamily, but the dynamic interactions of the enzyme with cofactors are unexpectedly complex. © 2010 Wiley Periodicals, Inc.

  7. Selective control of oligosaccharide transfer efficiency for the N-glycosylation sequon by a point mutation in oligosaccharyltransferase.

    PubMed

    Igura, Mayumi; Kohda, Daisuke

    2011-04-15

    Asn-linked glycosylation is the most ubiquitous posttranslational protein modification in eukaryotes and archaea, and in some eubacteria. Oligosaccharyltransferase (OST) catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. Inefficient oligosaccharide transfer results in glycoprotein heterogeneity, which is particularly bothersome in pharmaceutical glycoprotein production. Amino acid variation at the X position of the Asn-X-Ser/Thr sequon is known to modulate the glycosylation efficiency. The best amino acid at X is valine, for an archaeal Pyrococcus furiosus OST. We performed a systematic alanine mutagenesis study of the archaeal OST to identify the essential and dispensable amino acid residues in the three catalytic motifs. We then investigated the effects of the dispensable mutations on the amino acid preference in the N-glycosylation sequon. One residue position was found to selectively affect the amino acid preference at the X position. This residue is located within the recently identified DXXKXXX(M/I) motif, suggesting the involvement of this motif in N-glycosylation sequon recognition. In applications, mutations at this position may facilitate the design of OST variants adapted to particular N-glycosylation sites to reduce the heterogeneity of glycan occupancy. In fact, a mutation at this position led to 9-fold higher activity relative to the wild-type enzyme, toward a peptide containing arginine at X in place of valine. This mutational approach is potentially applicable to eukaryotic and eubacterial OSTs for the production of homogenous glycoproteins in engineered mammalian and Escherichia coli cells.

  8. Selective Control of Oligosaccharide Transfer Efficiency for the N-Glycosylation Sequon by a Point Mutation in Oligosaccharyltransferase*

    PubMed Central

    Igura, Mayumi; Kohda, Daisuke

    2011-01-01

    Asn-linked glycosylation is the most ubiquitous posttranslational protein modification in eukaryotes and archaea, and in some eubacteria. Oligosaccharyltransferase (OST) catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. Inefficient oligosaccharide transfer results in glycoprotein heterogeneity, which is particularly bothersome in pharmaceutical glycoprotein production. Amino acid variation at the X position of the Asn-X-Ser/Thr sequon is known to modulate the glycosylation efficiency. The best amino acid at X is valine, for an archaeal Pyrococcus furiosus OST. We performed a systematic alanine mutagenesis study of the archaeal OST to identify the essential and dispensable amino acid residues in the three catalytic motifs. We then investigated the effects of the dispensable mutations on the amino acid preference in the N-glycosylation sequon. One residue position was found to selectively affect the amino acid preference at the X position. This residue is located within the recently identified DXXKXXX(M/I) motif, suggesting the involvement of this motif in N-glycosylation sequon recognition. In applications, mutations at this position may facilitate the design of OST variants adapted to particular N-glycosylation sites to reduce the heterogeneity of glycan occupancy. In fact, a mutation at this position led to 9-fold higher activity relative to the wild-type enzyme, toward a peptide containing arginine at X in place of valine. This mutational approach is potentially applicable to eukaryotic and eubacterial OSTs for the production of homogenous glycoproteins in engineered mammalian and Escherichia coli cells. PMID:21357684

  9. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    PubMed

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  10. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation.

    PubMed

    Ebrahimi, Kourosh Honarmand; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2016-11-15

    Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O 2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.

  11. Engineering Archeal Surrogate Systems for the Development of Protein-Protein Interaction Inhibitors against Human RAD51.

    PubMed

    Moschetti, Tommaso; Sharpe, Timothy; Fischer, Gerhard; Marsh, May E; Ng, Hong Kin; Morgan, Matthew; Scott, Duncan E; Blundell, Tom L; R Venkitaraman, Ashok; Skidmore, John; Abell, Chris; Hyvönen, Marko

    2016-11-20

    Protein-protein interactions (PPIs) are increasingly important targets for drug discovery. Efficient fragment-based drug discovery approaches to tackle PPIs are often stymied by difficulties in the production of stable, unliganded target proteins. Here, we report an approach that exploits protein engineering to "humanise" thermophilic archeal surrogate proteins as targets for small-molecule inhibitor discovery and to exemplify this approach in the development of inhibitors against the PPI between the recombinase RAD51 and tumour suppressor BRCA2. As human RAD51 has proved impossible to produce in a form that is compatible with the requirements of fragment-based drug discovery, we have developed a surrogate protein system using RadA from Pyrococcus furiosus. Using a monomerised RadA as our starting point, we have adopted two parallel and mutually instructive approaches to mimic the human enzyme: firstly by mutating RadA to increase sequence identity with RAD51 in the BRC repeat binding sites, and secondly by generating a chimeric archaeal human protein. Both approaches generate proteins that interact with a fourth BRC repeat with affinity and stoichiometry comparable to human RAD51. Stepwise humanisation has also allowed us to elucidate the determinants of RAD51 binding to BRC repeats and the contributions of key interacting residues to this interaction. These surrogate proteins have enabled the development of biochemical and biophysical assays in our ongoing fragment-based small-molecule inhibitor programme and they have allowed us to determine hundreds of liganded structures in support of our structure-guided design process, demonstrating the feasibility and advantages of using archeal surrogates to overcome difficulties in handling human proteins. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Bacteriophage-like Particles Associated with the Gene Transfer Agent of Methanococcus Voltale PS

    NASA Technical Reports Server (NTRS)

    Bertani, G.; Eiserling, F.; Pushkin, A.; Gingery, M.

    1999-01-01

    The methanogenic archaebacterium Methanococus voltae (strain PS) is known to produce a filterable, DNase resistant agent (called VTA, for voltae transfer agent), which carries very small fragments (4,400 base pairs) of bacterial DNA and is able to transduce bacterial genes between derivatives of the strain.

  13. Regulation of the ATPase activity of ABCE1 from Pyrococcus abyssi by Fe-S cluster status and Mg²⁺: implication for ribosomal function.

    PubMed

    Sims, Lynn M; Igarashi, Robert Y

    2012-08-15

    Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe₄S₄ clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg²⁺. Typically ATPases require Mg²⁺, as is true for PabABCE1, but Mg²⁺ also acts as a negative allosteric effector that modulates ATP affinity of PabABCE1. Physiological [Mg²⁺] inhibits the PabABCE1 ATPase (K(i) of ∼1 μM) for both apo- and holo-PabABCE1. Comparative kinetic analysis of Mg²⁺ inhibition shows differences in degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent ATP K(m) of apo-PabABCE1 increases >30-fold from ∼30 μM to over 1 mM with M²⁺. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²⁺]. These findings uncover intricate overlapping effects by both [Mg²⁺] and the status of Fe-S clusters that regulate ABCE1's ATPase activity with implications to ribosomal function. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.

    PubMed

    Brown, J R; Doolittle, W F

    1995-03-28

    Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an

  15. Revisiting the structure/function relationships of H/ACA(-like) RNAs: a unified model for Euryarchaea and Crenarchaea

    PubMed Central

    Toffano-Nioche, Claire; Gautheret, Daniel; Leclerc, Fabrice

    2015-01-01

    A structural and functional classification of H/ACA and H/ACA-like motifs is obtained from the analysis of the H/ACA guide RNAs which have been identified previously in the genomes of Euryarchaea (Pyrococcus) and Crenarchaea (Pyrobaculum). A unified structure/function model is proposed based on the common structural determinants shared by H/ACA and H/ACA-like motifs in both Euryarchaea and Crenarchaea. Using a computational approach, structural and energetic rules for the guide:target RNA-RNA interactions are derived from structural and functional data on the H/ACA RNP particles. H/ACA(-like) motifs found in Pyrococcus are evaluated through the classification and their biological relevance is discussed. Extra-ribosomal targets found in both Pyrococcus and Pyrobaculum might support the hypothesis of a gene regulation mediated by H/ACA(-like) guide RNAs in archaea. PMID:26240384

  16. Determination of hydride transfer stereospecificity of NADH-dependent alcohol-aldehyde/ketone oxidoreductase from Sulfolobus solfataricus.

    PubMed

    Trincone, A; Lama, L; Rella, R; D'Auria, S; Raia, C A; Nicolaus, B

    1990-10-18

    This paper describes the determination of stereospecificity of hydride transfer reaction of an alcohol dehydrogenase isolated from the archaebacterium Sulfolobus solfataricus. The 1H-NMR and EI-MS data indicate that the enzyme transfers the pro-R hydrogen from coenzyme to substrate and is therefore an A-specific dehydrogenase.

  17. Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: An archaeal homolog of eukaryotic ribonuclease P protein Rpp29

    PubMed Central

    NUMATA, TOMOYUKI; ISHIMATSU, IKUKO; KAKUTA, YOSHIMITSU; TANAKA, ISAO; KIMURA, MAKOTO

    2004-01-01

    Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5′ leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36–127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 Å resolution by X-ray crystallography. The structure is composed of four helices (α1–α4) and a six-stranded antiparallel β-sheet (β1–β6) with a protruding β-strand (β7) at the C-terminal region. The strand β7 forms an antiparallel β-sheet by interacting with strand β4 in a symmetry-related molecule, suggesting that strands β4 and β7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the β-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal α-helices (α1–α4) and β-strand β6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands β2 and β3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P. PMID:15317976

  18. Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific

    PubMed Central

    Price, Mark T.; Fullerton, Heather; Moyer, Craig L.

    2015-01-01

    Thermococcus is a genus of hyperthermophilic archaea that is ubiquitous in marine hydrothermal environments growing in anaerobic subsurface habitats but able to survive in cold oxygenated seawater. DNA analyses of Thermococcus isolates were applied to determine the relationship between geographic distribution and relatedness focusing primarily on isolates from the Juan de Fuca Ridge and South East Pacific Rise. Amplified fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) were used to resolve genomic differences in 90 isolates of Thermococcus, making biogeographic patterns and evolutionary relationships apparent. Isolates were differentiated into regionally endemic populations however there was also evidence in some lineages of cosmopolitan distribution. The biodiversity identified in Thermococcus isolates and presence of distinct lineages within the same vent site suggests the utilization of varying ecological niches in this genus. In addition to resolving biogeographic patterns in Thermococcus, this study has raised new questions about the closely related Pyrococcus genus. The phylogenetic placement of Pyrococcus type strains shows the close relationship between Thermococcus and Pyrococcus and the unresolved divergence of these two genera. PMID:26441901

  19. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion.

    PubMed

    Petzelbauer, Inge; Kuhn, Bernhard; Splechtna, Barbara; Kulbe, Klaus D; Nidetzky, Bernd

    2002-03-20

    Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 619-631, 2002; DOI 10.1002/bit.10110

  20. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region.

    PubMed

    Lebbink, J H; Knapp, S; van der Oost, J; Rice, D; Ladenstein, R; de Vos, W M

    1998-07-10

    Comparison of the recently determined three-dimensional structures of several glutamate dehydrogenases allowed for the identification of a five-residue ion-pair network in the hinge region of Pyrococcus furiosus glutamate dehydrogenase (melting temperature 113 degrees C), that is not present in the homologous glutamate dehydrogenase from Thermotoga maritima (melting temperature 93 degrees C). In order to study the role of this ion-pair network, we introduced it into the T. maritima enzyme using a site-directed mutagenesis approach. The resulting T. maritima glutamate dehydrogenases N97D, G376 K and N97D/G376 K as well as the wild-type enzyme were overproduced in Escherichia coli and subsequently purified. Elucidation of the three-dimensional structure of the double mutant N97D/G376 K at 3.0 A, showed that the designed ion-pair interactions were indeed formed. Moreover, because of interactions with an additional charged residue, a six-residue network is present in this double mutant. Melting temperatures of the mutant enzymes N97D, G376 K and N97D/G376 K, as determined by differential scanning calorimetry, did not differ significantly from that of the wild-type enzyme. Identical transition midpoints in guanidinium chloride-induced denaturation experiments were found for the wild-type and all mutant enzymes. Thermal inactivation at 85 degrees C occured more than twofold faster for all mutant enzymes than for the wild-type glutamate dehydrogenase. At temperatures of 65 degrees C and higher, the wild-type and the three mutant enzymes showed identical specific activities. However, at 58 degrees C the specific activity of N97D/G376 K and G376 K was found to be significantly higher than that of the wild-type and N97D enzymes. These results suggest that the engineered ion-pair interactions in the hinge region do not affect the stability towards temperature or guanidinium chloride-induced denaturation but rather affect the specific activity of the enzyme and the temperature

  1. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  2. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Oren, A.; Ginzburg, M.; Ginzburg, B. Z.; Hochstein, L. I.; Volcani, B. E.

    1990-01-01

    An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.

  3. Hydrolysis of lactose by beta-glycosidase CelB from hyperthermophilic archaeon Pyrococcus furiosus: comparison of hollow-fiber membrane and packed-bed immobilized enzyme reactors for continuous processing of ultrahigh temperature-treated skim milk.

    PubMed

    Splechtna, Barbara; Petzelbauer, Inge; Kuhn, Bernhard; Kulbe, Klaus D; Nidetzky, Bernd

    2002-01-01

    Recombinant beta-glycosidase CelB from the hyperthermophilic archaeon Pyrococcusfuriosus was produced through expression of the plasmid-encoded gene in Escherichia coli. Bioreactor cultivations of E. coli in the presence of the inductor isopropyl-1-thio-beta-D-galactoside (0.1 mM) gave approx 100,000 U of enzyme activity/L of culture medium after 8 h of growth. A technical-grade enzyme for the hydrolysis of lactose was prepared by precipitating the mesophilic protein at 80 degrees C. A hollow-fiber membrane reactor was developed, and its performance during continuous processing of ultrahigh temperature-treated (UHT) skim milk at 70 degrees C was analyzed regarding long-term stability, productivity, and diffusional limitation thereof. CelB was covalently attached onto Eupergit C in yields of 80%, and a packed-bed immobilized enzyme reactor was used for the continuous hydrolysis of lactose in UHT skim milk at 70 degrees C. The packed-bed reactor was approximately 10-fold more stable and gave about the same productivity at 80% substrate conversion as the hollow-fiber reactor at 60% substrate conversion. The marked difference in the stability of free and immobilized CelB seems to reflect mainly binding of the soluble enzyme to the membrane surface of the hollow-fiber module. Under these bound conditions, CelB is essentially inactive. CelB is essentially inactive. Microbial contamination of the reactors did not occur during reaction times of up to 39 d, given that UHT skim milk and not pasteurized skim milk was used as the substrate.

  4. Molecular Biology of the Extremely Thermophilic Archaebacterium, Methanothermus Fervidus.

    DTIC Science & Technology

    1988-04-15

    have sequenced the- 5S rRNA gene and part of the 16SrRNA gene from one of these clusters. The 5SrRNA shows features typical of all archaebacteria and is...gene sequence in all three biological kingdoms and the status of M. thermoautotrophicum. In: Proc. Fifth International Symposium on Microbial Growth on...Cl-Compounds. ed. van Verseveld, H.W. and Duine, J.A. pp. 255-260. 2. Reeve, J.N., Beckler, G.S. and Cram, D.S. 1987. Methanogens are archaebacteria

  5. The Nitrogenase in a Methanogenic Archaebacterium and Its Regulation.

    DTIC Science & Technology

    1987-08-31

    strain 227. Initial studies centered on the growth physiology of M. barker! u’nder diazotrophic conditions. We have also demonstrated that crude...of a few minor control experiments. Among the highlights are that molybdate at levels as low as 10 nM stimulated diazotrophic growth while tungstate... diazotrophs . We showed that activity was only found in dinitrogen-grown cells, and that addition of ammonia or glutamine caused a switchoff of the

  6. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    PubMed

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-09-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.

  7. Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Worrell, V E; Nagle, D P; McCarthy, D; Eisenbraun, A

    1988-01-01

    A wild-type strain of Methanobacterium thermoautotrophicum Marburg was transformed by DNA from strains resistant to 5-fluorouracil. Recipient cells were grown without selection on gellan gum (GELRITE) plates with DNA. Drug-resistant cells were recovered by replica plating the resulting colonies onto drug plates. Transformation required high-molecular-weight DNA with appropriate markers and was not observed on agar or in liquid media under a variety of conditions. PMID:3422229

  8. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Treesearch

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  9. A possible biochemical missing link among archaebacteria

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, Laurie; Woese, Carl R.; Stetter, Karl O.

    1987-01-01

    The characteristics of the newly discovered strain of archaebacteria, VC-16, the only archaebacterium known to reduce sulfate, suggest that VC-16 might represent a transitional form between an anaerobic thermophilic sulfur-based type of metabolism and methanogenesis. It is shown here, using a matrix of evolutionary distances derived from an alignment of various archaebacterial 16S rRNAs and the phylogenetic tree derived from these evolutionary distances, that the lineage represented by strain VC-16 arises from the archaebacterial tree precisely where such an interpretation would predict that it would, between the Methanococcus lineage and that of Thermococcus.

  10. Nucleotide-Protectable Labeling of Sulfhydryl Groups in Subunit I of the ATPhase from Halobacterium Saccharovorum

    NASA Technical Reports Server (NTRS)

    Sulzner, Michael; Stan-Lotter, Helga; Hochstein, Lawrence I.

    1992-01-01

    A membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum is inhibited by N-ethyl-maleimide in a nucleotide-protectable manner. When the enzyme was incubated with N-[C-14]jethylmaleimide, the bulk of radioactivity was as- sociated with the 87,000-Da subunit (subunit 1). ATP, ADP, or AMP reduced incorporation of the inhibitor. No charge shift of subunit I was detected following labeling with N-ethylmaleimide, indicating an electroneutral reaction. The results are consistent with the selective modification of sulfhydryl groups in subunit I at or near the catalytic site and are further evidence of a resemblance between this archaebacterial ATPase and the vacuolar-type ATPases.

  11. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Zillig, W.; Woese, C. R.

    1988-01-01

    The sequence of the 16S ribosomal RNA gene from the archaebacterium Thermococcus celer shows the organism to be related to the methanogenic archaebacteria rather than to its phenotypic counterparts, the extremely thermophilic archaebacteria. This conclusion turns on the position of the root of the archaebacterial phylogenetic tree, however. The problems encountered in rooting this tree are analyzed in detail. Under conditions that suppress evolutionary noise both the parsimony and evolutionary distance methods yield a root location (using a number of eubacterial or eukaryotic outgroup sequences) that is consistent with that determined by an "internal rooting" method, based upon an (approximate) determination of relative evolutionary rates.

  12. Relationship of the Membrane ATPase from Halobacterium saccharovorum to Vacuolar ATPases

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Bowman, Emma J.; Hochstein, Lawrence I.

    1991-01-01

    Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-Chloro-7-nitrobenzofurazan in- hibited the hatobacterial ATPase also in a nucleotide- protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggested that this halobacterial ATPase may have conserved structural features from both the vacuotar and the F-type ATPases.

  13. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

    Treesearch

    Wangxia Wang; Ronald C. Sabo; Michael D. Mozuch; Phil Kersten; J. Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number...

  14. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles.

    PubMed

    Mengele, R; Sumper, M

    1992-04-25

    The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.

  15. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria.

    PubMed

    Wang, X; Lutkenhaus, J

    1996-07-01

    FtsZ is a tubulin-like protein that is essential for cell division in eubacteria. It functions by forming a ring at the division site that directs septation. The archaebacteria constitute a kingdom of life separate from eubacteria and eukaryotes. Like eubacteria, archaebacteria are prokaryotes, although they are phylogenetically closer to eukaryotes. Here it is shown that archaebacteria also possess FtsZ and that it is biochemically similar to eubacterial FtsZs. Significantly, FtsZ from the archaebacterium Haloferax volcanii is a GTPase that is localized to a ring that coincides with the division constriction. These results indicate that the FtsZ ring was part of the division apparatus of a common prokaryotic ancestor that was retained by both eubacteria and archaebacteria.

  16. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    PubMed

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  17. Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum.

    PubMed

    Tóthová, T; Piknová, M; Kisidayová, S; Javorský, P; Pristas, P

    2008-01-01

    The diversity of archaebacteria associated with anaerobic rumen protozoan Entodinium caudatum in long term in vitro culture was investigated by denaturing gradient gel electrophoresis (DGGE) analysis of hypervariable V3 region of archaebacterial 16S rRNA gene. PCR was accomplished directly from DNA extracted from a single protozoal cell and from total community genomic DNA and the obtained fingerprints were compared. The analysis indicated the presence of a solitary intensive band present in Entodinium caudatum single cell DNA, which had no counterparts in the profile from total DNA. The identity of archaebacterium represented by this band was determined by sequence analysis which showed that the sequence fell to the cluster of ciliate symbiotic methanogens identified recently by 16S gene library approach.

  18. The evolution of energy-transducing systems. Studies with an extremely halophilic archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1991-01-01

    The halobacterial ATPase was labeled with C-14-dicyclohexylcarbodiimide and subunit 2 of the enzyme was prepared by electroelution. Subunit 2 was cleaved by several chemical and enzymatic procedures for further preparation of peptides. Immunoreactions (Western blotting) of halobacterial membranes were performed with an antiserum against subunit A of the vacuolar ATPase from Neurospora crassa. A 85 K band (subunit 1) from the membranes of H saccharovorum and from two halobacterial isolates, which were isolated from Permian salt sediments, reacted strongly with the antiserum. The ATPase from the latter isolates resembled the ATPase from H saccharovorum, but had a higher content of acidic amino acids. If it can be verified that the age of the bacterial isolates is in the same range as when deposition of salt occurred, an extremely interesting system for the study of evolutionary questions would be available, since the salt-embedded bacteria presumably did not undergo mutational and selectional events.

  19. Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins

    PubMed Central

    Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick

    2010-01-01

    Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814

  20. Functional and evolutionary relationships between bacteriorhodopsin and halorhodopsin in the archaebacterium, halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1986-01-01

    The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.

  1. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic investigations of a unique editing domain from archaebacteria.

    PubMed

    Dwivedi, Shweta; Kruparani, Shobha P; Sankaranarayanan, Rajan

    2004-09-01

    Threonyl-tRNA synthetase (ThrRS) faces a crucial double-discrimination problem during the translation of genetic code. Most ThrRSs from the archaeal kingdom possess a unique editing domain that differs from those of eubacteria and eukaryotes. In order to understand the structural basis of the editing mechanism in archaea, the editing module of ThrRS from Pyrococcus abyssi comprising of the first 183 amino-acid residues was cloned, expressed, purified and crystallized. The crystals belong to the trigonal space group P3(1(2))21, with one molecule in the asymmetric unit.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Martin; Enemark, Eric J.

    The crystal structure of the N-terminal domain of thePyrococcus furiosusminichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.

  3. Halococcus salifodinae sp. nov., an Archaeal Isolate from an Austrian Salt Mine

    NASA Technical Reports Server (NTRS)

    Denner, Ewald B. M.; McGenity, Terry J.; Busse, Hans-Jurgen; Grant, William D.; Wanner, Gerhard; Stan-Lotter, Helga

    1994-01-01

    A novel extremely halophilic archaeon (archaebacterium) was isolated from rock salt obtained from an Austrian salt mine. The deposition of the salt is thought to have occurred during the Permian period (225 x 106 to 280 x 10(exp 6) years ago). This organism grew over a pH range of 6.8 to 9.5. Electron microscopy revealed cocci in tetrads or larger clusters. The partial 16S rRNA sequences, polar lipid composition, and menaquinone content suggested that this organism was related to members of the genus Halococcus, while the whole-cell protein patterns, the presence of several unknown lipids, and the presence of pink pigmentation indicated that it was different from previously described coccoid halophiles. We propose that this isolate should be recognized as a new species and should be named Halococcus salifodinae. The type strain is Bl(sub p) (= ATCC 51437 = DSM 8989). A chemotaxonomically similar microorganism was isolated from a British salt mine.

  4. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.

    PubMed

    Cotton, James A; McInerney, James O

    2010-10-05

    The traditional tree of life shows eukaryotes as a distinct lineage of living things, but many studies have suggested that the first eukaryotic cells were chimeric, descended from both Eubacteria (through the mitochondrion) and Archaebacteria. Eukaryote nuclei thus contain genes of both eubacterial and archaebacterial origins, and these genes have different functions within eukaryotic cells. Here we report that archaebacterium-derived genes are significantly more likely to be essential to yeast viability, are more highly expressed, and are significantly more highly connected and more central in the yeast protein interaction network. These findings hold irrespective of whether the genes have an informational or operational function, so that many features of eukaryotic genes with prokaryotic homologs can be explained by their origin, rather than their function. Taken together, our results show that genes of archaebacterial origin are in some senses more important to yeast metabolism than genes of eubacterial origin. This importance reflects these genes' origin as the ancestral nuclear component of the eukaryotic genome.

  5. Genetic and physiological characterization of the purine salvage pathway in the archaebacterium Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Worrell, V E; Nagle, D P

    1990-01-01

    The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148

  6. Identification and characterization of an SPO11 homolog in the mouse.

    PubMed

    Metzler-Guillemain, C; de Massy, B

    2000-01-01

    The SPO11/TOPVIA family includes proteins from archaebacteria and eukaryotes. The protein member from the archaebacterium Sulfulobus shibatae is the catalytic subunit of TopoVI DNA topoisomerase. In Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, SPO11 is required for meiotic recombination, suggesting a conserved mechanism for the initiation step of this process. Indeed, S. cerevisiae SPO11 has been shown to be directly involved in the formation of meiotic DNA double-strand breaks that initiate meiotic recombination. Here, we report the identification of a Mus musculus Spo11 cDNA, which encodes a protein closely related to all members of the SPO11/TOPVIA family. cDNAs resulting from alternative splicing were detected, suggesting that there are potential variants of the mouse SPO11 protein. By RNA-blotting analysis, expression of the mouse Spo11 gene was detected only in the testis, in agreement with its predicted function in the initiation of meiotic recombination. We mapped the mouse Spo11 gene to chromosome 2, band H2-H4.

  7. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.

    PubMed Central

    Sumper, M; Berg, E; Mengele, R; Strobel, I

    1990-01-01

    The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988). Images PMID:2123862

  8. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii.

    PubMed

    Sumper, M; Berg, E; Mengele, R; Strobel, I

    1990-12-01

    The outer surface of the archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer. The gene coding for the S-layer protein was cloned and sequenced. The mature polypeptide is composed of 794 amino acids and is preceded by a typical signal sequence of 34 amino acid residues. A highly hydrophobic stretch of 20 amino acids at the C-terminal end probably serves as a transmembrane domain. Clusters of threonine residues are located adjacent to this membrane anchor. The S-layer protein is a glycoprotein containing both N- and O-glycosidic bonds. Glucosyl-(1----2)-galactose disaccharides are linked to threonine residues. The primary structure and the glycosylation pattern of the S-layer glycoproteins from Haloferax volcanii and from Halobacterium halobium were compared and found to exhibit distinct differences, despite the fact that three-dimensional reconstructions from electron micrographs revealed no structural differences at least to the 2.5-nm level attained so far (M. Kessel, I. Wildhaber, S. Cohe, and W. Baumeister, EMBO J. 7:1549-1554, 1988).

  9. Electrophysiological characterization of the archaeal transporter NCX_Mj using solid supported membrane technology

    PubMed Central

    Barthmes, Maria; Liao, Jun; Jiang, Youxing; Brüggemann, Andrea

    2016-01-01

    Sodium–calcium exchangers (NCXs) are membrane transporters that play an important role in Ca2+ homeostasis and Ca2+ signaling. The recent crystal structure of NCX_Mj, a member of the NCX family from the archaebacterium Methanococcus jannaschii, provided insight into the atomistic details of sodium–calcium exchange. Here, we extend these findings by providing detailed functional data on purified NCX_Mj using solid supported membrane (SSM)–based electrophysiology, a powerful but unexploited tool for functional studies of electrogenic transporter proteins. We show that NCX_Mj is highly selective for Na+, whereas Ca2+ can be replaced by Mg2+ and Sr2+ and that NCX_Mj can be inhibited by divalent ions, particularly Cd2+. By directly comparing the apparent affinities of Na+ and Ca2+ for NCX_Mj with those for human NCX1, we show excellent agreement, indicating a strong functional similarity between NCX_Mj and its eukaryotic isoforms. We also provide detailed instructions to facilitate the adaption of this method to other electrogenic transporter proteins. Our findings demonstrate that NCX_Mj can serve as a model for the NCX family and highlight several possible applications for SSM-based electrophysiology. PMID:27241699

  10. Turnover of cyclic 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Phosphate flux in P1- and H2-limited chemostat cultures.

    PubMed

    Krueger, R D; Campbell, J W; Fahrney, D E

    1986-09-15

    The archaebacterium Methanobacterium thermoautotrophicum was grown at 65 degrees C in H2- and Pi-limited chemostat cultures at dilution rates corresponding to 3- and 4-h doubling times, respectively. Under these conditions the steady state concentration of cyclic 2,3-diphosphoglycerate was 44 mM in the H2-limited cells and 13 mM in the cells grown under Pi limitation. Flux of Pi into the cyclic pyrophosphate pool was estimated by two 32P-labeling procedures: approach to isotopic equilibrium and replacement of prelabeled cyclic diphosphoglycerate with unlabeled compound. The results unequivocally demonstrate turnover of the phosphoryl groups; either both phosphoryl groups of the cyclic pyrophosphate leave together or the second leaves at a faster rate. The half-life of the rate-determining step for loss of the phosphoryl groups was approximately equal to the culture doubling time. The Pi flowing into the cyclic diphosphoglycerate pool accounted for 19% of the total Pi flux into Pi-limited cells and 43% of the total for H2-limited cells. The high phosphate flux through the large cyclic diphosphoglycerate pool suggests that this molecule plays an important role in the phosphorus metabolism of this methanogen.

  11. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  12. Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Sobek, H; Görisch, H

    1989-01-01

    The carboxylesterase (serine esterase, EC 3.1.1.1) from Sulfolobus acidocaldarius was purified 940-fold to homogeneity by an improved purification procedure with a yield of 57%. In the presence of alcohols the enzyme catalyses the transfer of the substrate acyl group to alcohols in parallel to hydrolysis. The results show the existence of an alcohol-binding site and a competitive partitioning of the acyl-enzyme intermediate between water and alcohols. Aniline acts also as a nucleophilic acceptor for the acyl group. On the basis of titration with diethyl p-nitrophenyl phosphate, a number of four active centres is determined for the tetrameric carboxylesterase. The sequence of 20 amino acid residues at the esterase N-terminus and the amino acid composition are reported. PMID:2508625

  13. An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 degrees C.

    PubMed Central

    Cowan, D A; Smolenski, K A; Daniel, R M; Morgan, H W

    1987-01-01

    An organism growing at 88 degrees C that closely resembles Desulfurococcus mucosus produced a single extracellular proteinase. We have purified this enzyme and carried out a preliminary characterization. The proteinase, which is a serine-type enzyme, had a molecular mass of 52,000 Da by SDS/polyacrylamide-gel electrophoresis, but only 10,000-13,000 Da by gel-permeation chromatography. Molecular mass values from sucrose-gradient centrifugation were of the same order as those from SDS/polyacrylamide-gel electrophoresis. It had an isoelectric point of 8.7, and was inhibited by di-isopropyl phosphorofluoridate, phenylmethanesulphonyl fluoride and chymostatin. Substrate-specificity studies suggested a possible preference for hydrophobic residues on the C-terminal side of the splitting point. The thermostability of this enzyme is probably greater than any other reported proteinase (t1/2 at 95 degrees C, 70-90 min; t1/2 at 105 degrees C, 8-9 min). Ca2+ chelation does not appear to be implicated in stabilization of the protein structure. The stability of the Desulfurococcus proteinase was not greatly affected by the presence of reducing reagents (e.g. dithiothreitol), some chaotropic agents (e.g. NaSCN) and some detergents, but activity was lost rapidly at 95 degrees C in the presence of the oxidizing agent NaBO3. Proteolytic activity was readily detected at temperatures up to and including 125 degrees C, although denaturation was very rapid above 115 degrees C. A number of Figures supporting some of the findings reported in this paper have been deposited in supplement SUP 50137 (14 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1987) 241, 5. Images Fig. 2. Fig. 5. PMID:3120701

  14. Determining divergence times with a protein clock: update and reevaluation

    NASA Technical Reports Server (NTRS)

    Feng, D. F.; Cho, G.; Doolittle, R. F.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A recent study of the divergence times of the major groups of organisms as gauged by amino acid sequence comparison has been expanded and the data have been reanalyzed with a distance measure that corrects for both constraints on amino acid interchange and variation in substitution rate at different sites. Beyond that, the availability of complete genome sequences for several eubacteria and an archaebacterium has had a great impact on the interpretation of certain aspects of the data. Thus, the majority of the archaebacterial sequences are not consistent with currently accepted views of the Tree of Life which cluster the archaebacteria with eukaryotes. Instead, they are either outliers or mixed in with eubacterial orthologs. The simplest resolution of the problem is to postulate that many of these sequences were carried into eukaryotes by early eubacterial endosymbionts about 2 billion years ago, only very shortly after or even coincident with the divergence of eukaryotes and archaebacteria. The strong resemblances of these same enzymes among the major eubacterial groups suggest that the cyanobacteria and Gram-positive and Gram-negative eubacteria also diverged at about this same time, whereas the much greater differences between archaebacterial and eubacterial sequences indicate these two groups may have diverged between 3 and 4 billion years ago.

  15. Endosymbiotic theories for eukaryote origin

    PubMed Central

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  16. Proteolysis in hyperthermophilic microorganisms

    DOE PAGES

    Ward, Donald E.; Shockley, Keith R.; Chang, Lara S.; ...

    2002-01-01

    Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus , the crenarchaeote Sulfolobus solfataricus , and the bacterium Thermotoga maritima . An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteasesmore » that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.« less

  17. Structure of RNA 3′-phosphate cyclase bound to substrate RNA

    PubMed Central

    Desai, Kevin K.; Bingman, Craig A.; Cheng, Chin L.; Phillips, George N.

    2014-01-01

    RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme. PMID:25161314

  18. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.

    PubMed

    Miyazaki, Kentaro

    2005-05-27

    Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.

  19. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    PubMed

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  20. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  1. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Crystal structure of the YDR533c S. cerevisiae protein, a class II member of the Hsp31 family.

    PubMed

    Graille, Marc; Quevillon-Cheruel, Sophie; Leulliot, Nicolas; Zhou, Cong-Zhao; Li de la Sierra Gallay, Ines; Jacquamet, Lilian; Ferrer, Jean-Luc; Liger, Dominique; Poupon, Anne; Janin, Joel; van Tilbeurgh, Herman

    2004-05-01

    The ORF YDR533c from Saccharomyces cerevisiae codes for a 25.5 kDa protein of unknown biochemical function. Transcriptome analysis of yeast has shown that this gene is activated in response to various stress conditions together with proteins belonging to the heat shock family. In order to clarify its biochemical function, we determined the crystal structure of YDR533c to 1.85 A resolution by the single anomalous diffraction method. The protein possesses an alpha/beta hydrolase fold and a putative Cys-His-Glu catalytic triad common to a large enzyme family containing proteases, amidotransferases, lipases, and esterases. The protein has strong structural resemblance with the E. coli Hsp31 protein and the intracellular protease I from Pyrococcus horikoshii, which are considered class I and class III members of the Hsp31 family, respectively. Detailed structural analysis strongly suggests that the YDR533c protein crystal structure is the first one of a class II member of the Hsp31 family.

  3. Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution

    PubMed Central

    Han, Xue; Boyden, Edward S.

    2007-01-01

    The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells. PMID:17375185

  4. Mass production of C50 carotenoids by Haloferax mediterranei in using extruded rice bran and starch under optimal conductivity of brined medium.

    PubMed

    Chen, C Will; Hsu, Shu-hui; Lin, Ming-Tse; Hsu, Yi-hui

    2015-12-01

    Microbial carotenoids have potentially healthcare or medical applications. Haloferax mediterranei was difficult to economically grow into a large quantities as well as producing a valuable pigment of carotenoids. This study reports a novel investigation into the optimal conductivity on the mass production of carotenoids from H. mediterranei. The major component at about 52.4% in the extracted red pigment has been confirmed as bacterioruberin, a C50 carotenoids, by liquid chromatography separation and mass spectrometry analysis. By maintaining higher conductivity of 40 S/m in the brined medium, the cell concentration attained to 7.73 × 10(9) cells/L with low pigments concentration of 125 mg/L. When the conductivity was controlled at about 30 S/m, we obtained the highest cell concentration to 1.29 × 10(10) cells/L with pigments of 361.4 mg/L. When the conductivity was maintained at optimal 25 S/m, the pigments can be increased to maximum value of 555.6 mg/L at lower cell concentration of 9.22 × 10(9) cells/L. But conductivity below 20 S/m will cause the significant decrease in cell concentration as well as pigments due to the osmotic stress around the cells. Red pigment of carotenoids from an extremely halophilic archaebacterium could be efficiently produced to a high concentration by applying optimal conductivity control in the brined medium with extruded low-cost rice bran and corn starch.

  5. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.

    PubMed

    Gupta, R S

    1998-12-01

    The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.

  6. Hyperthermophilic archaeal prefoldin shows refolding activity at low temperature.

    PubMed

    Zako, Tamotsu; Banba, Shinya; Sahlan, Muhamad; Sakono, Masafumi; Terada, Naofumi; Yohda, Masafumi; Maeda, Mizuo

    2010-01-01

    Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. Previous studies of archaeal prefoldins have shown that prefoldin only possesses holdase activity and is unable to fold unfolded proteins by itself. In this study, we have demonstrated for the first time that a prefoldin from hyperthermophilic archaeon, Pyrococcus horikoshii OT3 (PhPFD), exhibits refolding activity for denatured lysozyme at temperatures relatively lower than physiologically active temperatures. The interaction between PhPFD and denatured lysozyme was investigated by use of a surface plasmon resonance sensor at various temperatures. Although PhPFD showed strong affinity for denatured lysozyme at high temperature, it exhibited relatively weak interactions at lower temperature. The protein-folding seems to occur through binding and release from PhPFD by virtue of the weak affinity. Our results also imply that prefoldin might be able to contribute to the folding of some cellular proteins whose affinity with prefoldin is weak. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin.

    PubMed

    Okochi, Mina; Nomura, Tomoko; Zako, Tamotsu; Arakawa, Takatoshi; Iizuka, Ryo; Ueda, Hiroshi; Funatsu, Takashi; Leroux, Michel; Yohda, Masafumi

    2004-07-23

    Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. It captures a protein folding intermediate and transfers it to a group II chaperonin for completion of folding. The manner in which prefoldin interacts with its substrates and cooperates with the chaperonin is poorly understood. In this study, we have examined the interaction between a prefoldin and a chaperonin from hyperthermophilic archaea by immunoprecipitation, single molecule observation, and surface plasmon resonance. We demonstrate that Pyrococcus prefoldin interacts most tightly with its cognate chaperonin, and vice versa, suggesting species specificity in the interaction. Using truncation mutants, we uncovered by kinetic analyses that this interaction is multivalent in nature, consistent with multiple binding sites between the two chaperones. We present evidence that both N- and C-terminal regions of the prefoldin beta sub-unit are important for molecular chaperone activity and for the interaction with a chaperonin. Our data are consistent with substrate and chaperonin binding sites on prefoldin that are different but in close proximity, which suggests a possible handover mechanism of prefoldin substrates to the chaperonin.

  8. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP.

    PubMed

    Renalier, Marie-Hélène; Joseph, Nicole; Gaspin, Christine; Thebault, Patricia; Mougin, Annie

    2005-07-01

    We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.

  9. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruiying; Zheng, Han; Preamplume, Gan

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of amore » noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.« less

  10. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism

    PubMed Central

    Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel

    2003-01-01

    Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385

  11. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Hochstein, Lawrence I.

    1989-01-01

    A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa, and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20 to 22 Mol percent). Peptide mapping of sodium dodecylsulfate-denatured subunits I and II showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F sub 1 ATPase (EC 3.6.1.34) from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, Halobacteria in general, possess an ATPase which is unlike the ubiquitous F sub o F sub 1 - ATP Synthase.

  12. EnzML: multi-label prediction of enzyme classes using InterPro signatures

    PubMed Central

    2012-01-01

    Background Manual annotation of enzymatic functions cannot keep up with automatic genome sequencing. In this work we explore the capacity of InterPro sequence signatures to automatically predict enzymatic function. Results We present EnzML, a multi-label classification method that can efficiently account also for proteins with multiple enzymatic functions: 50,000 in UniProt. EnzML was evaluated using a standard set of 300,747 proteins for which the manually curated Swiss-Prot and KEGG databases have agreeing Enzyme Commission (EC) annotations. EnzML achieved more than 98% subset accuracy (exact match of all correct Enzyme Commission classes of a protein) for the entire dataset and between 87 and 97% subset accuracy in reannotating eight entire proteomes: human, mouse, rat, mouse-ear cress, fruit fly, the S. pombe yeast, the E. coli bacterium and the M. jannaschii archaebacterium. To understand the role played by the dataset size, we compared the cross-evaluation results of smaller datasets, either constructed at random or from specific taxonomic domains such as archaea, bacteria, fungi, invertebrates, plants and vertebrates. The results were confirmed even when the redundancy in the dataset was reduced using UniRef100, UniRef90 or UniRef50 clusters. Conclusions InterPro signatures are a compact and powerful attribute space for the prediction of enzymatic function. This representation makes multi-label machine learning feasible in reasonable time (30 minutes to train on 300,747 instances with 10,852 attributes and 2,201 class values) using the Mulan Binary Relevance Nearest Neighbours algorithm implementation (BR-kNN). PMID:22533924

  13. Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes

    PubMed Central

    Gupta, Radhey S.

    1998-01-01

    The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes. PMID:9841678

  14. Enzymatic degradation of cyclic 2,3-diphosphoglycerate to 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum.

    PubMed

    Sastry, M V; Robertson, D E; Moynihan, J A; Roberts, M F

    1992-03-24

    2,3-Diphosphoglycerate (2,3-DPG) has been found to be the product of the enzymatic degradation of cyclic 2,3-diphosphoglycerate (cDPG) in the archaebacterium Methanobacterium thermoautotrophicum delta H. Although 2,3-DPG has not previously been detected as a major soluble component of M. thermoautotrophicum, large pools accumulated at an incubation temperature of 50 degrees C (below the optimum growth temperature of 62 degrees C). Under these conditions, cellular activity was significantly decreased; a return of the culture to the optimum growth temperature restored the 2,3-DPG pool back to original low levels and caused steady-state cDPG levels to increase again. While 13CO2-pulse/12CO2-chase experiments at 50 degrees C showed that the cDPG turned over, the appearance of 2,3-DPG at NMR-visible concentrations required at least 10 h. Production of 2,3-DPG in vivo was prevented by exposure of the cells to O2. The enzyme responsible for this hydrolysis of cDPG was purified by affinity chromatography and appears to be a 33-kDa protein. Activity was detected in the presence of oxygen and was enhanced by a solution of 1 M KCl, 25 mM MgCl2, and dithiothreitol. Both Km and Vmax have been determined at 37 degrees C; kinetics also indicate that in vitro the product, 2,3-DPG, is an inhibitor of cDPG hydrolysis. These findings are discussed in view of a proposed role for cDPG in methanogens.

  15. Cloning and Characterization of an Alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular a-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  16. Cloning and Characterization of an alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Mark L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular alpha-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  17. Archaeal fibrillarin-Nop5 heterodimer 2'-O-methylates RNA independently of the C/D guide RNP particle.

    PubMed

    Tomkuvienė, Miglė; Ličytė, Janina; Olendraitė, Ingrida; Liutkevičiūtė, Zita; Clouet-d'Orval, Béatrice; Klimašauskas, Saulius

    2017-09-01

    Archaeal fibrillarin (aFib) is a well-characterized S -adenosyl methionine (SAM)-dependent RNA 2'- O -methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'- O -methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'- O -methylated positions in the 16S rRNA of P. abyssi , positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution. © 2017 Tomkuvienė et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Zhu, Xuling; Torelli, Andrew T

    2010-08-30

    Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind amore » [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the C γ,Met-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.« less

  19. The resistance to ionizing radiation of hyperthermophilic archaea isolated from deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Jolivet, E.; L'Haridon, S.; Corre, E.; Gérard, E.; Myllykallio, H.; Forterre, P.; Prieur, D.

    2001-08-01

    In this paper we present many results on radioresistance of hyperthermophilic archaeon isolated from deep-sea hydrothermal vents. Effects of gamma (γ) irradiation was first tested with Pyrococcus abyssi and showed that this micro-organism did not show any loss of viability until 2 kGy of γ-irradiation. Pulse Field Gel Electrophoresis (PFGE) analysis conducted with different species belonging to Archaea and Bacteria suggest that no specific DNA protection system exist that could explain the radioresistance of P. abyssi. Moreover, the genomic DNA completely fragmented after 2 kGy is fully restored in vivo under optimal growth conditions. The DNA replication or irradiated cells at 2,5 kGy is delayed by a lag phase which could coincide to this DNA repair. An associated mechanism of DNA repair by excision could act with the recombinational DNA repair. In parallel to these studies three hyperthermophilic archaeons highly resistant to ionizing radiation were isolated from deep-sea hydrothermal vents after the enrichment cultures were submitted to elevated irradiation doses (up to 20 and 30 kGy). All these novel species were more radioresistant than P. abyssi.

  20. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP

    PubMed Central

    Wöhlert, David; Kühlbrandt, Werner; Yildiz, Özkan

    2014-01-01

    Sodium/proton antiporters maintain intracellular pH and sodium levels. Detailed structures of antiporters with bound substrate ions are essential for understanding how they work. We have resolved the substrate ion in the dimeric, electroneutral sodium/proton antiporter PaNhaP from Pyrococcus abyssi at 3.2 Å, and have determined its structure in two different conformations at pH 8 and pH 4. The ion is coordinated by three acidic sidechains, a water molecule, a serine and a main-chain carbonyl in the unwound stretch of trans-membrane helix 5 at the deepest point of a negatively charged cytoplasmic funnel. A second narrow polar channel may facilitate proton uptake from the cytoplasm. Transport activity of PaNhaP is cooperative at pH 6 but not at pH 5. Cooperativity is due to pH-dependent allosteric coupling of protomers through two histidines at the dimer interface. Combined with comprehensive transport studies, the structures of PaNhaP offer unique new insights into the transport mechanism of sodium/proton antiporters. DOI: http://dx.doi.org/10.7554/eLife.03579.001 PMID:25426802

  1. The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium for thermostability because of high-binding affinity to calcium.

    PubMed

    Cheng, Huaixu; Luo, Zhidan; Lu, Mingsheng; Gao, Song; Wang, Shujun

    2017-05-01

    The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium ions for thermostability, and is a promising alternative to commercially available α-amylases to increase the efficiency of industrial processes like the liquefaction of starch. We analyzed the amino acid sequence of this α-amylase by sequence alignments and structural modeling, and found that this α-amylase closely resembles the α-amylase from Pyrococcus woesei. The gene of this α-amylase was cloned in Escherichia coli and the recombinant α-amylase was overexpressed and purified with a combined renaturation-purification procedure. We confirmed thermostability and exogenous calcium ion independency of the recombinant α-amylase and further investigated the mechanism of the independency using biochemical approaches. The results suggested that the α-amylase has a high calcium ion binding affinity that traps a calcium ion that would not dissociate at high temperatures, providing a direct explanation as to why the addition of calcium ions is not required for thermostability. Understanding of the mechanism offers a strong base on which to further engineer properties of this α-amylase for better potential applications in industrial processes.

  2. Transduction-like gene transfer in the methanogen Methanococcus voltae

    NASA Technical Reports Server (NTRS)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  3. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    PubMed Central

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-01-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128

  4. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    PubMed

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-07-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.

  5. Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus

    PubMed Central

    Goswami, Kasturi; Arora, Jasmine; Saha, Swati

    2015-01-01

    The typical archaeal MCM exhibits helicase activity independently in vitro. This study characterizes MCM from the euryarchaeon Picrophilus torridus. While PtMCM hydrolyzes ATP in DNA-independent manner, it displays very poor ability to unwind DNA independently, and then too only under acidic conditions. The protein exists stably in complex with PtGINS in whole cell lysates, interacting directly with PtGINS under neutral and acidic conditions. GINS strongly activates MCM helicase activity, but only at low pH. In consonance with this, PtGINS activates PtMCM-mediated ATP hydrolysis only at low pH, with the amount of ATP hydrolyzed during the helicase reaction increasing more than fifty-fold in the presence of GINS. While the stimulation of MCM-mediated helicase activity by GINS has been reported in MCMs from P.furiosus, T.kodakarensis, and very recently, T.acidophilum, to the best of our knowledge, this is the first report of an MCM helicase demonstrating DNA unwinding activity only at such acidic pH, across all archaea and eukaryotes. PtGINS may induce/stabilize a conducive conformation of PtMCM under acidic conditions, favouring PtMCM-mediated DNA unwinding coupled to ATP hydrolysis. Our findings underscore the existence of divergent modes of replication regulation among archaea and the importance of investigating replication events in more archaeal organisms. PMID:25762096

  6. High-throughput sequencing reveals circular substrates for an archaeal RNA ligase

    PubMed Central

    Becker, Hubert F.; Héliou, Alice; Djaout, Kamel; Lestini, Roxane; Regnier, Mireille; Myllykallio, Hannu

    2017-01-01

    ABSTRACT It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules. PMID:28277897

  7. The role of disulfide bond in hyperthermophilic endocellulase.

    PubMed

    Kim, Han-Woo; Ishikawa, Kazuhiko

    2013-07-01

    The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.

  8. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum.

    PubMed Central

    Gupta, R S; Aitken, K; Falah, M; Singh, B

    1994-01-01

    The genes for two different 70-kDa heat shock protein (HSP70) homologs have been cloned and sequenced from the protozoan Giardia lamblia. On the basis of their sequence features, one of these genes corresponds to the cytoplasmic form of HSP70. The second gene, on the basis of its characteristic N-terminal hydrophobic signal sequence and C-terminal endoplasmic reticulum (ER) retention sequence (Lys-Asp-Glu-Leu), is the equivalent of ER-resident GRP78 or the Bip family of proteins. Phylogenetic trees based on HSP70 sequences show that G. lamblia homologs show the deepest divergence among eukaryotic species. The identification of a GRP78 or Bip homolog in G. lamblia strongly suggests the existence of ER in this ancient eukaryote. Detailed phylogenetic analyses of HSP70 sequences by boot-strap neighbor-joining and maximum-parsimony methods show that the cytoplasmic and ER homologs form distinct subfamilies that evolved from a common eukaryotic ancestor by gene duplication that occurred very early in the evolution of eukaryotic cells. It is postulated that because of the essential "molecular chaperone" function of these proteins in translocation of other proteins across membranes, duplication of their genes accompanied the evolution of ER or nucleus in the eukaryotic cell ancestor. The presence in all eukaryotic cytoplasmic HSP70 homologs (including the cognate, heat-induced, and ER forms) of a number of autapomorphic sequence signatures that are not present in any prokaryotic or organellar homologs provides strong evidence regarding the monophyletic nature of eukaryotic lineage. Further, all eukaryotic HSP70 homologs share in common with the Gram-negative group of eubacteria a number of sequence features that are not present in any archaebacterium or Gram-positive bacterium, indicating their evolution from this group of organisms. Some implications of these findings regarding the evolution of eukaryotic cells and ER are discussed. Images PMID:8159675

  9. Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability.

    PubMed

    Peters, J; Nitsch, M; Kühlmorgen, B; Golbik, R; Lupas, A; Kellermann, J; Engelhardt, H; Pfander, J P; Müller, S; Goldie, K

    1995-01-27

    The surface (S-) layer of the hyperthermophilic archaebacterium Staphylothermus marinus was isolated, dissected into separate domains by chemical and proteolytic methods, and analyzed by spectroscopic, electron microscopic and biochemical techniques. The S-layer is formed by a poorly ordered meshwork of branched, filiform morphological subunits resembling dandelion seed-heads. A morphological subunit (christened by us tetrabrachion) consists of a 70 nm long, almost perfectly straight stalk ending in four straight arms of 24 nm length that provide lateral connectivity by end-to-end contacts. At 32 nm from the branching point, tetrabrachion carries two globular particles of 10 nm diameter that have both tryptic and chymotryptic protease activity. Tetrabrachion is built by a tetramer of M(r) 92,000 polypeptides that form a parallel, four-stranded alpha-helical rod and separate at one end into four strands. These strands interact in a 1:1 stoichiometry with polypeptides of M(r) 85,000 to form the arms. The arms are composed entirely of beta-sheets. All S-layer components contain bound carbohydrates (glucose, mannose, and glucosamine) at a ratio of 38 g/100 g protein for the complete tetrabrachion-protease complex. The unique structure of tetrabrachion is reflected in an extreme thermal stability in the presence of strong denaturants (1% (w/v) SDS of 6M guanidine): the arms, which are stabilized by intramolecular disulphide bridges, melt around 115 degrees C under non-reducing conditions, whereas the stalk sustains heating up to about 130 degrees C. Complete denaturation of the stalk domain requires treatment with 70% (v/v) sulfuric acid or with fuming trifluoromethanesulfonic acid. The globular protease can be heated to 90 degrees C in 6M guanidine and to 120 degrees C in 1% SDS and represents one of the most stable proteases characterized to date.

  10. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    PubMed

    Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie

    2013-01-01

    Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.

  11. Characteristic Features of Kynurenine Aminotransferase Allosterically Regulated by (Alpha)-Ketoglutarate in Cooperation with Kynurenine

    PubMed Central

    Okada, Ken; Angkawidjaja, Clement; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2012-01-01

    Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT), which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN) to kynurenic acid (KYNA). We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5′-phosphate (PLP), KYN and α-ketoglutaric acid (2OG) or oxaloacetic acid (OXA). 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor. PMID:22792273

  12. The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins.

    PubMed

    Dijk, J; van den Broek, R; Nasiulas, G; Beck, A; Reinhardt, R; Wittmann-Liebold, B

    1987-08-01

    The amino-terminal sequence of ribosomal protein L10 from Halobacterium marismortui has been determined up to residue 54, using both a liquid- and a gas-phase sequenator. The two sequences are in good agreement. The protein is clearly homologous to protein HcuL10 from the related strain Halobacterium cutirubrum. Furthermore, a weaker but distinct homology to ribosomal protein L6 from Escherichia coli and Bacillus stearothermophilus can be detected. In addition to 7 identical amino acids in the first 36 residues in all four sequences a number of conservative replacements occurs, of mainly hydrophobic amino acids. In this common region the pattern of conserved amino acids suggests the presence of a beta-alpha fold as it occurs in ribosomal proteins L12 and L30. Furthermore, several potential cases of homology to other ribosomal components of the three ur-kingdoms have been found.

  13. H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle.

    PubMed

    Berry, Luke; Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R; Nguyen, Diep M N; Schut, Gerrit J; Adams, Michael W W; Peters, John W; Boyd, Eric S; Bothner, Brian

    2018-01-01

    Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP + oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron‑sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins.

    PubMed

    Ohtaki, Akashi; Kida, Hiroshi; Miyata, Yusuke; Ide, Naoki; Yonezawa, Akihiro; Arakawa, Takatoshi; Iizuka, Ryo; Noguchi, Keiichi; Kita, Akiko; Odaka, Masafumi; Miki, Kunio; Yohda, Masafumi

    2008-02-29

    Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 A resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the beta subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove.

  15. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.

    PubMed Central

    Baumann, P; Jackson, S P

    1996-01-01

    Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya. Images Fig. 1 Fig. 2 PMID:8692886

  16. Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics

    PubMed Central

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-01-01

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  17. Structure-function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t6A tRNA modification.

    PubMed

    Pichard-Kostuch, Adeline; Zhang, Wenhua; Liger, Dominique; Daugeron, Marie-Claire; Letoquart, Juliette; Li de la Sierra-Gallay, Ines; Forterre, Patrick; Collinet, Bruno; van Tilbeurgh, Herman; Basta, Tamara

    2018-04-12

    N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-L-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use different mechanism for TC-AMP synthesis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.

    PubMed

    Baumann, P; Jackson, S P

    1996-06-25

    Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.

  19. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    NASA Technical Reports Server (NTRS)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  20. The box C/D sRNP dimeric architecture is conserved across domain Archaea

    PubMed Central

    Bower-Phipps, Kathleen R.; Taylor, David W.; Wang, Hong-Wei; Baserga, Susan J.

    2012-01-01

    Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2′-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species—Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus—indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain. PMID:22753779

  1. The box C/D sRNP dimeric architecture is conserved across domain Archaea.

    PubMed

    Bower-Phipps, Kathleen R; Taylor, David W; Wang, Hong-Wei; Baserga, Susan J

    2012-08-01

    Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.

  2. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion.

    PubMed

    Tanzawa, Takehito; Kato, Koji; Girodat, Dylan; Ose, Toyoyuki; Kumakura, Yuki; Wieden, Hans-Joachim; Uchiumi, Toshio; Tanaka, Isao; Yao, Min

    2018-04-06

    Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.

  3. Aromatic residues located close to the active center are essential for the catalytic reaction of flap endonuclease-1 from hyperthermophilic archaeon Pyrococcus horikoshii.

    PubMed

    Matsui, Eriko; Abe, Junko; Yokoyama, Hideshi; Matsui, Ikuo

    2004-04-16

    Flap endonuclease-1 (FEN-1) possessing 5'-flap endonuclease and 5'-->3' exonuclease activity plays important roles in DNA replication and repair. In this study, the kinetic parameters of mutants at highly conserved aromatic residues, Tyr33, Phe35, Phe79, and Phe278-Phe279, in the vicinity of the catalytic centers of FEN-1 were examined. The substitution of these aromatic residues with alanine led to a large reduction in kcat values, although these mutants retained Km values similar to that of the wild-type enzyme. Notably, the kcat of Y33A and F79A decreased 333-fold and 71-fold, respectively, compared with that of the wild-type enzyme. The aromatic residues Tyr33 and Phe79, and the aromatic cluster Phe278-Phe279 mainly contributed to the recognition of the substrates without the 3' projection of the upstream strand (the nick, 5'-recess-end, single-flap, and pseudo-Y substrates) for the both exo- and endo-activities, but played minor roles in recognizing the substrates with the 3' projection (the double flap substrate and the nick substrate with the 3' projection). The replacement of Tyr33, Phe79, and Phe278-Phe279, with non-charged aromatic residues, but not with aliphatic hydrophobic residues, recovered the kcat values almost fully for the substrates without the 3' projection of the upstream strand, suggesting that the aromatic groups of Tyr33, Phe79, and Phe278-Phe279 might be involved in the catalytic reaction, probably via multiple stacking interactions with nucleotide bases. The stacking interactions of Tyr33 and Phe79 might play important roles in fixing the template strand and the downstream strand, respectively, in close proximity to the active center to achieve the productive transient state leading to the hydrolysis.

  4. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.

    PubMed Central

    Qureshi, S A; Khoo, B; Baumann, P; Jackson, S P

    1995-01-01

    The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gene that encodes a protein (transcription factor TFB) with striking homology to the eukaryotic basal transcription factor TFIIB. We show by primer extension analysis that transcription of the S. shibatae TFB gene initiates 27 bp downstream from a consensus A-box element. Significantly, S. shibatae TFB contains an N-terminal putative metal-binding region and two imperfect direct repeats--structural features that are well conserved in eukaryotic TFIIBs. This suggests that TFB may perform analogous functions in Archaea and Eucarya. Consistent with this, we demonstrate that S. shibatae TFB promotes the binding of S. shibatae TBP to the A-box element of the Sulfolobus 16S/23S rRNA gene. Finally, we show that S. shibatae TFB is significantly more related to TFB of the archaeon Pyrococcus woesei than it is to eukaryotic TFIIBs. These data suggest that TFB arose in the common archaeal/eukaryotic ancestor and that the lineages leading to P. woesei and S. shibatae separated after the divergence of the archaeal and eukaryotic lines of descent. Images Fig. 2 Fig. 3 PMID:7597084

  5. Thermostable and highly specific L-aspartate oxidase from Thermococcus litoralis DSM 5473: cloning, overexpression, and enzymological properties.

    PubMed

    Washio, Tsubasa; Oikawa, Tadao

    2018-01-01

    We successfully expressed the L-aspartate oxidase homolog gene (accession no: OCC_06611) of Thermococcus litoralis DSM 5473 in the soluble fraction of Escherichia coli BL21 (DE3) using a pET21b vector with 6X His tag at its C-terminus. The gene product (Tl-LASPO) showed L-aspartate oxidase activity in the presence of FAD in vitro, and this report is the first that details an L-aspartate oxidase derived from a Thermococcus species. The homologs of Tl-LASPO existed mainly in archaea, especially in the genus of Thermococcus, Pyrococcus, Sulfolobus, and Halobacteria. The quaternary structure of Tl-LASPO was homotrimeric with a subunit molecular mass of 52 kDa. The enzyme activity of Tl-LASPO increased with temperature up to 70 °C. Tl-LASPO was active from pH 6.0 to 9.0, and its highest activity was at pH 8.0. Tl-LASPO was stable at 80 °C for 1 h. The highest k cat /K m value was observed in assays at 70 °C. Tl-LASPO was highly specific for L-aspartic acid. Tl-LASPO utilized fumaric acid, 2,6-dichlorophenolindophenol, and ferricyanide in addition to FAD as a cofactor under anaerobic conditions. The absorption spectrum of holo-Tl-LASPO exhibited maxima at 380 and 450 nm. The FAD dissociation constant, K d , of the FAD-Tl-LASPO complex was determined to be 5.9 × 10 -9 M.

  6. A novel microbial habitat in the mid-ocean ridge subseafloor

    PubMed Central

    Summit, Melanie; Baross, John A.

    2001-01-01

    The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209

  7. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.

    PubMed

    Ryan, Renae M; Kortt, Nicholas C; Sirivanta, Tan; Vandenberg, Robert J

    2010-07-01

    Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na(+), K(+), and H(+). The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (Glt(Ph)), has yielded important insights into the architecture of this transporter family. Glt(Ph) is a Na(+)-dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H(+) or K(+). The highly conserved carboxy-terminal domains of the EAATs and Glt(Ph) contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both Glt(Ph) and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of Glt(Ph). Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and Glt(Ph). Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K(+) independent. Conversely, moving the arginine residue from HP1 to TM8 in Glt(Ph) results in a transporter that has reduced affinity for aspartate.

  8. Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appolaire, Alexandre; Girard, Eric; Colombo, Matteo

    2014-11-01

    The present work illustrates that small-angle neutron scattering, deuteration and contrast variation, combined with in vitro particle reconstruction, constitutes a very efficient approach to determine subunit architectures in large, symmetric protein complexes. In the case of the 468 kDa heterododecameric TET peptidase machine, it was demonstrated that the assembly of the 12 subunits is a highly controlled process and represents a way to optimize the catalytic efficiency of the enzyme. The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexesmore » is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.« less

  9. Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1.

    PubMed

    Iizuka, Ryo; Sugano, Yuri; Ide, Naoki; Ohtaki, Akashi; Yoshida, Takao; Fujiwara, Shinsuke; Imanaka, Tadayuki; Yohda, Masafumi

    2008-03-28

    Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two alpha subunits and four beta subunits with the structure of a double beta-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (alpha1, alpha2, beta1, and beta2) from T. KS-1. All of them (alpha1-beta1, alpha2-beta1, alpha1-beta2, and alpha2-beta2) exist as alpha(2)beta(4) heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the beta1 subunit interacted with the chaperonins more strongly than those with the beta2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.

  10. The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarkar, Vinod B.; Kimani, Serah W.; Cowan, Donald A.

    2006-12-01

    The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method. The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme wasmore » crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4{sub 2}32, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved.« less

  11. Transport Rates of a Glutamate Transporter Homologue Are Influenced by the Lipid Bilayer*

    PubMed Central

    McIlwain, Benjamin C.; Vandenberg, Robert J.; Ryan, Renae M.

    2015-01-01

    The aspartate transporter from Pyrococcus horikoshii (GltPh) is a model for the structure of the SLC1 family of amino acid transporters. Crystal structures of GltPh provide insight into mechanisms of ion coupling and substrate transport; however, structures have been solved in the absence of a lipid bilayer so they provide limited information regarding interactions that occur between the protein and lipids of the membrane. Here, we investigated the effect of the lipid environment on aspartate transport by reconstituting GltPh into liposomes of defined lipid composition where the primary lipid is phosphatidylethanolamine (PE) or its methyl derivatives. We showed that the rate of aspartate transport and the transmembrane orientation of GltPh were influenced by the primary lipid in the liposomes. In PE liposomes, we observed the highest transport rate and showed that 85% of the transporters were orientated right-side out, whereas in trimethyl PE liposomes, 50% of transporters were right-side out, and we observed a 4-fold reduction in transport rate. Differences in orientation can only partially explain the lipid composition effect on transport rate. Crystal structures of GltPh revealed a tyrosine residue (Tyr-33) that we propose interacts with lipid headgroups during the transport cycle. Based on site-directed mutagenesis, we propose that a cation-π interaction between Tyr-33 and the lipid headgroups can influence conformational flexibility of the trimerization domain and thus the rate of transport. These results provide a specific example of how interactions between membrane lipids and membrane-bound proteins can influence function and highlight the importance of the role of the membrane in transporter function. PMID:25713135

  12. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  13. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  14. A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    PubMed Central

    Lam, Sonia Y.; Yeung, Rachel C. Y.; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-01-01

    Background Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Methods and Findings Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Conclusions Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures. PMID:21423654

  15. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    PubMed

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  16. Thermodynamic characterization of the interaction between prefoldin and group II chaperonin.

    PubMed

    Sahlan, Muhamad; Zako, Tamotsu; Tai, Phan The; Ohtaki, Akashi; Noguchi, Keiichi; Maeda, Mizuo; Miyatake, Hideyuki; Dohmae, Naoshi; Yohda, Masafumi

    2010-06-18

    Prefoldin (PFD) is a hexameric chaperone that captures a protein substrate and transfers it to a group II chaperonin (CPN) to complete protein folding. We have studied the interaction between PFD and CPN using those from a hyperthermophilic archaeon, Thermococcus strain KS-1 (T. KS-1). In this study, we determined the crystal structure of the T. KS-1 PFDbeta2 subunit and characterized the interactions between T. KS-1 CPNs (CPNalpha and CPNbeta) and T. KS-1 PFDs (PFDalpha1-beta1 and PFDalpha2-beta2). As predicted from its amino acid sequence, the PFDbeta2 subunit conforms to a structure similar to those of the PFDbeta1 subunit and the Pyrococcus horikoshii OT3 PFDbeta subunit, with the exception of the tip of its coiled-coil domain, which is thought to be the CPN interaction site. The interactions between T. KS-1 CPNs and PFDs (CPNalpha and PFDalpha1-beta1; CPNalpha and PFDalpha2-beta2; CPNbeta and PFDalpha1-beta1; and CPNbeta and PFDalpha2-beta2) were analyzed using the Biacore T100 system at various temperatures ranging from 20 to 45 degrees C. The affinities between PFDs and CPNs increased with an increase in temperature. The thermodynamic parameters calculated from association constants showed that the interaction between PFD and CPN is entropy driven. Among the four combinations of PFD-CPN interactions, the entropy difference in binding between CPNbeta and PFDalpha2-beta2 was the largest, and affinity significantly increased at higher temperatures. Considering that expression of PFDalpha2-beta2 and CPNbeta subunit is induced upon heat shock, our results suggest that PFDalpha1-beta1 is a general PFD for T. KS-1 CPNs, whereas PFDalpha2-beta2 is specific for CPNbeta. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Unique fluorophores in the dimeric archaeal histones hMfB and hPyA1 reveal the impact of nonnative structure in a monomeric kinetic intermediate

    PubMed Central

    Stump, Matthew R.; Gloss, Lisa M.

    2008-01-01

    Homodimeric archaeal histones and heterodimeric eukaryotic histones share a conserved structure but fold through different kinetic mechanisms, with a correlation between faster folding/association rates and the population of kinetic intermediates. Wild-type hMfB (from Methanothermus fervidus) has no intrinsic fluorophores; Met35, which is Tyr in hyperthermophilic archaeal histones such as hPyA1 (from Pyrococcus strain GB-3A), was mutated to Tyr and Trp. Two Tyr-to-Trp mutants of hPyA1 were also characterized. All fluorophores were introduced into the long, central α-helix of the histone fold. Far-UV circular dichroism (CD) indicated that the fluorophores did not significantly alter the helical content of the histones. The equilibrium unfolding transitions of the histone variants were two-state, reversible processes, with ΔG°(H2O) values within 1 kcal/mol of the wild-type dimers. The hPyA1 Trp variants fold by two-state kinetic mechanisms like wild-type hPyA1, but with increased folding and unfolding rates, suggesting that the mutated residues (Tyr-32 and Tyr-36) contribute to transition state structure. Like wild-type hMfB, M35Y and M35W hMfB fold by a three-state mechanism, with a stopped-flow CD burst-phase monomeric intermediate. The M35 mutants populate monomeric intermediates with increased secondary structure and stability but exhibit decreased folding rates; this suggests that nonnative interactions occur from burial of the hydrophobic Tyr and Trp residues in this kinetic intermediate. These results implicate the long central helix as a key component of the structure in the kinetic monomeric intermediates of hMfB as well as the dimerization transition state in the folding of hPyA1. PMID:18096639

  18. Recyclable Thermoresponsive Polymer-Cellulase Bioconjugates for Biomass Depolymerization

    PubMed Central

    Mackenzie, Katherine J.; Francis, Matthew B.

    2013-01-01

    Here we report the construction and characterization of a recoverable, thermoresponsive polymer-endoglucanase bioconjugate that matches the activity of unmodified enzymes on insoluble cellulose substrates. Two copolymers exhibiting a thermoresponsive lower critical solution temperature (LCST) were created through the copolymerization of an aminooxy-bearing methacrylamide with N-isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMa). The aminooxy group provided a handle through which the LCST was adjusted through small-molecule quenching. This allowed materials with LCSTs ranging from 20.9 °C to 60.5 °C to be readily obtained after polymerization. The thermostable endoglucanase EGPh from the hypothermophilic Pyrococcus horikoshii was transaminated with pyridoxal-5’-phosphate to produce a ketone-bearing protein, which was then site-selectively modified through oxime linkage with benzylalkoxyamine or 5 kDa-poly(ethylene glycol)-alkoxyamine. These modified proteins showed activity comparable to the controls when assayed on an insoluble cellulosic substrate. Two polymer bioconjugates were then constructed using transaminated EGPh and the aminooxy-bearing copolymers. After twelve hours, both bioconjugates produced an equivalent amount of free reducing sugars as the unmodified control using insoluble cellulose as a substrate. The recycling ability of the NIPAm copolymer-EGPh conjugate was determined through three rounds of activity, maintaining over 60% activity after two cycles of reuse and affording significantly more soluble carbohydrates than unmodified enzyme alone. When assayed on acid-pretreated Miscanthus, this bioconjugate increased the amount of reducing sugars by 2.8-fold over three rounds of activity. The synthetic strategy of this bioconjugate allows the LCST of the material to be changed readily from a common stock of copolymer and the method of attachment is applicable to a variety of proteins, enabling the same approach to be amenable to

  19. Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer.

    PubMed

    McIlwain, Benjamin C; Vandenberg, Robert J; Ryan, Renae M

    2015-04-10

    The aspartate transporter from Pyrococcus horikoshii (GltPh) is a model for the structure of the SLC1 family of amino acid transporters. Crystal structures of GltPh provide insight into mechanisms of ion coupling and substrate transport; however, structures have been solved in the absence of a lipid bilayer so they provide limited information regarding interactions that occur between the protein and lipids of the membrane. Here, we investigated the effect of the lipid environment on aspartate transport by reconstituting GltPh into liposomes of defined lipid composition where the primary lipid is phosphatidylethanolamine (PE) or its methyl derivatives. We showed that the rate of aspartate transport and the transmembrane orientation of GltPh were influenced by the primary lipid in the liposomes. In PE liposomes, we observed the highest transport rate and showed that 85% of the transporters were orientated right-side out, whereas in trimethyl PE liposomes, 50% of transporters were right-side out, and we observed a 4-fold reduction in transport rate. Differences in orientation can only partially explain the lipid composition effect on transport rate. Crystal structures of GltPh revealed a tyrosine residue (Tyr-33) that we propose interacts with lipid headgroups during the transport cycle. Based on site-directed mutagenesis, we propose that a cation-π interaction between Tyr-33 and the lipid headgroups can influence conformational flexibility of the trimerization domain and thus the rate of transport. These results provide a specific example of how interactions between membrane lipids and membrane-bound proteins can influence function and highlight the importance of the role of the membrane in transporter function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  1. Evidence of Molecular Adaptation to Extreme Environments and Applicability to Space Environments

    NASA Astrophysics Data System (ADS)

    Filipovic, M. D.; Ognjanovic, S.; Ognjanovic, M.

    2008-06-01

    This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs) common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile): Escherichia coli (E. coli K12), will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0° C (Metarhizium frigidum (M.~frigidum) and Methanococcoides burtonii (M.~burtonii)) and 110° C (Methanopyrus kandleri (M.~kandleri)). Although not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The following hyperthermophile genomes incorporated in this software were used for these studies: Methanocaldococcus jannaschii (M.~jannaschii), M.~kandleri, Archaeoglobus fulgidus (A.~fulgidus) and three species of Pyrococcus. Common genes were annotated and grouped according to their roles in cellular processes where such information was available and proteins not previously implicated in the heat-adaptation of hyperthermophiles were identified. Additional experimental data are needed in order to learn more about these proteins. To address non-gene based components of thermal adaptation, all sequenced extremophiles were analysed for

  2. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses

    PubMed Central

    2013-01-01

    Background Current methods of ethanol production from lignocelluloses generate a mixture of sugars, primarily glucose and xylose; the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions that affect their growth and productivity. Stress-tolerant strains capable of using both glucose and xylose to produce ethanol with high yield are highly desirable. Results A recombinant Zymomonas mobilis (Z. mobilis) designated as HYMX was constructed by integrating seven genes (Pfu-sHSP, yfdZ, metB, xylA, xylB, tktA and talB) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furious (P. furious) was used to increase the heat-tolerance, the yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. To overcome the bottleneck of CP4 being unable to use pentose, xylose catabolic genes (xylA, xylB, tktA and talB) from E. coli were integrated into CP4 also for construction of the xylose utilizing metabolic pathway. Conclusions The genomic integration confers on Z. mobilis the ability to grow in medium containing xylose as the only carbon source, and to grow in simple chemical defined medium without addition of amino acid. The HYMX demonstrated not only the high tolerance to unfavorable stresses like high temperature and low nutrient, but also the capability of converting both glucose and xylose to ethanol with high yield at high temperature. What’s more, these genetic characteristics were stable up to 100 generations on nonselective medium. Although significant improvements were achieved, yeast extract is needed for ethanol production. PMID:23635356

  3. Habitat suitability of the Carolina madtom, an imperiled, endemic stream fish

    USGS Publications Warehouse

    Midway, S.R.; Kwak, Thomas J.; Aday, D.D.

    2010-01-01

    The Carolina madtom Noturus furiosus is an imperiled stream ictalurid that is endemic to the Tar and Neuse River basins in North Carolina. The Carolina madtom is listed as a threatened species by the state of North Carolina, and whereas recent distribution surveys have found that the Tar River basin population occupies a range similar to its historical range, the Neuse River basin population has shown recent significant decline. Quantification of habitat requirements and availability is critical for effective management and subsequent survival of the species. We investigated six reaches (three in each basin) to (1) quantify Carolina madtom microhabitat use, availability, and suitability; (2) compare suitable microhabitat availability between the two basins; and (3) examine use of an instream artificial cover unit. Carolina madtoms were located and their habitat was quantified at four of the six survey reaches. They most frequently occupied shallow to moderate depths of swift moving water over a sand substrate and used cobble for cover. Univariate and principal components analyses both showed that Carolina madtom use of instream habitat was selective (i.e., nonrandom). Interbasin comparisons suggested that suitable microhabitats were more prevalent in the impacted Neuse River basin than in the Tar River basin. We suggest that other physical or biotic effects may be responsible for the decline in the Neuse River basin population. We designed instream artificial cover units that were occupied by Carolina madtoms (25% of the time) and occasionally by other organisms. Carolina madtom abundance among all areas treated with the artificial cover unit was statistically higher than that in the control areas, demonstrating use of artificial cover when available. Microhabitat characteristics of occupied artificial cover units closely resembled those of natural instream microhabitat used by Carolina madtoms; these units present an option for conservation and restoration if

  4. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    PubMed

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    . histolytica ADHE to bacterial ADHE than to the G. lamblia ADHE. The 6-kDa FD of E. histolytica and G. lamblia were most similar to those of the archaebacterium Methanosarcina barkeri and the delta-purple bacterium Desulfovibrio desulfuricans, respectively, while the 12-kDa FD of the T. vaginalis hydrogenosome was most similar to the 12-kDa FD of gamma-purple bacterium Pseudomonas putida. E. histolytica genes (and probably G. lamblia genes) encoding fermentation enzymes therefore likely derive from bacteria by horizontal transfer, although it is not clear from which bacteria these amebic genes derive. These are the first nonorganellar fermentation enzymes of eukaryotes implicated to have derived from bacteria.

  5. Crystal structures of the archaeal RNase P protein Rpp38 in complex with RNA fragments containing a K-turn motif.

    PubMed

    Oshima, Kosuke; Gao, Xuzhu; Hayashi, Seiichiro; Ueda, Toshifumi; Nakashima, Takashi; Kimura, Makoto

    2018-01-01

    A characteristic feature of archaeal ribonuclease P (RNase P) RNAs is that they have extended helices P12.1 and P12.2 containing kink-turn (K-turn) motifs to which the archaeal RNase P protein Rpp38, a homologue of the human RNase P protein Rpp38, specifically binds. PhoRpp38 from the hyperthermophilic archaeon Pyrococcus horikoshii is involved in the elevation of the optimum temperature of the reconstituted RNase P by binding the K-turns in P12.1 and P12.2. Previously, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was determined at 3.4 Å resolution. In this study, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was improved to 2.1 Å resolution and the structure of PhoRpp38 in complex with the K-turn in P12.1 was also determined at a resolution of 3.1 Å. Both structures revealed that Lys35, Asn38 and Glu39 in PhoRpp38 interact with characteristic G·A and A·G pairs in the K-turn, while Thr37, Asp59, Lys84, Glu94, Ala96 and Ala98 in PhoRpp38 interact with the three-nucleotide bulge in the K-turn. Moreover, an extended stem-loop containing P10-P12.2 in complex with PhoRpp38, as well as PhoRpp21 and PhoRpp29, which are the archaeal homologues of the human proteins Rpp21 and Rpp29, respectively, was affinity-purified and crystallized. The crystals thus grown diffracted to a resolution of 6.35 Å. Structure determination of the crystals will demonstrate the previously proposed secondary structure of stem-loops including helices P12.1 and P12.2 and will also provide insight into the structural organization of the specificity domain in P. horikoshii RNase P RNA.

  6. 4-Demethylwyosine Synthase from Pyrococcus abyssi Is a Radical-S-adenosyl-l-methionine Enzyme with an Additional [4Fe-4S]+2 Cluster That Interacts with the Pyruvate Co-substrate*

    PubMed Central

    Perche-Letuvée, Phanélie; Kathirvelu, Velavan; Berggren, Gustav; Clemancey, Martin; Latour, Jean-Marc; Maurel, Vincent; Douki, Thierry; Armengaud, Jean; Mulliez, Etienne; Fontecave, Marc; Garcia-Serres, Ricardo; Gambarelli, Serge; Atta, Mohamed

    2012-01-01

    Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed. PMID:23043105

  7. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs).

    PubMed

    Natale, D A; Shankavaram, U T; Galperin, M Y; Wolf, Y I; Aravind, L; Koonin, E V

    2000-01-01

    Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Special-purpose databases organized on the basis of phylogenetic analysis and carefully curated with respect to known and

  8. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs)

    PubMed Central

    Natale, Darren A; Shankavaram, Uma T; Galperin, Michael Y; Wolf, Yuri I; Aravind, L; Koonin, Eugene V

    2000-01-01

    Background: Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. Results: A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Conclusions: Special-purpose databases organized on the basis of phylogenetic analysis and carefully

  9. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  10. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses.

    PubMed

    Pouyanfard, Somayeh; Spagnoli, Gloria; Bulli, Lorenzo; Balz, Kathrin; Yang, Fan; Odenwald, Caroline; Seitz, Hanna; Mariz, Filipe C; Bolchi, Angelo; Ottonello, Simone; Müller, Martin

    2018-02-15

    about a third of all countries have access to the VLP vaccines. The minor capsid protein L2 has been shown to contain so-called neutralization epitopes within its N terminus. We designed polytopes comprising the L2 epitope amino acids 20 to 38 of up to 11 different mucosal HPV types and inserted them into the scaffold of thioredoxin derived from a thermophile archaebacterium. The antigen induced neutralizing antibody responses in mice and guinea pigs against 26 mucosal and cutaneous HPV types. Further, addition of a heptamerization domain significantly increased the immunogenicity. The final vaccine design comprising a heptamerized L2 8-mer thioredoxin single-peptide antigen with excellent thermal stability might overcome some of the limitations of the current VLP vaccines. Copyright © 2018 American Society for Microbiology.

  11. Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis

    PubMed Central

    Gao, Beile; Gupta, Radhey S

    2007-01-01

    Background The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. Results We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota – Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota – Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared

  12. Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance.

    PubMed

    Kojima, Kenji K; Kobayashi, Ichizo

    2015-10-19

    R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3'-phospho alpha, beta-unsaturated aldehyde end in addition to the 5'-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East

  13. Community Response to a Heavy Precipitation Event in High Temperature, Chemosynthetic Biofilms and Sediments

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Loiacono, S. T.; Shock, E.

    2012-12-01

    Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic

  14. Extreme Tolerance to Elevated Pressure in a Thermococcus isolate from the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Narasingarao, P.; Huber, J. A.; Schrenk, M. O.; Bartlett, D.

    2013-12-01

    Hydrothermal systems are windows into the deep biosphere. Venting fluids with temperatures up to 400°C containing gases such as H2, CO2, H2S and CH4 provide an oasis of life in the deep ocean primarily based on chemosynthesis. The Mid-Cayman Rise (MCR) includes the deepest hydrothermal vent system known thus far, and is characterized by two venting sites Piccard (4950m) and Von Damm (2350m). Here we demonstrate the remarkable high pressure tolerance limits of a Thermococcus sp. designated strain 175, isolated from samples collected from Piccard during an expedition in 2012. Diffuse venting fluids collected at the site resulted in the isolation of several Thermococcus strains capable of growth in basal salts medium supplemented with H2/CO2 and yeast extract, along with sulfur as an electron acceptor. Given the importance of pressure as an environmental parameter influencing evolution and adaptation of deep-sea life, the pressure tolerance of Thermococcus strain 175 was tested. High pressure incubations were originally conducted in serum vials filled completely with growth medium and therefore lacking all headspace gas. To test for growth with H2/CO2 , modified hungate tubes with a piston mechanism were used (Bowles et al. 2011) . The results indicate that strain 175 can grow at 90°C up to 120 megapascal (MPa). Growth rates are comparable when the strain is grown at atmospheric pressure or at 120 MPa pressure. Morphologically, the strain is irregular cocci and does not show any changes in its cellular structure when switched between atmospheric pressure and elevated pressure. This wide range of pressure tolerance has not been previously observed in other microorganisms, including Pyrococcus yayanosii CH1 (Zeng et al., 2009) which is also capable of growth at 120MPa but does not grow below 15 MPa. Thermococcus strain 175 represents an excellent model system to study high pressure adaptation due to its high growth rate and broad range of growth pressures. The

  15. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    PubMed

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast